
INTERNAL DLA ON MATED-CRT MAPS

AHMED BOU-RABEE AND EWAIN GWYNNE

Abstract. We prove a shape theorem for internal diffusion limited aggregation on mated-
CRT maps, a family of random planar maps which approximate Liouville quantum gravity
(LQG) surfaces. The limit is an LQG harmonic ball, which we constructed in a companion
paper. We also prove an analogous result for the divisible sandpile.

1. Introduction

In this article we study the large-scale behavior of a random growth model (IDLA) on a
random graph (the mated-CRT map) which approximates a random fractal surface embedded
in the plane (Liouville quantum gravity, LQG). We establish, for each µ ∈ (0, 2), the con-
vergence in probability of the IDLA cluster on the µ-mated-CRT map to a so-called µ-LQG
harmonic ball (Theorem 1.4). Harmonic balls are random subsets of the plane characterized
by a mean-value property for harmonic functions with respect to the LQG measure (Defini-
tion 1.3). In a companion work [BRG22], harmonic balls are constructed via Hele-Shaw flow
and it is shown that they are neither Lipschitz domains nor LQG metric balls.

Figure 1. Left: IDLA on the Tutte embedding of a finite µ =
√
2 mated-

CRT map with boundary, with 104 vertices. Walkers are added until the first
time one of them hits a boundary vertex. Cells are colored according to the
first time one of their vertices is hit by a random walk. Right: Illustration of
the graph upon which IDLA is run. The finite mated-CRT map with boundary
can be constructed from a pair of conditioned Brownian motions via a similar
procedure as in Definition 1.1. Away from the boundary, it locally looks like
the infinite mated-CRT map considered in this paper, but its Tutte embedding
is easier to define and simulate. See Remark 1.5 for further discussion.
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1.1. Background. We now briefly and somewhat informally describe the aforementioned
objects, delaying the more technical definitions to Section 2 below. Minimal prior knowledge
of LQG is needed to read this article.

1.1.1. Internal DLA. Internal diffusion limited aggregation (Internal DLA or IDLA) was
first introduced to model the physical process of ‘material removal’ by Meakin-Deutch in
[MD86]. It was also independently introduced by Diaconis-Fulton in [DF91] as a special case
of a commutative algebra.

In its simplest form, IDLA produces an increasing sequence of subsets of the vertex set
of a graph G (often taken to be a lattice such as Z2) as follows. Fix a root vertex o for G.
Send out an explorer starting from o and allow it to travel according to a simple random
walk on G until it reaches an unoccupied vertex, at which point it stops and occupies that
vertex. This process is repeated, each explorer starts at the root and walks randomly until
it reaches an unoccupied vertex. For n g 1, the time n IDLA cluster is the collection of
occupied vertices after n iterations of this.

Following remarkable work by several groups of mathematicians, the large n behavior
of the IDLA clusters is now well understood on several families of graphs: Zd [LBG92,
Law95, AG13a, AG13b, JLS12, JLS13, JLS14a, Luc14, BDCKL20, Dar20a], Cayley graphs
of groups with polynomial [Bla04] and exponential [BB07, Hus08] growth, supercritical per-
colation clusters [She10, DCLYY13], Sierpinski gasket graphs [CHSHT20], comb lattices
[HS12, AR16], and cylinders [JLS14b, LS19, Sil20]. In most of these cases, the scaling limit
of the IDLA clusters is described by a metric ball in the corresponding ambient space (the
main result of the paper will give an example where the scaling limit of IDLA is not a metric
ball).

We would like to examine what happens when G is taken to be a random graph embedded
in the plane. Specifically, instead of taking some deterministic lattice which approximates
Euclidean space, we take G to be a graph which approximates a Liouville quantum gravity
(LQG) surface.

1.1.2. Liouville quantum gravity. LQG was introduced by Polyakov in the 1980s in the con-
text of bosonic string theory [Pol81] as a model of a ‘random two-dimensional Riemannian
manifold’. LQG is too rough to be defined as a manifold in the rigorous sense, although the
following loose description can be made precise via various regularization procedures. For
µ ∈ (0, 2) and a domain D ¢ C, a µ-LQG surface parameterized by D is the two-dimensional
Riemannian manifold with Riemannian metric tensor eµh (dx2+ dy2), where dx2+ dy2 is the
Euclidean metric tensor and h is a variant of the Gaussian free field (GFF) on D.
Of particular relevance to this work is the associated volume form, the µ-Liouville measure

or µ-LQG measure. This is a Radon measure on D which is (informally) given by

(1.1) µh(dz) = eµh(z) dz,

where dz denotes two-dimensional Lebesgue measure [Kah85, RV11, DS11]. We will give
a precise definition of µh and the relevant variants of the GFF in Section 2. For now, the
reader only needs to know that µh is a random non-atomic, locally finite Radon measure
on D which assigns positive mass to every open subset of D and is mutually singular with
respect to Lebesgue measure. The works [DDDF20, GM21] showed that an LQG surface
can also be endowed with a canonical random metric, but we will not need this metric in
the present paper.

2



εZ

R

C − L

εZ

ε
2ε

3ε
4ε

5ε 6ε 7ε
8ε

9ε

10ε

11ε

12ε

Figure 2. Left: A sample construction of the mated-CRT map. We draw
the graphs of C − L and R in the interval [0, 12ε] where C is a large constant
chosen so that the graphs do not intersect. Each vertical strip containing
the interval [a − ε, a] for a ∈ εZ corresponds to a vertex in the mated-CRT
map. The adjacency condition (1.2) for L (resp. R) corresponds to two vertices
a, b ∈ εZ being adjacent if there is a horizontal line segment above the graph
of C − L (resp. below the graph of R) which intersects the graph only in the
vertical strips which contain the intervals [a− ε, a] and [b− ε, b]. In the figure,
we have illustrated, for each pair (a, b) for which this adjacency condition
holds, the lowest (resp. highest) such horizontal line segment in green. Right:

A planar embedding of the mated-CRT map on the left, under which it is
a triangulation. Edges arising from the adjacency condition for L (resp. R)
which do not join consecutive vertices are shown in red (resp. blue). Edges
joining consecutive vertices are shown in black. A similar illustration appeared
as [GMS19a, Figure 1].

1.1.3. Random planar maps and the mated-CRT map. LQG is widely expected, and in some
cases rigorously known, to describe the scaling limit of random planar maps. A planar map
is a graph embedded in C in such a way that no two edges cross, viewed modulo orientation
preserving homeomorphisms C → C. Uniform random planar maps (including uniform trian-

gulations, quadrangulations, etc.) converge to
√

8/3-LQG surfaces in the Gromov-Hausdorff
sense [Le 13, Mie13, MS20, MS21] and, in the case of triangulations, when embedded via
the so-called Cardy embedding [HS19]. Similar convergence results are expected to hold for

various types of non-uniform random planar maps toward µ-LQG with µ ̸=
√

8/3. For
example, random planar maps sampled with probability proportional to the Ising model
partition function are expected to converge to

√
3-LQG (see, e.g., [GHS19, Section 3.1] for

more on such conjectures).
Mated-CRT maps are a one-parameter family of random planar maps, indexed by µ ∈

(0, 2), whose connection to LQG is better understood than for most other random planar
maps. In particular, it was proven by Gwynne-Miller-Sheffield [GMS21, GMS22] that the
re-scaled counting measure on vertices of the µ-mated-CRT map converges to the µ-LQG
measure when the map is embedded into C via the Tutte embedding (i.e., the embedding
where the position of each vertex is the average of the positions of its neighbors). Building on
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this, it was also shown by Berestycki-Gwynne in [BG20] that random walk on the mated-CRT
map converges to so-called Liouville Brownian motion, see Section 2.7 for the definition.
The mated-CRT map is built via a pair of correlated linear Brownian motions as in Figure

2.

Definition 1.1 (Mated-CRT map). Fix µ ∈ (0, 2) and consider a two dimensional Brownian
motion (Lt, Rt)t∈R started at the origin with correlation coefficient given by − cos(Ãµ2/4). For
ε > 0, the µ-mated-CRT map with cell size ε associated to (Lt, Rt)t∈R is the graph Gε whose
vertex set is εZ = VGε, with two vertices a < b connected by an edge if and only if

(1.2)

(

inf
t∈[a−ε,a]

Xt

)

(
(

inf
t∈[b−ε,b]

Xt

)

f inf
t∈[a,b−ε]

Xt

where X can be either L or R. There are two edges connecting a and b if |b − a| > ε and
(1.2) is satisfied for both L and R. See Figure 2 for an illustration and a description of the
planar map structure of Gε.
By Brownian scaling, the law of Gε (as a graph) does not depend on ε. However, ε is

a convenient scaling parameter when talking about limits, as we will see just below. The
definition of the mated-CRT map is a semi-discrete generalization of so-called mating-of-
trees bijections between random planar maps and random walk excursions. For instance, the
Mullin bijection [Mul67, Ber07, She16] is a discrete analog of Definition 1.1 which produces
a planar map decorated by a spanning tree from a two-dimensional random walk excursion.
See [GHS19] for a survey of mating-of-trees bijections and their applications.
The main reason why the mated-CRT map is more tractable than other random planar

maps is that, due to the results of [DMS21], it has an a priori embedding into C defined in
terms of LQG and Schramm-Loewner evolution (SLE). We will now discuss this embedding.

1.1.4. SLE/LQG embedding. In this paper, we work with an embedding of the mated-CRT
map constructed via a space-filling Schramm-Loewner evolution (SLE) curve. We remark,
however, that by [GMS21, BG20], our results extend to the so-called Tutte (or harmonic)
embedding of the mated-CRT map — see Figure 1 and Remark 1.5.
Let h be the random distribution on C corresponding to a µ-quantum cone (a slight

modification of the whole-plane GFF). Let µh be the µ-LQG measure associated to h. Let
¸ be a whole-plane space-filling SLE, independent of h, with parameter » = 16/µ2 ∈ (4,∞).
We parameterize ¸ so that ¸(0) = 0 and µh(¸([a, b])) = b−a for every a, b ∈ R with a < b. We
will review the definitions of h and ¸ in Section 2 below. For now, the unfamiliar reader can
just think of ¸ as a random continuous, space-filling curve in C from ∞ to ∞ parameterized
by a locally finite Radon measure.

Definition 1.2 (SLE/LQG embedding of the mated-CRT map [DMS21]). For µ ∈ (0, 2)
and ε > 0, let Gε be the ε-mated CRT map with vertex set VGε as defined in Definition 1.1.
The SLE/LQG embedding is defined as follows. Each vertex a ∈ VGε = εZ corresponds to a
cell,

(1.3) Hε
a := ¸([a− ε, a]).

Two distinct vertices a, b ∈ VGε are connected by one (resp. two) edges if and only if
Hε
a ∩Hε

b has one (resp. two) connected components which are not singletons. This provides
an embedding of Gε into C by sending each vertex a ∈ VGε to the point ¸(a) ∈ Hε

a then
4



Gε

Figure 3. Top left: A space-filling SLE curve ¸ for » g 8 divided into cells
¸([a−ε, a]) for a collection of a ∈ εZ. Top right: The same curve with a blue
path showing the order in which cells are traversed by ¸. Bottom left: A
point in each cell, corresponding to a vertex in Gε, is displayed in red and red
edges are drawn to adjacent neighbors. Bottom right: The same as bottom
left but with the black edges removed — this illustrates the embedding of Gε
into C. A similar figure has appeared previously as [GMS19a, Figure 4].

drawing edges between adjacent vertices in such a way that no two edges cross (the precise
locations of the edges is unimportant for our purposes).

The equivalence of the above SLE/LQG description of the mated-CRT map and the Brow-
nian motion description, Definition 1.1, is a consequence of the main result of the seminal
work [DMS21]. See, in particular, [DMS21, Lemma 8.8]. For an illustration of the SLE/LQG
embedding, see Figure 3.

1.1.5. Harmonic balls. In this article we show that IDLA on the SLE/LQG embedding of
the mated-CRT map converges to a harmonic ball.

Definition 1.3 (Harmonic ball). Fix µ ∈ (0, 2) and let µh be the LQG measure (1.1) where
h is a variant of the Gaussian free field. A µ-LQG harmonic ball is a domain Λ ¢ C which
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satisfies the following mean-value property for harmonic functions:

(1.4)

∫

Λ

f(y)dµh(y) = µh(Λ)f(0), ∀f : C → R harmonic in a neighborhood of cl(Λ).

In a companion paper [BRG22], it is shown that if µ ∈ (0, 2) and h is a suitable variant
of the GFF on C, then there is a unique growing family of LQG harmonic balls {Λt}t>0,
parameterized so that µh(Λt) = t. These harmonic balls are constructed directly in the
continuum via a certain optimization problem involving the measure µh. This optimization
problem, as well as several important properties of harmonic balls proved in [BRG22], are
used in our proof. A statement of the facts about LQG harmonic balls which will be needed
later appears in Theorem 2.3 below. It is also shown in [BRG22] that LQG harmonic balls
are neither Lipschitz domains nor LQG metric balls.

1.2. Main results. Fix µ ∈ (0, 2) and for ε > 0 let Gε be the ε-mated CRT map as
in Definition 1.1, with vertices VGε embedded into C via the SLE/LQG embedding as in
Definition 1.2. For a set X ¢ C and ¶ > 0 we denote the ¶-outer and ¶-inner neighborhoods
of X by

(1.5)
B+
¶ (X) := {x ∈ C : dist(x,X) f ¶}

B−
¶ (X) := {y ∈ X : dist(y,Xc) g ¶}

where dist denotes Euclidean distance.

1.2.1. Internal DLA. Our notation for the IDLA cluster on Gε is as follows. Begin with
Aε(0) = ∅. For m g 1, inductively let Aε(m) be the union of Aε(m− 1) and the first point
at which a simple random walk on Gε started at the origin 0 ∈ VGε exits Aε(m − 1). By
filling in the mated-CRT map cells corresponding to vertices in Aε (Definition 1.2) we may
map a subset Aε ¢ VGε to a subset of C via

(1.6) Aε :=
⋃

a∈Aε

Hε
a.

Theorem 1.4. Let {Λt}tg0 be the growing family of µ-LQG harmonic balls with µh(Λt) = t,
as discussed just after Definition 1.3, with h the field corresponding to the µ-quantum cone,
as in Definition 1.2. For each ¶ > 0 and t > 0, it holds with probability tending to 1 as ε→ 0
that the union of the cells corresponding to the time +tε−1,-IDLA cluster approximates Λt in
the following sense:

B−
¶ (Λt) ¢ Aε(+tε−1,) ¢ B+

¶ (Λt),

where B±
¶ are as in (1.5).

Remark 1.5 (Convergence under the Tutte embedding). One may also prove a version
of Theorem 1.4 for the disk version of the mated-CRT map under the Tutte embedding, as
depicted in Figure 1. The quantum disk is the canonical LQG surface with the topology of the
disk [HRV18, DMS21]. In [GMS21], the authors introduce a disk version of the mated-CRT
map with a distinguished boundary and define its Tutte embedding (the definition of the Tutte
embedding is easier for planar maps with boundary, which is why one wants to consider the
disk version of the mated-CRT map). They also show that the Tutte embedding of the disk
version of the mated-CRT map is close, in the uniform distance, to its SLE/LQG embedding.
Using the fact that the generalized function representing the quantum disk behaves like a GFF
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away from its boundary, one can extend the results of [BRG22] to define a growing family of
harmonic balls on the quantum disk started at a uniformly sampled interior point and stopped
at the first time when they hit the boundary. Via another absolute continuity argument, one
can extend the result of Theorem 1.4 to get that the IDLA clusters on the mated-CRT map
with the disk topology, stopped at the first time they hit the boundary, converge to harmonic
balls on the quantum disk under the SLE/LQG embedding. We will not provide the details of
these absolute continuity arguments in this paper, but see [BG20, Section 7.4] and Theorem
2.3 below for similar arguments. Using the results of [GMS21], one gets that IDLA clusters
on the disk version of the mated-CRT map also converge to harmonic balls under the Tutte
embedding.

1.2.2. Divisible sandpile. Our proof of convergence of IDLA proceeds by first establishing an
analogous result for an auxiliary particle system which may be thought of as the ‘expected
value’ of IDLA.

