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Abstract— The characterization of driver interactions is im-
portant for a variety of problems associated with the design of
autonomy for vehicles. We consider the role of cultural context
in driver interactions, by evaluating the differences in driving
interactions in simulated driving experiments conducted in New
York City, New York, USA, and in Haifa, Israel. The same
experiment was conducted in both locations, and focused on
naturalistic driving interactions at unsigned intersections, in
which interaction with another vehicle was required for safe
navigation through the intersection. We employ conditional dis-
tribution embeddings, a nonparametric machine learning tech-
nique, to empirically characterize differences in the distribution
of trajectories that characterize driver interactions, across
both locations. We show that cultural variability outweighs
individual variability in intersections that require turning ma-
neuvers, and that clear distinctions amongst driving strategies
are evident between populations. Our approach facilities a
data-driven analysis that is amenable to rigorous statistical
testing, in a manner that minimizes filtering, pre-processing,
and other manipulations that could inadvertently bias the data
and obscure important findings.

I. INTRODUCTION

The design of autonomy for vehicles requires reasoning

not only about an individual vehicle’s own actions, but also

those of other vehicles that it interacts with. This requires the

ability to infer and predict the other vehicle’s likely actions

[1], [2], [3], [4] in a manner that accommodates the ongo-

ing feedback that occurs between vehicles as a maneuver

proceeds. Driver interactions occur as a sequence of minute

adjustments, communications, and actions by each driver.

The dynamics of these interactions are difficult to model, in

part because of the heterogeneiety amongst drivers, the social

and cultural context, the driving scenario and driving context,

and other human factors. For example, aggressive driving

may be normalized in some communities, whereas defensive

driving may be considered more appropriate in others [5],

[6].

In a 1992 article in Accident Analysis and Prevention,

David Zaidel posits the following possible mechanisms by

which “others” can affect the behavior of individual drivers:

others as a source of information, communication with

others, others as a reference group, imitation of others [7].

Understanding the ways that drivers interact particularly in
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light of automation; as Oskar Juhlin presciently noted, “it

is essential to understand how drivers themselves achieve

coordination. Computers, running by rules or algorithms,

must function together with other road users. [...] If the

artificial drivers are socially incompetent, this could lead to

ambiguity and misunderstandings which put serious strains

on other road users” [8].

Currently, efforts to model and characterize the social

interactions between cars have been based on data that

models how single drivers respond to a computer-controlled

vehicle [9], [10], [11] or models based on large scale natu-

ralistic data [12], [13]; these approaches do not capture the

communicative element which occurs between human-driven

vehicles, nor the normativity wherein the driving patterns

differ based on driving locale [14].

Our primary objectives in this paper are 1) to quantitatively

characterize pairwise interactions between human-driven ve-

hicles, and 2) to analyze how cultural context impacts these

interactions. We seek to develop methodological approaches

that enable high fidelity analysis of naturalistic driving inter-

action data. One major challenge to this type of analysis is

the inherent heterogeneity of human driving data, especially

under a naturalistic decision making context. We propose

a data-driven approach, based in conditional distribution

embeddings [15], that has been previously employed to

characterize heterogeneity in driving trajectories [16], [17]

and other human-in-the-loop systems [18]. We propose to

use the maximum mean discrepancy, a metric in the repro-

ducing kernel Hilbert space associated with the embedding

[19], to quantitatively capture differences in distributions of

driving data. This approach is responsive to the stochasticity

inherent to trajectories of human-in-the-loop systems, and

is particularly relevant for the extensive heterogeneity in

driving interactions. Further, this approach requires little data

processing or filtering that could inadvertently introduce bias

or otherwise obscure phenomena of interest.

We are focused primarily in differences that occur in

two cultural contexts: driving based in New York and in

Israel. We employ data previously gathered from dyadic

virtual reality driving simulator experiments conducted both

in New York City, USA and Haifa, Israel. The two sites

of data collection, New York and Israel, were based on the

location of the Goedicke et al.’s collaborative research teams

[20]. This “place-based” proxy for culture represents only a

limited part of the beliefs, values, norms, and things people

use to guide their social interactions in everyday life [21], but

was intended to capture at least how people from different

places behave, presumably based on differences in driving

norms. These studies are first-of-their-kind dyadic studies



involving naturalistic driving behaviors, albeit captured in

simulation to control the environment and scenarios; this data

captures the dynamics of how people move their vehicles to

take lead or yield in driving encounters, sometime cycling

between both in response to the other.

