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Hybrid Arrays: How Many RF Chains Are
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Abstract—With increasing frequencies, bandwidths, and array
apertures, the phenomenon of beam squint arises as a serious
impairment to beamforming. Fully digital arrays with true time
delay per antenna element are a potential solution, but they
require downconversion at each element. This paper shows
that hybrid arrays can perform essentially as well as digital
arrays once the number of radio-frequency chains exceeds a
certain threshold that is far below the number of elements. This
threshold is determined by only a few physical parameters—
bandwidth, array size, and beamforming direction—and can
be expressed in a remarkably simple closed form. The result
is robust, holding also for suboptimum yet highly appealing
beamspace architectures.

Index Terms—Wideband communication, beam squint, hybrid
beamforming, mmWave frequencies, terahertz frequencies

I. INTRODUCTION

In the quest for fresh spectrum, there is much interest
in millimeter wave (mmWave) and sub-terahertz bands [1].
Enormous amounts of bandwidth can be put into service
at these frequencies, contingent on high-gain antennas to
overcome the rising noise floor [2]–[5]. For the sake of
reconfigurability, antenna arrays composed of multiple low-
gain elements are preferred over a single high-gain antenna.
Given that hundreds of such elements become necessary, fully
digital arrays with one radio-frequency (RF) chain per element
are unaffordable in terms of power consumption and cost
[6]–[8]. Fully analog designs with one RF chain per array
must instead be embraced. The drawback is then that, while
the channel is frequency-dependent, analog phase shifters are
frequency-independent. This results in diminished antenna
gains at frequencies away from the central one, at which the
array is optimized, in a phenomenon termed beam squint [9,
Ch. 1.2].

While this phenomenon can in principle be corrected with
true-time-delay (TTD) beamforming [10]–[14], the required
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Fig. 1. Projection of a planar array onto the direction of beamforming,
yielding a line segment.

delays for array sizes of interest are not available at mmWave
frequencies when implemented at RF (see [15, Table I] and
[16, Table I]) and, in any event, a large chip area would be
consumed. Digital true-time-delay beamforming does offer a
much broader range of delays [16, Table II], but again it
necessitates of downconversion to baseband at each antenna
element. Hybrid arrays lie between the two extremes, fully
analog and fully digital, as they feature a number of RF chains
that is above one but below the number of antenna elements.
Potentially then, hybrid arrays can bridge these extremes
in terms of performance and cost, and their beam-squint
analysis is therefore of importance. However, in contrast with
fully analog arrays, for which the beam-squint loss has been
quantified with theoretical guarantees [9], only algorithmic
approaches are available for hybrid arrays [17]–[21]. Relevant
contributions in the literature include [22]–[26], which address
different aspects: codebook design for analog arrays [22],
[23], channel estimation [24], and beamforming optimization
problem with an additional use of true time delay [25], [26].

In the wake of these recent contributions, this paper tackles
the following research questions:

1) What is the loss in beamforming gain caused by squint
when using hybrid arrays instead of fully digital ones?

2) Is there a number of RF chains beyond which this loss
vanishes and, if so, what is that number?

Remarkably, the latter question is answered in the affirma-
tive. The minimum number of RF chains required to eradicate
the beam-squint loss emerges in a compact closed form. For
a linear array, this minimum number is shown to be simply

bandwidth
carrier frequency

· projected length
wavelength

(1)

where “projected length” refers to the array’s projection onto
the direction of beamforming. The above extends readily to
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TABLE I
NOTATION

Notation Description

span(v1, . . . , vn) Span of vectors v1, . . . , vn
dimV Dimension of a vector space V
∥a∥ Euclidean norm of a vector a
A⊤ Transpose of a matrix A
A∗ Conjugate transpose of a matrix A
A1/2 Positive square root of a semi-definite matrix A
trA Trace of a matrix A
A1 ⊗A2 Kronecker product of matrices A1 and A2

blkdiag(A1, . . . ,An) Block diagonal matrix with blocks A1, . . . ,An

λℓ(·) ℓth largest eigenvalue of a matrix or operator
L2(·) Space of square integrable functions
[ · ] Iverson bracket
| · | Set cardinality
⌈·⌉ Ceiling function
sinc(x) ≡ sinπx

πx
Sinc function

f(x) = o(g(x)) f(x)/g(x) → 0 as x → ∞
f(x) = O(g(x)) There exist constants C and x0 such that

|f(x)| ≤ Cg(x) for all x ≥ x0

planar arrays, only with that projected length generalized to
being the length of the longest segment that the array projects
onto the direction of beamforming (see Fig. 1).

As the product of carrier frequency and wavelength equals
the speed of light, (1) can equivalently be expressed as

1

c
· bandwidth · projected length. (2)

In rather broad generality, this product of the bandwidth
and the projected array length dictates the severity of the
beam squint, and it directly gives the minimum number
of RF chains required for squint-free beamforming with a
hybrid array. Growing bandwidths, expanding array apertures,
and beamforming directions deviating from broadside, all
aggravate the squint and increase the value of (2), yet a
hybrid array equipped with that number of chains can always
beamform without squint. (This behavior is asymptotic, in the
sense that the squint vanishes as the product grows large, yet
it very faithfully describes the behavior for values of interest.)

For an array intending to beamform in any direction, the
projected length in (2) must be set to its worst—highest—
value, which is the actual length (for a linear array) or the
diagonal length (for a planar array).

The findings summarized above are robust, holding not
only for optimum beamforming, but further for suboptimal
beamspace architectures consisting of a bank of beams with
a regular disposition [27].

The existence of a number of RF chains beyond which
the squint vanishes is proved to hold even if the connectivity
within the hybrid array is restricted, in the so-called hybridly-
connected structure where the array is partitioned into subar-
rays and each subarray is connected only to a subset of RF
chains. An interesting tradeoff then arises between the number
of analog phase shifters and the number of RF chains, with
some residual beam squint becoming inevitable if both are
simultaneously reduced.

The paper is organized as follows. Sec. II introduces the
system model and Sec. III describes the phenomenon of beam
squint. A simple criterion for squint-free operation is set
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Fig. 2. Considered geometry, including u and a unit hemisphere as reference.

forth in Sec. IV. Then, the minimum number of RF chains
required for squint-free operation is quantified for linear and
planar arrays in Secs. V and VI, respectively. The foregoing
analyses are numerically validated in Sec. VII. In Sec. VIII,
the results are extended to simpler architectures with restricted
connectivity, and also to a multiantenna receiver. Finally, the
paper concludes in Sec. IX.

For a summary of the notation employed throughout the
manuscript, readers are referred to Table I.

II. SYSTEM MODEL

A. Array Model

Consider a transmitter equipping a uniform planar array
(UPA) communicating with a single-antenna receiver. The
UPA has dimensionality Nx × Ny and aperture Lx × Ly ,
whereby the element spacings along the respective dimensions
are dx = Lx

Nx
and dy =

Ly

Ny
.

The coordinate system is such that the nth transmit element
(n ∈ {0, . . . , N − 1} with N = NxNy) is at[
xn yn 0

]⊤
=
[
dx
(
nx − Nx−1

2

)
dy
(
ny − Ny−1

2

)
0
]⊤

where nx ∈ {0, . . . , Nx − 1} and ny ∈ {0, . . . , Ny − 1} are
the quotient and remainder of n/Ny , respectively. The receiver
is located at D

[
sinϕ cos θ sinϕ sin θ cosϕ

]⊤
where D is

the communication range, ϕ is the zenith angle, and θ is the
azimuth angle (see Fig. 2). For convenience, let us henceforth
define

rn =
[
xn yn

]⊤
u =

[
ux uy

]⊤
(3)

where ux = sinϕ cos θ and uy = sinϕ sin θ. Note that u,
also depicted in Fig. 2, corresponds to the uv-coordinates,
handy for many applications including array signal processing
[28]. It is a convenient two-dimensional projection of the unit-
vector pointing to the receiver; the higher its magnitude, the
further from broadside, with ∥u∥ = 0 and ∥u∥ = 1 respec-
tively denoting the exact broadside and endfire directions.