The divisible sandpile is a deterministic diffusion process on a graph G, which, to the best
of our knowledge, was first introduced by Zidarov [Zid90, page 108-118] and (independently)
studied by Levine in his thesis [Lev07]. Start with masses (real numbers) on vertices of a
graph and redistribute the mass according to the following rule. Whenever a vertex has
mass t larger than one, it is unstable and topples by distributing the excess mass, (t − 1),
to each of its neighbors equally. This process, called stabilizing, continues until every vertex
has mass less than or equal to one. Although stabilizing may take infinite time, if we have a
finite amount of mass on an infinite graph, the end configuration exists and does not depend
on the order in which unstable sites are toppled [LMPU16]. From another perspective, the
divisible sandpile is simply the Jacobi iterative algorithm, e.g., [GVL13, Chapter 10], for
solving the Poisson equation.

In one variant of the model, called the single-source divisible sandpile, we start with a
pile of mass t > 0 at a root vertex o in G and stabilize. The final collection of vertices
which contain some mass is the cluster. In each IDLA convergence theorem recalled in
Section 1.1.1, it has been shown that the limit shape of the single-source divisible sandpile
cluster coincides with that of IDLA. This relationship was first observed and established
on Zd by Levine-Peres in [LP09]. See [Rus20] for a survey relating IDLA and the divisible
sandpile.

In our setting, the IDLA cluster also shares the same limit shape as the divisible sandpile.
Denote by Dε(t) the divisible sandpile cluster starting with mass t > 0 at the origin in Gε.
Theorem 1.6. Theorem 1.4 holds with the divisible sandpile cluster started with mass tε−1

at the origin, Dε(tε
−1), in place of the IDLA cluster started with +tε−1, explorers at the

origin, Aε(+tε−1,).
The divisible sandpile has an explicit description in terms of a discrete optimization prob-

lem, which we recall in Section 4 below. In particular, from this optimization problem it
is easy to deduce that the divisible sandpile cluster enjoys a certain discrete mean-value
property; the clusters are discrete harmonic balls [LP10, Equation (5)]. From this, it is no
surprise that divisible sandpile clusters converge to continuum harmonic balls.
We would also like to point out that the divisible sandpile appears to be the only way

to find discrete harmonic balls. In fact, this property of the divisible sandpile was used to
establish logarithmic fluctuations of IDLA around its limit shape in [JLS12, JLS13, JLS14a].

7



Figure 4. A close up of the interface in Figure 1.

1.3. Open problems. We suggest several directions for further study. The most pressing
problem is to extend our convergence result to other random planar maps. This problem is
mentioned in the companion work [BRG22, Problem 1].

Problem 1. Show that the scaling limit of IDLA and the divisible sandpile on random planar
maps, other than mated-CRT maps, is also described by µ-LQG harmonic balls. For example,
on a uniform random planar map establish convergence of IDLA to a

√

8/3-LQG harmonic
ball.

Our proofs of Theorems 1.4 and 1.6 rely heavily on the convergence of random walk on
the mated-CRT map to Liouville Brownian motion. This fact has not been established for
random planar maps besides the mated-CRT map. We speculate that a solution to Problem 1
which does not use the convergence of random walk might rely on special symmetries of
random planar maps, for example, the peeling process for uniform planar maps [Ang03,
CLG17, Cur16].
The next two questions concern IDLA on the mated-CRT map. While we have estab-

lished a qualitative convergence theorem much more quantitative results are known on Zd.
Lawler [Law95] used fine estimates on the Green’s function in Zd to establish subdiffusive
fluctuations of IDLA around its limit shape. Later, Asselah-Gaudillère [AG13a, AG13b] and
independently Jerison-Levine-Sheffield [JLS12, JLS13] established logarithmic fluctuations.
We do not expect logarithmic fluctuations in our setting, mainly because the cell sizes in the
mated-CRT map have a ‘multi-fractal’ behavior. See Figure 4.

Problem 2. Provide bounds on the rate of convergence of IDLA on the mated-CRT map.

After proving logarithmic fluctuations in Zd, in a remarkable work, Jerison-Levine-Sheffield
showed that the scaling limit of the fluctuations themselves exists. Namely, fluctuations
of IDLA on Zd converge weakly to a variant of the Gaussian free field [JLS14a, JLS14b].
Darrow extended the analysis of Jerison-Levine-Sheffield on Z2 to the case of multiple sources
[Dar20b].

Problem 3. Do the fluctuations of IDLA on the mated-CRT map around its limit shape
have a scaling limit?

8



1.4. Paper and proof outline. Our proof uses three main inputs; the pairing of IDLA and
the divisible sandpile, regularity properties of the mated-CRT map, and the convergence of
random walk on the mated-CRT map to Liouville Brownian motion.

The connection between IDLA and the divisible sandpile was implicit in the first work
on IDLA by Lawler-Bramson-Griffeath [LBG92] and made explicit in the thesis of Levine
[Lev07]. In particular, following the arguments of [LBG92], a lower bound on the divisible
sandpile cluster implies the same lower bound for the IDLA cluster. The divisible sandpile,
being deterministic and enjoying a variational description, i.e., the least action principle for
its odometer (see Section 4 below for definitions), is more tractable than IDLA.

In the cases considered so far, e.g., [LP09, HS12, HSH19], convergence of the divisible
sandpile is proved by explicitly bounding its odometer via sharp estimates on stopped Green’s
functions. These sharp estimates are unavailable in our setting and hence we proceed with
a somewhat more robust method. Roughly, we use the fact that the mated-CRT map has
an elliptic Harnack inequality and random walk converges to Brownian motion to show that
the divisible sandpile odometer converges to its continuum counterpart, the odometer for
Hele-Shaw flow (the solution to the optimization problem used to construct harmonic balls).

We start by recalling in Section 2 several mated-CRT map estimates and the invariance
principle for random walk proved in [BG20, GMS19b]. In this section we also record some
basic properties of harmonic balls and Hele-Shaw flow on an LQG surface which we proved
in a companion paper [BRG22].

In Section 3, we use the estimates proved in [BG20, GMS19b] to establish a general
tightness lemma (Lemma 3.1) for bounded functions with bounded graph Laplacian on the
mated-CRT map. We then use this lemma to establish the convergence of solutions to the
discrete Dirichlet problem on the mated-CRT map to solutions of the continuum Dirichlet
problem (Lemma 3.5) and convergence of the discrete Green’s kernel to the continuum
Green’s function (Lemma 3.3).

In Section 4, we define the odometer for the divisible sandpile model on the mated-CRT
map and state some basic properties of it which are proved in the Appendix, Section A. We
then prove convergence of the divisible sandpile odometer to its continuum counterpart. Our
proof method is similar to, but easier than, that used to show convergence of the Abelian
sandpile odometer [BR21, PS13, BS91]. In Section 4 we also observe that the convergence of
the divisible sandpile odometer implies a lower bound on the divisible sandpile cluster: i.e.,
for fixed t, ¶ > 0 it holds with probability tending to 1 as ε→ 0 that

(1.7) B−
¶ (Λt) ¢ Dε(tε

−1).

In Section 5 we apply the technique of Lawler-Bramson-Griffeath [LBG92] together with
the divisible sandpile lower bound (1.7) and random walk estimates proved in [BG20] to
prove an analogous lower bound for the IDLA cluster. In fact, the lower bound holds for the
stopped IDLA cluster where random walkers which exit (a mated-CRT map approximation
of) Λt are stopped. By the Abelian property of IDLA, Lemma 6.3, the IDLA cluster can be
built by first generating the stopped IDLA cluster and then restarting the stopped random
walkers. Thus, an upper bound of the form

(1.8) Aε(+tε−1,) ¢ B+
¶ (Λt)

will follow if one can show that the restarted random walks cannot travel further than a
Euclidean distance of ¶ away from Λt.

9



In fact, if the limit shape has the correct size, i.e., has volume equal to the total number
of walkers, and has a measure zero boundary, then by the lower bound and conservation
of mass, the number of restarted walkers can be made arbitrarily small. These two limit
shape properties are true for an LQG harmonic ball, as proved in the companion paper
[BRG22]. Therefore, the proof of the upper bound then reduces to controlling the behavior
of order ¶ε−1 restarted random walks near the boundary of Λt. We do this by combining the
arguments of [DCLYY13] together with those from LQG theory.
Specifically, it was shown by Duminil-Copin-Lucas-Yadin-Yehudayoff [DCLYY13] that if

a graph is regular enough, namely is volume doubling, and has a metric which can be
controlled by the Euclidean metric, then a small number of walkers cannot spread very
far. The mated-CRT map does not enjoy these properties, even approximately, and thus
we cannot apply the Duminil-Copin-Lucas-Yadin-Yehudayoff argument directly. Instead, we
use methods from LQG theory to provide weak harmonic measure estimates for random walk
on the mated-CRT map. A modification of the iterative argument of Duminil-Copin-Lucas-
Yadin-Yehudayoff then yields the upper bound. See the beginning of Section 6 for a detailed
outline of the argument.

In Section 7 we use the harmonic measure estimates proved in Section 6 to prove an upper
bound on the divisible sandpile cluster. The argument here is a simplified, discrete version
of the upper bound for LQG harmonic balls from [BRG22, Section 6].

All of the aforementioned results were proved conditional on t being small. In Section 8
we combine the upper and lower bounds together with a scaling argument to remove this
constraint on t and complete the proof.

1.5. Notation and conventions.

• Inequalities/equalities between functions/scalars are interpreted pointwise.
• For a set D ¢ C, ∂D denotes its topological boundary, cl(D) = D ∪ ∂D its closure,
and int(D) its interior.

• For a set A ¢ VGε, ∂A is the set of vertices in VGε \ A which are joined by an edge
to a vertex in A and cl(A) = A ∪ ∂A is its closure. The set int(A) are the vertices
in A which do not share an edge with a vertex in Ac.

• For two sets X, Y ¢ C, we write X ò Y if cl(X) ¢ Y .
• Br(x) denotes the open ball of Euclidean radius r > 0 centered at x ∈ C, when x
is omitted, the ball is centered at 0. When D ¢ C, we write Br(D) = {x ∈ C :
dist(x,D) < r}.

• For 0 < r1 < r2, denote an open annulus centered at z ∈ C by

(1.9) Ar1,r2(z) = Br2(z) \ cl(Br1(z))

and Ar1,r2 := Ar1,r2(0).
• Let {Er}z>0 be a one-parameter family of events. We say that Er occurs with
polynomially high probability as r → 0 if there exists p > 0 such that P[Er] g
1−O(rp).

• For two sets X, Y ¢ C, we define dist(X, Y ) = infx∈X,y∈Y dist(x, y) where dist

denotes the Euclidean distance between two points.
• For a set D ¢ C, C(D) denotes the set of continuous functions on D.
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2. Preliminaries

In this section we recall several preliminary results on the Gaussian free field, Liouville
quantum gravity, space-filling SLE, harmonic balls, random walk on the mated-CRT map,
and Liouville Brownian motion. Of note, we record the convergence of random walk on
the mated-CRT map to Liouville Brownian motion [BG20] and the regularity properties of
µ-LQG harmonic balls established in [BRG22].

2.1. Gaussian free field. In this paper, we work with a particular kind of Gaussian free
field h which arises naturally from the scaling limit of random planar maps. This field
corresponds to an LQG surface called a µ-quantum cone. For our purposes we just define
the field and give its scaling properties — a complete definition of the surface is given in
[DMS21].

We start by defining the whole-plane Gaussian free field (GFF) hC which is the centered
Gaussian random generalized function on C with covariances

(2.1) Cov(hC(x), hC(y)) := log
max(|x|, 1)max(|y|, 1)

|x− y| , ∀x, y ∈ C.

The GFF hC is not defined pointwise as the covariance kernel in (2.1) diverges to ∞ as
x → y. However, for z ∈ C and r > 0, one can define the average of hC over the circle of
radius r centered at z, which we denote by hCr (z) [DS11, Section 3.1]. The whole plane GFF
is sometimes defined modulo additive constant. Our choice of covariance in (2.1) corresponds
to fixing this additive constant so that hC1 (0) = 0 (see, e.g., [Var17, Section 2.1.1]).
The circle average of hC, t → hCe−t(0) is a Brownian motion, [DS11, Section 3.1]. The

field corresponding to the µ-quantum cone is constructed by enforcing its circle-average to
correspond to a particular conditioned Brownian motion. Fix µ ∈ (0, 2) and let

(2.2) Q :=
2

µ
+
µ

2
.

Definition 2.1 (Circle average embedding of the µ-quantum cone). The circle average em-
bedding of the µ-quantum cone is the distribution h defined as follows. Let B be a standard
linear Brownian motion and let B̂ be an independent standard linear Brownian motion con-
ditioned so that B̂t + (Q− µ)t > 0 for all t > 0. Let

(2.3) At :=

{

Bt + µt, t g 0

B̂−t + µt, t < 0.

The distribution h is defined so that t→ he−t(0) has the same law as the process A and h−h|·|
is independent from h|·| and has the same law as the analogous process for the whole-plane
GFF, hC.

We note that the field h in Definition 2.1 has the property that sup{r > 0 : hr(0)+Q log r =
0} = 1. Furthermore, it is immediate from Definition 2.1 that h restricted to the unit disk
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agrees in law with the corresponding restriction of a whole-plane GFF plus −µ log | · |,
normalized so that its circle average over the disk is zero:

(2.4) h|B1

d
= (hC − µ log | · |)|B1 .

The law of the whole-plane GFF, viewed modulo additive constant, is invariant under
complex affine transformations of C. This implies the following scaling property for hC,

(2.5) hC
d
= hC(x ·+y)− hC|x|(y), ∀x ∈ C \ {0}, ∀y ∈ C.

The distribution h has a similar scale invariance. For b > 0, let

(2.6) Rb := sup{r > 0 : hr(0) +Q log r =
1

µ
log b}.

Then, by [DMS21, Proposition 4.13(i)],

(2.7) h(Rb·) +Q logRb −
1

µ
log b

d
= h.

2.2. Liouville quantum gravity. Liouville quantum gravity (LQG) is a one-parameter
family of random fractal surfaces which were introduced by Polyakov in the 1980s in the
context of bosonic string theory [Pol81]. We give some basic properties of LQG and refer
the interested reader to the introductory texts [BP21, She22, Gwy20].

Let µh denote the µ-LQG area (Liouville) measure associated to h, the µ-quantum cone
defined in (2.1). One of the several ways of defining µh is as the a.s. weak limit

(2.8) µh = lim
ϵ→0

ϵµ
2/2eµhϵ(z) dz

where dz denotes Lebesgue measure and hϵ(z) is the circle average [DS11, SW16]. In fact,

the measure µh̃ can be constructed for any random generalized function h̃ of the form h+ f
where f is a possibly random continuous function and h is the whole-plane GFF, defined in
(2.5). In particular, this includes the µ-quantum cone from Definition 2.1. For later use, we
record some basic properties of the LQG measure.

Fact 2.2 (LQG measure). The LQG area measure µh satisfies the following properties.

I. Radon measure. A.s., µh is a non-atomic Radon measure.
II. Locality. For every deterministic open set U ¢ C, µh(U) is given by a measurable

function of h|U .
III. Weyl scaling. A.s., eµf · µh = µh+f for every continuous function f : C → R.

IV. Conformal covariance. A.s., the following is true. Let U, Ũ ¢ C be open and let
ϕ be a conformal map from Ũ to U . Then, with Q as in (2.2),

(2.9) µh◦ϕ+Q log |ϕ′|(A) = µh(ϕ(A)) for all Borel measurable A ¢ Ũ .

The first three properties in Fact 2.2 are immediate from the definition (2.8). The con-
formal covariance property was proven to hold a.s. for a fixed conformal map in [DS11,
Proposition 2.1] and extended to all conformal maps simultaneously in [SW16].

