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ABSTRACT

The brain is organized into intrinsically connected functional networks that can be reliably identified during resting-
state functional magnetic resonance imaging (fMRI). Healthy aging is marked by decreased network segregation,
which is linked to worse cognitive functioning, but aging-related changes in emotion are less well characterized.
Valence bias, which represents the tendency to interpret emotionally ambiguous information as positive or negative,
is more positive in older than younger adults and is associated with differences in task-based fMRI activation in the
amygdala, prefrontal cortex, and a cingulo-opercular (CO) network. Here, we examined valence bias, age, and resting-
state network segregation of 12 brain networks in a sample of 221 healthy individuals from 6 to 80 years old. Resting-
state network segregation decreased linearly with increasing age, extending prior reports of de-differentiation across
the lifespan. Critically, a more positive valence bias was related to lower segregation of the default mode network
(DMN), due to stronger functional connectivity of the DMN with CO and, to a lesser extent, the ventral attention net-
work (VAN) in all participants. In contrast to this overall segregation effect, in participants over 39 years old (who tend
to show a positive valence bias), bias was also related to weaker connectivity between the DMN and Reward net-
works. The present findings indicate that specific interactions between the DMN, a task control network (CO), an
emotion processing network (Reward), and, to a weaker extent, an attention network (VAN), support a more positive
valence bias, perhaps through regulatory control of self-referential processing and reduced emotional reactivity in
aging. The current work offers further insight into the functional brain network alterations that may contribute to affec-
tive well-being and dysfunction across the lifespan.
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1. INTRODUCTION (Cohen & D’Esposito, 2016; Yeo et al., 2015). For example,

The brain is organized into intrinsically connected func- the default mode network (DMN), which consists of regions

tional networks that can be reliably identified during resting-
state functional magnetic resonance imaging (fMRI; Fox
et al., 2005; Snyder & Raichle, 2012). Despite being char-
acterized at rest, these brain networks are also associated
with task performance in relevant functional domains

in medial prefrontal, medial and lateral parietal and tempo-
ral cortex, is associated with functions including self-
referential processing, autobiographical memory, and
social cognition (Davey et al., 2016; Menon, 2023; Mevel
etal., 2013; Spreng et al., 2009). Other commonly described
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networks include task control networks such as the
cingulo-opercular (CO) and fronto-parietal networks (FPN),
dorsal and ventral attention networks (DAN/VAN), and sen-
sory networks such as the visual network (Damoiseaux
et al., 2006; Dworetsky et al., 2021; Seitzman et al., 2020).

The interactions within and between these functional
brain networks can be quantified using resting-state
functional connectivity (RSFC; i.e., the correlation of the
fMRI activation time series between brain regions).
Within-network connectivity refers to the coactivation of
nodes in a given network and is relatively strong, whereas
between-network connectivity refers to the relationship
between nodes of different networks and is generally
weaker and more sparse (Sporns & Betzel, 2016; Wig,
2017). These measures can be further summarized as
network (or system) segregation, which represents the
relative balance of within- to between-network correla-
tion strengths across the brain (Chan et al., 2014, 2018;
cf. modularity, Sporns & Betzel, 2016). Network segrega-
tion is an important property of brain organization that
allows both specialization of function and cooperative
activity; the brain needs to be moderately segregated in
order to perform distinct functions efficiently, while
remaining sufficiently integrated to communicate output
across networks (Wig, 2017). The examination of network
segregation provides insight into the brain’s higher order
organization, complementing more focal analyses of spe-
cific network connectivity.

The organization of resting-state networks and their
relationship with brain function change over the course of
the human lifespan (Biswal et al., 2010). Organized RSFC
emerges early in life and is refined during childhood and
adolescence, though existing evidence of directional
changes in segregation is mixed (Gao et al., 2015;
Grayson & Fair, 2017; Satterthwaite et al., 2013). Specific
networks may show distinct patterns of functional con-
nectivity at different developmental stages that parallel
sensorimotor or cognitive abilities (Grayson & Fair, 2017;
Marek et al., 2016). On the other hand, during the course
of healthy aging, lower network segregation is consis-
tently observed in older adults, corresponding to a de-
differentiation of the network, which is linked to worse
cognitive functioning in multiple domains, including long-
term memory and executive function (Chan et al., 2014;
Chong et al., 2019; Geerligs et al., 2015; Koen et al.,
2020). Despite evidence of cognitive decline in aging,
fewer studies have explored connectivity as a function of
age-related changes in emotion processing.