The consideration of UPAs does not exclude uniform linear
arrays (ULAs), as the latter are a special case of the former.
Our convention for linear arrays is to set Ny = 1.

B. Channel Model

We posit a line-of-sight (LOS) connection in the far field.
Denoting the carrier frequency by fc, and the frequency
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relative to it by f ∈ [−W
2 ,

W
2 ] with W the bandwidth, the

nth entry of the normalized channel vector a∗ at fc + f is

[a∗(f)]n = exp

(
j2π

fc + f

c
u⊤rn

)
. (4)

Such channel vector can be expressed as [9, Eq. 1.59]

a∗(f) = a∗
x(f)⊗ a∗

y(f) (5)

where ax(f) ∈ CNx and ay(f) ∈ CNy are vectors with
entries

[a∗
x(f)]n = exp

(
j2π

fc + f

c
uxxn

)
(6)

[a∗
y(f)]n = exp

(
j2π

fc + f

c
uyyn

)
. (7)

The amplitude factor omitted by the normalization can be
directly incorporated into the signal-to-noise ratio, giving1

SNR =
λ2GtGrPt

(4πD)2WN0
(8)

where Gt and Gr are the transmit and receive element gains,
Pt is the total radiated power, and N0 is the noise spectral
density.

C. Signal Model

A hybrid array is considered, with the number of RF chains
being NRF. Denoting the analog and digital beamforming
stages by Wa ∈ CN×NRF and wd(f) ∈ CNRF , respectively,
the relation between the transmit signal s(f) and the receive
signal y(f) is given by

y(f) = a∗(f)Wawd(f)s(f) + v(f) (9)

where v(f) is a white Gaussian noise process with unit power
spectral density. A single signal stream is transmitted, as the
channel is of rank one.

Letting s(f) have unit power, the power constraint becomes

1

W

∫ W
2

−W
2

∥Wawd(f)∥2df = SNR. (10)

Introducing

p(f) = ∥Wawd(f)∥2 (11)

g(f) =
|a∗(f)Wawd(f)|2

∥Wawd(f)∥2
, (12)

we can succinctly rewrite the signal model as

y(f) =
√
g(f)p(f)s(f) + v(f) (13)

with the streamlined power constraint

1

W

∫ W
2

−W
2

p(f)df = SNR. (14)

Respectively, g(f) and p(f) can be interpreted as the beam-
forming gain and transmit power at frequency f .

1Large-scale effects such as atmospheric attenuation [29], which is not
negligible for long-range transmissions, can be easily incorporated.

For a given analog beamformer, we can optimize the digital
beamformer. To do so, we introduce the auxiliary quantity [30,
Lemma 5]

w̃d(f) ≡ (W ∗
a Wa)

1
2wd(f), (15)

which is a natural choice from

p(f) = w∗
d(f)(W

∗
a Wa)wd(f) (16)

= ∥w̃d(f)∥2. (17)

Plugging (15) into (12), we obtain

g(f) =
∥a∗(f)Wa(W

∗
a Wa)

− 1
2 w̃d(f)∥2

∥w̃d(f)∥2
(18)

≤ ∥(W ∗
a Wa)

− 1
2W ∗

a a(f)∥2 (19)

where the upper bound follows from the Cauchy-Schwarz
inequality. For any p(f), such bound can be attained by

w̃d(f) =
√
p(f)

(W ∗
a Wa)

− 1
2W ∗

a a(f)

∥(W ∗
a Wa)−

1
2W ∗

a a(f)∥
. (20)

III. BEAM SQUINT

The beam squint can be evidenced by observing how the
beamforming gain behaves on the space-frequency plane. To
make the dependence on both space and frequency explicit,
in this section the notations a(u, f) and g(u, f) are used in
lieu of a(f) and g(f) when appropriate.

With a unit-norm analog combiner wa and no digital
combiner, (12) reduces to

g(u, f) = |w∗
aa(u, f)|2, (21)

which is often termed beam pattern in terms of its dependence
on u [9]. From (4),

a∗(u, f) = a∗((1 + f/fc)u, 0
)
, (22)

which gives

g(u, f) = g
(
(1 + f/fc)u, 0

)
. (23)

The beam pattern is hence frequency-dependent, and the peak
of the beam changes its direction with frequency, which
is why the phenomenon is termed squint; only perfectly
broadside beams (u = 0) are immune. This argument is valid
for any array geometry and beamformer, thus it is essentially
a generalization of [26, Lemma 2].

As a guideline for when the squint becomes significant, the
notion of 3-dB loss in beamforming gain is often used [9, Ch.
1.2]. For ease of exposition, consider an N -element ULA on
the x-axis and maximum ratio transmission (MRT), whereby
wa =

a(0)√
N

. Then,

g(f) =
|a∗(f)a(0)|2

N
(24)

=
1

N

∣∣∣∣∣
N−1∑
n=0

e−j2π
fdxux

c n

∣∣∣∣∣
2

(25)

= FN

(
2πdxux

c
f

)
(26)
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with FN (x) = 1
N

(
sin Nx

2

sin x
2

)2
. The 3-dB loss occurs when

FN

(
πdxux
c

W

)
=
N

2
. (27)

Given the array length Lx = Ndx, the argument of FN (·)
above suggests defining

α ≡ W

fc

Lxux
λ

(28)

and, indeed, this product of the normalized bandwidth and
normalized projected aperture—termed channel dispersion
factor in [27]—turns out to be an excellent measure of the
squint intensity with analog beamforming and plays a central
role in the remainder of the paper. With it, (27) becomes

FN

(
πα

N

)
=
N

2
(29)

and, as N → ∞, this boils down to

sinc2
α

2
=

1

2
, (30)

whose numerical solution gives

α3dB ≈ 0.886. (31)

As shown in App. A, α3dB decreases with N and the conver-
gence to 0.886 is quick, hence this value holds virtually for
any N ; the error is only 5% for N = 3 [31, Fig. 2.4].

Just like a 3-dB loss in beamforming gain maps to α3dB,
any other loss value has its corresponding α.

To keep α constant, so as to maintain the beam squint at a
given level, (28) dictates that:

• the larger the bandwidth, the smaller the array must be;
• the further the beam points from the broadside direction,

the smaller the bandwidth and/or the array must be.
It is henceforth assumed that α ̸= 0, for otherwise there is

no beam squint in the first place.

IV. APPROACHING SQUINT-FREE PERFORMANCE

In this section, a simple criterion is introduced to determine
whether the beamformer is approaching squint-free perfor-
mance.