12



2.3. Harmonic balls. A harmonic ball is a domain which satisfies the mean-value property
for harmonic functions with respect to the LQG measure — Definition 1.3. These balls are
constructed in a companion work via the following optimization problem. For each t > 0
and ball Br = Br(0), let

(2.10) wBr
t = inf{w ∈ C(cl(Br)) : ∆w f µh in Br and w g −tGBr(0, ·) in cl(Br)},

where C(cl(Br)) denotes the set of continuous functions on the closed ball, ∆w is interpreted
in the distributional sense, GBr is the Green’s function for standard Brownian motion on
Br with zero boundary conditions, and the infimum is pointwise. The definition in (2.10) is
the obstacle problem formulation of Hele-Shaw flow [Sak85] and may be thought of as the
continuum analogue of the odometer for the divisible sandpile, defined below in Section 4.

Theorem 2.3 (Combination of Theorems 1.1 and 5.5 and Lemma 3.2 in [BRG22]). On an
event of probability one, there exists a unique family of harmonic balls {Λt}t>0 satisfying the
following properties:

(a) For each t > 0, µh(Λt) = t, µh(∂Λt) = 0, and Λt is equal to the interior of its closure.
(b) The domains Λt are bounded, connected, open, contain the origin, increase continu-

ously in t (in the Hausdorff topology), and satisfy ∩t>0Λt = {0}.
(c) If, for some r > 0, Λt ¢ Br, then, for all Ä > r,

Λt = int
(

cl
(

{x ∈ BÄ : w
BÄ

t (x) > −tGBÄ(0, x)}
))

.

Moreover, w
BÄ

t is continuous and satisfies
{

∆w
BÄ

t = µh|Λt on BÄ

w
BÄ

t = 0 on ∂BÄ.

Strictly speaking, [BRG22] considers the case where h is not the quantum cone but rather
a whole-plane GFF plus a log-singularity. Transferring the proof to the quantum cone is a
standard absolute continuity argument which we now provide.

Lemma 2.4. On an event of probability one, there exists a unique family of harmonic balls
{Λt}0<t<T which satisfies the properties of Theorem 2.3 (with t restricted to be in (0, T )),
where

T = sup{t > 0 : Λt ¢ B1/2}.
Proof. By (2.4), the restrictions to the unit disk of the quantum cone field h and the
whole-plane GFF plus −µ log | · | agree in law. Since harmonic balls depend locally on
the field [BRG22, Proposition 1.3], this equality in law together with [BRG22, Theorems
1.1 and 5.5 and Lemma 3.2] directly implies the existence of a family of harmonic balls
{Λt}0<t<T satisfying the properties in Theorem 2.3. Uniqueness of such a family is guaran-
teed by [BRG22, Proposition 5.6] (that proposition is stated for a family of harmonic balls
defined for all times, but the proof still works if the harmonic balls are only defined up to
some fixed time). □

We will now extend the above construction to all time using the scale invariance property
of the µ-quantum cone. The following is the quantum cone analog of [BRG22, Lemma 5.7]
(which gives a similar statement for the LQG harmonic balls associated with the whole-plane
GFF).
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Lemma 2.5. For b > 0, define the random radius Rb > 0 as in (2.6). A.s., there exists a
unique family of harmonic balls {Λt}0<t<bT b such that {R−1

b Λbt}0<t<T b has the same law as
{Λt}0<t<T , where T is as in Lemma 2.4, and

T b = sup{t > 0 : R−1
b Λbt ¢ B1/2}.

In fact, we have the equality of joint laws

(h, {Λt}0<t<T ) d
=

(

h(Rb·) +Q logRb −
1

µ
log b, {R−1

b Λbt}0<t<T b

)

.

Proof. Fix b > 0 and let

hb := h(Rb·) +Q logRb −
1

µ
log b,

so that, as in (2.7), hb
d
= h. By Lemma 2.4, a.s. there exists a unique family of harmonic

balls {Λbt}0<t<T b which satisfies the properties of Theorem 2.3 for the measure µhb (with t
restricted to be in (0, T b)), where

T b = sup{t > 0 : Λbt ¢ B1/2}.

Define

Λbt := RbΛ
b
t , ∀0 < t < T b

and note that by the properties of Λbt , the LQG coordinate change formula, and Weyl scaling
(Fact 2.2), a.s.,

t = µhb(Λ
b
t) = b−1µh(Λbt), ∀0 < t < T b.

For similar reasons, the domains {Λt}0<t<bT b are a.s. harmonic balls and satisfy parts (a)
and (b) of Theorem 2.3 for the measure µh (with t constrained to be less than bT b). These
properties are enough to apply [BRG22, Proposition 5.6] (which works if the harmonic balls
are only defined up to some fixed time) and conclude that {Λt}0<t<bT b is the unique such
family. As hb has the same law as h, this shows the equality of joint laws. □

Proof of Theorem 2.3. By Lemma 2.5, a.s. for every integer b g 0, there exists a unique
family of harmonic balls {Λt}0<t<bT b which satisfies the conditions of the theorem statement

up to time bT b, where T b is as in Lemma 2.5. Since T b
d
= T for each b > 0, where T is as in

Lemma 2.4, and T is a strictly positive random variable, we deduce that limb→∞ bT b = ∞
in probability. This complete the proof. □

By applying the proof of Lemma 2.5 to the infinite family of harmonic balls given by
Theorem 2.3, we have the following.

Lemma 2.6. For each b > 0, we have the equality of the joint laws

(h, {Λt}t>0)
d
=

(

h(Rb·) +Q logRb −
1

µ
log b, {R−1

b Λbt}t>0

)

.

where the random radius Rb > 0 is as in (2.6).
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2.4. Whole plane space-filling SLE. The Schramm-Loewner evolution (SLE») for » > 0
was introduced by Schramm in [RS05] as the only conformally invariant family of random
curves which satisfy the domain Markov property. There are three phases of SLE»: the curves
are simple when » ∈ (0, 4], have self-intersections but are not space-filling for » ∈ (4, 8), and
are space-filling when » g 8.
In the embedding of the mated-CRT map, we work with the whole plane space-filling SLE

¸, a variant of SLE introduced in [MS17, Sections 1.2.3 and 4.3]. This is a random space-
filling curve ¸ in C from ∞ to ∞ which fills all of C and does not intersect the interior of
its past.

For context, we informally describe how one constructs space-filling SLE. When » g 8,
whole plane space-filling SLE is simply ordinary SLE. In this case the cells ¸([x− ε, x]) are
topological rectangles and their boundaries are the union of four SLE» curves for » = 16/».
When » ∈ (4, 8), ¸ is built by taking ordinary SLE» and ‘filling in’ bubbles which are
disconnected from infinity. This results in a somewhat complicated geometry. In particular,
for » ∈ (4, 8) it is possible for the intersection of two cells to be an uncountable, totally
disconnected Cantor-like set. Pairs of cells which intersect in this manner do not correspond
to edges of the mated-CRT map in Definition 1.2.

In this paper, we mainly just use the fact that the law of ¸ is scale-invariant:

(2.11) r¸
d
= ¸, ∀r > 0, when viewed as curves modulo time parameterization.

For a detailed treatment of SLE see [Wer04, Law05] and for a more in-depth exposition of
whole plane space-filling SLE see [GHS19, Section 3.6].

2.5. Mated-CRT map. We defined most of what we need concerning the mated-CRT map
in Section 1.1.3. We provide some additional notation which we will use in the sequel.
We fix the convention that when referring to points in C, we use the letters x, y, z; while

vertices in the mated-CRT map correspond to letters a, b. Sets in C are X, Y,D, while sets
of vertices in the mated-CRT map are A,B.

For ε > 0 and µ ∈ (0, 2) let Gε be the mated-CRT map with vertex set VGε embedded in
the plane via a whole plane space-filling SLE curve ¸ with » = 16/µ2 as in Definitions 1.1
and 1.2.

It is important to note that while a.s. each vertex in the mated-CRT map has a finite
number of neighbors, the number of neighbors may be arbitrarily large. Write degε(a) for
the degree of a ∈ VGε. We will need a way to pass between vertices in the map and points
in C: for x ∈ C, let

(2.12) aεx := (smallest a ∈ εZ such that x ∈ Hε
a).

For a set D ¢ C, we define

(2.13) Gε(D) := (subgraph of Gε induced by {a ∈ εZ : Hε
a ∩D ̸= ∅})

and write VGε(D) for the vertices in Gε(D). Several times throughout the paper we will
work with the sets VGε(D) \ VGε(∂D) rather than VGε(D) to account for the coarseness of
the cells in the mated-CRT map. Indeed, even if D is a smooth, bounded open set, typically
VGε(D) overlaps with VGε(∂D) — see Figure 5.

15



x

Hε
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x

∂D

Gε(D)

Figure 5. A set D ¢ C and the set of mated-CRT map cells corresponding
to the vertices in Gε(D), as in (2.13). The boundary of the domain ∂D is
drawn in red and the cells of Gε(D) are filled in pink. A point x ∈ C and
the cell containing it, Hε

aεx
, is drawn in light blue. A similar figure appeared

in [GMS19a, Figure 5].

2.6. Cell size and volume estimates. In this section, we recall some estimates proved in
the appendix of [BG20]. The following estimate gives worst-case upper and lower bounds
for the LQG mass of Euclidean balls.

Lemma 2.7 (Lemma A.1 in [BG20]). For each ´+ ∈ (0, (2− µ)2/2) and ´− > (2 + µ)2/2 it
holds with polynomially high probability as ¶ → 0 that

(2.14) ¶´
− f µh(B¶(z)) f ¶´

+

, ∀z ∈ B1−¶.

For convenience, we fix ´± in a fashion depending only on µ so that when we refer to
Lemma 2.7 we may just refer to a single choice of ´±.

The next lemma gives similar worst-case upper and lower bounds for the size of the cells
in the mated-CRT map.

Lemma 2.8 (Lemma 2.4 in [BG20]). Fix a small parameter · ∈ (0, 1) and Ä ∈ (0, 1). With
polynomially high probability as ε→ 0, the Euclidean diameter of each mated-CRT map cell
Hε
a which intersects BÄ satisfies

(2.15) ε
2

(2−µ)2
+· f diam(Hε

a) f ε
2

(2+µ)2
−·
.

The following lemma is a quantitative version of the important fact that the counting
measure on vertices in the mated-CRT map converges weakly to the LQG area measure.

Lemma 2.9 (Lemma A.4 in [BG20]). Fix Ä ∈ (0, 1). There exists ³ = ³(µ) > 0 and
´ = ´(µ) > 0 such that with polynomially high probability as ε → 0, the following is true.
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Let D ¢ BÄ and let f : Bε³(D) → [0,∞) be a non-negative function which is ε−´-Lipschitz
continuous and satisfies ∥f∥∞ f ε−´. For a ∈ VGε(D), let wεa be an arbitrary point of
Hε
a ∩ cl(D). If we let µh be the µ-LQG area measure induced by h, then

(2.16) ε−1

∫

D

f(z)dµh(z)− ε−1+³ f
∑

a∈VGε(D)

f(wεa) f ε−1

∫

Bε³ (D)

f(z)dµh(z) + ε−1+³

simultaneously for every choice of D and f as above.

An analogous result to the above holds when cells are weighted by their degrees, in which
case, since the mated-CRT map is a planar triangulation, there is an extra factor of 6 in the
limit.

Lemma 2.10 (Corollary A.6 in [BG20]). For ε > 0, let µεh be the measure whose restriction
to each cell Hε

a for a ∈ εZ is equal to degε(a)µh|Hε
a
. Then as ε → 0, we have µεh → 6µh in

probability w.r.t. the vague topology.

2.7. Liouville Brownian motion and random walk. Liouville Brownian motion (LBM)
is the natural diffusion associated with µ-LQG and was constructed in [Ber15, GRV16].
Roughly, LBM is obtained from ordinary Brownian motion by changing time so that µh is
invariant. That is, LBM started at z ∈ C is defined as Bz

ϕ−1(t), where B
z
t is Brownian motion

started at z and

ϕ(t) = lim
ε→0

∫ t

0

εµ
2/2eµhε(B

z
s )ds,

where hε is the average of h over the circle of radius ε.
In this paper we consider LBM rescaled by its (annealed) median exit time from a ball,

(2.17) Xz
t = Bz

ϕ−1(tm0)
, ∀z ∈ C,

where

(2.18) m0 = median(inf{t > 0 : |Bz
ϕ−1(t)| g 1/2}).

For z ∈ C and ε > 0, let Xz,ε : N → VGε be a simple random walk on Gε started from aεz
(defined in (2.12)). On occasion we will also write, for a ∈ VGε, the walk started from a as
Xa,ε.

LBM was shown in [BG20] to describe the scaling limit of random walk on the mated-CRT
map. To state this precisely, we introduce the scaling factor

(2.19) mε := (median exit time of ¸(X0,ε) from B1/2),

where B1/2 is the Euclidean ball of radius 1/2 centered at 0. By (1.8) in [BG20],

(2.20) C−1ε−1 f mε f Cε−1, for all sufficiently small ε > 0,

where C > 1 is a deterministic constant depending only on µ. We also extend the domain
of definition of the embedded walk N ∋ j → ¸(Xz,ε

j ) from N to [0,∞) by piecewise linear
interpolation.

Theorem 2.11 (Theorem 1.2 [BG20]). For each compact subset K ¢ C and each z ∈ K, the
conditional law of the embedded linearly interpolated walk (¸(Xz,ε

mεt))tg0 given (h, ¸) converges
in probability to the law of rescaled µ-LBM, defined by (2.17), started from z associated
with h with respect to the Prokhorov topology induced by the local uniform metric on curves
[0,∞) → C.
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2.8. Discrete potential theory. Recall the notation for simple random walk from Section
2.7. We denote the Green’s function for simple random walk killed upon exiting a set D ¢ C

by

(2.21)
GrεD(a, b)

:= E[number of times that Xa,ε hits b before exiting VGε(D) \ VGε(∂D)|h, ¸]
and its normalized version, the Green’s kernel by

(2.22) grεD(a, b) :=
GrεD(a, b)

degε(b)
.

By defining
GrεD(a, ·) = GrεD(·, a) = 0, ∀a ̸∈ VGε(D) \ VGε(∂D)

we extend the domain of definition of both the Green’s function and kernel to all of VGε.
For a ∈ VGε, the exit time of simple random walk on the mated-CRT map from a domain

D ¢ C is defined by

(2.23) Äa,εD := (first exit time of Xa,ε from VGε(D) \ VGε(∂D))

and its mean is

(2.24) Qε
D(a) := E[Äa,εD |h, ¸] =

∑

b∈VGε(D)\VGε(∂D)

GrεD(a, b).

We will also need to consider the normalized expected exit time, for a ∈ VGε

(2.25) qεD(a) =
∑

b∈VGε(D)\VGε(∂D)

grεD(a, b).

Let ∆ε denote the degree normalized graph Laplacian on Gε,

(2.26)
∆εu(a) =

1

degε(a)

∑

b∼a
(u(b)− u(a)) ∀a ∈ VGε,

for functions u : VGε → R,

where the sum b ∼ a is over the sites b ∈ VGε which are joined by an edge to a. As ∆ε is
the generator of simple random walk on Gε, for D ¢ C, by, e.g., [LL10, Proposition 6.2.3],

(2.27)

{

∆εQε
D(·) = −1 in VGε(D) \ VGε(∂D)

Qε
D(·) = 0 otherwise

(2.28)

{

∆εqεD(·) = −1/ degε(·) in VGε(D) \ VGε(∂D)

qεD(·) = 0 otherwise

and for each a ∈ VGε(D) \ VGε(∂D),

(2.29)

{

∆εGrεD(·, a) = −1{· = a} in VGε(D) \ VGε(∂D)

GrεD(·, a) = 0 otherwise

and

(2.30)

{

∆ε grεD(a, ·) = − 1{·=a}
degε(a)

in VGε(D) \ VGε(∂D)

grεD(a, ·) = 0 otherwise.
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Remark 2.12. For a subset A of VGε, we overload notation and define GrεA, gr
ε
A,Q

ε
D, and

qεA as above with the instances of VGε(D) \ VGε(∂D) replaced by A. Each of (2.27), (2.28),
(2.29), and (2.30) hold with this same substitution.

We also write ∆ for the continuum Laplacian on C. The operator ∆ε shares several basic
properties with its continuum counterpart ∆, e.g., linearity and monotonicity. Of importance
to us is the following maximum principle for ∆ε. Recall that a function u : VGε → R is
subharmonic (resp. superharmonic) on A ¢ VGε if ∆εu g 0 (resp. ∆εu f 0) on A and is
harmonic if it is both subharmonic and superharmonic. When we need to emphasize the
distinction between C and VGε, we qualify functions as ∆-harmonic or ∆ε-harmonic.