1.1. Valence bias, aging, and RSFC

In contrast to the effects observed for cognitive func-
tions, emotional functions and network organization may

be relatively spared in aging (Mather, 2016; Nashiro et al.,
2017; Scheibe & Carstensen, 2010). Indeed, while cogni-
tive networks consistently show lower segregation, emo-
tion networks have shown maintained or even increased
connectivity in later life (Cao et al., 2014; Malagurski
et al., 2020; Nashiro et al., 2017). Behaviorally, as individ-
uals age there is a shift toward positivity in emotional
attention and memory, often paired with improvements in
well-being (Mather, 2012; Mather & Carstensen, 2005).
This positivity effect is also observed in one’s tendency to
appraise ambiguously valenced stimuli (e.g., faces,
scenes) as positive or negative (known as “valence bias,”
Neta, 2024; Neta et al., 2009). Studies have shown that
while valence bias is relatively negative in children and
young adults (Neta & Whalen, 2010; Petro et al., 2018;
Tottenham et al., 2013), it becomes less negative and
more positive in older adults (Neta & Tong, 2016; Petro,
Basyouni, et al., 2021; Shuster et al., 2017). The initial
negativity hypothesis of valence bias proposes that
ambiguous stimuli are automatically interpreted as nega-
tive in younger individuals, and that positive interpreta-
tions require an effortful, regulatory mechanism to
overcome this initial appraisal (Harp, Gross, et al., 2024;
Neta & Whalen, 2010; Neta et al., 2022; Pierce et al.,
2023). In older adults, however, there appears to be a
shift to default positivity, where positive interpretations
can be generated more quickly with little regulatory con-
trol (Neta & Tong, 2016; Petro, Basyouni, et al., 2021).
Task-based fMRI evidence has demonstrated that posi-
tivity in younger adults recruits regions of the prefrontal
cortex (PFC) that are involved in cognitive reappraisal, in
line with a regulatory mechanism (Petro et al., 2018;
Pierce et al., 2023). Conversely, in older adults, positivity
is associated with faster amygdala habituation in the
absence of regulatory PFC activation, contributing evi-
dence that a default positivity allows for resolution of
emotional ambiguity with minimal top-down control
(Petro, Basyouni, et al., 2021).

When considering ambiguity processing during early
development, task-based connectivity between the
amygdala and ventromedial PFC correlates with valence
bias in children ages 6 to 13 years old—stronger regula-
tion is associated with more positivity in children at a
more advanced pubertal stage (Petro, Tottenham, et al.,
2021). We also recently demonstrated that in children
ages 6 to 17 years old, valence bias could be predicted
from whole-brain RSFC using support vector regression,
as well as from CO and amygdala networks together
(Harp, Nielsen, et al., 2024). This study further showed
that model prediction of valence bias was sensitive to the
connectivity of the CO, FPN, Visual, and Subcortical net-
works. The CO network previously has been related to
ambiguity processing (Neta, Nelson, et al., 2017),
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including in the valence bias task specifically (Pierce
et al., 2023), providing performance reporting feedback
(Gratton et al., 2017) that can shape subsequent emo-
tional decision-making.

Collectively, these prior studies suggest that processing
of emotional ambiguity in the valence bias task changes as
individuals age, with differential contributions of emotion-
sensitive regions such as the amygdala and regulatory
regions within the PFC. These behavioral differences are
also evident in patterns of functional activity. Stronger
interactions between control and emotion processing
regions might result in lower segregation if these networks
are frequently coactivated during affective processing.
While prior work has found that greater segregation was
associated with better cognitive performance (Chan et al.,
2014; Koen et al., 2020), in the emotion domain, relatively
lower segregation (i.e., greater integration) might reflect
more controlled processing that balances emotional reac-
tivity. Either greater between-network connectivity (e.g.,
PFC regulation of amygdala) or weaker within-network
connectivity (e.g., among emotion sensitive regions) could
reduce the overall segregation of emotion networks, result-
ing in more integrated cognitive-emotion processing and,
potentially, a more positive valence bias. To date, however,
the relationship between network segregation/RSFC and
behavioral patterns in the valence bias task across the
lifespan has not been examined. Such findings could
inform our understanding of lifespan differences in valence
bias and emotion processing more broadly.

1.2. The current study

In the current work, we examined the relationship
between RSFC, aging across the lifespan, and valence
bias task performance. In a cross-sectional sample of
healthy individuals aged 6 to 80 years old, we analyzed
the effects of age on network segregation of 12 functional
networks across the whole brain. We expected to repli-
cate previous reports of lower segregation in older adults,
and to extend this finding to a broader age range that
includes children and adolescents. Most importantly, we
investigated the relationship between segregation and
valence bias to determine which networks may contrib-
ute to individual differences in emotion task performance
across the lifespan. Based on previous resting-state and
task-based fMRI studies using the valence bias task
(Harp, Nielsen, et al., 2024; Petro et al., 2018; Pierce
et al., 2023), we predicted that segregation and connec-
tivity of the CO, FPN, Visual, and Reward networks may
be critical to supporting task performance and/or sensi-
tive to age-related changes in performance. Stronger
connectivity of these networks with each other or addi-
tional networks may support positive interpretations of

emotional ambiguity, such that lower segregation is
associated with more integrated cognitive-emotion pro-
cessing and a more positive bias. Given that valence bias
has previously been related to mental health measures
such as loneliness (Harp & Neta, 2023; Neta & Brock,
2021) and stress (Brown et al., 2017), the current findings
can advance our understanding of the brain mechanisms
supporting individual differences in emotional health in
both development and adult aging.