A. Average Beamforming Gain

Let us define the average beamforming gain

gavg =
1

W

∫ W
2

−W
2

g(f)df (32)

and, by means of the positive definite matrix

B =
1

W

∫ W
2

−W
2

a(f)a∗(f)df, (33)

further express such average gain as [32, Eq. 20]

gavg =
1

W

∫ W
2

−W
2

∥a∗(f)Wa(W
∗
a Wa)

− 1
2 ∥2df (34)

= tr
(
Wa(W

∗
a Wa)

−1W ∗
a B
)
. (35)

Note that

[B]n′,n =
1

W

∫ W
2

−W
2

exp

(
j2π

fc + f

c
u⊤(rn − rn′)

)
df

(36)

and, as far as the eigenvalues of B are concerned, the term

exp

(
j2π

fc
c
u⊤(rn − rn′)

)
(37)

is irrelevant. This is because (37) has the same effect as two
unitary diagonal matrices, and the eigenvalues are similarity
invariant [33, Thm. 1.3.3]. Therefore, without loss of gener-
ality in terms of the eigenvalues, we can let fc = 0 to obtain

[B]n′,n =
1

W

∫ W
2

−W
2

exp

(
j2π

f

c
u⊤(rn − rn′)

)
df (38)

= sinc

(
Wu⊤(rn − rn′)

c

)
. (39)

B. Simple Criterion for Squint-Free Performance

With fully digital beamforming, the squint can be eradicated
to attain g(f) = N . Since g(f) ≤ N , it follows that gavg = N
is a necessary and sufficient condition for g(f) = N . Thus,
gavg ≈ N is a simple criterion to determine whether the
beamformer is approaching squint-free performance.

C. Analog Beamformer Maximizing the Average Beamform-
ing Gain

Given λℓ(B) as the ℓth largest eigenvalue of B, and uℓ as
the corresponding unit-norm eigenvector, gavg is maximized
by [32, Prop. 1]

Wa =
[
u0 · · · uNRF−1

]
(40)

at

gavg =
∑
ℓ<NRF

λℓ(B). (41)

Note that ∑
ℓ

λℓ(B) = tr(B) = N (42)

consistent with the fact that an all-digital implementation
(NRF = N ) incurs no beam squint.

V. LINEAR ARRAYS

Before embarking on the analysis with UPAs, let us first
entertain the simpler ULA case, with Ny = 1. Then, in
Sec. VI, the UPA results will be built upon the results
presented herein.
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A. Continuous-Aperture Representation

From (41), the eigenvalues of B are of great importance.
For the sake of analysis, we move into the continuous realm
by replacing the discrete array with a continuous one.

For linear arrays, (39) reduces to

[B]n′,n = sinc

(
Wuxdx(n− n′)

c

)
(43)

= sinc
α(n′ − n)

N
. (44)

where, recall from Sec. III, α measures the squint intensity
that would be experienced with purely analog beamforming.
The even nature of (44) with respect to α enables assuming
α > 0 without loss of generality. The continuous counterpart
to B is the integral operator [34, Sec. V]

Bα :L2(R) → L2(R) (45)

s(r) 7→
∫
Bα(r

′, r)s(r)dr

where

Bα(r
′, r) = α sinc

(
α(r − r′)

)
[r ∈ I][r′ ∈ I] (46)

is the kernel with I = [− 1
2 ,

1
2 ]. Here, [·] denotes the Iverson

bracket [35]

[condition] ≡

{
1 the condition is true
0 otherwise

. (47)

The matrix B can be recovered from (46) by sampling at the
normalized antenna element coordinates, namely

[B]n′,n =
1

α
Bα

(
rn′

Lx
,
rn
Lx

)
, (48)

where the normalization by 1
α is convenient, as evidenced in

subsequent sections. In terms of eigenvalues, the continuous
representation becomes exact as the element spacings vanish,
namely [34, Sec. V-C]

α

N
λℓ(B) → λℓ(Bα) (49)

in Euclidean norm.
The squint-free condition with hybrid beamforming,∑
ℓ<NRF

λℓ(B) ≈ N , translates to∑
ℓ<NRF

λℓ(Bα) ≈ α (50)

and the counterpart to the all-digital extreme in (42) is∑
ℓ λℓ(Bα) = α.
The continuous-aperture representation introduced herein

is an analytically friendly proxy to the discrete model, and
its practical relevance is confirmed by thorough numerical
studies.

B. Eigenvalue Behavior

The eigenvalues of Bα are well studied [36] (see [37] for
its relevance to bandlimited signals). In particular, they are
bounded above by 1 and asymptotically polarized into two
levels. Precisely, as α→ ∞,

|{ℓ : λℓ(Bα) > ϵ}| = α+O(logα) (51)

for any ϵ ∈ (0, 1). Put another way,

[λ0(Bα), λ1(Bα), . . .] ≈ [1, . . . , 1︸ ︷︷ ︸
≈α

, 0, . . .] (52)

where the approximations sharpen as α grows.

C. Number of Required RF chains

Let us consider the asymptotic regime where α → ∞ and
NRF = ⌈pα⌉ with p > 0 a constant. Then,∑

ℓ<NRF

λℓ(Bα) = min(p, 1)α+ o(α), (53)

which (see App. B) is a consequence of (52). Therefore,∑
ℓ<NRF

λℓ(Bα) = α+ o(α) (54)

if p ≥ 1. Recalling the squint-free condition in (50), this
implies that, asymptotically, α RF chains are needed to
approach squint-free performance.

D. Beamspace Architecture

An instance of the above general ULA result had been
empirically observed in the context of beamspace MIMO [27],
namely that the beam squint can be mitigated with NRF ≈ α
RF chains and a simple analog network. The ℓth column
of Wa is then the MRT beamformer a(fℓ)√

N
for the relative

frequency

fℓ =
c

uxdx
·
ℓ− NRF−1

2

N
=
ℓ− NRF−1

2

α
W, (55)

such that W is segregated into NRF subbands spaced by
W
α . Intuitively, this narrower subbands are less susceptible

to beam squint; in fact, they are dimensioned such that the
loss in beamforming gain is (asymptotically) about 3 dB, with
the digital stage correcting this residual loss.2

A dual interpretation, recalling (23), is that the ℓth analog
beamformer points (at its own central frequency) in direction
(1+ fℓ

fc
)ux. At the analog stage, we are therefore faced with a

bank of beams arranged regularly in ux, hence the beamspace
denomination.

As the columns are orthonormal, (34) gives

gavg
N

=
1

NW

∫ W
2

−W
2

∥a∗(f)Wa∥2df (56)

=
∑
ℓ<NRF

1

W

∫ W
2

−W
2

|a∗(f)a(fℓ)|2

N2
df. (57)

2Precisely, the maximum loss at the subband boundaries is 3.92 dB for
α = 1, which follows from sinc2(1/2) = 4

π2 ≈ 0.405 .
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Fig. 3. Validity of the continuous-aperture representation.

To again move into the continuous-aperture realm, we let
N → ∞ while retaining the aperture, whereby

|a∗(f)a(fℓ)|2

N2
=

(
sin
(
π
(
ℓ− NRF−1

2 − f
W α

))
N sin

(
π
(
ℓ− NRF−1

2 − f
W α

)
/N
))2

→ sinc2
(
ℓ− NRF − 1

2
− f

W
α

)
(58)

and

gavg
N

→
∑
ℓ<NRF

1

W

∫ W
2

−W
2

sinc2
(
ℓ− NRF − 1

2
− f

W
α

)
df

=
1

α

∑
ℓ<NRF

∫ ℓ−NRF−1

2 +α
2

ℓ−NRF−1

2 −α
2

sinc2t dt (59)

Let us again consider the asymptotic regime, α → ∞ and
NRF = ⌈pα⌉ with p > 0 a constant. It is shown in App. C
that (59) converges to min(p, 1). The result is thus identical to
its counterpart—recall (53)—with the optimum eigenvectors,
demonstrating the asymptotic optimality of the beamspace
architecture. This architecture is computationally efficient and
compelling in that no amplitude tapering is required. On top
of that, the normalized response at the ℓth RF chain, given
in (58), concentrates around fℓ such that having a much
smaller bandwidth at each RF chain incurs negligible loss.
With a bandwidth of 2

αW per RF chain—precisely, between
fℓ − W

α and fℓ +
W
α —the normalized average beamforming

gain becomes(∫ 1

−1

sinc2t dt

)
min(p, 1) ≈ 0.902min(p, 1) (60)

which falls short by only 0.45 dB. Doubling the bandwidth
per RF chain shrinks this deficit to 0.22 dB.