The paper is organized as follows. Section II describes

the cross-cultural human subjects experiment. Section III

describes the treatment of the data and application of the

maximum mean discrepancy metric. Section IV presents

the main results in identifying differences between driver

populations. Section V concludes the paper.

II. EXPERIMENTAL SETUP

A. Participants

This study was conducted under Cornell University’s

Institutional Review Board approval in New York City

(IRB0008479) and under Technion’s Ethics Committee Re-

quest in Israel. We recruited at both locations through flyers,

word of mouth, and mailing lists. The study included a total

of 170 participants, in 85 dyads: 42 in Israel and 43 in New

York. Due to motion sickness, 9 dyads were stopped prema-

turely and were excluded from analysis (5 from Israel and 4

from New York). The majority of participants were between

the ages of 18 and 34 (85%) and the proportion of females to

males was nearly equal (46% and 54%, respectively). A total

of 97% of the participants had driver’s licenses, 28% for less

than 5 years, and 45% for 5–10 years. A total of 33% of the

driving participants reported driving 1–2 days per week on

average, and 23% of participants reported driving 3–4 days

a week. A total of 80% of the participants had not driven

outside of their own country. Most participants reported

a lack of experience in virtual reality games (18% never

played; 38% were novices). Most participants (42%) did

not report any motion sickness during virtual reality games.

Since the study was conducted in pairs, the participants were

asked about their acquaintance with their partner; 47% of

participants reported no acquaintanceship.

B. Experimental testbed

For scenario deployment and data gathering, we used

the open-source StrangeLand driving simulator [20], which

enables multi-participant driving interaction. This simulator

records vehicle motion, such as wheel and steering wheel

motion, indicator lights, driver position, and hand gestures

for both participants’ cars. Additional tools were added to

support the recording and post-facto replay of the entire

study. The study used Quest 2 virtual reality headsets and

Logitech steering wheels mounted to tables. To mitigate

simulator sickness, measures such as room ventilation, a

pleasant odor, and ginger candies were prepared [22].

The simulator was situated in a research laboratory. Par-

ticipants sat next to one another, unaware that they were

in the same virtual environment (Figure 1). Each driver

observed partial representations (captured by the virtual

reality headset hand and head tracking) of themselves in the

virtual environment, including a reflection of their avatar face

in the mirror and their hands on the steering wheel (Figure

Fig. 1. The experiment was conducted in virtual driving simulators in two
locations: Haifa, Israel and New York City, New York. Two participants,
seated next to each other, had multiple driving interactions with each other
in the same StrangeLand driving environment [20].

Fig. 2. Each participant’s view within the virtual environment provides a
realistic driving view that consists of the dashboard of their own vehicle,
their hand movements projected within the virtual environment, the simu-
lated external environment, and the car of the other driver. The green arrow
instructs the participant of the next maneuver.

2). Each could also see the other driver in the other vehicle

when they encountered one another in the scenarios.

C. Study design

Seven intersection traffic scenarios involving ambiguous

right-of-way were developed. We used crash scenario ranking

statistics (crash frequency, economic cost, and functional

years lost) [23], [24] for multi-vehicle incidents to select

these scenarios. These scenarios were designed to require

participants to communicate and negotiate with one another

with their virtual cars to complete their driving tasks.

The participants were able to drive freely within the sim-

ulator; to coordinate the interaction of the participants, the

intersection scenarios were controlled by traffic control, such

as traffic lights located a block before the intersection for

each participant, which turned green at the same time [25].

While we considered other viable methods to increase the

likelihood of encounters, such as dynamically modified speed

adjustment [26], [25] and dynamic route length change, these

were not ultimately used in our study.



Fig. 3. A total of seven driving scenarios were analyzed. Car A is denoted in red and Car B is denoted in blue. As in [14], the scenarios are abbreviated
by ‘CP,’ which indicates Crossing Paths, ‘UHP,’ which indicates Unconstrained Head-On Paths, and ‘MP,’ which indicates Merging Paths.

D. Experimental procedure

Participants were informed about the risk of simulator

sickness and consent was obtained. Participants were next

instructed on how to put on the virtual reality headset, and

they entered the virtual world and drove for approximately

40 minutes in 12 different driving scenarios. The driving in-

structions were displayed on the vehicle’s dashboard through

arrows (Figure 2), and each participant drove the vehicle as

instructed using the steering wheel and gas and brake pedals.