2. METHODS

2.1. Participants

Three hundred and forty-two participants were recruited
from the Lincoln, Nebraska community and completed an
initial pre-scanning session, including an assessment of
valence bias. Participants had to be right-handed, have
no history of neurological disorder, no current use of a
psychotropic medication, and no MRI-incompatible metal
implants. Of those who completed the first session, 12
participants were excluded for inaccurate responses in
the valence bias task (Mage = 17.08 years; see below) and
were not invited back for the scanning session, 12 were
excluded for failing to meet MRI compatibility criteria
(Mage = 37.33), and 20 opted out of the study (Mage =19.25).
Of the 298 participants who returned for the scanning
session, seven did not complete the resting-state scans
(Mage =12.14), 24 were excluded due to a poor alignment
between the imaging data and the atlas space
(M, = 35.75), and 46 were excluded for having an inade-
quate amount of data retained after motion censoring
(Mage =20.89; described below). The final sample included
221 participants (M(SD)age = 34.06 (21.06), range = 6-80;
139 female/82 male; 179 White, 19 more than one race,
11 Asian, 8 Black, 3 unknown race, 1 American Indian/
Alaskan Native; and 194 not Hispanic/Latino, 22 Hispanic/
Latino, 5 unknown ethnicity). All participants (and/or their
legal guardian) confirmed understanding of the proce-
dures, provided written informed consent, and received
compensation for their participation. All procedures were
approved by the local institutional review board.

2.2. Procedure

In a pre-scanning session, participants completed the
valence bias task, followed by a series of questionnaires
beyond the scope of the present report. As in previous
work (Neta et al., 2009, 2013), the valence bias task con-
sisted of a two-alternative forced choice task in which
images were categorized as either positive or negative
and was administered in MouseTracker software (Freeman
& Ambady, 2010). The task comprised four blocks (two
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faces, two scenes), each with 12 ambiguous and 12
clearly valenced trials (6 positive, 6 negative), for a total of
96 trials (48 ambiguous, 48 clearly valenced). The faces
included 34 discrete identities taken from the NimStim (14
identities; Tottenham et al., 2009) and Karolinska Directed
Emotional Faces (20 identities; Lundqvist et al., 1998)
stimulus sets, displaying happy, angry, or surprised
expressions. The scenes were selected from the Interna-
tional Affective Picture System (Bradley & Lang, 2007),
and were previously validated as being emotionally
ambiguous (Harp et al.,, 2021; Neta et al.,, 2013). The
clearly positive and negative images were used as within-
subjects controls to ensure task comprehension and
compliance (as in prior work; Harp et al., 2021; Neta et al.,
2019, 2022), and participants with accuracy below 60%
were not invited back for the scanning session. Valence
bias was calculated as the percentage of positive catego-
rizations for ambiguous faces and scenes.

Approximately 1 week after the initial session, eligible
participants were invited to return for the scanning session.
Functional scans included a passive face viewing task
(Petro et al., 2018; Petro, Basyouni, et al., 2021), an emo-
tion regulation task (Pierce, Blair, et al., 2022; Pierce,
Haque, et al., 2022), and a resting-state scan, during which
participants passively viewed a white crosshair on a black
background. A subset of 63 children from the present study
were also included in an alternate RSFC analysis using a
different ROI set and modeling approach that focused on
affect in development (Harp, Nielsen, et al., 2024).

2.3. Image acquisition

Data were collected on a Siemens 3T Skyra scanner
housed within the Center for Brain, Biology, and Behavior
at University of Nebraska-Lincoln. Structural images were
collected using a T1-weighted MP-RAGE sequence
(TR=2.2s, TE = 3.37 ms, slices = 192 interleaved, 1 mm
isotropic voxel size, FOV = 256 mm, flip angle = 7°, total
acquisition time = 5:07). Resting-state functional scans
were collected using an EPI sequence (TR = 1.0 s,
TE = 30 ms, slices = 51, voxel size = 2.5 mm isotropic,
matrix = 84 x 84 mm, FOV =210 mm, flip angle = 60°, mul-
tiband factor = 3). Resting-state scans were collected over
one to three runs for a total of approximately 15 minutes.

