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Abstract— The characterization of driver interactions is im-
portant for a variety of problems associated with the design of
autonomy for vehicles. We consider the role of cultural context
in driver interactions, by evaluating the differences in driving
interactions in simulated driving experiments conducted in New
York City, New York, USA, and in Haifa, Israel. The same
experiment was conducted in both locations, and focused on
naturalistic driving interactions at unsigned intersections, in
which interaction with another vehicle was required for safe
navigation through the intersection. We employ conditional dis-
tribution embeddings, a nonparametric machine learning tech-
nique, to empirically characterize differences in the distribution
of trajectories that characterize driver interactions, across
both locations. We show that cultural variability outweighs
individual variability in intersections that require turning ma-
neuvers, and that clear distinctions amongst driving strategies
are evident between populations. Our approach facilities a
data-driven analysis that is amenable to rigorous statistical
testing, in a manner that minimizes filtering, pre-processing,
and other manipulations that could inadvertently bias the data
and obscure important findings.

I. INTRODUCTION

The design of autonomy for vehicles requires reasoning
not only about an individual vehicle’s own actions, but also
those of other vehicles that it interacts with. This requires the
ability to infer and predict the other vehicle’s likely actions
[11, [2], [3], [4] in a manner that accommodates the ongo-
ing feedback that occurs between vehicles as a maneuver
proceeds. Driver interactions occur as a sequence of minute
adjustments, communications, and actions by each driver.
The dynamics of these interactions are difficult to model, in
part because of the heterogeneiety amongst drivers, the social
and cultural context, the driving scenario and driving context,
and other human factors. For example, aggressive driving
may be normalized in some communities, whereas defensive
driving may be considered more appropriate in others [5],
[6].

In a 1992 article in Accident Analysis and Prevention,
David Zaidel posits the following possible mechanisms by
which “others” can affect the behavior of individual drivers:
others as a source of information, communication with
others, others as a reference group, imitation of others [7].
Understanding the ways that drivers interact particularly in
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light of automation; as Oskar Juhlin presciently noted, “it
is essential to understand how drivers themselves achieve
coordination. Computers, running by rules or algorithms,
must function together with other road users. [...] If the
artificial drivers are socially incompetent, this could lead to
ambiguity and misunderstandings which put serious strains
on other road users” [8].

Currently, efforts to model and characterize the social
interactions between cars have been based on data that
models how single drivers respond to a computer-controlled
vehicle [9], [10], [11] or models based on large scale natu-
ralistic data [12], [13]; these approaches do not capture the
communicative element which occurs between human-driven
vehicles, nor the normativity wherein the driving patterns
differ based on driving locale [14].

Our primary objectives in this paper are 1) to quantitatively
characterize pairwise interactions between human-driven ve-
hicles, and 2) to analyze how cultural context impacts these
interactions. We seek to develop methodological approaches
that enable high fidelity analysis of naturalistic driving inter-
action data. One major challenge to this type of analysis is
the inherent heterogeneity of human driving data, especially
under a naturalistic decision making context. We propose
a data-driven approach, based in conditional distribution
embeddings [15], that has been previously employed to
characterize heterogeneity in driving trajectories [16], [17]
and other human-in-the-loop systems [18]. We propose to
use the maximum mean discrepancy, a metric in the repro-
ducing kernel Hilbert space associated with the embedding
[19], to quantitatively capture differences in distributions of
driving data. This approach is responsive to the stochasticity
inherent to trajectories of human-in-the-loop systems, and
is particularly relevant for the extensive heterogeneity in
driving interactions. Further, this approach requires little data
processing or filtering that could inadvertently introduce bias
or otherwise obscure phenomena of interest.

We are focused primarily in differences that occur in
two cultural contexts: driving based in New York and in
Israel. We employ data previously gathered from dyadic
virtual reality driving simulator experiments conducted both
in New York City, USA and Haifa, Israel. The two sites
of data collection, New York and Israel, were based on the
location of the Goedicke et al.’s collaborative research teams
[20]. This “place-based” proxy for culture represents only a
limited part of the beliefs, values, norms, and things people
use to guide their social interactions in everyday life [21], but
was intended to capture at least how people from different
places behave, presumably based on differences in driving
norms. These studies are first-of-their-kind dyadic studies



involving naturalistic driving behaviors, albeit captured in
simulation to control the environment and scenarios; this data
captures the dynamics of how people move their vehicles to
take lead or yield in driving encounters, sometime cycling
between both in response to the other.