Drivers drove across a curvy road section, to familiarize

themselves with how the vehicle maneuvered in the virtual

world. They stopped at a red traffic light and drove into the

intersection at the same time. After they negotiated right-of-

way and passed the intersection, the scenario ended at a do

not enter sign. The order of scenarios was randomized for

each pair of participants using a Latin Square design.

E. Data gathering

Experimental data from the simulator was gathered at ap-

proximately 18 frames per second, and included car location,

velocity, acceleration, and heading. Experimental data from

the human was also gathered at the same frame rate, and

included steering angle, gas pedal and brake pedal, hand

position and orientation, and head position and orientation.

Videos of the data used in this analysis are available

at the Cross Cultural Driver Interaction Data OSF project

repository (https://osf.io/bz8vq/) [27].

III. METHODS

A. Data selection and pre-processing

1) Automated identification of interaction scenarios: We

wish to only consider data from scenarios in which partici-

pants experience an interaction, and hence need to exclude

data that does not reflect actual interaction. However, iden-

tifying interactions manually is challenging because it relies

Fig. 4. A driving interaction is presumed to occur when both vehicles are
simultaneously within a circle of radius 25 meters (green). The trajectory
associated with the driving interaction begins once both vehicles enter the
circle, and ends when one car leaves the intersection, as captured via a circle
centered at the intersection (yellow), with radius 5 meters.

upon qualitative assessments that often require subjective hu-

man judgement. For example, the definition in [14] describes

a driving interaction as a situation where the behavior of

at least two road users is influenced by the possibility of

occupying the same space in the near future.

We propose an automated process for binary classification

of all of the driving scenarios in Figure 3, as either depicting

an interaction, or not, to replace the subjective and time-

intensive task of manually labelling whether an interaction

between drivers has transpired. We use criteria based on

vehicle proximity to the intersection. Specifically, a driving

interaction is presumed to occur when both vehicles are

simultaneously within a circle of radius 25 meters (Figure

4), and at least one vehicle is in front of the other vehicle.

We validated this approach through analysis of a sampled

subset of all scenarios. We considered a random selection of

10 samples of each of the seven scenarios in Figure 3. For

each scenario in this selection, we carefully examined the



TABLE I

AUTOMATED CLASSIFICATION OF TRAJECTORIES WHICH DEPICT

INTERACTIONS

Interaction
Predicted

No
Interaction
Predicted

Interaction Observed 100 (76%) 2 (1%)

No Interaction Observed 9 (7%) 21 (16%)

scenario using a virtual reality study replay tool [28] which

enabled re-enactment of the scenario. The accuracy of our

automated rule-based classifier as compared to this manual

classification is shown in Table I. Overall, our method

had 92% accuracy. Misclassifications were primarily due to

differing nominal speeds between Car A and Car B.

Based on these criteria, a total of 380 trajectories from the

seven scenarios in Figure 3 were included in our analysis,

with 211 from Israel and 169 from New York. A total of

57 trajectories were excluded from the analysis, due to their

classification of no interaction between the two drivers.

2) Trajectory pre-processing: After identifying scenarios

via our automated classifier, we then considered how to

methodologically isolate trajectories from each scenario.

Each trajectory consists of vectors of driving relevant data,

from both cars (Car A and Car B), recorded over a finite time

horizon. We consider multiple combinations of data from

which to construct trajectories:

1) Path: Car positions, in planar coordinates.

2) Path + Acceleration + Steering Angle: Car positions,

in planar coordinates; accelerations, in planar coordi-

nates; steering angles.

3) Steering: Steering angles.

These combinations have been selected because they em-

phasize factors that overtly reflect interaction amongst the

two cars. Inclusion of path data enables analysis of spatial

differences in maneuvers such as turning. Inclusion of in-

puts (acceleration and steering) enables analysis of elements

closer to the driver’s intent; these could elucidate differences

in driving style. Lastly, we include steering in isolation

because it reflects immediate changes in maneuvers. For the

Path + Acceleration + Steering Angle data combination, we

normalized each element to be of comparable values.