Lemma 2.13. For every connected subset A ¢ VGε, if u : cl(A) → R is subharmonic on A,
then

(2.31) max
a∈A

u(a) f max
b∈∂A

u(b).

Proof. This is standard. Consider a point a ∈ A and apply the definition of subharmonicity
to find a neighbor cl(A) ∋ b ∼ a for which u(b) g u(a). □

In this article, we will use discrete Green’s function and exit times estimates established in
[BG20]. Fix a Ä ∈ (0, 1) — several of our estimates will be stated only on BÄ. The reason for
working on BÄ is that h|B1 agrees in law with the corresponding restriction of a whole-plane
GFF plus µ log(1/| · |), see (2.4). Consequently the constants in several of these estimates
will depend on Ä. First, we recall an upper bound on the Green’s kernel.

Lemma 2.14 (Lemma 5.4 in [BG20]). There exists ´ = ´(µ) > 0 and C = C(Ä, µ) > 0 such
that with polynomially high probability as ε→ 0,

grεBÄ
(a, b) f C log

(

1

|¸(a)− ¸(b)|

)

+ C

simultaneously for all a, b ∈ VGε(BÄ) with |¸(a)− ¸(b)| g ε´.

We will also need an upper bound on the Green’s function. Recall that the Green’s
function is the Green’s kernel multiplied by the degree. Since the vertex degrees on the
mated-CRT map are unbounded, we cannot directly apply the previous lemma. Nevertheless,
the following crude upper bound will suffice.

Lemma 2.15 (Lemma 5.6 in [BG20]). For each · ∈ (0, 1), it holds with polynomially high
probability as ε→ 0 that

sup
a,b∈VGε(BÄ)

GrεBÄ
(a, b) f ε−· .

We also need a lower bound on both the Green’s kernel and function.

Lemma 2.16 (Lemma 4.4 in [BG20]). There exists É = É(µ) > 0 and C = C(Ä, µ) > 0 such
that with polynomially high probability as ε→ 0 the following holds. For each a ∈ VGε(BÄ−εÉ)
and each r ∈ [εÉ,dist(¸(a), ∂BÄ)],

GrεBr(¸(a))(a, b) g grεBr(¸(a))(a, b) g C−1 log

(

r

|¸(a)− ¸(b)| ' ε
−1

)

− 1,

∀b ∈ VGε(Br/3(¸(a))).
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We conclude this subsection by formulating an upper bound on the expected exit time
function in terms of the coarseness of the ε-mated CRT map and a certain continuum quan-
tity. To that end, we consider the following random variable (from (5.1) in [BG20])

(2.32) M(D) := sup
z∈D

∫

D

(

log

(

1

|z − w|

)

+ 1

)

dµh(w), for D ¢ C

and recall the following bounds.

Lemma 2.17. Almost surely,

sup
D¦BÄ

M(D) <∞

and with polynomially high probability as ¶ → 0

sup
y∈BÄ

M(B¶(y)) f ¶q,

for some deterministic q = q(µ) > 0.

Proof. Step 1: M(D) <∞.
As µh is a locally finite measure, it suffices to bound the log integrand in (2.32). By [BG20,
Lemma A.3], there are constants c0, c1 depending only on Ä and µ such that for each A > 1,
it holds with probability at least 1− c0e

−c1A that

(2.33) sup
z∈D

∫

D

log

(

1

|z − w|

)

dµh(w) f A(µh(D) + e−c1A).

By the Borel-Cantelli lemma, this shows supD¦BÄ
M(D) <∞ almost surely.

Step 2: supy∈BÄ−¶
M(B¶(y)) f ¶q.

This follows by a partition of the integral into dyadic annuli as in the proof of [BG20, Lemma
A.3]. An explicit proof is given in the proof of Corollary 5.2 in [BG20] – this bound is exactly
(5.3) there. □

By [BG20], we can bound the expected exit time in terms of this random variable.

Lemma 2.18 (Proposition 5.1 in [BG20]). There exists deterministic ³ = ³(µ) > 0 and
C = C(Ä, µ) > 0 such that with polynomially high probability as ε→ 0 it holds simultaneously
for every Borel set D ¢ BÄ with µh(D) g ε³ that for all a ∈ VGε(D)

E[(Äa,εD )N |h, ¸] f N !CNε−N
(

sup
z∈D

∫

Bε³ (D)

(

log

(

1

|z − w|

)

+ 1

)

dµh(w)

)N

∀N ∈ N,

in particular, for all D ¢ BÄ

qεD(a) f Qε
D(a) f Cε−1M(Bε³(D)), ∀a ∈ VGε(D).

By combining the previous two lemmas, we have the following bound on the expected exit
time.

Lemma 2.19. There exists a deterministic ³ = ³(µ) > 0 such that with polynomially high
probability as ε→ 0 it holds simultaneously for every Borel set D ¢ BÄ with µh(D) g ε³

qεD f Qε
D <∞.
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Moreover, for some deterministic q = q(µ) > 0, it holds with probability tending to 1 as
ε→ 0 and then ¶ → 0 that

qεB¶(y)
f Qε

B¶(y)
f ε−1 × ¶q,

for every y ∈ C such that B¶(y) ¢ BÄ.

Proof. Apply Lemma 2.17 with some fixed Ä′ ∈ (Ä, 1) to Lemma 2.18 and absorb the constants
into the factor of ¶q. □

3. Convergence of the Dirichlet problem

In this section we use the estimates recalled in the previous section to prove uniform
convergence of both the Green’s kernel and the solution to the Dirichlet problem to their
continuum counterparts. Throughout this section, we fix Ä ∈ (0, 1) such that BÄ ò B1.

3.1. Scaling. Recall the definition of mε and recall from (2.20) that mε ≍ ε−1. For a set
D ¢ BÄ, we rescale a function, uε : VGε(D) → R by defining uε : D → R in a piecewise
constant fashion

(3.1) uε(x) := mε
−1uε(aεx), ∀x ∈ D,

where aεx is as in (2.12). That is, uε is constant within the cells of the mated-CRT map.
Throughout this section, we work with functions which are of order ε−1. We do this

because this is the order of the expected exit time function, Lemma 2.18, and the divisible
sandpile odometer in Section 4.

3.2. Tightness. In this subsection we prove a general tightness result concerning bounded
functions with bounded Laplacian.

Lemma 3.1. For every connected set D ¢ BÄ and Ã(h, ¸)-measurable sequence E ∋ ε → 0,
if a sequence of functions uε : VGε(D) → R indexed by ε ∈ E satisfies

|∆εuε| f C on VGε(D) \ VGε(∂D)

uε f Cε−1 on VGε(D)

uniformly over ε ∈ E for some Ã(h, ¸)-measurable C > 0, then the following is true. Almost
surely, there exists a Ã(h, ¸)-measurable subsequence E0 ¢ E and a function u ∈ C(D) such
that for every compact subset O ò D, we have that uε → u uniformly in O as E0 ∋ ε→ 0.

Moreover, if D is simply connected, uε is discrete harmonic in VGε(D) \ VGε(∂D), and if
uε has Hölder continuous boundary data, in the sense that there exists Ç ∈ (0, 1] and C ′ > 0
so that

(3.2) |uε(a)− uε(b)| f C ′(ε ( |¸(a)− ¸(b)|)Ç, ∀a, b ∈ VGε(∂D), ∀ε ∈ (0, 1)

then the convergence occurs uniformly in cl(D).

Lemma 3.1 will follow from the Arzéla-Ascoli theorem and the following Hölder continuity
of ∆ε-harmonic functions on the mated-CRT map.
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Lemma 3.2 (Theorem 3.9 in [GMS19b]). There exists À = À(Ä, µ) ∈ (0, 1) and A = A(Ä, µ) >
0 such that the following holds with polynomially high probability as ε→ 0. Let D ¢ BÄ be a
connected domain and let f ε : VGε(D) → R be ∆ε-harmonic on VGε(D) \ VGε(∂D). Then,

(3.3) |f ε(a)− f ε(b)| f A

(

sup
a′∈VGε(D)

|f ε(a′)|
)

(

ε ( |¸(a)− ¸(b)|
dist(¸(a), ∂D)

)À

, ∀a, b ∈ VGε(D).

Moreover, if D is simply connected and if f ε has Hölder continuous boundary data in the
sense of (3.2), then there exists a C > 0 such that
(3.4)

|f ε(a)− f ε(b)| f max

{

C,A

(

sup
a′∈VGε(D)

|f ε(a′)|
)}

(ε ( |¸(a)− ¸(b)|)À, ∀a, b ∈ VGε(D).

Proof of Lemma 3.1. The conclusions of Lemmas 2.8, 2.19, and 3.2 hold with probability
approaching one as E ∋ ε → 0. In particular, by the Borel-Cantelli lemma, almost surely,
there exists a deterministic subsequence E1 ¢ E such that the conclusions of all of these
lemmas hold for all sufficiently small ε ∈ E1. We henceforth restrict to such an event.

We first prove interior convergence: let O ò D ¢ BÄ be given. By the Arzéla-Ascoli
theorem, and the boundedness assumption on uε, it suffices to prove the following estimate:
almost surely, for each small k > 0, there exists possibly random choices of ¶ = ¶(k) > 0 and
ε1 = ε1(k, ¶) ∈ E1 so that for all ε ∈ (0, ε1) ∩ E1,
(3.5) |x− y| f ¶ =⇒ |uε(x)− uε(y)| f k, ∀x, y ∈ O.

We now prove (3.5). Let k > 0 be given, fix ¶ > 0 to be determined below, in a manner
depending on k. By Lemma 2.8,

(3.6) sup
a∈VGε(BÄ)

diam(Hε
a) f ¶2, ∀ε ∈ E1 ∩ (0, ε1)

where ε1 depends on ¶ through Lemma 2.8.
As O ò D, there exists ¶1 > 0 so that O+B¶1 ò D. Suppose ¶ ∈ (0,min(¶21, ¶1)/100) and

let x ∈ O be given. Let ¶ = ¶1/2+ ¶ and f ε : VGε(cl(B¶(x))) → R be the harmonic extension
of uε,

{

∆εf ε = 0 on VGε(B¶(x)) \ VGε(∂B¶(x))

f ε = uε on VGε(∂B¶(x)).

By the maximum principle (Lemma 2.13) and our uniform boundedness assumption on uε,

(3.7) sup
a′∈VGε(cl(B¶(x)))

|f ε(a′)| f sup
a′∈VGε(cl(B¶(x)))

|uε(a′)| f Cε−1, ∀ε ∈ (0, ε1) ∩ E .

By the assumption |∆εuε| f C and (2.27), the functions (uε − f ε)±C ×Qε
B¶(x)

are super

(resp. sub) harmonic on VGε(B¶(x))\VGε(∂B¶(x)) and identically equal to 0 on VGε(∂B¶(x))
for each ε. Therefore, by the maximum principle,

|uε − f ε| f C ×Qε
B¶(x)

on VGε(cl(B¶(x)))

for all ε ∈ (0, ε1) ∩ E1. Thus, we have, for such ε, by the triangle inequality,

(3.8) sup
a,b∈VGε(B¶(x))

|uε(a)− uε(b)| f sup
a,b∈VGε(B¶(x))

|f ε(a)− f ε(b)|+2C × sup
a∈VGε(B¶(x))

Qε
B¶(x)

(a).
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By Lemma 2.19, we may take ε1 smaller, depending only on ¶, so that

(3.9) 2C × sup
a∈VGε(B¶(x))

Qε
B¶(x)

(a) f ε−1¶q, ∀ε ∈ (0, ε1) ∩ E1

for a deterministic q = q(µ) > 0.
It remains to bound the first term in (3.8): with A = A(Ä, µ) > 0 and À ∈ (0, 1) as in

Lemma 3.2,

sup
a,b∈VGε(B¶(x))

|f ε(a)− f ε(b)|

f A

(

sup
a′∈VGε(B¶(x))

|f ε(a′)|
)

sup
a,b∈VGε(B¶(x))

(

ε ( |¸(a)− ¸(b)|
dist(¸(a), ∂B¶(x))

)À

(Lemma 3.2)

f ACε−1 sup
a,b∈VGε(B¶(x))

(

ε ( |¸(a)− ¸(b)|
dist(¸(a), ∂B¶(x))

)À

(by (3.7))

f ACε−1

(

¶ + ¶2

¶1/2 − ¶2

)À

(by (3.6) and since ¶ = ¶1/2 + ¶)

f ε−1k/2 (for small ¶ = ¶(k, À)),(3.10)

for all ε ∈ (0, ε1) ∩ E1.
By plugging (3.9) and (3.10) into (3.8), we get that for sufficiently small ¶ = ¶(k, À),

sup
y∈VGε(B¶(x))

|uε(y)− uε(x)| f ε−1k, ∀ε ∈ (0, ε1) ∩ E1.

By combining this inequality with (3.6) and the definition (3.1) of uε, we have (3.5).
We now assume the conditions of the moreover clause. Since we have assumed uε is

harmonic, we can apply (3.4) of Lemma 3.2 to get the analogue of (3.5) up to the boundary:
for each k > 0, there exists ¶ = ¶(k, C ′, Ç) > 0 such that for each small enough ε ∈ E1,
(3.11) |x− y| f ¶ =⇒ |uε(x)− uε(y)| f k, ∀x, y ∈ VGε(D).

And so, we may conclude using the Arzéla-Ascoli theorem. □

3.3. Uniform convergence of the Green’s kernel. For z ∈ C, let

Xz,ε : N → VGε

be a simple random walk on Gε started from the vertex aεz ∈ VGε, defined in (2.12), stopped
upon exiting VGε(BÄ) \ VGε(∂BÄ). Let Xz be LBM started at z stopped upon exiting BÄ

and let
X̂z,ε : [0,∞) → C

be the process t→ ¸(Xz,ε
mεt) extended frommε

−1N to [0,∞) by piece-wise linear interpolation.
The goal of this section is to prove the following.

Lemma 3.3. Fix a deterministic choice of r > 0 and z ∈ C such that Br(z) ¢ BÄ and
y ∈ Br(z). Let gε(·) := ε−1 grεBr(z)

(aεy, ·) and define gε as in (3.1). For each small ¶ > 0 and

O ¢ cl(Br(z)) \ {y} which lies at positive distance from y, with probability tending to 1 as
ε→ 0,

(3.12) sup
x∈O

∣

∣

∣
gε(x)− m0

6
×GBr(z)(y, x)

∣

∣

∣
f ¶,
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where GBr(z)(y, x) is the continuum Green’s function for standard Brownian motion killed
upon exiting Br(z).

Lemma 3.3 will be shown as a consequence of the following result and Lemma 3.1.

Lemma 3.4. For each deterministic choice of z ∈ C and r > 0 such that Br(z) ¢ BÄ, each
y ∈ Br(z), and each bounded, Hölder-continuous, Ã(h, ¸)-measurable function f : Br(z) → R,

mε
−1

∑

x∈VGε(Br(z))

GrεBr(z)(a
ε
y, x)f(¸(x)) → m0 ×

∫

Br(z)

GBr(z)(y, x)f(x)dµh(x),

in probability as ε → 0, where GBr(z) is the continuum Green’s function, and aεy is as in
(2.12).

Proof. This follows from convergence of random walk on Gε to LBM and the fact that the
discrete and continuum Green’s functions can be represented in terms of these objects.
The conclusions of Lemmas 2.19 and 2.8 hold with probability approaching one as ε→ ∞.

Restrict to the event that these occur for all small enough ε.
Let the deterministic parameters y ∈ Br(z) ¢ BÄ and f : Br(z) → C a bounded and

Hölder continuous function which is Ã(h, ¸)-measurable be given. Consider the bounded,
continuous functional on the space of continuous curves w : [0,∞) → BÄ,

ϕfT (w) :=

∫ T

0

f(wt)dt, ∀T > 0.

