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A data-centric perspective to fair 
machine learning for healthcare
Haoran Zhang, Walter Gerych & Marzyeh Ghassemi

Machine learning models are increasingly 
being deployed in real-world clinical settings 
and have shown promise in patient diagnosis, 
treatment and outcome tasks. However, 
such models have also been shown to 
exhibit biases towards specific demographic 
groups, leading to inequitable outcomes for 
under-represented or historically marginalized 
communities.

Many prior works propose algorithmic approaches to address these 
fairness issues. However, applying debiasing algorithms effectively 
requires first recognizing the underlying biases in the data (Fig. 1). 
Often, there is a disconnect between those developing the models, 
who may be skilled in algorithmic debiasing, and those curating the 
data, who possess the knowledge of where biases exist and how they 
manifest. This highlights the need for a data-centric approach to fair 
machine learning in healthcare. By focusing on identifying and address-
ing biases at their source, rather than relying solely on post-hoc algo-
rithmic fixes, we can build machine learning models that are not only 
fair but also generalize across different healthcare environments and 
populations and over time.

Not learning bias is better than fixing it
Healthcare datasets contain historical biases that reflect long-standing 
disparities in medical treatment and diagnosis. For example, women are 
less likely to be correctly diagnosed with heart disease than men and are 
instead more frequently misdiagnosed with mental health conditions1. 
Machine learning models trained on such datasets subsequently learn 
these patterns, resulting in propagation of these biases. Large language 
models (LLMs) like GPT-4 have exhibited stereotypes related to race, 
ethnicity and sex in medical diagnoses2. These biases originate from 
the unfiltered internet data used for training, ranging from PubMed 
abstracts to Reddit posts.

Addressing these biases after they have been learned by a model, or 
during the learning process, is a challenging task that often results in par-
tial or ineffective solutions. For example, debiasing methods that superfi-
cially reduce sex bias in word embeddings fail to address deeper biases in 
the embedding space that can resurface in downstream modelling3. One 
alternative approach is to eliminate these biases at the source — within 
the data itself — by removing or downweighting biased entries or by 
collecting new, unbiased data. One study predicting occupation from 
biographies demonstrated that removing low-quality, ambiguous and 
mislabelled samples improved downstream model fairness by reducing 
the occupations’ associations with gender stereotypes4.

Another data-centric intervention is generating synthetic unbi-
ased data to counteract historical biases in under-representation5. 
Although this is not as effective as collecting real representative data, 
these models have improved both fairness and accuracy in medical 
image classification across sex and race, addressing short-term gaps 
in representation.

Beware of proxies in data and labels
Clinical machine learning often relies on predicting proxies of the target 
variable. For instance, healthcare cost may be used as a proxy for illness 
severity owing to the assumption that sicker individuals incur more 
costs. Proxies are difficult to avoid because outcomes like the severity 
of an illness are difficult to quantify, whereas healthcare cost is easily 
accessible. However, proxies can also be a source of bias. For example, 
using healthcare cost as a target was shown to underestimate the sever-
ity of illness for Black patients owing to systemic biases. Specifically, 
Black patients have reduced healthcare expenditures compared with 
white patients with the same level of need6.

Proxies may also exist in the covariates, known as spurious correla-
tions. For example, a model trained to infer mortality in patients with 
pneumonia predicted that individuals with asthma were less likely to 
die than people without7. This was true in the training data — patients 
with asthma received more care, resulting in fewer deaths. This is unde-
sirable because the amount of medical attention a patient receives is an 
unobserved and invariant feature, while the decreased risk of patients 
with asthma is specific to the training data and unlikely to generalize. 
Crucially, the model having learned a proxy is not apparent until its 
predictions and associated training data are critically analysed.

There is a need for methods that mitigate the risks of biases that 
arise from proxies. Using interpretable models7 or having human 
experts that specify causal relations and identify when model predic-
tions break common sense8 are steps towards this goal. For instance, 
a human-in-the-loop approach could identify that a model predict-
ing a lower pneumonia risk score for patients with asthma is likely to 
be a spurious signal or, conversely, flag higher mortality risks for Black 
mothers as systemic bias that may be useful in decision-making. While 
causal models could ideally disentangle spurious correlations from 
true causal relationships, they are challenging in practice owing to 
observational limitations, unverifiable assumptions and the lack of 
controlled interventions in healthcare data.

Ultimately, a diverse team must carefully consider each step of 
the model training and deployment pipeline, including what features 
to collect, the conditions of collection and integrating additional data 
sources to form a robust view of the system. The All of Us dataset, 
which emphasizes data collection from under-represented groups, 
exemplifies these robust data collection practices. Efforts to standard-
ize datasets with datasheets that describe the data collection context, 
cohort selection, intended use and known biases can empower this 
decision-making and the creation of more robust models.
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different contexts and populations. Data-centric approaches are criti-
cal to concretely define the boundaries of these restrictions, by char-
acterizing the distributions within the training data and considering 
the magnitude and impact of potential shifts.
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Probing data under distribution shift
Even for models that are fair and performant in distribution on the 
training domain, distribution shifts — changes in the data distribution 
between the training and deployment environments —remain a barrier 
to maintaining fairness during deployment. In healthcare, distribution 
shifts occur frequently owing to changes in patient characteristics, 
evolving medical practices, deployments in new hospitals or the intro-
duction of new diseases such as COVID-19. Such distribution shifts can 
cause the model fairness to behave unpredictably9. Maintaining fairness 
under distribution shift is crucial for model reliability in deployment.

The first step to diagnose loss of fairness is to probe the shift in 
data distribution. Prior works have suggested deducing the structure 
of these shifts by conditional independence10. When the cause of the 
failure of fairness transfer is known, mitigation strategies can be effec-
tively applied to target such shifts. This data-centric approach enables 
a more in-depth understanding of fairness issues and facilitates more 
robust solutions that can adapt to changing healthcare landscapes.

Given the potential for distribution shifts and the safety-critical 
nature of healthcare models, we advocate for restrictions on how, 
where and when deployed machine learning models can be used to 
make predictions in healthcare settings. By limiting the manner, place 
and time of model use, we can ensure that fairness is maintained across 
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Fig. 1 | Common sources of bias in healthcare datasets that are best resolved 
with a data-centric approach. These include historic bias, the use of proxy 
variables and distribution shifts based on the training and deployment 
populations. EHR, electronic health record; M, men; W, women.
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