2.4. Image preprocessing

Preprocessing steps included slice timing, correction for
head movement within and across runs, and intensity
normalization of the functional data via the T1-weighted
scans. Each run was resampled in atlas space on an iso-
tropic 3 mm grid combining movement correction and
atlas transformation in a single interpolation (Harp,

Nielsen, et al., 2024; Nielsen et al., 2019; Shulman et al.,
2010). Structural and functional images were registered
to a target atlas in Talairach space (Talairach & Tournoux,
1988) created from MP-RAGE scans of thirteen 7- to
9-year-old children and twelve 21- to 30-year-old adults
scanned on a Siemens 3T MAGNETOM Trio scanner
(TRIO_KY_NDOC). After aligning the structural scans to the
target atlas space, cortical reconstruction was completed
in Freesurfer (Fischl, 2012).

2.5. Functional connectivity processing

Functional connectivity processing was conducted using
in-house MATLAB scripts (Gratton et al., 2020; Nielsen
et al., 2019; Power et al., 2012) and included demeaning
and detrending of each functional run, regression of nui-
sance variables (i.e., global signal, cerebrospinal and
white matter nuisance masks derived from Freesurfer, and
six rigid-body motion parameters, motion derivatives, and
Volterra expansion of motion estimate; Friston et al.,
1996), frame censoring and interpolation of data within
runs, a temporal band-pass filter (0.009 Hz < f < 0.08 Hz),
and spatial smoothing (6 mm full width half maximum).
Framewise displacement (FD) was calculated from pre-
processing realignment estimates and then low-pass fil-
tered to remove high-frequency noise (Gratton et al.,
2020). Frames with greater than 0.2 mm FD were cen-
sored (removed) prior to analysis (Nielsen et al., 2019;
Power et al., 2014). After framewise censoring, data seg-
ments with less than five contiguous frames were
removed, as were any functional runs with fewer than 50
frames to ensure sufficient stability in the resting-state
signal. Only participants with at least 800 remaining
frames of resting data (13.3 minutes) were included in the
analysis, and the first 800 frames (after motion exclusions)
were selected from each participant to minimize the
effects of data quantity on network measures (Han et al.,
2024). In other words, the earliest volumes that did not
contain excessive movement were included until the 800-
frame limit was reached; later volumes were discarded.
This cut-off was determined based on the distribution of
retained frames in the current data (412-1,337 frames,
median = 913) to balance retention of participants (82.8%)
and retention of data within retained participants (84.4%).

2.6. Regions of interest

RSFC time series were extracted from 300 whole-brain
ROls (5 mm radius; Seitzman et al., 2020). The time series
from each ROI were correlated to produce a correlation
matrix (Fig. 1), then normalized using a Fisher z-trans-
form. This set of ROIs consists of 14 functional networks:
Somatomotor-Dorsal (SMd), Somatomotor-Lateral (SMI),
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Cingulo-Opercular (CO), Auditory, Default Mode (DMN),
Parietal Medial (PM), Visual, Fronto-Parietal (FPN),
Salience (SAL), Ventral Attention (VAN), Dorsal Attention
(DAN), Medial Temporal Lobe (MTL), Reward, and Unas-
signed. For network-level analyses, the Somatomotor-
Dorsal and Somatomotor-Lateral networks were
combined into a single network and the unassigned ROls
were excluded, leaving 12 networks.

2.7. Network (system) segregation

RSFC was analyzed according to the methods described
by Chan et al. (2014) for measuring within- and between-
network functional connectivity (referred to here as just
connectivity), which were combined into the single metric
of network segregation. Briefly, within-network connec-
tivity was defined as the mean correlation (z-value) of all
ROlIs within a given network to each other, and between-
network connectivity was defined as the mean correla-
tion of all ROIs in a given network to all other ROlIs in the
brain (or to all ROIs in each other network for network-
level analyses). The segregation metric was defined as
the difference in mean within- and mean between-
network correlation as a proportion of mean within-
network correlation (scripts available at https://gitlab
.com/wiglab/system-segregation-and-graph-tools) and
represents the functional specialization of the brain net-

work with respect to overall brain organization. As in prior
work (Chan et al., 2014, 2018; Zhang et al., 2023), all
(unthresholded) positive correlations were included in the
analysis, while all negative correlations were set to zero,
given that global signal regression may introduce spuri-
ous negative correlations (Murphy et al., 2009). All net-
works (regardless of number of ROls) were given equal
weighting in calculating overall segregation; segregation
was not correlated with the number of ROIs within each
network (r = .20, p = .53). Each network, therefore, had
three RSFC metrics entered into the analyses: 1) between-
network connectivity, 2) within-network connectivity, and
3) network segregation.