E. Remarks

The analysis in this section entails two limits, infinitesimal
element spacing and infinite aperture-bandwidth product, and
care should be exercised to ensure the relevance to regimes
of interest [38].

Recalling (49), Fig. 3 depicts the normalized approximation
error for the first limit3∑

ℓ

(
α
N λℓ(B)− λℓ(Bα)

)2∑
ℓ λ

2
ℓ(Bα)

. (61)

3λℓ(Bα) can be computed via the software package chebfun2 [39].
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Fig. 4. Normalized gain with respect to α. The sawtooth behavior, caused
by the ceiling function on the number of RF chains, quickly abates.

The figure evidences that the continuous-aperture representa-
tion is fully valid provided that α ≤ N , a condition clearly
fulfilled for any scenario of interest because

α = N
W

fc

dxux
λ

≪ N. (62)

This leaves the second limit, base on which the analysis is
valid as long as α is minimally large. Pleasingly, even for
very small α this turns out to be the case. Fig. 4 depicts
the normalized gain

(∑
ℓ<NRF

λℓ(Bα)
)
/α with respect to α,

confirming that, for virtually any α, squint-free performance
can be virtually achieved with ⌈α⌉+ 1 RF chains.

VI. PLANAR ARRAYS

The generalization to planar arrays is not straightforward in
that a naive separable architecture makes an inefficient use of
the RF chains. For planar arrays, the intensity of beam squint
can be measured by

α ≡
[
αx
αy

]
=
W

fc

[Lxux

λ
Lyuy

λ

]
, (63)

which is a natural extension of α for linear arrays.

A. Separable Architecture

Motivated by (5), separable beamformers are often consid-
ered where [9, Ch. 1.2]

Wa = Wx ⊗Wy (64)

with Wx ∈ CNx×NRF,x and Wy ∈ CNy×NRF,y , and with
NRF = NRF,xNRF,y . Then,

g(f) =
∥∥((W ∗

x ⊗W ∗
y )(Wx ⊗Wy)

)− 1
2

· (W ∗
x ⊗W ∗

y )(ax(f)⊗ ay(f))
∥∥2 (65)

=
∥∥(W ∗

xWx)
− 1

2W ∗
xax(f)

⊗ (W ∗
yWy)

− 1
2W ∗

y ay(f)
∥∥2 (66)

=
∥∥(W ∗

xWx)
− 1

2W ∗
xax(f)

∥∥2
·
∥∥(W ∗

yWy)
− 1

2W ∗
y ay(f)

∥∥2 (67)

= gx(f)gy(f) (68)

given

gx(f) =
∥∥(W ∗

xWx)
− 1

2W ∗
xax(f)

∥∥2 (69)

gy(f) =
∥∥(W ∗

yWy)
− 1

2W ∗
y ay(f)

∥∥2. (70)
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It follows that (see App. D)

gavg
N

≤ min

(
gavg,x
Nx

,
gavg,y
Ny

)
(71)

where gavg,x= 1
W

∫ W
2

−W
2

gx(f)df and gavg,y= 1
W

∫ W
2

−W
2

gy(f)df .
Attaining gavg ≈ N with a separable beamforming structure

entails gavg,x ≈ Nx and gavg,y ≈ Ny . For ux ̸= 0 and uy ̸= 0,
asymptotically in the array aperture and/or the bandwidth it
holds that NRF,x ≥ αx and NRF,y ≥ αy as per Sec. V. Thus,

NRF ≥ αxαy =
LxLyuxuy

c2
W 2, (72)

which is quadratic in the diagonal dimensions of the array and
also quadratic in the bandwidth. In the sequel, it is shown that
a nonseparable beamformer can greatly reduce such NRF.

B. Continuous-Aperture Representation

Again resorting to a continuous-aperture representation, the
counterpart to B is the integral operator

Bα :L2(R2) → L2(R2) (73)

s(r) 7→
∫
Bα(r

′, r)s(r)dr

where

Bα(r
′, r) = ∥α∥sinc

(
πα⊤(r − r′)

)[
r ∈ I2

][
r′ ∈ I2

]
(74)

is the kernel. The matrix B can again be recovered from (74)
by sampling at the normalized element coordinates, precisely

[B]n′,n =
1

∥α∥
Bα

([
xn′
Lxyn′
Ly

]
,

[
xn

Lx
yn
Ly

])
. (75)

In terms of eigenvalues, the continuous representation be-
comes exact as the spacings vanish, namely [34, Sec. V-C]

∥α∥
N

λℓ(B) → λℓ(Bα) (76)

in two-norm as Nx and Ny grow large with a fixed ratio. The
squint-free condition is∑

ℓ<NRF

λℓ(Bα) ≈ ∥α∥. (77)

C. A Bag of Tricks

The operator B obtained from the continuous-aperture
representation is still ill-suited to analysis. To enable further
progress, some handy results are set forth in this subsection
that allow capitalizing on ULAs asymptotics.

Let us construct a rotation matrix R ∈ R2×2 whose first
row is α

∥α∥ , and then rotate the axes into

r̃ =
[
r̃x r̃y

]⊤
= Rr r̃′ =

[
r̃′x r̃′y

]
= Rr′. (78)

The right-hand side of (74) can then be recast as

∥α∥sinc
(
π∥α∥(r̃x − r̃′x)

)[
r̃ ∈ RI2

][
r̃′ ∈ RI2

]
. (79)

Fig. 5. Projection of the UPA onto the line parallel to
[
cos θ sin θ

]⊤.

Defining the kernel

B̃α(r̃
′
x, r̃x) = ∥α∥sinc

(
π∥α∥(r̃x − r̃′x)

)
(80)

·
(∫ [

r̃ ∈ RI2
]
dr̃y

)1/2(∫ [
r̃′ ∈ RI2

]
dr̃′y

)1/2
and the corresponding operator B̃α : L2(R) → L2(R), it is
shown in App. E that the eigenvalues of B̃α and Bα coincide.
If the factors(∫ [

r̃ ∈ RI2
]
dr̃y

)1/2 (∫ [
r̃′ ∈ RI2

]
dr̃′y

)1/2
(81)

are replaced by indicator functions, the above boils down to
the ULA kernel. This motivates bounding these factors with
scalar multiples of the indicator function and invoking the
Courant min-max theorem. Precisely,

∫ [
r̃ ∈ RI2

]
dr̃y is a

piecewise linear function connecting the points(
− L1/2, 0

)
,
(
− L2/2, L3

)
,
(
L2/2, L3

)
,
(
L1/2, 0

)
(82)

given

L1 =
|αx|+ |αy|

∥α∥
(83)

L2 =

∣∣|αx| − |αy|
∣∣

∥α∥
(84)

L3 =
∥α∥

max(|αx|, |αy|)
(85)

Also,

δL3

[
r̃x ∈ ((1− δ)L1 + δL2)I

]
≤
∫ [

r̃ ∈ RI2
]
dr̃y ≤ L3

[
r̃x ∈ L1I

]
(86)

where δ ∈ [0, 1] is a constant to be determined.
Using (86) and the fact that B and B̃ share the same

eigenvalues, it is shown in App. F that

δL3λℓ(Bαlo) ≤ λℓ(Bα) ≤ L3λℓ(Bαup), (87)

where

αlo ≡ ∥α∥
(
(1− δ)L1 + δL2

)
(88)