The paper is organized as follows. Section II describes
the cross-cultural human subjects experiment. Section III
describes the treatment of the data and application of the
maximum mean discrepancy metric. Section IV presents
the main results in identifying differences between driver
populations. Section V concludes the paper.

II. EXPERIMENTAL SETUP
A. PFarticipants

This study was conducted under Cornell University’s
Institutional Review Board approval in New York City
(IRB0008479) and under Technion’s Ethics Committee Re-
quest in Israel. We recruited at both locations through flyers,
word of mouth, and mailing lists. The study included a total
of 170 participants, in 85 dyads: 42 in Israel and 43 in New
York. Due to motion sickness, 9 dyads were stopped prema-
turely and were excluded from analysis (5 from Israel and 4
from New York). The majority of participants were between
the ages of 18 and 34 (85%) and the proportion of females to
males was nearly equal (46% and 54%, respectively). A total
of 97% of the participants had driver’s licenses, 28% for less
than 5 years, and 45% for 5-10 years. A total of 33% of the
driving participants reported driving 1-2 days per week on
average, and 23% of participants reported driving 3—4 days
a week. A total of 80% of the participants had not driven
outside of their own country. Most participants reported
a lack of experience in virtual reality games (18% never
played; 38% were novices). Most participants (42%) did
not report any motion sickness during virtual reality games.
Since the study was conducted in pairs, the participants were
asked about their acquaintance with their partner; 47% of
participants reported no acquaintanceship.

B. Experimental testbed

For scenario deployment and data gathering, we used
the open-source StrangeLand driving simulator [20], which
enables multi-participant driving interaction. This simulator
records vehicle motion, such as wheel and steering wheel
motion, indicator lights, driver position, and hand gestures
for both participants’ cars. Additional tools were added to
support the recording and post-facto replay of the entire
study. The study used Quest 2 virtual reality headsets and
Logitech steering wheels mounted to tables. To mitigate
simulator sickness, measures such as room ventilation, a
pleasant odor, and ginger candies were prepared [22].

The simulator was situated in a research laboratory. Par-
ticipants sat next to one another, unaware that they were
in the same virtual environment (Figure 1). Each driver
observed partial representations (captured by the virtual
reality headset hand and head tracking) of themselves in the
virtual environment, including a reflection of their avatar face
in the mirror and their hands on the steering wheel (Figure

Fig. 1. The experiment was conducted in virtual driving simulators in two
locations: Haifa, Israel and New York City, New York. Two participants,
seated next to each other, had multiple driving interactions with each other
in the same Strangeland driving environment [20].

Fig. 2. Each participant’s view within the virtual environment provides a
realistic driving view that consists of the dashboard of their own vehicle,
their hand movements projected within the virtual environment, the simu-
lated external environment, and the car of the other driver. The green arrow
instructs the participant of the next maneuver.

2). Each could also see the other driver in the other vehicle
when they encountered one another in the scenarios.

C. Study design

Seven intersection traffic scenarios involving ambiguous
right-of-way were developed. We used crash scenario ranking
statistics (crash frequency, economic cost, and functional
years lost) [23], [24] for multi-vehicle incidents to select
these scenarios. These scenarios were designed to require
participants to communicate and negotiate with one another
with their virtual cars to complete their driving tasks.

The participants were able to drive freely within the sim-
ulator; to coordinate the interaction of the participants, the
intersection scenarios were controlled by traffic control, such
as traffic lights located a block before the intersection for
each participant, which turned green at the same time [25].
While we considered other viable methods to increase the
likelihood of encounters, such as dynamically modified speed
adjustment [26], [25] and dynamic route length change, these
were not ultimately used in our study.
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A total of seven driving scenarios were analyzed. Car A is denoted in red and Car B is denoted in blue. As in [14], the scenarios are abbreviated

by ‘CP; which indicates Crossing Paths, ‘UHP, which indicates Unconstrained Head-On Paths, and ‘MP, which indicates Merging Paths.

