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A data-centric perspective tofair
machinelearning for healthcare
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R Check for updates

Machine learning models are increasingly
being deployed in real-world clinical settings
and have shown promise in patient diagnosis,
treatment and outcome tasks. However,

such models have also been shown to

exhibit biases towards specific demographic
groups, leading to inequitable outcomes for
under-represented or historically marginalized
communities.

Many prior works propose algorithmic approaches to address these
fairness issues. However, applying debiasing algorithms effectively
requires first recognizing the underlying biases in the data (Fig. 1).
Often, there is a disconnect between those developing the models,
who may be skilled in algorithmic debiasing, and those curating the
data, who possess the knowledge of where biases exist and how they
manifest. This highlights the need for a data-centric approach to fair
machinelearningin healthcare. By focusing onidentifying and address-
ing biases at their source, rather than relying solely on post-hoc algo-
rithmic fixes, we can build machine learning models that are not only
fair but also generalize across different healthcare environments and
populations and over time.

Notlearningbias is better than fixing it

Healthcare datasets contain historical biases that reflect long-standing
disparities inmedical treatment and diagnosis. For example, women are
less likely tobe correctly diagnosed with heart disease thanmen and are
instead more frequently misdiagnosed with mental health conditions'.
Machinelearning models trained on such datasets subsequently learn
these patterns, resulting in propagation of these biases. Large language
models (LLMs) like GPT-4 have exhibited stereotypes related to race,
ethnicity and sex in medical diagnoses”. These biases originate from
the unfiltered internet data used for training, ranging from PubMed
abstracts to Reddit posts.

Addressing these biases after they have beenlearned by amodel, or
duringthelearning process, isachallenging task that oftenresultsin par-
tial orineffective solutions. For example, debiasing methods that superfi-
cially reduce sex biasin word embeddings fail to address deeper biasesin
theembedding space that canresurface in downstream modelling’. One
alternative approachis to eliminate these biases at the source — within
the dataitself — by removing or downweighting biased entries or by
collecting new, unbiased data. One study predicting occupation from
biographies demonstrated that removing low-quality, ambiguous and
mislabelled samplesimproved downstream model fairness by reducing
the occupations’ associations with gender stereotypes®.

Another data-centric intervention is generating synthetic unbi-
ased data to counteract historical biases in under-representation’.
Although thisis not as effective as collecting real representative data,
these models have improved both fairness and accuracy in medical
image classification across sex and race, addressing short-term gaps
inrepresentation.

Beware of proxiesin data and labels

Clinical machine learning often relies on predicting proxies of the target
variable. Forinstance, healthcare cost may be used as a proxy forillness
severity owing to the assumption that sicker individuals incur more
costs. Proxies are difficult to avoid because outcomes like the severity
of anillness are difficult to quantify, whereas healthcare cost is easily
accessible. However, proxies can also be asource of bias. For example,
using healthcare cost as atarget was shown to underestimate the sever-
ity of illness for Black patients owing to systemic biases. Specifically,
Black patients have reduced healthcare expenditures compared with
white patients with the same level of need®.

Proxies may also exist in the covariates, known as spurious correla-
tions. For example, amodel trained to infer mortality in patients with
pneumonia predicted that individuals with asthma were less likely to
die than people without’. This was true in the training data — patients
with asthmareceived more care, resulting in fewer deaths. Thisis unde-
sirable because the amount of medical attentiona patient receivesisan
unobserved and invariant feature, while the decreased risk of patients
with asthmais specific to the training data and unlikely to generalize.
Crucially, the model having learned a proxy is not apparent until its
predictions and associated training data are critically analysed.

There is aneed for methods that mitigate the risks of biases that
arise from proxies. Using interpretable models’ or having human
experts that specify causal relations and identify when model predic-
tions break common sense® are steps towards this goal. For instance,
a human-in-the-loop approach could identify that a model predict-
ing a lower pneumonia risk score for patients with asthma is likely to
beaspurioussignal or, conversely, flag higher mortality risks for Black
mothers as systemic bias that may be useful in decision-making. While
causal models could ideally disentangle spurious correlations from
true causal relationships, they are challenging in practice owing to
observational limitations, unverifiable assumptions and the lack of
controlled interventions in healthcare data.

Ultimately, a diverse team must carefully consider each step of
the model training and deployment pipeline, including what features
to collect, the conditions of collection and integrating additional data
sources to form a robust view of the system. The All of Us dataset,
which emphasizes data collection from under-represented groups,
exemplifies these robust data collection practices. Efforts to standard-
ize datasets with datasheets that describe the data collection context,
cohort selection, intended use and known biases can empower this
decision-making and the creation of more robust models.
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Fig.1| Common sources of bias in healthcare datasets that are best resolved
with adata-centric approach. These include historic bias, the use of proxy
variables and distribution shifts based on the training and deployment
populations. EHR, electronic health record; M, men; W, women.

Probing data under distribution shift
Even for models that are fair and performant in distribution on the
training domain, distribution shifts — changes in the data distribution
between the training and deployment environments —remainabarrier
to maintaining fairness during deployment. In healthcare, distribution
shifts occur frequently owing to changes in patient characteristics,
evolving medical practices, deploymentsin new hospitals or the intro-
duction of new diseases such as COVID-19. Such distribution shifts can
cause the model fairness to behave unpredictably’. Maintaining fairness
under distribution shift is crucial for model reliability in deployment.
The first step to diagnose loss of fairness is to probe the shift in
datadistribution. Prior works have suggested deducing the structure
of these shifts by conditional independence™. When the cause of the
failure of fairness transfer is known, mitigation strategies can be effec-
tively applied to target such shifts. This data-centric approach enables
amorein-depthunderstanding of fairnessissues and facilitates more
robust solutions that can adapt to changing healthcare landscapes.
Given the potential for distribution shifts and the safety-critical
nature of healthcare models, we advocate for restrictions on how,
where and when deployed machine learning models can be used to
make predictionsin healthcare settings. By limiting the manner, place
and time of model use, we can ensure that fairness is maintained across

different contexts and populations. Data-centric approaches are criti-
cal to concretely define the boundaries of these restrictions, by char-
acterizing the distributions within the training data and considering
the magnitude and impact of potential shifts.
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