αup ≡ ∥α∥L1. (89)
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TABLE II
NORMALIZED AVERAGE BEAMFORMING GAIN (WORST VALUE OVER AZIMUTH ANGLE) FOR VARIOUS SETUPS

# additional Bandwidth [GHz]
RF chains 1 2 3 4 5 10 15 20 25 30

Optimal
0 0.9877 0.9523 0.8984 0.8324 0.9776 0.9638 0.9680 0.9720 0.9737 0.9749
1 1.0000 0.9993 0.9967 0.9933 0.9991 0.9961 0.9959 0.9961 0.9960 0.9959
2 1.0000 0.9999 0.9999 0.9998 0.9998 0.9996 0.9996 0.9995 0.9994 0.9993

Beamspace
0 0.9876 0.9518 0.8963 0.8266 0.9089 0.9308 0.9431 0.9510 0.9564 0.9603
1 0.8170 0.8349 0.8600 0.8868 0.9264 0.9405 0.9492 0.9551 0.9596 0.9631
2 0.9952 0.9819 0.9632 0.9433 0.9531 0.9607 0.9658 0.9695 0.9722 0.9744

D. Number of Required RF Chains

Consider a bandwidth r1W and an aperture r2Lx × r2Ly
where r1, r2 > 0 are constants. Then,

α =
rW

fc

[Lxux

λ
Lyuy

λ

]
(90)

depends on r ≡ r1r2, not individually on r1 and r2. With the
number of RF chains at

NRF =
⌈
pαup

⌉
, (91)

let us once more consider the asymptotic regime, via r → ∞.
Armed with (87), it is shown in App. G that the no-squint
condition ∑

ℓ<NRF

λℓ(B) = ∥α∥+ o(r) (92)

holds if and only if p ≥ 1. The minimum number of RF chains
that asymptotically attain squint-free performance is thus

αup = |αx|+ |αy| (93)

=
W

fc
· Lx| cos θ|+ Ly| sin θ|

λ
sinϕ, (94)

where Lx| cos θ|+Ly| sin θ| is the projection of the UPA onto
a line parallel to

[
cos θ sin θ

]⊤
(see Fig. 5). In conjunction

with sinϕ, this projects the array onto the direction of
beamforming as illustrated in Fig. 1.

This result can be readily generalized to non-UPA planar
topologies.

E. Beamspace Architecture

A beamspace architecture analogous to the ULA one in
Sec. V-D can be constructed by choosing the ℓth column of
Wa as the MRT beamformer a(fℓ) for relative frequency

fℓ =
ℓ− NRF−1

2

αup
W. (95)

However, as the columns of Wa are no longer orthonormal,
the proof set forth for linear arrays does not carry over to
show that (94) holds for planar beamspace arrays. Results in
the next section support this, yet the proof is still open.

VII. NUMERICAL RESULTS

This section presents additional results supporting the rel-
evance of the asymptotic analysis to values of interest, not
only for future 6G or WiFi systems, but even for current 5G
deployments.

As an embodiment of the arrays that may be featured in
future systems, a 128×128 UPA with half-wavelength spacing
is postulated; it would occupy only 6.4 cm × 6.4 cm at fc =
300 GHz. From (63), α depends on the product W sinϕ.
Without loss of generality we can thus fix ϕ = 90◦ and sweep
only W . From (94), the highest value over azimuth of αup is

αup =
W

fc

√
L2
x + L2

y/λ. (96)

For a bandwidth of W = 1 GHz at fc = 300 GHz, this equals
1 GHz

300 GHz × 64
√
2 ≈ 0.302; as it is proportional to W , it can

be readily scaled for other bandwidths or carrier frequencies.
Table II lists the average beamforming gain normalized by its
squint-free counterpart, gavg

N , for the optimal and beamspace
architectures; precisely, the listed values are the worst (over
azimuth) normalized gains. The number of additional RF
chains in the table is NRF−⌈αup⌉. For the optimal architecture,
⌈αup⌉ + 1 RF chains ensure over 99% of the squint-free
gain over the entire range and, for strong squints, ⌈αup⌉
RF chains suffice to perform almost as impressively. As of
the beamspace architecture, it exhibits a remarkably small
performance deficit relative to the optimal one—a deficit that
can be overcome with only one or two extra RF chains. Given
its simplicity, this makes it a decidedly attractive alternative.

Turning to 5G, a 16×16 UPA is a typical array structure; it
occupies 8 cm × 8 cm at 30 GHz. Its performance can also be
read from Table II by virtue of the fact that only the product
between the aperture and the normalized bandwidth matters.
Precisely, the performance for {0.8, 1.6, 2.4, 3.2, 4.0} GHz of
bandwidth at fc = 30 GHz is given by the values listed under
{1, 2, 3, 4, 5} GHz in the table. The same observations made
for the larger array at fc = 300 GHz therefore apply, and they
further do for any other combination of aperture, bandwidth,
and carrier frequency that falls within the scope of this table.

VIII. EXTENSIONS

While the formulation hitherto has considered a general
hybrid array, fully-connected as per the illustration in Fig. 6,
this section turns the attention to the more restrictive hybridly-
connected and partially-connected structures, and further to
receivers equipped themselves with an array.

A. Hybridly-Connected Architecture

In a hybridly-connected architecture (see Fig. 6), the array
is partitioned into subarrays and only a subset of the RF
chains is connected to each subarray [40]. With proper antenna
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Fig. 6. Hybrid architectures: fully-connected, hybridly-connected, and partially-connected.
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Fig. 7. Normalized beamforming gain gavg
N

for a 128-element ULA. The analog beamformer maximizing the average beamforming gain is used. The relative
number of RF chains for the horizontal axis is the number of RF chains normalized by the number of required RF chains, that is, NRF

α
.

indexing, the analog beamforming matrix exhibits a block
diagonal structure, namely

Wa = blkdiag(Wa,0, . . . ,Wa,M−1) (97)

with Wa,m the analog beamformer for the mth subarray and
M the number of subarrays. Plugging (97) into (12) gives

g(f) =
∥∥∥a∗(f)blkdiag

(
Wa,0(W

∗
a,0Wa,0)

− 1
2 ,

. . . ,Wa,M−1(W
∗
a,M−1Wa,M−1)

− 1
2

)∥∥∥2 (98)

=
∑
m

gm(f) (99)

where

gm(f) =
∥∥a∗

m(f)Wa,m(W ∗
a,mWa,m)−

1
2

∥∥2 (100)

given am(f) as the channel for the mth subarray. Therefore,

gavg =
∑
m

gavg,m (101)

where

gavg,m =
1

W

∫ W
2

−W
2

gm(f)df. (102)

The behavior of a hybridly-connected array can thus be broken
down into that of the subarrays, and the squint-free criterion
is gavg,m approximately equaling the number of elements in
the mth subarray for every m.

Let us first consider an N -element ULA composed of
M subarrays in the asymptotic regime. Each subarray is
connected to NRF

M RF chains. From Sec. V, squint-free perfor-
mance requires

NRF

M
≥ α

M
⇔ NRF ≥ α, (103)

as in the fully-connected architecture. This is remarkable
given the M -fold savings in number of phase shifters, yet

the asymptotic regime is now determined by α
M → ∞, whose

convergence rate is slower (see Fig. 7).
The situation changes with planar arrays. Let us consider

an Nx × Ny UPA composed of Mx × My subarrays. The
asymptotic regime of interest is the one considered in Sec. VI
with fixed Mx and My . Each subarray is then connected to
NRF

MxMy
RF chains. Attaining squint-free performance requires

NRF

MxMy
≥ |αx|
Mx

+
|αy|
My

⇔ NRF ≥My|αx|+Mx|αy|,

(104)

which is at least min(Mx,My) times larger than the number
of RF chains required by the fully-connected case.