2.8. Linear models

In the first analysis, we tested the relationship between
age (standardized) and within-network connectivity,
between-network connectivity, and segregation using
linear models to identify linear or quadratic effects of
age. The root mean square of FD per participant was
regressed out of each RSFC measure to further control
for any effects of motion (segregation and FD: r = -.45,
p < .001; cf. FD as a covariate in Chan et al., 2014, 2018;
Zhang et al., 2023). One subject was identified as an
extreme outlier for segregation and removed from this
analysis. Next, we explored the relationship between age
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and network measures for each individual network to
determine if there were different patterns of maturation
across the networks. p-Values were corrected using the
false discovery rate (FDR) for the overall model fits to
control for multiple comparisons across the 12 networks.

Secondly, linear models were fit predicting valence
bias from segregation and, separately, from within-
network and between-network connectivity (controlled
for FD). Due to previous findings of broad changes in
connectivity across the brain during aging (Chan et al.,
2014; Geerligs et al., 2015; Nashiro et al., 2017), and an
absence of evidence linking valence bias to patterns of
large-scale connectivity in adults, we included all 12
functional networks in this analysis to evaluate segrega-
tion changes in relation to valence bias across multiple
brain networks. Standardized age was included as a
covariate, given the known changes in valence bias
across the lifespan (Neta & Tong, 2016; Petro, Basyouni,
et al., 2021; Shuster et al., 2017). Based on the results of
this initial analysis (see Results), follow-up analyses were
conducted on the between-network connectivity of the
DMN to determine which other networks were contribut-
ing to the observed segregation effects (within-network
connectivity was non-significant). Connectivity between
the DMN and each of the 11 other networks was entered
into a model predicting valence bias, along with age.
Augmented backward elimination (R package: abe;
Dunkler et al., 2014) was used for stepwise selection of
variables based on the Akaike information criterion (AIC).
Next, given the wide age range in our sample, we tested
age as a moderator of the effects of DMN connectivity
with the remaining selected networks; any age interac-
tion that was not significant was not included in the final
model. Network segregation and linear model analyses
were conducted in R Statistical Software, version 4.3.1
(R Core Team, 2023).

3. RESULTS

3.1. Segregation and age

Linear models predicting segregation and within-network
connectivity exhibited significant negative linear effects
of age, such that segregation and within-network con-
nectivity were lower in older participants. The linear
model predicting between-network connectivity showed
both a positive linear and negative quadratic effect of
age, corresponding to an inverted U-shaped curve (Fig. 2;
Table 1). Subsequently, the relationship between segre-
gation and age was examined for each of the 12 resting-
state networks separately. All networks exhibited
significant negative linear effects of age on network seg-
regation, and the Auditory and Salience networks also

Table 1. Models predicting network measures from age.
Model B SE
Segregation (F(1, 218) = 41.11, p < .001, R? = .159)

t-value p-value

Intercept -0.0004 0.062 -0.007 .994
Age -0.400 0.062 -6.412 <.001*
Within-Network (F(1, 218) = 23.54, p < .001, R? = .098)
Intercept -0.0002 0.064 -0.003 .997
Age -0.313 0.064 -4.852 <.001**
Between-Network (F(2, 217) = 4.03, p = .019, R? = .036)
Intercept 0.199 0.110 1.808 .072
Age 0.183 0.074 2.494 .013*
Age (quadratic) -0.200 0.088 -2.272 .024~

*p < .01,"p < .05.

showed a significant quadratic effect of age (Fig. 3; Sup-
plementary Table S1; for these effects separated by with-
in- and between-network connectivity, see Supplementary
Tables S2 and S3, respectively).

3.2. Valence bias and segregation

Next, the relationship between segregation in each brain
network and performance on the valence bias task was
assessed. Valence bias was calculated as the percent of
positive responses to ambiguous faces and scenes, and
ranged from 16.67 to 93.75 with a median of 52.08
(SD = 19.06). Valence bias was positively correlated with
age (rho = .256, p < .001, CI [.134, .379]), as expected,
with older participants having a more positive valence
bias (Fig. 4A). Given that age was associated with valence
bias, it was included as a covariate in the linear models
relating valence bias to segregation. Models for all net-
works were significant overall due to the age effects
(Supplementary Table S4). Only in the DMN model (F(2,
218) =14.04, p < .001, R? = .114), however, was the effect
of segregation on valence bias significant, with lower
segregation associated with a more positive bias (Fig. 4B).
Models predicting valence bias from within- and between-
network connectivity were also analyzed (Supplementary
Table S5): only the DMN showed a significant effect of
between-network connectivity (F(3, 217) = 8.76, p < .001,
R? =.108), and no networks showed significant effects of
within-network connectivity.