By boundedness and Theorem 2.11,

(3.13) lim
ε→0

E[ϕfT (X̂
y,ε)|h, ¸] = E

[
∫ T

0

f(Xy
t )dt|h, ¸

]

, ∀T > 0,

where the convergence is in probability.
The term on the left in (3.13) can be used to control its discrete counterpart. Indeed, as

f is Hölder continuous and bounded and the cell size of the mated-CRT map is controlled
by Lemma 2.8, for all ε small depending only on h, ¸,

mε
−1

+Tmε,
∑

t=0

f(¸(Xy,ε
t ))− Cεq f ϕfT (X̂

y,ε) f mε
−1

+Tmε,
∑

t=0

f(¸(Xy,ε
t )) + Cεq

for all T > 0, where C = C(f) > 0, q = q(µ, f) > 0, and aεy is as in (2.12). Thus, by (3.13),

(3.14) lim
ε→0

mε
−1 E





+Tmε,
∑

t=0

f(¸(Xy,ε
t ))|h, ¸



 = E

[
∫ T

0

f(Xy
t )dt|h, ¸

]

, ∀T > 0,

in probability as ε → 0. By Lemmas 2.17, 2.18 and the boundedness of f , with Ä
aεy ,ε

Br(z)
the

first exit time as in (2.23),

|mε
−1

+Tmε,
∑

t=0

f(¸(Xy,ε
t ))| < mε

−1 sup
x∈Br(z)

|f(x)|Äa
ε
y ,ε

Br(z)
<∞, ∀T > 0, ∀ε ∈ (0, 1),

24



and mε
−1 E[Ä

aεy ,ε

Br(z)
|h, ¸] is a.s. bounded uniformly in ε. Therefore, as (3.14) holds for each

T > 0, we may take T → ∞ and interchange the limits to see that

mε
−1

∑

b∈VGε(Br(z))

GrεBr(z)(a
ε
y, b)f(¸(b)) = mε

−1 E

[ ∞
∑

t=0

f(¸(Xy,ε
t ))|h, ¸

]

ε→0→ E

[
∫ ∞

0

f(Xy
t )dt|h, ¸

]

= m0 ×
∫

Br(z)

GBr(z)(y, x)f(x)dµh(x),

completing the proof. □

We now use the integral convergence of the Green’s function (Lemma 3.4) together with
Lemma 2.10 and tightness to show uniform convergence of the Green’s kernel away from its
pole.

Proof of Lemma 3.3. Let a sequence of εs tending to zero be given. Fix y ∈ Br(z) ¢ BÄ

and let O ò Br(z) \ {y} be open. Denote by P(Br(z)) the set of polynomials with rational
coefficients in Br(z).

There exists a deterministic subsequence E along which a.s. the convergence in Lemma
2.10 occurs and the convergence in Lemma 3.4 occurs for each f ∈ P(Br(z)). We may
further assume, by the Borel-Cantelli lemma, that along this subsequence the conclusions
of Lemma 2.14 and Lemma 2.8 hold. Restrict to the subsequence E and the event of the
preceding two sentences.

By Lemma 2.14, grεBÄ
(aεy, ·) is uniformly bounded in VGε(O) by a random constant along E ,

and by (2.30) is ∆ε-harmonic in VGε(O). Thus, by Lemma 3.1, there is a random subsequence
along which gε converges uniformly in O to some continuous function g∗ : O → R (possibly
depending on the subsequence).

Fix such a subsequence E1 ¢ E , and subsequential limit g∗. Let µεh be the measure on C

whose restriction to each cell ¸([x − ε, x]) for x ∈ εZ is equal to degε(x) times µh|¸([x−ε,x]).
As we have assumed a.s. convergence of the measure µεh to 6µh along E1 with respect to the
local Prokhorov topology, we have that as E1 ∋ ε→ 0,

∫

O

f(x)gε(x)dµεh(x) → 6×
∫

O

f(x)g∗(x)dµh(x), ∀f : P(Br(z)) → R,

almost surely. By unpacking the definitions of gε and µεh, and using Lemma 2.8 to control
the approximation error, we have that a.s. as E ∋ ε→ 0,

∣

∣

∣

∣

∣

∣

∫

O

f(x)gε(x)dµεh(x)−mε
−1

∑

b∈VGε(O)

f(¸(b))GrεBr(z)(a
ε
y, b)

∣

∣

∣

∣

∣

∣

f Cεq,

for constants C = C(f) and q = q(µ, f) > 0,

∀f : P(Br(z)) → R.

Combining the previous two indented equations together with Lemma 3.4 shows that g∗(x) =
m0

6
×GBr(z)(y, x). Hence, (3.12) holds when O ò Br(z) \ {y}.
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After identifying the limit, we now argue that the convergence occurs up to ∂Br(z). By
a diagonal argument, we may arrange so that gε converges uniformly to m0

6
× GBr(z)(y, x)

along E on each compact subset of Br(z) \ {y}. Let s > 0 be given and let r1 ∈ (0, r) be
such that y lies at positive distance from cl(Ar1,r(z)) and

sup
x∈cl(Ar1,r(z))

GBr(z)(y, x) < s/4

Indeed, this is possible as GBr(z)(y, ·) is smooth up to the boundary away from its pole and
is identically zero on ∂Br(z). By the maximum principle, Lemma 2.13, and local uniform
convergence we have that

sup
b∈VGε(Ar1,r(z))

grεBÄ
(aεy, b) = sup

b∈VGε(∂Br1 (z))

grεBÄ
(aεy, b) < s/2,

for all ε sufficiently small. This implies convergence up to the boundary, ∂Br(z). □

3.4. Convergence of the Dirichlet problem. We follow a similar strategy as in the
previous subsection to prove the following.

Lemma 3.5. Fix a deterministic choice of z ∈ C and r > 0 such that Br(z) ¢ BÄ, a
bounded, deterministic Hölder-continuous function È : Br(z) → R, and a deterministic
Hölder continuous function ϕ : cl(Br(z)) → R. The rescaled solution f

ε
(as in (3.1)) to the

discrete Dirichlet problem
{

∆εf ε(a) = È(¸(a)) for a ∈ VGε(Br(z)) \ VGε(∂Br(z))

f ε(b) = mε × ϕ(¸(b)) for b ∈ VGε(∂Br(z))

converges in probability in the uniform topology on cl(Br(z)) to the solution of the continuum
Dirichlet problem,

{

∆f = m0È × µh on Br(z)

f = ϕ on ∂Br(z).

Moreover, a.s. the limiting function f is Hölder continuous in cl(Br(z)).

We first prove a pointwise convergence result concerning harmonic functions.

Lemma 3.6. For each deterministic choice of z ∈ C, r > 0 such that Br(z) ¢ BÄ and
each deterministic Hölder continuous function È : cl(Br(z)) → R the following occurs. For

y ∈ C, recall that Ä
aεy ,ε

Br(z)
is the first time simple random walk started at aεy ∈ VGε exits

VGε(Br(z)) \ VGε(∂Br(z)). For y ∈ Br(z), let

Ä yBr(z)
= min{t g 0 : Xy

t ̸∈ Br(z)}

denote the first time LBM started at y exits Br(z). Then,

lim
ε→0

E

[

È

(

¸

(

X
aεy ,ε

Ä
aεy,ε

Br(z)

))

|h, ¸
]

= E
[

È
(

Xy
Äy
Br(z)

)

|h, ¸
]

, ∀y ∈ Br(z),

where the convergence is in probability as ε→ 0.
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Proof. The proof is nearly identical to that of Lemma 3.4, but for completeness we sketch
the proof.

Let the parameters y ∈ Br(z) and È : cl(Br) → R, a Hölder continuous function, be given.
Consider the bounded functional on the space of continuous curves w : C([0,∞)) → cl(Br(z))
defined by

ϕÈ(w) := È(w(Ä)),

where Ä is the first time w(t) ̸∈ Br(z). Recall from the beginning of Section 3.3 that X̂y,ε is
the piece-wise linear interpolation of random walk started at aεy on VGε stopped upon exiting
VGε(BÄ) \ VGε(∂BÄ). By Theorem 2.11,

(3.15) lim
ε→0

E
[

ϕÈ(X̂y,ε)|h, ¸
]

= E [È(Xy
Äy)|h, ¸] ,

in probability as ε → 0. We conclude by observing that the term on the left-hand-side of
(3.15) is asymptotically close to its discrete counterpart. Indeed, as È is Hölder continuous
on cl(Br(z)) and the cell-size of the mated-CRT map can be controlled by Lemma 2.8,

|ϕÈ(X̂y,ε)− È(¸(Xy
Äε,y))| f C × εq,

in probability as ε→ 0, for some C = C(È) > 0 and q = q(µ, È) > 0. □

This pointwise convergence is used together with tightness and integral convergence of the
Green’s function to prove uniform convergence of solutions to the discrete Dirichlet problem.

Proof of Lemma 3.5. Decompose f ε = f ε1 + f ε2 where
{

∆εf ε1 (a) = 0 for a ∈ VGε(Br(z)) \ VGε(∂Br(z))

f ε1 (b) = mεϕ(¸(b)) for b ∈ VGε(∂Br(z))

and
{

∆εf ε2 (a) = È(¸(a)) for a ∈ VGε(Br(z)) \ VGε(∂Br(z))

f ε2 (b) = 0 for b ∈ VGε(∂Br(z)).

Step 1: Pointwise convergence.
Let a deterministic sequence E be given. Recall from [LL10, Corollary 6.2.4] that both f ε1
and f ε2 can be expressed in terms of the Green’s function of random walk. Hence, by Lemma
3.6 and Lemma 3.4 respectively, there is a deterministic subsequence E1 ¢ E along which
a.s. f

ε

1 and f
ε

2 converge pointwise at every rational point in Br(z) to f 1 and f 2 where
{

∆f 1 = 0 on Br(z)

f 1 = ϕ on ∂Br(z)

and
{

∆f 2 = m0µh × È on Br(z)

f 2 = 0 on ∂Br(z)

respectively.
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Step 2: Local uniform convergence.
We now show local uniform convergence in Br(z). By the maximum principle (Lemma 2.13),
f ε1 f mε supx∈Br(z) |ϕ(x)|. Moreover, as

f ε2 ±
(

sup
x∈Br(z)

|È(x)|
)

×Qε
Br(z)

is super (resp. sub) harmonic in VGε(Br(z)) \ VGε(∂Br(z)) and zero on VGε(∂Br(z)), the
maximum principle also implies that |f ε2 | f

(

supx∈Br(z) |È(x)|
)

Qε
Br(z)

By the previous two

sentences and Lemma 2.19 we have that f
ε

1 and f
ε

2 are bounded by a random constant along
a deterministic subsequence of E1. Thus, by Lemma 3.1 there is a random subsubsequence
E2 ¢ E1 along which f

ε

1 converges uniformly in Br(z) and f
ε

2 locally uniformly in Br(z) to

continuous functions f
∗
1 : Br(z) → R and f

∗
2 : Br(z) → R. By Step 1 we have that f

∗
1 = f 1

and f
∗
2 = f 2.

Step 3: Uniform convergence.
We now argue that f

ε

2 converges uniformly in cl(Br(z)) to f2 by a standard barrier argument.
Define

(3.16) MÈ = sup
a′∈Br(z)

|È(a′)|.

and recall from (2.27) that the function Qε
Br(z)

: VGε(cl(Br(z))) → R satisfies
{

∆εQε
Br(z)

(a) = −1 for a ∈ VGε(Br(z)) \ VGε(∂Br(z))

Qε
Br(z)

(b) = 0 for b ∈ VGε(∂Br(z)).

By the same argument as Steps 1 and 2, MÈ ×Qε
Br(z)

converges locally uniformly in Br(z)

along E2 to MÈ ×QBr(z) where
{

∆QBr(z) = −1 on Br(z)

QBr(z) = 0 on ∂Br(z).

By, for example, [BRG22, Proposition 2.5], QBr(z) is Hölder continuous in cl(Br(z)). Since
f ε2 ±MÈ × Qε

Br(z)
is super (resp. sub) harmonic in VGε(Br(z)) \ VGε(∂Br(z)) and is 0 on

VGε(∂Br(z)), we deduce convergence up to the boundary using the maximum principle
exactly as in the proof of Lemma 3.3. □

3.5. Convergence of the normalized expected exit time. Recall that for a domain
D ¢ BÄ, the normalized exit time is defined as qεD(a) =

∑

b∈VGε(D)\VGε(∂D) gr
ε
D(a, b) and by

(2.28) solves the following discrete Dirichlet problem,
{

∆εqεD(·) = −(degε)−1(·) in VGε(D) \ VGε(∂D)

qεD(·) = 0 otherwise.

As the function (degε)−1 is not Hölder continuous, Lemma 3.5 does not directly imply that the
normalized expected exit time converges. Nevertheless, we can use tightness and convergence
of the Green’s kernel to show the following.
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Lemma 3.7. Fix a deterministic choice of z ∈ C and r > 0 such that Br(z) ¢ BÄ. As
ε→ 0, qεBr(z) converges uniformly in cl(Br(z)) to qBr(z) in probability where

{

∆qBr(z) = −m0/6× µh on Br(z)

qBr(z) = 0 on ∂Br(z).

Proof. Fix a deterministic choice of z ∈ C and r > 0 such that Br(z) ¢ BÄ. We split the
proof into steps.

Step 1: Identify a subsequence.
Let a sequence of εs tending to 0 be given and fix a deterministic subsequence E along which
the convergence result in Lemma 3.3 occurs in cl(Br(z)) and Lemmas 2.9 and 2.19 occur
almost surely. Also suppose that along this subsequence the convergence in Lemma 3.5 occurs
for ϕ ≡ 0 and for È within a countable family of bump functions F(Br(z)) with the following
property. For each rational ¶′ > 0 and rational x′ ∈ Br(z) such that B¶′(x

′) ¢ Br(z), there is
a function in F(Br(z)) which takes values in [0, 1], is 1 on B¶′(x

′), and is 0 on Br(z)\B2¶′(x
′).

By Lemma 2.19 and our choice of subsequence, we have that that qεBr(z) is uniformly
bounded by a random constant along E . Since degε g 1, by (2.28), the unscaled function
also has bounded ∆ε-Laplacian. Thus, by Lemma 3.1, there is a random subsequence E0
along which qεBr(z) converges. In the remainder of the proof we use convergence of the Green’s
kernel away from its pole to identify the subsequential limit.

Step 2: Convergence away from the singularity.
Let x ∈ Br(z) ∩ Q2 and a rational ¶ > 0 such that B¶(x) ò Br(z) be given. We would like
to apply the uniform convergence of the Green’s kernel away from its pole (Lemma 3.3). So,
we ‘carve out’ the singularity at the pole of grεBr(z)

(·, ·) by considering,

qε,¶
−

Br(z)
(·) =

∑

b∈VGε(Br(z))\(VGε(∂Br(z))∪VGε(B¶(x)))

grεBr(z)(·, b)

qε,¶
+

Br(z)
(·) =

∑

b∈VGε(B¶(x))

grεBr(z)(·, b).

Observe that the same argument leading to (2.28) shows that

(3.17)























∆εqε,¶
−

Br(z)
(a) = −(degε(a))−1

×1{a ∈ VGε(Br(z)) \ (VGε(∂Br(z)) ∪ VGε(B¶(x)))}
on VGε(Br(z)) \ VGε(∂Br(z))

qε,¶
−

Br(z)
= 0 otherwise.

and

(3.18)

{

∆εqε,¶
+

Br(z)
(a) = −(degε(a))−11{a ∈ VGε(B¶(x))} on VGε(Br(z)) \ VGε(∂Br(z))

qε,¶
+

Br(z)
= 0 otherwise.

Apply the same argument as in the last paragraph of Step 1 to a countable set of rationals
¶′ > 0 and x′ ∈ Q2 to see that there is a random subsequence of E0 (independent of ¶ and x)
along which qεBr(z), q

ε,¶−

Br(z)
, qε,¶

+

Br(z)
converge uniformly in Br(z) to continuous functions q∗Br(z),

q∗,¶
−

Br(z)
, q∗,¶

+

Br(z)
(with the limit possibly depending on the subsequence).
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Fix such a subsequence E1 ¢ E0 and limits q∗Br(z), q
∗,¶−
Br(z)

, q∗,¶
+

Br(z)
and observe that

(3.19) q∗Br(z) = q∗,¶
−

Br(z)
+ q∗,¶

+

Br(z)
.