D. Experimental procedure

Participants were informed about the risk of simulator
sickness and consent was obtained. Participants were next
instructed on how to put on the virtual reality headset, and
they entered the virtual world and drove for approximately
40 minutes in 12 different driving scenarios. The driving in-
structions were displayed on the vehicle’s dashboard through
arrows (Figure 2), and each participant drove the vehicle as
instructed using the steering wheel and gas and brake pedals.
Drivers drove across a curvy road section, to familiarize
themselves with how the vehicle maneuvered in the virtual
world. They stopped at a red traffic light and drove into the
intersection at the same time. After they negotiated right-of-
way and passed the intersection, the scenario ended at a do
not enter sign. The order of scenarios was randomized for
each pair of participants using a Latin Square design.

E. Data gathering

Experimental data from the simulator was gathered at ap-
proximately 18 frames per second, and included car location,
velocity, acceleration, and heading. Experimental data from
the human was also gathered at the same frame rate, and
included steering angle, gas pedal and brake pedal, hand
position and orientation, and head position and orientation.

Videos of the data used in this analysis are available
at the Cross Cultural Driver Interaction Data OSF project
repository (https://osf.io/bz8vq/) [27].

III. METHODS
A. Data selection and pre-processing

1) Automated identification of interaction scenarios: We
wish to only consider data from scenarios in which partici-
pants experience an interaction, and hence need to exclude
data that does not reflect actual interaction. However, iden-
tifying interactions manually is challenging because it relies

Fig. 4. A driving interaction is presumed to occur when both vehicles are
simultaneously within a circle of radius 25 meters (green). The trajectory
associated with the driving interaction begins once both vehicles enter the
circle, and ends when one car leaves the intersection, as captured via a circle
centered at the intersection (yellow), with radius 5 meters.

upon qualitative assessments that often require subjective hu-
man judgement. For example, the definition in [14] describes
a driving interaction as a situation where the behavior of
at least two road users is influenced by the possibility of
occupying the same space in the near future.

We propose an automated process for binary classification
of all of the driving scenarios in Figure 3, as either depicting
an interaction, or not, to replace the subjective and time-
intensive task of manually labelling whether an interaction
between drivers has transpired. We use criteria based on
vehicle proximity to the intersection. Specifically, a driving
interaction is presumed to occur when both vehicles are
simultaneously within a circle of radius 25 meters (Figure
4), and at least one vehicle is in front of the other vehicle.

We validated this approach through analysis of a sampled
subset of all scenarios. We considered a random selection of
10 samples of each of the seven scenarios in Figure 3. For
each scenario in this selection, we carefully examined the



TABLE I
AUTOMATED CLASSIFICATION OF TRAJECTORIES WHICH DEPICT

INTERACTIONS
Interaction No
Predicted Interaction
Predicted
Interaction Observed 100 (76%) 2 (1%)
No Interaction Observed 9 (7%) 21 (16%)

scenario using a virtual reality study replay tool [28] which
enabled re-enactment of the scenario. The accuracy of our
automated rule-based classifier as compared to this manual
classification is shown in Table I. Overall, our method
had 92% accuracy. Misclassifications were primarily due to
differing nominal speeds between Car A and Car B.

Based on these criteria, a total of 380 trajectories from the
seven scenarios in Figure 3 were included in our analysis,
with 211 from Israel and 169 from New York. A total of
57 trajectories were excluded from the analysis, due to their
classification of no interaction between the two drivers.

2) Trajectory pre-processing: After identifying scenarios
via our automated classifier, we then considered how to
methodologically isolate trajectories from each scenario.

Each trajectory consists of vectors of driving relevant data,
from both cars (Car A and Car B), recorded over a finite time
horizon. We consider multiple combinations of data from
which to construct trajectories:

1) Path: Car positions, in planar coordinates.

2) Path + Acceleration + Steering Angle: Car positions,
in planar coordinates; accelerations, in planar coordi-
nates; steering angles.

3) Steering: Steering angles.

These combinations have been selected because they em-
phasize factors that overtly reflect interaction amongst the
two cars. Inclusion of path data enables analysis of spatial
differences in maneuvers such as turning. Inclusion of in-
puts (acceleration and steering) enables analysis of elements
closer to the driver’s intent; these could elucidate differences
in driving style. Lastly, we include steering in isolation
because it reflects immediate changes in maneuvers. For the
Path + Acceleration + Steering Angle data combination, we
normalized each element to be of comparable values.