Given the significant effect of between-network con-
nectivity in the DMN model, we next explored which spe-
cific between-network connections were contributing to
the relationship with valence bias. The initial model
including all networks as predictors is shown in Supple-
mentary Table S6; predictors were automatically removed
in a stepwise manner to minimize the AIC of the model.
The final model (F(5, 215) = 8.424, p < .001, R? = .164)
included age, connectivity with the CO network, with the
VAN network, and with the Reward network, and the
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interaction between age and Reward connectivity
(Table 2). Connectivity between DMN and CO had a sig-
nificant relationship with valence bias, such that stronger
connectivity was associated with a more positive valence
bias (p = .007). The effect of DMN and VAN connectivity
was in a similar direction, but only reached trend-level
significance (p = .053). The main effect of DMN and
Reward connectivity was not significant, but its interac-
tion with age was significant. For participants at one SD
above the mean age (55.12 years), the simple slope of
DMN-Reward connectivity with valence bias was signifi-
cant (slope = -15.46, t = 2.615, p = .010); for participants
at or younger than the mean age (34.06 years), this rela-
tionship was not significant (p > .05; Fig. 5). An analysis

Table 2. Final model predicting valence bias from
connectivity between DMN and individual networks.

Predictor B SE t-value  p-value
Intercept 65.418 4.580 14.285 <.001*
Age 4819 1.285 3.749 <.001*
DMN-CO 18.889 6.927 2.727 .007*
DMN-VAN 7.609 3.904 1.949 .053+
DMN-Reward -6.435 4311 -1.493 137
DMN-Reward*Age  -9.029 4.218 -2.141 .033*

**p < .01, *p < .05, 'p < .10.
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of the Johnson-Neyman interval indicated that for partic-
ipants older than 39.26 years, there was a significant
effect (p < .05), such that weaker connectivity between
the DMN and Reward networks was associated with a
more positive valence bias. Two potential outliers were
evident in the DMN-CO connectivity values; the overall
model (F(5, 213) = 7.536, p < .001, R? = .150) and effects
described above all remained significant after excluding
these two participants.

4. DISCUSSION

In this study, we examined RSFC within and between 12
functional networks in a sample of 221 healthy individu-
als from 6 to 80 years old. Across the lifespan, network
segregation and within-network connectivity decreased,
whereas between-network connectivity showed an
inverted U-shape. Participants also completed a behav-
ioral task assessing emotional judgments of ambiguous
faces and scenes, yielding a measure of their tendency
toward positive or negative appraisals, known as valence
bias. As in previous work, valence bias was more nega-
tive in younger age and more positive in older age.
Valence bias was negatively related to network segrega-
tion in the DMN, with contributions of the between-
network connectivity with the CO, Reward, and VAN
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(A) Locations of the ROls in the DMN (red), CO (purple), Reward (tan), and VAN (teal) networks. (B) Schematic

summarizing the model predicting valence bias from DMN connectivity with the CO, Reward, and VAN networks. (C)
Main effect of DMN-CO between-network connectivity on valence bias residuals (with two outliers removed). Stronger
connectivity between the DMN and CO networks was associated with a more positive valence bias. (D) Interaction effect
of age and DMN-Reward between-network connectivity. For older participants (>39.26 years; solid red line), weaker
connectivity between the DMN and Reward networks was associated with a more positive valence bias.
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networks. Specifically, a more positive valence bias was
associated with lower segregation of the DMN, stronger
connectivity between the DMN and both the CO and
VAN, and, in older participants, weaker connectivity
between the DMN and the Reward network. Collectively,
the present findings confirm prior reports of reduced seg-
regation in aging and suggest that interactions, measured
at rest, between the DMN, a control network (CO), an
emotion processing network (Reward), and an attention
network (VAN) support a more positive valence bias.

4.1. Network segregation decreases across
the lifespan

The analysis of network segregation and age replicated
previously reported effects in adulthood (e.g., Chan et al.,
2014; Geerligs et al., 2015), with lower overall segrega-
tion and within-network connectivity exhibiting a trend
toward de-differentiation in older participants. We also
showed that this pattern extended to children as young
as 6 years old, with only the Auditory and Salience net-
works showing a quadratic effect where segregation was
flat or increased slightly during childhood. On the other
hand, between-network connectivity for all networks
combined showed an inverted U-shape across age, with
the strongest between-network connectivity in young
adults. Some prior work has found increasing segrega-
tion in cognitive networks in childhood, interpreted as a
refinement of associative functions over development
(Satterthwaite et al., 2013; Wig, 2017), while other studies
(e.g., Marek et al., 2016) showed effects similar to the
present findings with decreased segregation from child-
hood into young adulthood. Motion artifacts or insuffi-
cient/differing amounts of data may have contributed to
some previous findings (Grayson & Fair, 2017; Han et al.,
2024; Snyder, 2022), as children and older adults may
have more difficulty lying still in the scanner for an
extended time. Given the known impact of head motion
on RSFC (e.g., Parkes et al., 2018; Power et al., 2015),
here we applied rigorous corrections for motion, censor-
ing volumes for which the BOLD signal was likely con-
taminated by movement and matching the number of
volumes that were analyzed for each participant. Even
with these corrections, we still observed a correlation
between movement and network segregation (greater FD
was associated with lower segregation, even when
accounting for age). FD, therefore, was also regressed
out of network measures to account for any potential
residual movement-related variance given the inclusion
of children and older adults in our sample. As with other
measures of RSFC, the sensitivity of segregation to head
motion means age differences in movement may impact
the results despite corrections during processing, and

further research is necessary to corroborate the current
pattern of network segregation in children.