Let gε(·) := ε−1 grεBr(z)
(aεx, ·) so that by Lemma 3.3,

gε(·) → (m0/6)GBr(z)(x, ·)
uniformly in cl(Br(z)) \B¶(x) as E1 ∋ ε→ 0. As gε is zero on ∂Br(z), it satisfies the Hölder
continuity estimate (3.4) from Lemma 3.2 in Br(z) \ B¶(x). This allows us to use gε as a
test function in Lemma 2.9 so that

∫

Br(z)\B¶(x)

gε(y)dµh(y) →
m0

6

∫

Br(z)\B¶(x)

GBr(z)(x, y)dµh(y).

as E1 ∋ ε→ 0.
By unpacking the definition of gε(y) and using Lemma 2.8, we see that the left-hand-side

of the above converges to the same limit as qε,¶
−

Br(z)
(x). This implies

(3.20) q∗,¶
−

Br(z)
(x) =

m0

6

∫

Br(z)\B¶(x)

GBr(z)(x, y)dµh(y).

Step 3: Remove the singularity.
We claim that we may conclude once we show that

(3.21) lim
¶→0

sup
y∈Br(z)

q∗,¶
+

Br(z)
(y) = 0.

Indeed, (3.20), (3.21), and (3.19) together imply that

q∗Br(z)(x) =
m0

6

∫

Br(z)

GBr(z)(x, y)dµh(y).

Since ∆GBr(z)(x, ·) = −¶x(·) in Br(z), the integral above is equal to qBr(z)(x). This completes
the proof as x was an arbitrary rational and q∗Br(z) is continuous.

It remains to show (3.21). Recall the definition of smooth bump functions F(Br(z)) from
Step 1. Let ϕ¶ ∈ F(Br(z)) be a smooth, positive bump function which is 1 on B¶(x) and 0 on
Br(z) \ B2¶(x) and consider the solution to the Dirichlet problem, f ε¶ : VGε(cl(Br(z))) → R

defined by
{

∆εf ε¶ (a) = ϕ¶(¸(a)) for a ∈ VGε(Br(z)) \ VGε(∂Br(z))

f ε¶ (b) = 0 for b ∈ VGε(∂Br(z)).

Since qε,¶
+

Br(z)
± f ε¶ is sub (resp. super) harmonic in VGε(Br(z)) \ VGε(∂Br(z)) and is 0 on

VGε(∂Br(z)), by the maximum principle,

(3.22) |qε,¶+Br(z)
| f |f ε¶ |, in VGε(Br(z)).

By Lemma 3.5, f
ε

¶ converges uniformly in Br(z) to f ¶ where
{

∆f ¶ = m0ϕ¶ × µh on Br(z)

f ¶ = 0 on ∂Br(z).
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We can represent

f ¶(·) = m0

∫

Br(z)

ϕ¶(y)GBr(z)(·, y)dµh(y)

f m0

∫

B2¶(z)

GB1(·, y)dµh(y)

f m0 ×M(B2¶(z)).

Hence, by the second half of Lemma 2.17 there exists q = q(µ) > 0 such that

f ¶ f ¶q for all ¶ sufficiently small,

which by (3.22), implies (3.21), completing the proof. □

4. Convergence of the divisible sandpile odometer

Fix Ä ∈ (0, 1) and t > 0. We briefly recall the single-source divisible sandpile model,
introduced in Section 1.2.2, and define its odometer. In the model, we start with a continuous
amount of mass (tε−1) at the origin 0 ∈ VGε and zero elsewhere. At each time step, vertices
a ∈ VGε which have mass Ã(a) > 1, where Ã is the current configuration, are unstable and
topple, distributing the excess mass (Ã(a) − 1) equally among the neighbors of a. Since
Gε is an infinite graph eventually each site a will have mass at most 1. Denote the final
configuration of mass by sεt : VGε → [0, 1].

The odometer, which we denote by vεt : VGε → [0,∞), tracks the total amount of mass
each site has emitted during this process. In particular, by definition of the graph Laplacian,
we have that

(4.1) sεt = tε−1¶0 + degε×∆ε

(

vεt
degε

)

.

(The two degε factors in the above expression are needed to ensure the above expression
matches the prior description of toppling.)

By definition, we see that the divisible sandpile cluster satisfies

(4.2) Dε(tε
−1) = {x ∈ VGε : sεt > 0} = cl({x ∈ VGε : vεt > 0}).

The reason for the closure in (4.2) is that there are some sites with mass in the cluster which
have not toppled. These sites, by definition, must have a neighbor which has toppled.

A fundamental property in the study of the sandpile is the least action principle,

(4.3)
vεt
degε

= min{w : VGε → [0,∞) : ∆εw + degε(0)−1tε−1¶0 f (degε)−1},

where the minimum is pointwise. See, e.g., [LP09, Lemma 3.2] for a proof. This property is
closely related to (2.10). In fact, one sees from the definition that if Dε(tε

−1) ¢ VGε(BÄ) \
VGε(∂BÄ), then we can express, using (2.30), the solution to (4.3) as

(4.4)
vεt (a)

degε(a)
=

{

wεt (a) + (tε−1)× grεBÄ
(0, a) for a ∈ VGε(BÄ) \ VGε(∂BÄ)

0 otherwise
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where

(4.5)
wεt :=min{w : VGε(cl(BÄ)) → R : ∆εw f (degε)−1 on VGε(BÄ) \ VGε(∂BÄ)

and w g −(tε−1)× grεBÄ
(0, ·)},

where the minimum is pointwise. And, in general,

(4.6)
vεt
degε

g wεt + (tε−1)× grεBÄ
(0, ·) on VGε(BÄ).

Let wεt be the re-scaled version of wεt as in (3.1). We will show the convergence of wεt to
its continuum counterpart defined by (2.10). In order to ensure the divisible sandpile cluster
is contained in BÄ, we consider t ∈ (0, T1) where

(4.7) T1 = sup{t > 0 : Λt ¢ BÄ/3},
where Λt is the LQG harmonic ball as in Theorem 2.3. We take BÄ/3 rather than BÄ in the
above definition to allow some room for error in the discrete estimates of Section 6.

Theorem 4.1. Recall the median exit time m0 defined in (2.18). For each t > 0, on the

event {t < T1} we have that wεt converges uniformly in BÄ as ε→ 0 to m0

6
w
BÄ

t in probability,

where w
BÄ

t is as in Theorem 2.3.

The extra factor of m0

6
in Theorem 4.1 is a result of the factor mε appearing in the

scaling definition (3.1) and the fact that since the mated-CRT map is a planar triangulation,
E[degε(0)] = 6.

A result similar to that of Theorem 4.1 was proved on Zd by Levine and Peres in [LP09]
using different methods. Levine and Peres used precise estimates on the lattice Green’s func-
tion in Zd which are unavailable in our setting. Our approach is similar to (but easier than)
the method used to prove convergence of the Abelian sandpile — see [PS13, BR21]. (Also
see [BS91] for a systematic approach to proving convergence of finite-difference schemes.)
Before proceeding we point out that convergence of the odometer implies a lower bound

on the divisible sandpile cluster.

Proposition 4.2. For each ¶ ∈ (0, Ä) and t > 0, on the event {t < T1}, it holds except on
an event of probability tending to 0 as ε→ 0 that

B−
¶ (Λt) ¢ Dε(tε

−1).

Proof assuming Theorem 4.1. Fix ¶ ∈ (0, Ä) and t > 0 and restrict to the event that {t < T1}.
Let a deterministic sequence of εs approaching zero be given. Recall from Theorem 2.3 that

(4.8) Λt = int
(

{x ∈ BÄ : w
BÄ

t > −tGBÄ(0, ·)}
)

,

where GBÄ is the Green’s function for ∆ on BÄ. Since w
BÄ

t is continuous and GBÄ(0, ·) blows
up at the origin, we can pick r ∈ (0, 1) so that

(4.9) inf
x∈B2r

tGBÄ(0, x) > sup
y∈Br

−wBÄ

t (y).

Since grεBÄ
is superharmonic, by the maximum principle, Lemma 2.13,

(4.10) inf
a∈VGε(Br′ )

grεBÄ
(0, a) = inf

b∈VGε(∂Br′ )
grεBÄ

(0, b), ∀r′ ∈ (0, Ä).

32



Let gε(·) := ε−1 grεBÄ
(0, ·) and define gε as in (3.1). By Theorem 4.1, there exists a

deterministic subsequence, E , along which a.s. wεt converges uniformly in BÄ to m0

6
w
BÄ

t .
Further, by Lemma 3.3 we may arrange so that, a.s. along E , gε converges uniformly in Ar,Ä

to m0

6
× GBÄ(0, ·). By (4.8) and the continuity of the two functions involved, there exists

s > 0 so that

(4.11)
w
BÄ

t (x) > −tGBÄ(0, x) + s

for all x ∈ Λt such that dist(x, ∂Λt) g ¶/4.

We may further assume that a.s., the cell-size estimates of Lemma 2.8 hold for all sufficiently
small ε ∈ E .

Therefore, by the uniform convergence of wεt in BÄ and the uniform convergence of gε in
Ar,Ä we have by (4.9)

wεt (a) > sup
b∈VGε(∂B2r)

−(tε−1)× grεBÄ
(0, b), ∀a ∈ VGε(Br), ∀ε ∈ E sufficiently small

and thus by (4.10)

wεt (a) > −(tε−1)× grεBÄ
(0, a), ∀a ∈ VGε(Br), ∀ε ∈ E sufficiently small.

Also, by uniform convergence of wεt in BÄ and uniform convergence of gε in Ar,Ä and (4.11)
we have

wεt (a) > −(tε−1)× grεBÄ
(0, a)

∀a ∈ VGε(Λt \Br) such that dist(¸(a), ∂Λt) g ¶/2

∀ε ∈ E sufficiently small.

Combining the previous two indented equations with the definition of Dε, (4.2), and (4.6)
completes the proof. □

4.1. Basic properties of the divisible sandpile. For completeness, we recall some basic
properties of the discrete least supersolution. Since these results are standard, the proofs are
given in Appendix A. We also note that continuum analogs of these properties are proven
in [BR21, Appendix A].

Lemma 4.3. Recall the definition of qεBÄ
from (2.25). For all t > 0 and ε > 0,

max(−qεBÄ
,−(tε−1)× grεBÄ

(0, ·)) f wεt f 0

and ∆εwεt f (degε)−1 on VGε(BÄ) \ VGε(∂BÄ).

For the statement of the next lemma, we denote the discrete cluster by

(4.12) Λεt = {a ∈ VGε(BÄ) : w
ε
t (a) > −(tε−1) grεBÄ

(0, a)}.
Observe that by (4.2) for t ∈ (0, T1),

(4.13) Dε(tε
−1) = cl(Λεt).

Lemma 4.4. For all t > 0 and ε > 0, we have that ∆εwεt = (degε)−1 on Λεt and 0 f ∆εwεt f
(degε)−1 on VGε(BÄ) \ VGε(∂BÄ). Moreover, Λεt is connected and if tε−1 > 1, then 0 ∈ Λεt .

We conclude with a discrete conservation of mass lemma.
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Lemma 4.5. For all t > 0 and ε > 0, we have that |Λεt | f tε−1. Moreover, if Λεt ¢
int(VGε(BÄ) \ VGε(∂BÄ)), then

∑

a∈VGε(BÄ)\VGε(∂BÄ)

∆εwεt (a) deg
ε(a) = tε−1.

4.2. Convergence of the odometer along subsequences. In this subsection we prove
tightness of the re-scaled odometer function wεt defined in (4.5) and (3.1). In subsequent
subsections we show that, for t ∈ (0, T1), each subsequential limit is given uniquely by (2.10).

Lemma 4.6. Almost surely, for each t > 0 and each deterministic sequence of εs converging
to 0, there exists a Ã(h, ¸)-measurable subsequence and a Hölder continuous function w∗

t ∈
C(cl(BÄ)) such that wεt → w∗

t uniformly in cl(BÄ).

We will prove Lemma 4.6 by combining Lemma 3.1, the results of the previous subsection,
and the following lemma.

Lemma 4.7. A.s., for each deterministic sequence of εs converging to 0, there exists a
deterministic subsequence E and a random constant C so that for each t > 0,

sup
x∈BÄ

|wεt(x)| f C, ∀ε ∈ E .

Proof. By Lemma 4.3,

(4.14) −qεBÄ
f wεt f 0, ∀t > 0, ∀ε > 0

and by Lemma 2.18 and (2.20)

(4.15) −qεBÄ
g −C0mεM(BÄ)

for some deterministic constant C0 = C0(Ä, µ) with polynomially high probability as ε→ 0,
where M(BÄ) is as in (2.32). By Lemma 2.17, M(BÄ) is finite almost surely. Hence, the
previous two indented inequalities complete the proof by the definition of wεt and the Borel-
Cantelli lemma. □

We now use the tightness lemma, Lemma 3.1, to prove subsequential convergence.

Proof of Lemma 4.6. By Lemma 4.7 and Lemma 4.4, for each t > 0, the assumptions of
Lemma 3.1 are satisfied along a deterministic subsequence for the functions wεt . Hence,
wεt converges a.s. locally uniformly in BÄ along a random subsequence. To see that the
convergence occurs uniformly in cl(BÄ), we use the standard barrier argument given in Step
3 of the proof of Lemma 3.5. To implement the barrier argument we use that 0 f ∆εwεt f
1. □

4.3. Properties of the subsequential limit. Convergence of the discrete Dirichlet prob-
lem, Lemma 3.5, is used to establish some properties of each subsequential limit of the
odometer. We will use this in the next subsection to uniquely identify the limit.

Lemma 4.8. A.s., for each deterministic sequence of ε → 0, there exists a deterministic
subsequence so that a subsequential limit w∗

t of w
ε
t along this subsequence (as given by Lemma

4.6) satisfies the following:

(1) 0 g w∗
t g −tm0

6
GBÄ(0, ·) on cl(BÄ);

(2) ∆w∗
t g 0 on BÄ;
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(3) ∆w∗
t f m0

6
µh on BÄ and ∆w∗

t =
m0

6
µh on {x ∈ BÄ : w

∗
t (x) > −tm0

6
GBÄ(0, x)}.

Proof. By Lemma 3.3, we may take a deterministic subsequence along which, the convergence
of gε from that lemma, with y = 0 and Br(z) = BÄ, occurs almost surely. Take another
subsequence for which the convergence of Lemma 3.5 occurs a.s. for all z ∈ Q2 and rational
r > 0, È ≡ 0, and all ϕ ∈ F(Br(z)), the set of polynomials with rational coefficients restricted
to cl(Br(z)). Further suppose that along this subsequence the convergence in Lemma 3.7
holds for all z ∈ Q2 and rational r > 0. By Lemma 4.6, there is a random subsequence E of
the preceding subsequence such that limE∋ε→0w

ε
t → w∗

t .

Step 1: Proof of (1).
By Lemma 4.3,

(4.16) 0 g wεt g −(tε−1) grεBÄ
(0, ·) on VGε(cl(BÄ)), ∀ε > 0.

This inequality persists in the limit by the uniform convergence of wεt and the convergence
of the rescaled version of ε−1 grεBÄ

to m0

6
GBÄ , for E ∋ ε→ 0 as given by Lemma 3.3.

Step 2: Proof of (2).
Let ¶ > 0, a rational r > 0, and a z ∈ Q2 such that Br(z) ò BÄ be given. For each ε ∈ E
consider the discrete harmonic function f ε¶ defined by

{

∆εf ε¶ (a) = 0 for a ∈ VGε(Br(z)) \ VGε(∂Br(z))

f ε¶ (b) = mεϕ
¶(¸(b)) + ¶ for b ∈ VGε(∂Br(z))

where ϕ¶ ∈ F(Br(z)) is a rational polynomial satisfying

(4.17) sup
x∈cl(Br(z))

|ϕ¶(x)− w∗
t (x)| < ¶/4.

By Lemma 4.4, wεt is ∆ε-subharmonic. Thus, by the maximum principle, Lemma 2.13, we
have

sup
a∈VGε(Br(z))\VGε(∂Br(z))

(wεt − f ε¶ )(a) f sup
b∈VGε(∂Br(z))

(wεt − f ε¶ )(b).