For each data combination, we then isolate trajectories
within each scenario that have been deemed to demonstrate
driver interactions. The goal of this isolation is to capture
just the parts of the trajectories that could be impacted by
interactions. Excision of the trajectories from the larger data
set requires a methodological approach to avoid accidentally
biasing the analysis. We choose the start time for the
trajectory as the first time step at which both vehicles are
within the 25 meter radius circle located at the center of the
intersection. The end time for the trajectory occurs when the
first vehicle leaves the intersection, which is defined through
a circle with a radius of 5 meters, also co-located with the
center of the intersection (Figure 4).

Lastly, we normalize the length of all trajectories for a
given scenario by re-sampling, so that all trajectories for

TABLE I
NUMBER OF TRAJECTORIES IN EACH DISTRIBUTION, CATEGORIZED BY
SCENARIO, LOCATION, AND LEAD CAR

Scenario NYC, NYC, Israel, Israel,
Lead Car | Lead Car | Lead Car | Lead Car
A B A B

CP1 12 13 10 20

CP2 11 11 15 15

CP3 13 11 9 25

UHP1 16 9 12 16

CP4 11 14 23 10

MP1 15 10 13 14

UHP2 8 15 15 16

a given scenario are of the same length. The re-sampling
is required to facilitate analysis via conditional distribution
embeddings. We ensure validity in creation of and com-
parison of distributions by ensuring that all trajectories are
projected into the same reproducing kernel Hilbert space.
We choose the re-sampled trajectory length to be 200 time
steps, the average length of the trajectories before sampling.
The resampling factor ranges between 0.06 and 3.50 for all
trajectories considered here.

3) Creating distributions of trajectories: Once the trajec-
tories are pre-processed, we group the trajectories by a) sce-
nario, and b) the first car to arrive at an intersection, referred
to as the “lead car”, as we observe that this significantly
impacts the behavior of the drivers. For instance, in scenario
CP1 (Figure 3), if Car A (red) arrives first, the vast majority
of the turn executed by Car A is captured in the trajectory.
However, if Car B arrives first, the trajectory ends before Car
A is able to execute a turn, as Car B clears the intersection
before Car A completes their turn. Separating trajectories
according to the first car to arrive avoids confounding factors
that could obscure evidence of site-specific driving traits.

By considering combinations of scenario and first car to
arrive, we obtain a total of 28 distributions of trajectories.
That is, for each of the seven scenarios, at each of two sites,
we separately consider the case in which Car A arrives first,
and the case in which Car B arrives first. The number of
trajectories in each distribution is described in Table II.

B. Distance metrics between distributions of trajectories

Consider a trajectory that is described via a stochastic
process [29], X = [x],x3,--- ,XMT e R™V, over a
horizon of length N time steps. For an interacting pair of
vehicles, we presume that the stochastic process at time

step ¢t is described by x; = [zf,xtB] € R™, where x{,

xtB correspond to the data recorded for Car A and Car B,
respectively, as described in Section III-A. This formalism
arises from viewing the trajectory as resulting from the
evolution of a discrete-time, stochastic, dynamical system.
We presume that the distribution P of X is unknown, but
that we have access to samples S = {¢'}M, ¢ e E C
R™V, drawn independently and identically from P. We seek
to first empirically represent the distribution P via its samples
S, where each sample corresponds to a trajectory from one of



the 28 distributions we have identified, and then to compute
the distance between two relevant distributions, P and Q.

To do so, we employ a non-parametric learning method,
conditional distribution embeddings [30], which finds the
best fit conditional distribution amongst a set of distributions
in a reproducing kernel Hilbert space # (RKHS), which
is a linear space of functions of the form f : X — R
equipped with the inner product (-, -) . This requires two
weak assumptions: 1) x is continuous, and b) P is smooth.
Observed data is projected into a Hilbert space defined by a
positive semi-definite kernel function k£ : X x & — R, that
captures the pairwise “distance” between any two data points.
A regularized least squares problem then fits the conditional
distribution in the Hilbert space to observed data.