B. Partially-Connected Architecture

With a single RF chain per subarray, a partially-connected
array is the simplest instance of a hybridly-connected architec-
ture (see Fig. 6). As per (101), the behavior of a hybrid array
with a partially-connected analog network can be decomposed
into that of the subarrays.

Consider an N -element ULA composed of M = NRF

subarrays with identical subarray beamformer wa ∈ C N
M .

As per (101), gavg = Mgavg,0. Two subarray beamformers
are considered, the MRT beamformer and the optimal beam-
former, both implementable with a single RF chain and M
delay lines (see App. H).

• For the MRT beamformer,

gavg =
M

W

∫ W
2

−W
2

F N
M

(
2πdxux

c
f

)
df (105)
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Fig. 8. Comparison of array architectures. For the fully-connected architec-
ture, α → ∞ and α = 4 are considered. The relative number of RF chains
for the horizontal axis is the number of RF chains normalized by the number
of required RF chains, that is, NRF

α
. This equals M

α
for partially-connected

architectures.

and thus

gavg
N

→ 1

W

∫ W
2

−W
2

sinc2
(
Lxux
Mc

f

)
df (106)

=
M

α

∫ α
2M

− α
2M

sinc2t dt (107)

=
2M

πα
Si

(
πα

M

)
− sinc2

α

2M
(108)

as the array densifies; here, Si(·) is the sine integral.
• For the optimal beamformer in terms of average beam-

forming gain, recalling (49),

gavg
N

→
λ0(Bα/M )

α/M
(109)

as array densifies.

For growing α, both (108) and (109) expand as

M

α
+O

(
M

α

)
. (110)

Compared in Fig. 8 are the normalized average beamform-
ing gains for fully- and partially-connected architectures. Re-
calling (53), the asymptotic result min(p, 1) is plotted for the
fully-connected architecture while (108) and (109) are plotted
for the partially-connected architecture. In accordance with
(110), the slope of all of those curves at zero is 1. Thus, in the
regime where the squint is decidedly too high to compensate,
fully-connected and partially-connected architectures perform
identically in terms of average array gain.

Although the squint cannot be completely eradicated with
a partially-connected architecture, the latter is rather enticing
because of the M -fold saving in number of phase shifters. For
instance, with M = α, 2α, 3α, a partially-connected architec-
ture incurs respective losses of only 1.11, 0.29, 0.13 dB, even
with simple MRT beamforming; in Fig. 8, these losses can be
appreciated in linear scale. At the expense of a small loss in
beamforming gain, then, only 1/M as many phase shifters
are required, with the ensuing benefits in terms of cost and
power consumption. For any acceptable loss, the values of M
in a partially-connected structure could be optimized on the
basis of the respective costs and power consumptions of an
analog phase shifter and a complete RF chain [41]–[43].

Similar to their hybridly-connected brethren, partially-
connected architectures become less alluring with planar
arrays. To maintain the subarray size, one needs the scalings

Mx ∝ αx My ∝ αy, (111)

whereby the substantial disadvantage of the separable archi-
tecture in Sec. VI-A is reproduced. This shortcoming can be
alleviated by a use of dynamic subarrays [32], at the expense
of additional hardware complexity.

C. Multiantenna Receiver

The separable property of far-field LOS multiantenna chan-
nels enables the extension to such a setting too. Positing an
Nt-element transmitter and an Nr-element receiver, the LOS
channel can be expressed as [44, Sec. II-A]

H(f) = ar(f)a
∗
t (f) (112)

where at(f) ∈ CNt is the normalized channel between the
transmit array and the receive array center, and reciprocally
for ar(f) ∈ CNr . The squint-free condition is gavg ≈ NtNr.

Let us denote the analog and digital beamformers by Wa,t

and wd,t(f) for the transmitter, and Wa,r and wd,r(f) for the
receiver. An analogous signal model to that in Sec. II-C is

y(f) = w∗
d,r(f)W

∗
a,r

[
H(f)Wa,twd,t(f)s(f)+v(f)

]
(113)

where each entry of v(f) describes a white Gaussian noise
process with unit power spectral density. Letting s(f) have
unit power, the power constraint becomes

1

W

∫ W
2

−W
2

∥Wa,twd,t(f)∥2df = SNR. (114)

Also, without loss of generality, we let ∥Wa,rwd,r(f)∥ = 1.
Replicating the simplifications in Sec. II-C gives

y(f) =
√
g(f)p(f)s(f) +W ∗

a,rw
∗
d,r(f)v(f) (115)

where

g(f) = ∥w∗
d,r(f)W

∗
a,rH(f)Wa,twd,t(f)∥2 (116)

= |a∗
t (f)Wa,twd,t(f)|2 · |a∗

r (f)Wa,rwd,r(f)|2 (117)
= gt(f)gr(f) (118)

with

gt(f) = |a∗
t (f)Wa,twd,t(f)|2 (119)

gr(f) = |a∗
r (f)Wa,rwd,r(f)|2. (120)

The effective noise W ∗
a,rw

∗
d,r(f)v(f) is a white Gaussian

process with unit power spectral density.
Recalling the definition of average beamforming gain in

(32), it is shown in App. D that

gavg,t
Nt

+
gavg,r
Nt

− 1 ≤ gavg
NtNr

≤ min

(
gavg,t
Nt

,
gavg,r
Nt

)
. (121)

From this result, plus gavg,t ≤ Nt and gavg,r ≤ Nr, it follows
that

gavg,t
Nt

=
gavg,r
Nr

= 1 (122)
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TABLE III
SUMMARY

Partially-connected Hybridly-connected Fully-connected

Property in terms of squint Essentially identical to an analog array
whose size equals that of subarray

Essentially identical to a fully-connected
hybrid array whose size equals that of subarray -

# of phase shifters N NRFN
MxMy

NRFN

# of required RF chains (linear) -* |αx| |αx|
# of required RF chains (planar) -* My |αx|+Mx|αy |† |αx|+ |αy |†

* Partially-connected architecture cannot enjoy squint-free performance.
† The results for linear and planar arrays are consistent; linear array is a special case of planar array with αy = 0.

Rx

Tx

Fig. 9. A train of symbols, each of spatial length c
W

, traveling over the
array along the worst possible direction in terms of delay across elements.

is a necessary and sufficient condition for
gavg
NtNr

= 1. (123)

This implies that both gavg,t ≈ Nt and gavg,r ≈ Nr are
needed to ensure gavg ≈ NtNr, and vice versa, whereby the
multiantenna problem is seen to decouple into two problems
that have already been addressed.

IX. CONCLUSION

The main takeaway point of this work is that hybrid arrays
can operate free of beam squint, just like digital arrays, only
with a much smaller number of RF chains. Although derived
asymptotically in the bandwidth-aperture product, this result
applies for virtually any value of that product.

For a hybrid linear array meant to beamform in any direc-
tion, the needed number of RF chains is 1

cWL. In contrast, a
digital array requires a chain per antenna element, which for
half-wavelength element spacing amounts to L

λ/2 = 2
cfcL.

The contrast between the two expressions evidences some-
thing fundamental, namely that it is the bandwidth rather than
the carrier frequency that matters to the beam squint. Indeed,
c
W is roughly the spatial length of a symbol, and squint arises
once symbols cease to be much longer than the array (see
Fig. 9). The value 1

cWL equals the number of symbols that
fit on the array along the worst possible direction, and using
that many RF chains ensures one digital sample per symbol.

For planar arrays, the ratio between the RF chains required
by digital and hybrid arrays is even more pronounced, as
planar arrays can use space more efficiently [20].