As wεt converges uniformly to w∗
t in cl(BÄ), by definition of f ε¶ and (4.17), we have

sup
b∈VGε(∂Br(z))

(wεt − f ε¶ )(b) < 0, ∀ small ε ∈ E .

By combining the previous two indented equations, we have

(4.18) f ε¶ (a) g wεt (a), ∀a ∈ VGε(Br(z)), ∀ small ε ∈ E .

By Lemma 3.5, we have that f
ε

¶ converges uniformly in cl(Br(z)) to a harmonic function

f
∗
¶ : cl(Br(z)) → R which satisfies

(4.19)

{

∆f
∗
¶ = 0 on Br(z)

f
∗
¶ = ϕ¶ + ¶ on ∂Br(z).
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Therefore,

w∗
t (z) f f

∗
¶(z) (by (4.18) and uniform convergence)

=

∫

∂Br(z)

f
∗
¶ (by harmonicity)

=

∫

∂Br(z)

(ϕ¶ + ¶) (by (4.19)).

As the choice of rational r > 0 and z ∈ Q2 was arbitrary and the above inequality holds for
any ¶ > 0, by (4.17), and the continuity of w∗

t (z), we have

w∗
t (z) f

∫

∂Br(z)

w∗
t , for all r > 0 and z ∈ C such that Br(z) ¢ BÄ,

completing the proof.

Step 3: Proof of (3).
We will show that

(4.20) ∆w∗
t f

m0

6
µh on BÄ,

and then

(4.21) ∆w∗
t =

m0

6
µh on {w∗

t > −tm0

6
GBÄ},

appealing to the argument of Step 2.
Let rational r > 0 and z ∈ Q2 such that Br(z) ¢ BÄ and ¶ > 0 be given. Recall that for

each ε > 0, qεBr(z)
satisfies

{

∆εqεBr(z)
(a) = −(degε(a))−1 for a ∈ VGε(Br(z)) \ VGε(∂Br(z))

qεBr(z)
(b) = 0 for b ∈ VGε(∂Br(z)).

By Lemma 4.4,

(4.22) ∆ε(qεBr(z) + wεt )(a) f 0 for a ∈ VGε(Br(z)) \ VGε(∂Br(z)).

By Lemma 3.7, qεBr(z) converges uniformly in cl(Br(z)) to qBr(z) where

(4.23)

{

∆qBr(z) = −m0/6× µh on Br(z)

qBr(z) = 0 on ∂Br(z).

As (qεBr(z)
+ wεt ) is discrete superharmonic (4.22), the same argument as in Step 2 shows

that

(4.24) ∆(qBr(z) + w∗
t ) f 0 on Br(z).

Combining this with (4.23) shows (4.20).
We now show (4.21). Fix rational r > 0 and z ∈ Q2 so that

Br(z) ¢ {x ∈ BÄ : w
∗
t (x) > −tm0

6
GBÄ(x)}.

By the continuity and uniform convergence of the two functions involved, for all ε ∈ E
sufficiently small, we have that

(4.25) wεt (a) > −(tε−1) grBÄ
ε (0, a), ∀a ∈ VGε(Br(z)).
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The inequality (4.25) and Lemma 4.4 together show that

(4.26) ∆ε(qεBr(z) + wεt )(a) = 0 ∀a ∈ VGε(Br(z)) \ VGε(∂Br(z))

for all ε ∈ E sufficiently small. Again applying the argument of Step 2 twice, we see that

(4.27) ∆(qBr(z) + w∗
t ) = 0 on Br(z),

completing the proof by (4.23). □

4.4. Proof of Theorem 4.1. Note that by the definition of T1 and Theorem 2.3,

Λt = int
(

cl
(

{x ∈ BÄ : w
BÄ

t > −GBÄ(0, ·)}
))

, ∀t ∈ (0, T1).

By (1) and (3) of Lemma 4.8 we have that each possible subsequential limit 6
m0
w∗
t as in

Lemma 4.6 is admissible in (2.10) and hence

(4.28)
m0

6
w
BÄ

t f w∗
t , ∀t ∈ (0, T1).

For the other direction, we note that by part (c) of Theorem 2.3, we have, for each t ∈ (0, T1),

∆w
BÄ

t = µh|Λt on BÄ

and by (3) of Lemma 4.8

∆w∗
t =

m0

6
µh on {x ∈ BÄ : w

∗
t (x) > −tm0

6
GBÄ(0, x)}

and by (4.28),

Λt ¢ int
(

cl
(

{x ∈ BÄ : w
∗
t > −m0

6
GBÄ(0, ·)}

))

, ∀t ∈ (0, T1).

Consequently, by the above three displays we have for each t ∈ (0, T1), (in the weak sense)

∆(w∗
t −

m0

6
w
BÄ

t ) = 0 on Λt

and

∆(w∗
t −

m0

6
w
BÄ

t ) = ∆w∗
t g 0 on BÄ \ Λt

with the last inequality coming from (2) of Lemma 4.8.
Therefore, for each t ∈ (0, T1),

{

∆(w∗
t − m0

6
w
BÄ

t ) g 0 on BÄ

w∗
t − m0

6
w
BÄ

t = 0 on ∂BÄ

and hence by the maximum principle in the continuum,

(4.29)
m0

6
w
BÄ

t g w∗
t

which, together with (4.28) shows that w∗
t = w

BÄ

t . □
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5. IDLA lower bound

We use the convergence of the divisible sandpile and the argument of Lawler-Bramson-
Griffeath [LBG92] to prove the following lower bound on the IDLA cluster. As in the
previous section we fix a Ä ∈ (0, 1) so that BÄ ò B1. Recall the notation for the subset of C
corresponding to a subset of VGε, (1.6).
Proposition 5.1. Recall the time T1 from (4.7). For each ¶ ∈ (0, Ä) and t > 0, on the event
{t < T1}, it holds except on an event of probability tending to 0 as ε→ 0 that

B−
¶ (Λt) ¢ Aε(+tε−1,)

where Λt is as in Theorem 2.3. Moreover, this lower bound holds even when walkers are
stopped upon exiting VGε(Λt).

Our proof of Proposition 5.1 relies on the following result of Lawler-Bramson-Griffeath
[LBG92]. Recall Remark 2.12.

Lemma 5.2 (Reformulation of Section 3 in [LBG92]). Suppose Oε
1 ¢ Oε

2 ¢ VGε(BÄ) are
Ã(h, ¸)-measurable domains containing the origin such that for Kε > 0, some deterministic
q > 0 and random Ã(h, ¸)-measurable finite random variable s > 0,

(5.1) KεGrεOε
2
(0, a) g (1 + s)

∑

b∈Oε
2

GrεOε
2
(b, a), ∀a ∈ Oε

1,

and

(5.2)

∑

b∈Oε
2
GrεOε

2
(b, a)

GrεOε
2
(a, a)

g ε−q, ∀a ∈ Oε
1,

with probability approaching one as ε goes to zero, then

(5.3) Oε
1 ¢ Aε(+Kε,)

with probability approaching one as ε goes to zero. Moreover, the bound (5.3) holds even
when walkers are stopped upon exiting Oε

2.

We will give the proof of Lemma 5.2 at the end of this section, following the argument
of [LBG92]. We will first prove Proposition 5.1 by verifying the two conditions of Lemma
5.2. Specifically, we will show that an approximate mean-value inequality (5.1) is satisfied
for the discrete divisible sandpile cluster Λεt .

Lemma 5.3. For each ¶ ∈ (0, Ä) and t > 0 on the event {t < T1}, there exists a Ã(h, ¸)-
measurable finite random variable s = s(¶) > 0 such that, except on an event of probability
tending to 0 as ε→ 0 ,

(5.4) (tε−1)GrεΛε
t
(0, a) g (1+ s)

∑

b∈Λε
t

GrεΛε
t
(b, a), for all a ∈ Λεt s.t. dist(¸(a), ∂¸(Λεt)) > ¶.

We will also prove the lower bound in (5.2).

Lemma 5.4. There exists a deterministic q > 0 such that, for each ¶ ∈ (0, Ä) and t > 0 on
the event {t < T1}, it holds except on an event of probability tending to 0 as ε→ 0 that

(5.5)

∑

b∈Λε
t
GrεΛε

t
(b, a)

GrεΛε
t
(a, a)

g ε−q, for all a ∈ Λεt s.t. dist(¸(a), ∂¸(Λ
ε
t)) > ¶.
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These lemmas imply Proposition 5.1.

Proof of Proposition 5.1, assuming Lemmas 5.2, 5.3, and 5.4. We restrict to the event that
{t < T1} for t > 0. By Lemmas 5.3 and 5.4 (with ¶/4 instead of ¶) we may apply Lemma 5.2
with the sets Oε

1 = {a ∈ Λεt : dist(¸(a), ∂¸(Λ
ε
t)) > ¶/4} and Oε

2 = Λεt and Kε = tε−1 which
shows, together with the cell-size estimates given by Lemma 2.8

B−
¶/2(Λ

ε
t) ¢ Aε(+tε−1,),

except on an event of probability going to zero as ε → 0, with the bound holding even
when walkers are stopped upon exiting Λεt . By Proposition 4.2 and (4.13), (and the cell-size
estimates again) we have

B−
¶/2(Λt) ¢ Λεt ,

except on an event of probability going to zero as ε→ 0. □

We now prove Lemmas 5.2, 5.3, and 5.4. We start with Lemma 5.4, which relies on the
estimates established in [BG20] as recalled in Section 2.

Proof of Lemma 5.4. We restrict to the event that {t < T1} for t > 0. By the fact Λεt ¢
VGε(BÄ) and Lemma 2.15, we have

(5.6) GrεΛε
t
(a, a) f GrεBÄ

(a, a) f ε−1/2, ∀a ∈ VGε(BÄ)

except on an event of probability going to zero as ε→ 0. Therefore, it suffices to show that
there exists a deterministic constant C > 0 independent of ε such that

(5.7)
∑

b∈Λε
t

GrεΛε
t
(b, a) g C¶ε−1, ∀a ∈ Λεt : dist(¸(a), ∂¸(Λ

ε
t)) > ¶

except on an event of probability going to zero as ε → 0. Indeed, we just need the desired
estimate for ε small and we may absorb the factor of C¶ into ε1/2 for ε small enough,
depending on C and ¶.

Let a ∈ Λεt such that dist(¸(a), ∂¸(Λεt)) > ¶ be given and observe that
∑

b∈Λε
t

GrεΛε
t
(b, a) g

∑

b∈VGε(B¶/2(a))

GrεB¶/2(a)
(b, a).

By Lemma 2.16 and Lemma 2.9
∑

b∈VGε(B¶/2(a))

GrεB¶/2(a)
(b, a) g C¶ε−1,

for some deterministic constant C = C(Ä, µ) except on an event of probability going to zero
as ε→ 0. □

We next prove the approximate mean-value inequality using the basic properties of the
discrete obstacle problem and the convergence afforded by Theorem 4.1.

Proof of Lemma 5.3. We restrict to the event that {t < T1} for t > 0. As the function degε

is reversible for simple random walk on VGε, by, for example, [LP16, Exercise 2.1],

GrεΛε
t
(a, b)/ degε(b) = GrεΛε

t
(b, a)/ degε(a), ∀a, b ∈ Λεt .
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Therefore, we can rewrite the desired inequality as

(tε−1)GrεΛε
t
(a, 0)

degε(a)

degε(0)
g (1 + s)

∑

b∈Λε
t

GrεΛε
t
(a, b)

degε(a)

degε(b)
.

By the definitions in Section 2.8 and Remark 2.12, this shows that it suffices to establish

(5.8) (tε−1) grεΛε
t
(a, 0) g (1 + s)qεΛε

t
(a), ∀a ∈ Λεt : dist(¸(a), ∂¸(Λ

ε
t)) > ¶,

for some finite Ã(h, ¸)-measurable random variable s = s(Ä, µ, ¶) > 0 not depending on ε,
except on an event of probability going to zero as ε→ 0. Define

(5.9)
vεt (a) = wεt (a) + (tε−1) grεBÄ

(a, 0)

ṽεt (a) = (tε−1) grεΛε
t
(a, 0)− qεΛε

t
(a)

and note that on Λεt

∆ε(vεt − ṽεt )

= (degε)−1 − degε(0)−1(tε−1)1{· = 0} −∆εṽεt (by (2.30) and Lemma 4.4)

= (degε)−1 − degε(0)−1(tε−1)1{· = 0} − (− degε(0)−1(tε−1)1{· = 0}+ (degε)−1)

(by (2.30) and (2.28))

= 0 .

Since wεt = grεBÄ
(·, 0) = qεΛε

t
= 0 on ∂Λεt , this implies that

{

∆ε(vεt − ṽεt ) = 0 on Λεt
(vεt − ṽεt ) = 0 on ∂Λεt .

By the maximum principle, Lemma 2.13, this implies that

ṽεt g vεt on Λεt .

By uniform convergence of vεt , (scaling defined in (3.1)) which comes from Theorem 4.1 and
Lemma 3.3, for some finite Ã(h, ¸)-measurable random variable C = C(¶) > 0, we have that

ṽεt (a) g vεt (a) > Cε−1, ∀a ∈ Λεt : dist(¸(a), ∂¸(Λ
ε
t)) > ¶,

except on an event of probability going to zero as ε→ 0. Also, by Lemma 2.18

sup
a∈Λε

t

qεΛε
t
(a) f C1ε

−1,

with probability approaching one as ε→ 0 for some finite Ã(h, ¸)-measurable random variable
C1 > 0 not depending on ε. By combining the previous two indented equations with the
definition (5.9) of ṽεt , we have (5.8) with s := (C/C1). □

We conclude by including, for completeness, the arguments of [LBG92].

Proof of Lemma 5.2. Recall that for each ε > 0, the IDLA cluster is formed by running
independent random walks X0,ε(i) := Xε(i) started at the origin on Gε and stopped upon
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exiting the cluster. We let each independent random walk evolve forever even after it has
left the occupied cluster and introduce the stopping times:

Ãi = min{t : Xε
t (i) ̸∈ Aε(i− 1)}

= the time it takes the ith walker to leave the occupied cluster

Ä ib = min{t : Xε
t (i) = b}

= the time it takes the ith walker to hit site b

T i = min{t : Xε
t (i) ̸∈ Oε

2}
= the time it takes the ith walker to leave Oε

2.

For a ∈ VGε, let Ea(ε) denote the event that a does not belong to the cluster Aε(Kε). We
claim that to prove (5.3), it suffices to show that with probability approaching one as ε→ 0,

(5.10) P[Ea(ε)|h, ¸] f exp(−cε−c), ∀a ∈ Oε
1,

for some deterministic c > 0 which is independent of ε and a. Indeed, since the cells
of VGε have µh-mass ε and intersect only along their boundaries there exists a random
C = C(Ä, µ) > 0 so that

|VGε(BÄ)| f Cε−1,

with polynomially high probability as ε → 0. Therefore, (5.3) can be obtained from (5.10)
and a union bound over all a ∈ Oε

1.
Our aim now is to show (5.10). Fix an ε for which (5.1) holds and a b ∈ Oε

2. Consider the
random variables

M =
∑

ifKε

1{Ä ib f T i}

= number of walks that visit b before leaving Oε
2

L =
∑

ifKε

1{Ãi f Ä ib < T i}

= number of walks that visit b before leaving Oε
2 but after exiting the current cluster.

Observe that for all k g 0,

(5.11)

P[Eb(ε)|h, ¸] f P[M = L|h, ¸]
f P[{M f k} ∪ {L g k}|h, ¸]
f P[M f k|h, ¸] + P[L g k|h, ¸].

We will choose k below to minimize this bound. First note that by, for example, [LL10,
Lemma 4.6.1]

(5.12) Pa[Äb < T |h, ¸] =
GrεOε

2
(a, b)

GrεOε
2
(b, b)

for all a ∈ VGε where Pa[Äb < T |h, ¸] denotes the probability that an independent walker
started at a ∈ VGε hits site b before it leaves Oε

2.
As M is a sum of i.i.d. random variables, by (5.12)

(5.13) E[M |h, ¸] = KεP[Ä
1
b f T 1|h, ¸] = Kε ×

GrεOε
2
(0, b)

GrεOε
2
(b, b)

.
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The random variable L is not a sum of independent random variables, but each walk which
contributes to the sum in L can be mapped to the point at which it exits the current cluster.
Therefore, by the strong Markov property,

(5.14) L f L̂ :=
∑

a∈Oε
2

1a{Äb < T}

where 1a{Äb < T} denotes the event that an independent walker started at a ∈ VGε hits site
b before it leaves Oε

2. Hence, by (5.12) we have that

(5.15) E[L̂|h, ¸] =
∑

a∈Oε
2

Pa[Äb < T |h, ¸] =
∑

a∈Oε
2
GrεOε

2
(a, b)

GrεOε
2
(b, b)

.