We chose the radial basis kernel, k(¢,&") = exp(—||€ —
¢'||?/20?) because we have previously found it to be effec-
tive for human-in-the-loop data [16], [17]. We choose o = 13
for Path data, 0 = 1 for Path + Acceleration + Steering
Angle, and 0 = 2 for Steering Angle, chosen for each
dataset via grid search. The kernel distribution embedding
of P [30], mp = [ k(& )P(dE), captures the distribution
P within the RKHS, and is empirically approximated as
o~ 1 M i
mp = 37 i1 k(&)

We can calculate the distance between two distributions
via the the maximum mean discrepancy (MMD) [31], a
norm in the Hilbert space, defined as MMD(P, Q) = ||mp —
mg||%,. The MMD is empirically approximated as

2

M N

MVD(P,Q) = |33 k(e ) - 1 DU KEL)| )

i=1 =1 S

Although multiple metrics to capture distance between dis-
tributions exist, such as the Kullback-Leibler divergence or
total variation divergence, many require density estimation,
which can be computationally expensive and numerically
unstable. Additionally, we have found in our previous work
that MMD is responsive to the underlying characteristics of
the distribution [16], [17].

For each scenario, we use the MMD to compare the
distribution PP for a given site and first car to arrive to a
baseline trajectory, represented as the distribution Q. The
baseline trajectory for each scenario and first-to-arrive car
is computed via successive convex programming [32], by
optimizing costs that penalize constraint violation, subject to
vehicle dynamics. We employ the same baseline trajectory
for each scenario and first-to-arrive car, across both sites.
That is, we compute the MMD between the distribution
from the New York site and the baseline trajectory, and
from the distribution from the Israel site and the baseline
trajectory, separately for both Car A arriving first and Car
B arriving first. By employing the MMD with respect to the
baseline trajectory, we can evaluate the relative distance of
each distribution from a neutral trajectory.

To compute the baseline trajectories, we presume the ve-
hicle dynamics can be represented simply through a unicycle
model with state vector [z, z, v, ¢] with linear velocity v and
heading angle ¢ [33]. We presume the control inputs are
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Fig. 5. Keep out regions for construction of baseline trajectories for left
turn, straight, and right turn.

linear acceleration a and angular velocity w. The continuous
time unicycle dynamics,

b=w

are discretized via a forward-Euler integration scheme. The
initial and terminal states in the optimization are chosen to
match the average value taken from all trajectories for each
scenario. The cost function weights acceleration inputs with
a value of 1 and the angular velocities with a value of 10. For
each turning maneuver, we define keep out regions as shown
in Figure 5, rotated as appropriate for the starting direction
of each the turning car, with a penalty weight of 10%.

We employ the known relationship between the heading
angle of the unicycle model and the steering angle of the
more complex bicycle model of vehicle dynamics via w =
7 tant [34], where / is the distance between the axles of
the bicycle (which we presume to be ¢ = 2.5 meters), to
obtain baseline trajectories in steering angle.

T =wcos¢, Z=wsing, v=a,

IV. RESULTS

One of the unique features of this project is that we can
establish the casual relationship between the drivers’ goals
and their interactions, which is not present in models based
on large-scale naturalistic data. The other is that, because
we have run the study between two distinct sites, we can
better distinguish between aspects of interactions which are
inherent to the scenario, and aspects which are normative—
things that drivers do based on the shared understanding
of what other drivers will expect; this is not possible in
analyses of interaction based on single participant behavior.
We attempted to minimize variations in experimental setup
and participant experience between the two sites but cannot
entirely rule out that observed differences could be caused
by factors other than cultural norms.

This analysis was performed using the SOCKS toolbox
[35] in Python.

A. Differences across sites are evident via MMD

Main Finding #1: It is possible to quantify driving
differences between sites using MMD as a metric.

Differences between distributions are evident in the mag-
nitude of the MMD, compared for each scenario and lead car
between the two sites (Figure 6). That is, comparing the red
solid and red unshaded bars, and comparing the blue solid
and blue unshaded bars, shows distinct differences in almost
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This finding is consistent across all combinations of data selection.

all cases. This result is consistent across all combinations of
data, as shown in Figure 6.

The raw value of the MMD is determined primarily
by the baseline trajectory, and its relationship to the two
distributions (NYC and Israel), for a given lead car. We are
focused primarily on the relative differences between MMD
values, because it indicates the relative differences between
distributions, with respect to the baseline trajectory. To vali-
date these findings, we employ a leave-one-out-analysis. We
focus on scenarios CP1, CP3, CP4, and MP1, which inform
the remainder of our main findings. For each scenario, we
remove one trajectory from the distribution and re-compute
the MMD. Table III shows that differences between MMD
values persist, demonstrating robustness to potential outliers.