For each data combination, we then isolate trajectories

within each scenario that have been deemed to demonstrate

driver interactions. The goal of this isolation is to capture

just the parts of the trajectories that could be impacted by

interactions. Excision of the trajectories from the larger data

set requires a methodological approach to avoid accidentally

biasing the analysis. We choose the start time for the

trajectory as the first time step at which both vehicles are

within the 25 meter radius circle located at the center of the

intersection. The end time for the trajectory occurs when the

first vehicle leaves the intersection, which is defined through

a circle with a radius of 5 meters, also co-located with the

center of the intersection (Figure 4).

Lastly, we normalize the length of all trajectories for a

given scenario by re-sampling, so that all trajectories for

TABLE II

NUMBER OF TRAJECTORIES IN EACH DISTRIBUTION, CATEGORIZED BY

SCENARIO, LOCATION, AND LEAD CAR

Scenario NYC,
Lead Car
A

NYC,
Lead Car
B

Israel,
Lead Car
A

Israel,
Lead Car
B

CP1 12 13 10 20

CP2 11 11 15 15

CP3 13 11 9 25

UHP1 16 9 12 16

CP4 11 14 23 10

MP1 15 10 13 14

UHP2 8 15 15 16

a given scenario are of the same length. The re-sampling

is required to facilitate analysis via conditional distribution

embeddings. We ensure validity in creation of and com-

parison of distributions by ensuring that all trajectories are

projected into the same reproducing kernel Hilbert space.

We choose the re-sampled trajectory length to be 200 time

steps, the average length of the trajectories before sampling.

The resampling factor ranges between 0.06 and 3.50 for all

trajectories considered here.

3) Creating distributions of trajectories: Once the trajec-

tories are pre-processed, we group the trajectories by a) sce-

nario, and b) the first car to arrive at an intersection, referred

to as the “lead car”, as we observe that this significantly

impacts the behavior of the drivers. For instance, in scenario

CP1 (Figure 3), if Car A (red) arrives first, the vast majority

of the turn executed by Car A is captured in the trajectory.

However, if Car B arrives first, the trajectory ends before Car

A is able to execute a turn, as Car B clears the intersection

before Car A completes their turn. Separating trajectories

according to the first car to arrive avoids confounding factors

that could obscure evidence of site-specific driving traits.

By considering combinations of scenario and first car to

arrive, we obtain a total of 28 distributions of trajectories.

That is, for each of the seven scenarios, at each of two sites,

we separately consider the case in which Car A arrives first,

and the case in which Car B arrives first. The number of

trajectories in each distribution is described in Table II.

B. Distance metrics between distributions of trajectories

Consider a trajectory that is described via a stochastic

process [29], X =
[
x
T
1
,xT

2
, · · · ,xT

N

]T
∈ RmN , over a

horizon of length N time steps. For an interacting pair of

vehicles, we presume that the stochastic process at time

step t is described by xt =
[
xAt , x

B
t

]
∈ Rm, where xAt ,

xBt correspond to the data recorded for Car A and Car B,

respectively, as described in Section III-A. This formalism

arises from viewing the trajectory as resulting from the

evolution of a discrete-time, stochastic, dynamical system.

We presume that the distribution P of X is unknown, but

that we have access to samples S = {Ài}M
i=1

, Ài ∈ Ξ ¦
RmN , drawn independently and identically from P. We seek

to first empirically represent the distribution P via its samples

S , where each sample corresponds to a trajectory from one of



the 28 distributions we have identified, and then to compute

the distance between two relevant distributions, P and Q.

To do so, we employ a non-parametric learning method,

conditional distribution embeddings [30], which finds the

best fit conditional distribution amongst a set of distributions

in a reproducing kernel Hilbert space H (RKHS), which

is a linear space of functions of the form f : X → R
equipped with the inner product ï·, ·ðH . This requires two

weak assumptions: 1) x is continuous, and b) P is smooth.

Observed data is projected into a Hilbert space defined by a

positive semi-definite kernel function k : X × X → R, that

captures the pairwise “distance” between any two data points.

A regularized least squares problem then fits the conditional

distribution in the Hilbert space to observed data.