4.2. Valence bias and the default mode network

The default mode was the only network to show a rela-
tionship between segregation and valence bias, with
lower segregation associated with greater positivity in
judgments of ambiguity. Relatively lower segregation, or
greater integration, of the DMN means that in individu-
als with the tendency to see things in a more positive
light, this network might be more connected with other
networks or less cohesive within itself, as compared to
those who view things more negatively. Breaking down
the segregation effect into within- and between-network
connectivity indicated that it was driven by connections
between the DMN and other networks, rather than con-
nections within the DMN. Such between-network con-
nections support the integration of different brain
functions and allow for flexible responding under vary-
ing task demands (Wig, 2017). DMN activity is associ-
ated with functions, including self-referential processing
and autobiographical thoughts (Raichle, 2015), and dis-
rupted RSFC of the DMN, particularly in medial PFC, is
linked with emotion dysfunction (Greicius et al., 2007;
Menon, 2011; Sheline et al., 2010). Lower segregation
of this network in individuals with a more positive
valence bias suggests a history of stronger interactions
with other functional networks such that internally
directed DMN functions may habitually be more inte-
grated with regions supporting affective control. These
interactions could reflect greater sensitivity to or influ-
ence on brain functions, including emotion processing
and regulation. The analysis of the specific between-
network correlations of the DMN offers further insight
into these interactions.

Between-network connectivity in the DMN was further
broken down to identify specific networks that were driv-
ing the effect on valence bias. Stronger connectivity
between the DMN and CO networks was associated with
a more positive valence bias. A prior study in young
adults similarly found that more integration (lower segre-
gation) of the DMN with control networks was associated
with greater optimism (Moser et al., 2021, see also
Yankouskaya et al., 2022). This is also consistent with
previous task-based work demonstrating a role for the
CO network in response to ambiguity (Neta et al., 2014),
and in particular, a regulatory role that supports decision-
making during the valence bias task (Harp, Nielsen, et al,
2024, Neta et al., 2013; Pierce et al., 2023). Stronger con-
nectivity between these networks could reflect a ten-
dency to monitor and regulate ongoing self-referential
thoughts, perhaps exploring alternate appraisals of daily
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experiences that are more goal-congruent (i.e., positively
valenced).

Connectivity between the DMN and VAN also showed
a marginal effect in the same direction, with stronger con-
nectivity associated with more positivity. The VAN is typ-
ically associated with bottom-up reorienting of attention,
including to emotional stimuli (Frank & Sabatinelli, 2012;
Viviani, 2013; Vossel et al., 2014), and its involvement
here may indicate that more positive individuals habitu-
ally experience differential allocation of attention (cf. Neta
& Dodd, 2018). For example, positive interpretations of
emotional stimuli may involve negative features capturing
attention less strongly than positive features (Neta, Tong,
et al., 2017; Singh et al., 2020; Todd et al., 2012), thus
minimizing the intensity of one’s negative affective
response or ruminative thoughts. Stronger connectivity
with the DMN could indicate that the VAN is more sensi-
tive to internal processing (Viviani, 2013; Wang et al.,
2023; Whitfield-Gabrieli & Ford, 2012), perhaps including
emotional reappraisals, than (negative) environmental
cues (Harp, Gross, et al.,, 2024; Todd et al.,, 2012;
Wadlinger & Isaacowitz, 2011), though this trend-level
effect warrants further investigation.

Finally, we observed an effect on valence bias of con-
nectivity between the DMN and Reward networks. The
Reward network includes the amygdala, striatum, and
orbitofrontal regions involved in emotion processing
(Seitzman et al., 2020). Emotion-related structures and
functions have been found to show less age-related
decline than do cognitive functions, with a positivity
effect in aging that is characterized by increased atten-
tion to and memory for positive emotions in older age
(Mather, 2016; Scheibe & Carstensen, 2010; Teater &
Chonody, 2020), and greater white matter integrity in
frontal cortex (Viher et al., 2024). The interaction with age
observed here indicated that the positivity effect in
valence bias is associated with reduced connectivity
between the DMN and emotion processing regions only
for adults older than 39 years. This age-related effect is in
the opposite direction of the overall segregation effect in
the DMN and the DMN-CO connectivity described above,
possibly reflecting differential contributions of regulatory
versus emotion reactivity networks to DMN activity. This
pattern of findings highlights the utility of probing the
between- and within-network connectivity of systems
rather than relying purely on the overall summary metric.