We conducted a permutation statistical test (Table IV)
with the MMD as a test statistic. A random number of
trajectories were swapped between the NYC and Israel
distributions for both Lead Car A and B, and the MMD was
recalculated. We repeated this process 1,000 times for each
distribution, and calculated the probability that the MMD
between the permuted distributions was at least as large
as its original value. No statistical significance was found
in most cases, for several reasons: First, the number of
samples in each distribution is relatively small (between 8
and 25 trajectories), which could easily confound tests for
statistical significance. Second, the nature of the MMD is that
it provides distance, but not direction. Because we calculate
the MMD with respect to a baseline distribution, it possible
there are important differences in the distributions, despite
similar MMD values. Indeed, calculating the MMD between
two distributions directly (as opposed to the MMD between
a distribution and the baseline), as in Table V, shows that
the populations show distinct differences.

B. Specific driving maneuvers differ between sites.

By determining prominent differences in MMD across
sites, we can identify maneuvers that vary between sites.

Main Finding #2: Acceleration and deceleration maneu-
vers differ between sites.

CP2 CP3 UHPI CP4 MP1 UHP2

L 0 e 0 1 1 Il |
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Differences in MMD values between sites support the hypothesis that differences in driving interactions can be identified via the MMD metric.

TABLE III
MEAN = STANDARD DEVIATION OF MMD LEAVE-ONE-OUT ANALYSIS

Scenario NYC, NYC, Israel, Israel,
Lead Car | Lead Car | Lead Car | Lead Car
A B A B
CP1 Path 1.093 + | 1.059 + | 1.125 + | 1.046 <+
0.001 0.004 1.065e—5 0.002
CP3 Path 1.083 + | 1.101 + | 1.121 + | 1.047 <+
4.304e—3 0.001 0.002 0.001
CP4 Path 1.100 + | 1.07v3 £ | 1.044 + | 1.102 =+
3.093e—4 0.001 9.681le—4 0.003
CP4 Steer- | 0.052 + | 0.079 =+ | 0.084 + | 0.142 =+
ing Angle 0.005 0.005 0.006 0.017
MP1 Path 1.075 + | 1.063 + | 1.088 + | 1.074 =+
0.001 0.017 0.001 0.002

Acceleration as a maneuver with differences between sites
is evident in scenario MP1 (Figure 6), in which the Path
MMD for NYC participants is smaller than the Path MMD
for Israel participants, regardless of which car arrives first.
The higher MMD values indicate that the Israel distribution
is farther from the baseline than NYC distribution. The
higher Path MMD for both Israel distributions suggests that
the positional difference is due to how the cars approach
the intersection, implying that there is a difference in the
speed and therefore acceleration and deceleration tendencies
between the sites. The Path data (Figure 7) demonstrates dif-
ferences in acceleration between the sites using the average
acceleration values for each of the distributions. On average,
we see that for the Lead Car A distributions, the Israel
distribution (Figure 7, lower left) accelerates more slowly
through the turn than the NYC Lead Car A distribution
average (upper right). For the Lead Car B distributions, we
can observe differences in the braking behavior: the Israel
Lead Car B distribution average (lower right) brakes for
less time than the NYC Lead Car B distribution average,
presumably because they are traveling more slowly as they
approach the intersection.

Main Finding #3: Turning maneuvers differ between sites.

In multiple scenarios, maneuvers involving turning showed
differences in MMD values across sites. Consider scenario



TABLE IV
P-VALUES FOR EACH DISTRIBUTION FROM PERMUTATION TEST

Scenario NYC, NYC, Israel, Israel,
Lead Car | Lead Car | Lead Car | Lead Car
A B A B

CP1 Path 0.021 0.788 0.859 0.107

CP3 Path 0.354 0.775 0.772 0.103

CP4 Path 0.284 0.818 0.129 0.077

CP4 Steer- | 0.903 0.833 0.095 0.229

ing Angle

MP1 Path 0.465 0.395 0.529 0.793

TABLE V

MMD VALUES BETWEEN NYC AND ISRAEL DISTRIBUTIONS

Scenario Lead Car A Lead Car B
CP1 Path 0.443 0.360
CP3 Path 0.430 0.362
CP4 Path 0.386 0414
CP4 Steering Angle 0.209 0.218
MP1 Path 0.366 0.405

CP1, where the difference in MMD values between which car
leads is greater than the differences in MMD values between
the sites for the Path data in Figure 6. This is due to the fact
that when Car A, the car prescribed to turn in this scenario,
arrives at the intersection first, the entire turn is captured
within the trajectory. When Car B arrives at the intersection
first, it leaves the intersection and hence the trajectory ends
before the turning car completes their turn. This difference
highlights that the turn is a significant maneuver when
considering the differences between the sites.