We chose the radial basis kernel, k(À, À′) = exp(−∥À −
À′∥2/2Ã2) because we have previously found it to be effec-

tive for human-in-the-loop data [16], [17]. We choose Ã = 13
for Path data, Ã = 1 for Path + Acceleration + Steering

Angle, and Ã = 2 for Steering Angle, chosen for each

dataset via grid search. The kernel distribution embedding

of P [30], mP =
∫
Ξ
k(À, ·)P(dÀ), captures the distribution

P within the RKHS, and is empirically approximated as

m̂P = 1

M

∑M

i=1
k(Ài, ·).

We can calculate the distance between two distributions

via the the maximum mean discrepancy (MMD) [31], a

norm in the Hilbert space, defined as MMD(P,Q) = ∥mP−
mQ∥

2

H
. The MMD is empirically approximated as

M̂MD(P,Q) =

∥∥∥∥∥
1

M

M∑

i=1

k(Ài, ·)−
1

N

N∑

i=1

k(Ài, ·)

∥∥∥∥∥

2

H

. (1)

Although multiple metrics to capture distance between dis-

tributions exist, such as the Kullback-Leibler divergence or

total variation divergence, many require density estimation,

which can be computationally expensive and numerically

unstable. Additionally, we have found in our previous work

that MMD is responsive to the underlying characteristics of

the distribution [16], [17].

For each scenario, we use the MMD to compare the

distribution P for a given site and first car to arrive to a

baseline trajectory, represented as the distribution Q. The

baseline trajectory for each scenario and first-to-arrive car

is computed via successive convex programming [32], by

optimizing costs that penalize constraint violation, subject to

vehicle dynamics. We employ the same baseline trajectory

for each scenario and first-to-arrive car, across both sites.

That is, we compute the MMD between the distribution

from the New York site and the baseline trajectory, and

from the distribution from the Israel site and the baseline

trajectory, separately for both Car A arriving first and Car

B arriving first. By employing the MMD with respect to the

baseline trajectory, we can evaluate the relative distance of

each distribution from a neutral trajectory.

To compute the baseline trajectories, we presume the ve-

hicle dynamics can be represented simply through a unicycle

model with state vector [x, z, v, ϕ] with linear velocity v and

heading angle ϕ [33]. We presume the control inputs are

Fig. 5. Keep out regions for construction of baseline trajectories for left
turn, straight, and right turn.

linear acceleration a and angular velocity É. The continuous

time unicycle dynamics,

ẋ = v cosϕ, ż = v sinϕ, v̇ = a, ϕ̇ = É

are discretized via a forward-Euler integration scheme. The

initial and terminal states in the optimization are chosen to

match the average value taken from all trajectories for each

scenario. The cost function weights acceleration inputs with

a value of 1 and the angular velocities with a value of 10. For

each turning maneuver, we define keep out regions as shown

in Figure 5, rotated as appropriate for the starting direction

of each the turning car, with a penalty weight of 104.

We employ the known relationship between the heading

angle of the unicycle model and the steering angle of the

more complex bicycle model of vehicle dynamics via É =
v

ℓ
tanÈ [34], where ℓ is the distance between the axles of

the bicycle (which we presume to be ℓ = 2.5 meters), to

obtain baseline trajectories in steering angle.

IV. RESULTS

One of the unique features of this project is that we can

establish the casual relationship between the drivers’ goals

and their interactions, which is not present in models based

on large-scale naturalistic data. The other is that, because

we have run the study between two distinct sites, we can

better distinguish between aspects of interactions which are

inherent to the scenario, and aspects which are normative–

things that drivers do based on the shared understanding

of what other drivers will expect; this is not possible in

analyses of interaction based on single participant behavior.

We attempted to minimize variations in experimental setup

and participant experience between the two sites but cannot

entirely rule out that observed differences could be caused

by factors other than cultural norms.

This analysis was performed using the SOCKS toolbox

[35] in Python.

A. Differences across sites are evident via MMD

Main Finding #1: It is possible to quantify driving

differences between sites using MMD as a metric.

Differences between distributions are evident in the mag-

nitude of the MMD, compared for each scenario and lead car

between the two sites (Figure 6). That is, comparing the red

solid and red unshaded bars, and comparing the blue solid

and blue unshaded bars, shows distinct differences in almost
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Fig. 6. Differences in MMD values between sites support the hypothesis that differences in driving interactions can be identified via the MMD metric.
This finding is consistent across all combinations of data selection.

all cases. This result is consistent across all combinations of

data, as shown in Figure 6.