Older adults may be less reactive to (negative) emo-
tional stimuli or less likely to dwell upon negative memo-
ries (Mather, 2012; Scheibe & Carstensen, 2010), allowing
them to more easily adopt a positive appraisal of ambig-
uous stimuli. Moreover, there is evidence that older adults
use distraction (switching attention) more frequently than
cognitively demanding emotion regulation strategies,
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such as reappraisal (Martins et al., 2015; Mather, 2016;
Scheibe et al., 2015). Speculatively, these different emo-
tion processing tendencies could shape (or be shaped
by) the connectivity between the DMN and Reward net-
works, further limiting the impact of negative stimuli on
self-referential processing in more positive adults. Finally,
it is worth noting that although research on aging often
focuses on changes observed at more advanced ages
(Mather, 2010), the present findings suggest that RSFC
differences related to emotional positivity effects already
emerge in middle-aged adults.

4.3. Limitations

The current findings should be considered with respect
to several limitations. First, the network segregation met-
ric only considered positive correlations, so negative cor-
relations between nodes (which can be influenced by
preprocessing choices such as global signal regression)
did not contribute to the results. While this approach
allows for better estimation of network coactivation, it
means that inverse connectivity, such as that character-
izing the downregulation of the amygdala by ventrome-
dial PFC in emotion processing (Petro, Tottenham, et al.,
2021; Sakaki et al., 2013), may be missed by the current
approach. Differences in segregation should thus be
interpreted as reflecting stronger versus weaker positive
network connectivity, rather than negative correlations.
Secondly, the wide age range of participants in this
sample means that anatomical changes across the lifes-
pan may not be fully accounted for by the atlas registration
(but see Han et al., 2018). We used an atlas based on the
brains of children and young adults, creating the possibility
that the localization of ROls in some older adults could be
suboptimal. Thirdly, more children/younger participants
were excluded based on their behavioral responses on the
valence bias task (though this constituted only 3.5% of the
initial sample). Although this task has been used in pediat-
ric samples with success (Petro, Tottenham, et al., 2021;
Tottenham et al., 2013), it does include stimuli that were
normed using adult participants, so it is possible that some
children interpreted the emotional content differently than
the adults did or simply could not fully understand the task
instructions. Finally, our sample consisted of participants
who predominantly identified their race as White/European
American, limiting the generalizability of these findings to
individuals of other racial and ethnic backgrounds.

4.4. Future directions

The differences in network segregation observed in rela-
tion to valence bias have broader implications for how
affective biases, such as those that may accompany
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mental health disorders, correspond to disruptions in the
brain’s large-scale functional connectivity (Menon, 2011;
Schwartz et al., 2019; Sheline et al., 2010; Spreng et al.,
2020). A more negative valence bias has been related to
increased loneliness (Harp & Neta, 2023), stress (Brown
et al., 2017), anxiety (Park et al., 2016), and daily negative
affect (Puccetti et al., 2023), while a more positive valence
bias has been related to increased social connectedness
(Neta & Brock, 2021). Prior work has also demonstrated
that although valence bias is relatively stable within an
individual over a period of 1-2 years (Harp et al., 2022), it
is malleable: greater positivity was observed following an
8-week mindfulness intervention (Harp et al., 2022) and
cueing of cognitive reappraisal within a single session
(Neta et al., 2022). Considered with the current results,
this raises the possibility that a shift in valence bias within
an individual that impacts well-being could be accompa-
nied by a reorganization of network RSFC. Future work
could explore the relationship between valence bias, net-
work segregation, and mental health following positivity-
inducing interventions across the lifespan.

4.5. Conclusion

The present study demonstrated that age and individual
differences in valence bias were associated with differ-
ences in segregation of resting-state brain networks.
Notably, stronger functional connectivity between the
DMN and both the CO and VAN networks was related to
a more positive valence bias, suggesting a potential reg-
ulatory influence on self-referential processing that
shapes emotional appraisals. Furthermore, age moder-
ated an effect of DMN and Reward network connectivity
on valence bias. In older participants (who tended to
show greater positivity), weaker connectivity between
these two networks was associated with a more positive
valence bias, possibly indicating that a tendency for less
emotional reactivity supports positivity. Collectively,
these findings illustrate that emotional biases in the pro-
cessing of ambiguously valenced stimuli are supported
by differences in the organization of the brain’s intrinsic
functional networks, offering further insight into the
mechanisms that may contribute to affective well-being
or dysfunction across the lifespan.

DATA AND CODE AVAILABILITY

Raw data for participants up to the age of 35 years are
available on the NIH Data Archive (https://nda.nih.gov/).
Correlation matrices from all participants are publicly
available on OSF (https://osf.io/hj5gv/). Network segre-
gation scripts are available at https://gitlab.com/wiglab
/system-segregation-and-graph-tools.
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