In scenario CP1, with Lead Car A, the Israel site dis-
tribution shows a higher MMD value than the NYC site,
indicating a larger distance from the baseline (Figure 6).
While the mean trajectory of the Israel site and NYC site
distributions (Figure 8) are similar to the baseline trajectory,
the average path for the Israel distribution deviates more from
the baseline trajectory than NYC, which is reflected in a
higher MMD values for the Israel Lead Car A distribution.
A similar trend exists in scenario CP3, which also shows
higher MMD values for Lead Car A trajectories for the Israel
site than for the NYC site. In scenario CP3, in which Car A
is making a left turn, drivers at the Israel site deviate more
from the baseline than drivers at the NYC site (Figure 8). The
deviation takes the form of a sharper turn shape in the Israel
distribution than the NYC distribution. We hypothesize this
is due to differences in traffic laws: In Israel, left turns are
only performed when oncoming traffic is stopped, whereas
unprotected left turns are common in New York City.

C. Comparing relative changes in MMD across data com-
binations can illuminate differences in the data.

Main Finding #4: Changes in steering angle do not
significantly impact path.

Subtle differences can be identified between sites when
comparing the relative trends across data types. We focus
specifically on Steering and Path data. Consider the trends
between MMD values across sites in scenario CP4 (Figure
6, left), with Path data: for Lead Car A, the NYC site has a
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Fig. 7. Average acceleration data in scenario MP1 shows differences across
sites. The NYC distributions (top) show faster acceleration in the Lead Car
A distribution (left) and more braking in the Lead Car B distribution (right)
than their Israel counterparts (bottom).
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Fig. 8. Average trajectories in scenarios CP1 (left) and CP3 (right) show
differences between the sites. In both scenarios, the mean trajectory of
the Israel Lead Car A distribution (solid red) deviates from the baseline
trajectory (black dotted), turning more sharply than the mean trajectory of
NYC Lead Car A distribution (dashed red).

higher MMD value than the Israel site. However, for MMD
values based in Steering data for CP4 (Figure 6, right),
we observe the opposite: the NYC site has a lower MMD
value than the Israel site. We believe that this indicates that
the Israel site drivers perform steering maneuvers that are
not necessarily captured in Path data. We hypothesize that
manipulation of the steering wheel at lower speeds, when
the steering input will not have much impact on the vehicle
trajectory, will not be reflected in the Path data.

Figure 9 shows the differences in the steering angle
between sites for scenario CP4 using the averages of the
distributions. When Car A arrives at the intersection first, the
Israel distribution has the higher MMD value for Steering
data, but the lower MMD value for Path, indicating that
although the Israel Lead Car A average trajectory takes an
expected path through the intersection, the steering inputs
to achieve this path are different than the baseline. This is
reflected in the positive steering angle for Lead Car A as
it crosses the intersection (shown in green), as the baseline
trajectory uses a primarily negative steering angle within the



0.100

0.075

0.050

0.025

0.000

-0.025

Steering Angle (radians)

-0.050

-0.075

-0.100

Lead Car A

Fig. 9. The averages of the steering angle for scenario CP4, for NYC
distributions (top), and Israel distributions (bottom).

intersection. On the other hand, when Car B arrives at the
intersection first, the NYC distribution has a higher Steering
MMD value, but a lower Path MMD value than the Israel
distribution, suggesting that the NYC Lead Car B steering
distribution deviates more from the baseline in this case.

V. CONCLUSION

We employ kernel distribution embeddings to characterize
differences between populations of drivers in naturalistic
driving interaction scenarios. Specifically, we use MMD
to identify granular differences that may be missed by
prototypical statistical methods. Understanding the impacts
of interactions between drivers is important for future design
of culturally aware autonomous vehicles.
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