The raw value of the MMD is determined primarily

by the baseline trajectory, and its relationship to the two

distributions (NYC and Israel), for a given lead car. We are

focused primarily on the relative differences between MMD

values, because it indicates the relative differences between

distributions, with respect to the baseline trajectory. To vali-

date these findings, we employ a leave-one-out-analysis. We

focus on scenarios CP1, CP3, CP4, and MP1, which inform

the remainder of our main findings. For each scenario, we

remove one trajectory from the distribution and re-compute

the MMD. Table III shows that differences between MMD

values persist, demonstrating robustness to potential outliers.

We conducted a permutation statistical test (Table IV)

with the MMD as a test statistic. A random number of

trajectories were swapped between the NYC and Israel

distributions for both Lead Car A and B, and the MMD was

recalculated. We repeated this process 1,000 times for each

distribution, and calculated the probability that the MMD

between the permuted distributions was at least as large

as its original value. No statistical significance was found

in most cases, for several reasons: First, the number of

samples in each distribution is relatively small (between 8

and 25 trajectories), which could easily confound tests for

statistical significance. Second, the nature of the MMD is that

it provides distance, but not direction. Because we calculate

the MMD with respect to a baseline distribution, it possible

there are important differences in the distributions, despite

similar MMD values. Indeed, calculating the MMD between

two distributions directly (as opposed to the MMD between

a distribution and the baseline), as in Table V, shows that

the populations show distinct differences.

B. Specific driving maneuvers differ between sites.

By determining prominent differences in MMD across

sites, we can identify maneuvers that vary between sites.

Main Finding #2: Acceleration and deceleration maneu-

vers differ between sites.

TABLE III

MEAN ± STANDARD DEVIATION OF MMD LEAVE-ONE-OUT ANALYSIS

Scenario NYC,
Lead Car
A

NYC,
Lead Car
B

Israel,
Lead Car
A

Israel,
Lead Car
B

CP1 Path 1.093 ±
0.001

1.059 ±
0.004

1.125 ±
1.065e−5

1.046 ±
0.002

CP3 Path 1.083 ±
4.304e−3

1.101 ±
0.001

1.121 ±
0.002

1.047 ±
0.001

CP4 Path 1.100 ±
3.093e−4

1.073 ±
0.001

1.044 ±
9.681e−4

1.102 ±
0.003

CP4 Steer-

ing Angle

0.052 ±
0.005

0.079 ±
0.005

0.084 ±
0.006

0.142 ±
0.017

MP1 Path 1.075 ±
0.001

1.053 ±
0.017

1.088 ±
0.001

1.074 ±
0.002

Acceleration as a maneuver with differences between sites

is evident in scenario MP1 (Figure 6), in which the Path

MMD for NYC participants is smaller than the Path MMD

for Israel participants, regardless of which car arrives first.

The higher MMD values indicate that the Israel distribution

is farther from the baseline than NYC distribution. The

higher Path MMD for both Israel distributions suggests that

the positional difference is due to how the cars approach

the intersection, implying that there is a difference in the

speed and therefore acceleration and deceleration tendencies

between the sites. The Path data (Figure 7) demonstrates dif-

ferences in acceleration between the sites using the average

acceleration values for each of the distributions. On average,

we see that for the Lead Car A distributions, the Israel

distribution (Figure 7, lower left) accelerates more slowly

through the turn than the NYC Lead Car A distribution

average (upper right). For the Lead Car B distributions, we

can observe differences in the braking behavior: the Israel

Lead Car B distribution average (lower right) brakes for

less time than the NYC Lead Car B distribution average,

presumably because they are traveling more slowly as they

approach the intersection.

Main Finding #3: Turning maneuvers differ between sites.