Notably, the above points remain valid for suboptimum
beamspace architectures, and in the case of linear arrays
even for hybridly-connected structures, with the concomitant
reduction in number of phase shifters; for hybridly-connected
planar arrays, the reduction in phase shifters entails a tradeoff
with the increase in RF chains. Readers are referred to
Table III for a summary of the results.

Further research is required to determine whether similar
behaviors are encountered with intelligent surfaces [45], in
hybrid architectures with true-time-delay [15], [26], [46], [47],
or in near-field situations [48]. Likewise, it could interesting to
study whether the type of beamformer alters the interference
on directions other than the one to the intended receiver.

Lastly, we hasten to emphasize that the scope of the paper
has been LOS connectivity, where the only source of fre-
quency selectivity is the beam squint itself. Then, the average
beamforming gain, gavg, maps one-to-one to performance
measures such as the information-theoretic capacity or the
error probability, and the condition gavg ≈ N is necessary
and sufficient for an N -antenna hybrid array to perform as
a digital one. In channels with inherent frequency selectivity,
say in multipath settings, this remains true when the number
of antennas is large enough for the beamforming gain to
harden around its mean value [49, Sec. 10.2]; for small
antenna counts, conversely, gavg no longer provides a complete
description. In fact, in multipath settings it is usually possible
to spatially multiplex various signal streams, and the beam
squint phenomenon then generalizes to the so-called spatial
wideband effect [14], [50]. Extending the analysis herein to
that more general situation, with various concurrent beams, is
yet another avenue for subsequent research.
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APPENDIX A

As the smallest solution to (29) lies within the main lobe,
it suffices to consider 0 < α3dB < 2 and the problem reduces
to

sin πα3dB

2

N sin πα3dB

2N

=
1√
2
. (124)

Manipulating the left-hand side into

sin πα3dB

2

N sin πα3dB

2N

=
sin πα3dB

2
πα3dB

2

·
πα3dB

2N

sin πα3dB

2N

(125)

shows that it is decreasing in N . Paired with the fact that the
left-hand side is decreasing in α3dB, the solution of (124) is
decreasing with respect to N .
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APPENDIX B
Combining λℓ(Bα) ≤ 1 and

∑
ℓ λℓ(Bα) = α, we have that∑

ℓ<NRF

λn(Bα) ≤ min(p, 1)α. (126)

In turn, for ϵ > 0, we also have that∑
ℓ<NRF

λℓ(Bα) > ϵ
∣∣{ℓ : λℓ(Bα) > ϵ, ℓ < NRF}

∣∣ (127)

= ϵmin(α+O(logα), ⌈pα⌉) (128)

where the last equality follows from (51). Consequently

lim inf
α→∞

∑
ℓ<NRF

λℓ(Bα)
α

≥ ϵ lim inf
α→∞

min(α+O(logα), ⌈pα⌉)
α

(129)

= ϵmin(p, 1). (130)

where, as the existence of the limit is not guaranteed at this
point, limit inferior was used.

For ϵ arbitrarily close to 1,

lim inf
α→∞

∑
ℓ<NRF

λℓ(Bα)
α

= min(p, 1). (131)

From (126), the limit inferior and limit superior coincide,
hence the limit does exist and it equals min(p, 1) as desired.

APPENDIX C
From

∫∞
−∞

(
sinπt
πt

)2
dt = 1, which is straightforward from

Parseval’s identity,

1

α

∑
ℓ<⌈pα⌉

∫ ℓ− ⌈pα⌉−1
2 +α

2

ℓ− ⌈pα⌉−1
2 −α

2

(
sinπt

πt

)2
dt ≤ ⌈pα⌉

α
. (132)

Also, it can be shown that

1

α

∑
ℓ<⌈pα⌉

∫ ℓ− ⌈pα⌉−1
2 +α

2

ℓ− ⌈pα⌉−1
2 −α

2

(
sinπt

πt

)2
dt

≤ 1

α

∫ − ⌈pα⌉−1
2 +α

2

− ⌈pα⌉−1
2 −α

2

∑
ℓ

(
sinπ(t+ ℓ)

π(t+ ℓ)

)2
︸ ︷︷ ︸

=1

dt = 1, (133)

where the last identity follows from Poisson summation
formula [51, Problem 6.2]. Combining them, we obtain

lim sup
α→∞

1

α

∑
ℓ<⌈pα⌉

∫ ℓ− ⌈pα⌉−1
2 +α

2

ℓ− ⌈pα⌉−1
2 −α

2

(
sinπt

πt

)2
dt ≤ min(p, 1).

(134)

At the same time, for ϵ > 0 we can manipulate (59) as
in (135)–(138), where (135) arises by imposing additional
constraint on the summation index, (136) by restricting the
interval of integration, (137) by factoring out the constant term
with respect to the summation index, and (138) by computing
the limit. Hence,

lim inf
α→∞

1

α

∑
ℓ<⌈pα⌉

∫ ℓ− ⌈pα⌉−1
2 +α

2

ℓ− ⌈pα⌉−1
2 −α

2

(
sinπt

πt

)2
dt

≥ min

(
p,

1 + p− ϵ

2

)
−max

(
0,

−1 + p+ ϵ

2

)
. (139)

For an arbitrarily small ϵ > 0,

lim inf
α→∞

1

α

∑
ℓ<⌈pα⌉

∫ ℓ− ⌈pα⌉−1
2 +α

2

ℓ− ⌈pα⌉−1
2 −α

2

(
sinπt

πt

)2
dt

≥ min

(
p,

1 + p

2

)
−max

(
0,

−1 + p

2

)
= min(p, 1), (140)

which concludes the proof.

APPENDIX D

This appendix identifies the maximum and minimum of

1

W

∫ W
2

−W
2

gt(f)gr(f)

NtNr
df (141)

under the constraints

0 ≤ gt(f) ≤ Nt
1

W

∫ W
2

−W
2

gt(f)df = gavg,t

0 ≤ gr(f) ≤ Nr
1

W

∫ W
2

−W
2

gr(f)df = gavg,r. (142)

Introducing

ft(t) ≡
gt
(
W
(
t− 1

2

))
Nt

fr(t) ≡
gr
(
W
(
t− 1

2

))
Nr

, (143)

the objective and the constraints become∫ 1

0

ft(t)fr(t)df (144)

and

0 ≤ ft(t) ≤ 1

∫ 1

0

ft(t)df = gavg,t

0 ≤ fr(t) ≤ 1

∫ 1

0

fr(t)df = gavg,r. (145)

Commencing with the maximum value,∫ 1

0

ft(t)fr(t)dt ≤
∫ 1

0

ft(t)dt = gavg,t. (146)

Repeating the argument gives∫ 1

0

ft(t)fr(t)dt ≤
∫ 1

0

fr(t)dt = gavg,r. (147)

Combining the bounds,∫ 1

0

ft(t)fr(t)dt ≤ min
(
gavg,t, gavg,r

)
(148)

This bound is tight in that it can be attained by

ft(t) = [0 ≤ t ≤ gavg,t] fr(t) = [0 ≤ t ≤ gavg,r]. (149)

Turning to the minimum value, it can be obtained from the
observation that∫ 1

0

(1− ft(t))(1− fr(t))dt ≥ 0, (150)

which is equivalent to∫ 1

0

ft(t)fr(t)dt ≥ gavg,t + gavg,r − 1. (151)
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1