In multiple scenarios, maneuvers involving turning showed

differences in MMD values across sites. Consider scenario



TABLE IV

P-VALUES FOR EACH DISTRIBUTION FROM PERMUTATION TEST

Scenario NYC,
Lead Car
A

NYC,
Lead Car
B

Israel,
Lead Car
A

Israel,
Lead Car
B

CP1 Path 0.021 0.788 0.859 0.107

CP3 Path 0.354 0.775 0.772 0.103

CP4 Path 0.284 0.818 0.129 0.077

CP4 Steer-

ing Angle

0.903 0.833 0.095 0.229

MP1 Path 0.465 0.395 0.529 0.793

TABLE V

MMD VALUES BETWEEN NYC AND ISRAEL DISTRIBUTIONS

Scenario Lead Car A Lead Car B

CP1 Path 0.443 0.360

CP3 Path 0.430 0.362

CP4 Path 0.386 0.414

CP4 Steering Angle 0.209 0.218

MP1 Path 0.366 0.405

CP1, where the difference in MMD values between which car

leads is greater than the differences in MMD values between

the sites for the Path data in Figure 6. This is due to the fact

that when Car A, the car prescribed to turn in this scenario,

arrives at the intersection first, the entire turn is captured

within the trajectory. When Car B arrives at the intersection

first, it leaves the intersection and hence the trajectory ends

before the turning car completes their turn. This difference

highlights that the turn is a significant maneuver when

considering the differences between the sites.

In scenario CP1, with Lead Car A, the Israel site dis-

tribution shows a higher MMD value than the NYC site,

indicating a larger distance from the baseline (Figure 6).

While the mean trajectory of the Israel site and NYC site

distributions (Figure 8) are similar to the baseline trajectory,

the average path for the Israel distribution deviates more from

the baseline trajectory than NYC, which is reflected in a

higher MMD values for the Israel Lead Car A distribution.

A similar trend exists in scenario CP3, which also shows

higher MMD values for Lead Car A trajectories for the Israel

site than for the NYC site. In scenario CP3, in which Car A

is making a left turn, drivers at the Israel site deviate more

from the baseline than drivers at the NYC site (Figure 8). The

deviation takes the form of a sharper turn shape in the Israel

distribution than the NYC distribution. We hypothesize this

is due to differences in traffic laws: In Israel, left turns are

only performed when oncoming traffic is stopped, whereas

unprotected left turns are common in New York City.

C. Comparing relative changes in MMD across data com-

binations can illuminate differences in the data.

Main Finding #4: Changes in steering angle do not

significantly impact path.

Subtle differences can be identified between sites when

comparing the relative trends across data types. We focus

specifically on Steering and Path data. Consider the trends

between MMD values across sites in scenario CP4 (Figure

6, left), with Path data: for Lead Car A, the NYC site has a

Fig. 7. Average acceleration data in scenario MP1 shows differences across
sites. The NYC distributions (top) show faster acceleration in the Lead Car
A distribution (left) and more braking in the Lead Car B distribution (right)
than their Israel counterparts (bottom).

Fig. 8. Average trajectories in scenarios CP1 (left) and CP3 (right) show
differences between the sites. In both scenarios, the mean trajectory of
the Israel Lead Car A distribution (solid red) deviates from the baseline
trajectory (black dotted), turning more sharply than the mean trajectory of
NYC Lead Car A distribution (dashed red).

higher MMD value than the Israel site. However, for MMD

values based in Steering data for CP4 (Figure 6, right),

we observe the opposite: the NYC site has a lower MMD

value than the Israel site. We believe that this indicates that

the Israel site drivers perform steering maneuvers that are

not necessarily captured in Path data. We hypothesize that

manipulation of the steering wheel at lower speeds, when

the steering input will not have much impact on the vehicle

trajectory, will not be reflected in the Path data.

Figure 9 shows the differences in the steering angle

between sites for scenario CP4 using the averages of the

distributions. When Car A arrives at the intersection first, the

Israel distribution has the higher MMD value for Steering

data, but the lower MMD value for Path, indicating that

although the Israel Lead Car A average trajectory takes an

expected path through the intersection, the steering inputs

to achieve this path are different than the baseline. This is

reflected in the positive steering angle for Lead Car A as

it crosses the intersection (shown in green), as the baseline

trajectory uses a primarily negative steering angle within the



Fig. 9. The averages of the steering angle for scenario CP4, for NYC
distributions (top), and Israel distributions (bottom).

intersection. On the other hand, when Car B arrives at the

intersection first, the NYC distribution has a higher Steering

MMD value, but a lower Path MMD value than the Israel

distribution, suggesting that the NYC Lead Car B steering

distribution deviates more from the baseline in this case.

V. CONCLUSION

We employ kernel distribution embeddings to characterize

differences between populations of drivers in naturalistic

driving interaction scenarios. Specifically, we use MMD

to identify granular differences that may be missed by

prototypical statistical methods. Understanding the impacts

of interactions between drivers is important for future design

of culturally aware autonomous vehicles.
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