α

∑
ℓ<⌈pα⌉

∫ ℓ− ⌈pα⌉−1
2 +α

2

ℓ− ⌈pα⌉−1
2 −α

2

(
sinπt

πt

)2
dt

≥ 1

α

∑
ℓ

[
0 ≤ ℓ < ⌈pα⌉

][
ℓ− ⌈pα⌉ − 1

2
+
α

2
> ϵα

][
ℓ− ⌈pα⌉ − 1

2
− α

2
< −ϵα

] ∫ ℓ− ⌈pα⌉−1
2 +α

2

ℓ− ⌈pα⌉−1
2 −α

2

(
sinπt

πt

)2
dt (135)

≥ 1

α

∑
ℓ

[
0 ≤ ℓ < ⌈pα⌉

][
ℓ− ⌈pα⌉ − 1

2
+
α

2
> ϵα

][
ℓ− ⌈pα⌉ − 1

2
− α

2
< −ϵα

] ∫ ϵα

−ϵα

(
sinπt

πt

)2
dt (136)

=

(
1

α

∑
ℓ

[
0 ≤ ℓ < ⌈pα⌉

][
ℓ− ⌈pα⌉ − 1

2
+
α

2
> ϵα

][
ℓ− ⌈pα⌉ − 1

2
− α

2
< −ϵα

])∫ ϵα

−ϵα

(
sinπt

πt

)2
dt (137)

→ min

(
p,

1 + p− ϵ

2

)
−max

(
0,

−1 + p+ ϵ

2

)
(138)

Together with the nonnegativity, we have that∫ 1

0

ft(t)fr(t)dt ≥ max
(
gavg,t + gavg,r − 1, 0

)
. (152)

This bound can be attained by

ft(t)=[0≤ t≤gavg,t] fr(t)=[1−gavg,r≤ t≤1]. (153)

APPENDIX E

Let us consider a spectral decomposition of B̃α,

B̃α(r̃
′
x, r̃x) =

∑
ℓ

λℓuℓ(r̃
′
x)uℓ(rx), (154)

where {uℓ} is a set of orthonormal functions. Multiplying
both sides with[

r̃ ∈ RA
]( ∫ [

r̃ ∈ RA
]
dr̃y
) 1

2

·
[
r̃′ ∈ RA

]( ∫ [
r̃′ ∈ RA

]
dr̃′y
) 1

2

, (155)

the left- and right-hand sides of (154) become respectively
(79) and ∑

ℓ

λℓũℓ(r̃
′)ũℓ(r̃), (156)

where

ũℓ(r̃) =

[
r̃ ∈ RA

]( ∫ [
r̃ ∈ RA

]
dr̃y
) 1

2

uℓ(r̃x). (157)

We can easily verify the orthonormality of (157) from∫∫ [
r̃ ∈ RA

]∫ [
r̃ ∈ RA

]
dr̃y

uℓ(r̃x)uℓ′(r̃x)dr̃xdr̃y (158)

=

∫ (∫ [
r̃ ∈ RA

]∫ [
r̃ ∈ RA

]
dr̃y

dr̃y

)
uℓ(r̃x)uℓ′(r̃x)dr̃x (159)

=

∫
uℓ(r̃x)uℓ′(r̃x)dr̃x, (160)

implying that (156) is a spectral decomposition of Bα. Thus,
{λℓ}, the eigenvalues of B̃α, are also the eigenvalues of Bα.

APPENDIX F
Let L be a positive semi-definite Hilbert-Schmidt operator

with kernel L(t, t′) and let G be an operator satisfying
(Gs)(t) = g(t)s(t) with g ∈ L2(R) and 0 ≤ |g(t)| ≤ 1
for all t. We wish to prove that

λℓ(GLG) ≤ λn(L), (161)

which is a broader result subsuming (87). The min-max
theorem for matrices [33, Thm. 4.2.6], which can be naturally
generalized to self-adjoint Hilbert-Schmidt operators, does the
trick. Applying it, it can be seen that

λℓ(GLG) = min
φ∈span(ψ0,...,ψℓ),φ̸=0

⟨GLGφ,φ⟩
⟨φ,φ⟩

(162)

= min
φ∈span(ψ0,...,ψℓ),φ̸=0

⟨LGφ,Gφ⟩
⟨φ,φ⟩

(163)

≤ min
φ̃∈span(Gψ0,...,Gψℓ),φ̸̃=0

⟨Lφ̃, φ̃⟩
⟨φ̃, φ̃⟩

(164)

≤ max
dim(S)=ℓ+1

min
φ̃∈S,φ̸̃=0

⟨Lφ̃, φ̃⟩
⟨φ̃, φ̃⟩

(165)

= λℓ(L), (166)

where ψk is the eigenvector of GLG corresponding to the
kth largest eigenvalue. The first inequality follows from the
substitution φ̃ = Gφ and ∥φ̃∥ ≤ ∥φ∥.

APPENDIX G
This appendix proves that (92) holds if and only if p ≥ 1.

A. Sufficiency
The sufficiency requires (92) to vanish if p ≥ 1. Using (53)

and (87),∑
ℓ≥⌈pαup⌉

λℓ(Bα) ≤ L3

∑
ℓ≥⌈pαup⌉

λℓ(Bαup) (167)

= L3α
up max(0, 1− p) + o(r). (168)

Therefore,∑
ℓ≥⌈pαup⌉ λℓ(Bα)∑

ℓ λℓ(Bα)
≤ L3α

up max(0, 1− p) + o(r)

∥α∥
(169)

which does converge to zero if p ≥ 1. Recall that αup

∥α∥ is
constant with respect to r.
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B. Necessity

The necessity requires (92) not to vanish for p < 1. From
(53) and (87),∑

ℓ≥⌈pαup⌉ λℓ(Bα)∑
ℓ λℓ(Bα)

≥
δL3α

lo max(0, 1− αup

αlo p) + o(r)

∥α∥
.

(170)

Recall that both αlo

∥α∥ and αup

αlo are constant with respect to r.
From p < 1, a small enough δ > 0 can be chosen such that

αup

αlo
p =

L1

(1− δ)L1 + δL2
p < 1. (171)

Therefore, (170) cannot vanish.

APPENDIX H

One welcome property of a partially-connected architecture
is that, if the subarrays are identical, both in topology and in
the number of phase shifts, one can replace their individual RF
chains with delay lines and connect all of them to a single RF
chain without loss in performance. While the result for linear
arrays with MRT beamformer can be found in [10, Sec. I-
B] (also in [25, Prop. 1] and [26, Sec. III-D]), this appendix
extends the result for completeness.

Precisely, the first condition corresponds to

a∗
m(f) = exp

(
j2π

fc + f

c
u⊤rm

)
a∗
0(f) (172)

where rm is the displacement of the mth subarray with respect
to the 0th one (recall (4)). The second condition is

Wa = blkdiag(wa, . . . ,wa) (173)

where wa ∈ C N
M is the subarray beamformer.

From the block diagonal structure (173), the beamforming
gain in (12) is reduced to

g(f) =

∣∣(∑
m a∗

m(f)[wd(f)]m
)
wa

∣∣2
∥wa∥2∥wd(f)∥2

, (174)

Armed with (172), it can be recast as∣∣∑
m exp

(
j2π fc+fc u⊤rm

)
[wd(f)]m

∣∣2
∥wd(f)∥2

· |a
∗
0(f)wa|2

∥wa∥2
.

(175)

Applying the Cauchy-Schwarz inequality,

g(f) ≤Mg0(f), (176)

and the equality is seen to be attained by

[wd(f)]m = exp

(
− j2π

fc + f

c
u⊤rm

)
, (177)

which can be implemented with delay lines. This maximum
beamforming gain equals (101), obtained with M RF chains.

The resulting architecture with delay lines mitigates the
beam squint across the subarrays. The remainder, the beam
squint within the subarray, is relatively negligible. This very
idea has recently applied to a multipath setting in [25], [26].
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