By the assumption (5.1), we have that (5.13) and (5.15) imply that there exists a deter-
ministic q > 0 and Ã(h, ¸)-measurable finite random variable s > 0 so that with probability
approaching one as ε→ 0,

(5.16) E[M |h, ¸] g (1 + s)E[L̂|h, ¸] g (1 + s)ε−q,

with the latter inequality following by the assumption (5.2).
Recall that if S is a finite sum of independent indicators with mean µ, then

(5.17) P
[

|S − µ| g µ3/4
]

f 2 exp

(

−1

4
µ1/2

)

for all sufficiently large µ (see, e.g., [LBG92, Lemma 3.3]). Now, set k = (1 + s/4)E[L̂|h, ¸]
in (5.11) and compute

P

[

L g (1 + s/4)E[L̂|h, ¸]|h, ¸
]

f P

[

L̂ g (1 + s/4)E[L̂|h, ¸]|h, ¸
]

(by (5.14))

f P

[

L̂ g E[L̂|h, ¸] + E[L̂|h, ¸]3/4|h, ¸
]

(by (5.16) for all ε small depending on s)

f 2 exp

(

−1

4
E[L̂|h, ¸]1/2

)

(by (5.17) with µ = E[L̂|h, ¸])

f 2 exp

(

−1

4
ε−q/2

)

(by (5.16)).

Similarly,

P

[

M f (1 + s/4)E[L̂|h, ¸]|h, ¸
]

f P
[

M f E[M |h, ¸]− E[M |h, ¸]3/4|h, ¸
]

(by (5.16) for all ε small depending on s)

f 2 exp

(

−1

4
ε−q/2

)

(by (5.16) and (5.17) with µ = E[M |h, ¸]).

Therefore, if we set k = (1 + s/4)E[L̂|h, ¸] and use (5.11), we have (5.10), completing the
proof. □
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6. IDLA upper bound

As in the previous section we fix a Ä ∈ (0, 1) so that BÄ ò B1. Recall the notation for the
subset of C corresponding to a subset of VGε, (1.6). Here we prove that the IDLA cluster is
contained in a harmonic ball.

Proposition 6.1. Recall the time T1 from (4.7). For each ¶ ∈ (0, Ä) and t > 0, on the event
{t < T1}, it holds except on an event of probability tending to 0 as ε→ 0 that

Aε(+tε−1,) ¢ B+
¶ (Λt),

where Λt is as in Theorem 2.3.

Our proof of the upper bound combines ideas of Lawler [Law95] and Duminil-Copin-Lucas-
Yadin-Yehudayoff [DCLYY13]. The idea is utilize the diffusive, ‘smoothing’ nature of IDLA.
That is, it is extremely unlikely that a random walk travels a long distance without hitting
many sites while doing so. Since the IDLA cluster is built by running independent random
walks, the cluster itself has this same property.

In our setting, we would like to use this smoothing to assert the following: given the current
cluster Θ ¢ VGε(BÄ), after adding ¶ε

−1 walkers to the origin, the resulting cluster must be
contained in VGε(B+

C¶c(Θ)), (for some constants c, C) with extremely high probability.
Duminil-Copin-Lucas-Yadin-Yehudayoff [DCLYY13] showed that IDLA does indeed have

this property if the underlying graph is regular enough. Roughly, they required the graph to
obey volume doubling and have an intrinsic metric which can be controlled by the Euclidean
metric. Unfortunately, these required properties do not hold on the mated-CRT map. In
particular, with positive probability, it is possible for random walkers to travel a long Eu-
clidean distance in the mated-CRT map without hitting many cells. Fortunately, this is not
the case for ‘most’ of the mated-CRT map.

We formalize ‘most’ by considering the behavior of random walk on a Euclidean annulus
intersected with the mated-CRT map (under the usual SLE/LQG embedding). Roughly, for
a ‘good’ annulus, for all sufficiently small ε, it is difficult for a random walk on VGε to travel
across the annulus without hitting many cells along the way.

We start in Section 6.1 by defining what it means for an annulus to be good. We then use
the definition of good annulus in Section 6.2 to provide estimates for the hitting measure
of random walk on the mated-CRT map. We then use these estimates together with an
iterative argument to prove the upper bound in Section 6.3.
Below we frequently make use of the Abelian nature of IDLA. This Abelian property

was first observed by Diaconis-Fulton in [DF91] and states that the distribution of the final
IDLA cluster is unaffected by the order in which walkers are sent out. In particular, we
may use this to ‘start’ and ‘stop’ walkers as they go through certain sets. To that end, we
introduce the following definitions. For continuity of literature, we use the same notation as
[DCLYY13].

Definition 6.2. Given sets Θ ¢ Θ′ ¢ VGε, and vertices a1, . . . , ak ∈ Θ, denote by

A(Θ; a1, . . . , ak → Θ′) ¢ VGε

the IDLA aggregate with the following initial condition: the set Θ is completely occupied, k
independent simple random walks are started at a1, . . . , ak, and the walkers are stopped upon
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exiting Θ′. Let

P (Θ; a1, . . . , ak → Θ′) ¢ ∂Θ′

be the final positions of those walkers among a1, . . . , ak, which are stopped before being ab-
sorbed into the aggregate. We write

A(Θ; a1, . . . , ak) := A(Θ; a1, . . . , ak → VGε),
when the walkers are not stopped, i.e., Θ′ = VGε.

In this notation, the Abelian property of IDLA is the following.

Lemma 6.3 (Section 4 [DF91]). For every Ã(h, ¸)-measurable choice of Θ ¢ Θ′ ¢ VGε and
a1, . . . , ak ¢ Θ, the conditional laws given (h, ¸) of

A(Θ; a1, . . . , ak) and A(A(Θ; a1, . . . , ak → Θ′);P (Θ; a1, . . . , ak → Θ′))

agree. That is, the IDLA aggregate has the same (conditional) distribution as any restarted,
stopped IDLA aggregate.

6.1. Good annuli. Let c0 = c0(Ä, µ) ∈ (0, 1/5) be a deterministic constant chosen so that

(6.1) C−1
0 log

(

1

c0

)

− 1 g 1

2
.

where C0 = C0(Ä, µ) is the constant from Lemma 2.16. This will be used in Lemma 6.9
below.

For z ∈ C, r > 0, and parameter C > 0, let Er(z) := Er(z;C) be the event that the
following is true:

(6.2) sup
v∈Ar,2r(z)

∫

Ar,2r(z)

(

log
1

|u− v| + 1

)

dµh(u) f C min
w∈Ar,2r(z)

µh(Bc0r(w)).

An annulus Ar,2r(z) for which Er(z) holds it said to be good. In this subsection we prove
that there are many good annuli in BÄ.

Lemma 6.4. There exists a constant C depending only on µ such that the following holds
with polynomially high probability as ¶ → 0. For each z ∈ (BÄ−3

√
¶ \ B10

√
¶) ∩ ¶

100
Z2 there is

at least one radius r ∈ [¶, ¶1/2] ∩ {7−n}n∈N for which Er(z) occurs, where Er(z) = Er(z;C)
is as in (6.2).

The argument is similar to [BRG22, Section 6.2]. We start by showing that for each z ∈ C

and r > 0, the event Er(z) occurs with high probability provided C > 0 is chosen to be large
(Lemma 6.5). We will then use the near-independence of the GFF across disjoint concentric
annuli (Lemma 6.6) to show that for each fixed z ∈ C, it holds with very high probability
when ¶ is small that there is at least one radius r ∈ [¶, ¶1/2] ∩ {7−n}n∈N for which Er(z)
occurs. Finally, we will take a union bound over all z ∈ BÄ−3

√
¶ \B10

√
¶ ∩ ¶

100
Z2.

Throughout this section, we use the fact, recalled in (2.4), that in B1 the µ-quantum cone
field h agrees in law with the whole-plane GFF plus −µ log | · | normalized so that its circle
average over B1 is 0. Also recall the notation for annuli from (1.9).

44



Lemma 6.5. For each p ∈ (0, 1), there exists C = C(p) > 0 such that the event Er(z) :=
Er(z;C) of (6.2) satisfies

P [Er(z)] g p, ∀r > 0,

∀z ∈ C such that Ar/3,3r(z) ¢ BÄ and dist(Ar/3,3r(z), {0}) g r/100.

Proof. Denote the left and right sides of the inequality in the event (6.2) by Lhr (z) and Rh
r (z)

respectively. We first show that it suffices to prove the lemma with h replaced by hC, i.e.,
the GFF without a log-singularity (µ = 0 in (2.4)). We then prove the lemma for hC.

Step 1: Reduction to hC.
Recall that h restricted to B1 agrees in law with hC − µ log | · | where hC is a whole-plane
GFF. So, we can couple hC and h so that h|B1 = hC|B1 − µ log | · |. Suppose the statement
of the lemma holds for hC with C1 > 0 in place of C.
Fix r > 0 and then z such that the annulus Ar/3,3r(z) lies at Euclidean distance at least

r/100 from the origin. Note that Er(z) depends only on h|Ar/3,3r(z). Thus, the log function

is bounded above and below in the region of dependence of Er(z). Hence, by Weyl scaling
(Fact 2.2), there is a constant A > 0 depending only on µ such that

(6.3)
Lhr (z)
Rh
r (z)

f A
LhCr (z)

RhC
r (z)

.

Thus,

LhCr (z)

RhC
r (z)

f C1 =⇒ Lhr (z)
Rh
r (z)

f C1A

and hence (6.2) occurs for C := A× C1 if it occurs for hC.

Step 2: Whole-plane GFF.
We use the fact that the law of hC is both scale and translation invariant modulo additive
constant (2.5). By the Weyl scaling property of the measure µh (Fact 2.2), the event Er(z) is
a.s. determined by h viewed modulo additive constant. From this and the LQG coordinate
change formula for µh, we infer that the probability of Er(z) does not depend on r or z.
Hence, it suffices to find C > 0 as in the lemma statement such that P[E1(0)] g p. This

however, follows immediately from the fact that
Lh
1 (0)

Rh
1 (0)

is a positive, finite random variable. □

The following lemma is a special case of [GM20, Lemma 3.1].

Lemma 6.6 ([GM20]). Fix 0 < s1 < s2 < 1. Let {rk}k∈N be a decreasing sequence of positive
numbers such that rk+1/rk f s1 for each k ∈ N and let {Erk}k∈N be events such that Erk
is a.s. determined by h|As1rk,s2rk

(0), viewed modulo additive constant, for each k ∈ N. For
K ∈ N, let N(K) be the number of k ∈ [1, K] ∩ Z for which Erk occurs. For each ³ > 0
there exists p = p(³, s1, s2) ∈ (0, 1) and C = C(³, s1, s2) > 0 (independent of the particular
choice of {rk} and {Erk}) such that if

(6.4) P [Erk ] g p, ∀k ∈ N,

then

(6.5) P [N(K) = 0] f Ce−³K , ∀K ∈ N.

We now prove the desired claim.
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Proof of Lemma 6.4. The event Er(z) depends only on the measure µh|Ar/3,3r(z) Moreover,

multiplying this measure by a constant does not change whether Er(z) occurs. Therefore,
Er(z) is a.s. determined by h|Ar/3,3r(z) viewed modulo additive constant.

We now apply Lemma 6.6 with K = +log7 ϵ−1/2,, the radii r1, . . . , rK ∈ [¶, ¶1/2]∩{7−n}n∈N,
the events Erk = Erk(z), and an appropriate universal constant choice of ³. We find that
there exist universal constants p ∈ (0, 1) and c > 0 such that if P[Er(z)] g p for each r > 0
and each z ∈ BÄ \B10r, then for all z ∈ BÄ \B10

√
¶,

(6.6) P
[

Er(z) occurs at least once for r ∈ [¶, ¶1/2] ∩ {7−n}n∈N
]

g 1−O¶(¶
3)

with a universal implicit constant in the O¶(·).
By Lemma 6.5, there exists C = C(µ) > 0 such that for this choice of C, one has P[Er(z)] g

p for each r > 0 and each z ∈ BÄ \B10r. Therefore, the estimate (6.6) holds for this choice of
C. We then conclude by means of a union bound over all z ∈ (BÄ−3

√
¶ \B10

√
¶) ∩ ¶

100
Z2. □

6.2. Harmonic measure estimates. Equipped with the prevalence of good annuli, we
are now ready to prove the following random walk estimate. Roughly, it states that with
probability bounded away from zero, random walk cannot travel through an annulus of
constant size without hitting at least a mesoscopic number of vertices. See Figure 6 for an
illustration.

Much stronger versions of this estimate have been proved on Zd [Law95, Lemma 11] and
the supercritical percolation cluster [DCLYY13, Lemma 5].

Lemma 6.7. There exists deterministic É = É(µ) > 0 so that for each s0 ∈ (0, 1), there exists
s1, s2 ∈ (0, 1) and a random Ã(h)-measurable δ > 0 such that with probability approaching
one as ε goes to zero, the following is true for all r ∈ [10εÉ, δ] and all sets Θ ¢ VGε such
that Θ ò BÄ/2 and Bs0 ¢ Θ with Θ as in (1.6).

Let a ∈ cl(Θ) and let S ¢ VGε(Θ+Br) be such that |S \Θ| < s1r
2´−

ε−1 where ´− is as in
Lemma 2.7. Let Ξ denote the trace of a random walk started at a and stopped upon exiting
VGε(Θ + Br). Then,

P[Ξ ∩ VGε(Θ + Br) \ (S ∪Θ) ̸= ∅|h, ¸] g s2.

A law of large numbers version of this estimate is Lemma 6.9 below and this will be used
to show that the IDLA cluster cannot develop long tentacles in Lemma 6.10.
The set Θ in Lemma 6.7 may be thought of as the current IDLA cluster and S as the

cluster after releasing an additional, small number of walkers (fewer than s1r
2´−

ε−1). The
lemma states that with (conditional) probability bounded from below by a constant, s2,
which is independent of r and ε, a random walk started at an arbitrary vertex in cl(Θ) will
be absorbed into the intermediate cluster (i.e., hit a vertex not in S ∪Θ) before exiting the
Br neighborhood of the initial cluster, VGε(Θ + Br). In the case when Θ is a large IDLA
cluster, the condition Bs0 ¢ Θ is satisfied for some small s0 ∈ (0, Ä) for all small ε due the
lower bound, Proposition 5.1 and the corresponding property for harmonic balls, Theorem
2.3.

To prove the divisible sandpile upper bound in Section 7, we require the following stronger
version of Lemma 6.7.

Lemma 6.8. There exists deterministic É = É(µ) > 0 so that for each s0 ∈ (0, 1), there exists
s1, s2 ∈ (0, 1) and a random Ã(h)-measurable δ > 0 such that with probability approaching
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Θ

Θ + Br

S \ Θ

Figure 6. An illustration of the statement in Lemma 6.7. The filled in cells
corresponding to vertices in the cluster Θ are shown in light blue and a neigh-
borhood, Θ+Br is outlined by a dashed black line. The set S \Θ is shown in
red. Random walk started at a vertex in cl(Θ) is unlikely to exit VGε(Θ+Br)
via paths which stay in S.

one as ε goes to zero, the following is true for all r ∈ [10εÉ, δ] and all sets Θ ¢ VGε such
that Θ ò BÄ/2 and Bs0 ¢ Θ with Θ as in (1.6).

For all A ¢ VGε(Θ + Br) \ Θ such that, for all z ∈ C, |A ∩ VGε(Br(z))| < s1r
2´−

ε−1,
where ´− is as in Lemma 2.7, we have

sup
a∈VGε(∂(Θ+Br/2))

P[Xa,ε exits VGε(Θ + Br) \Θ through A|h, ¸] f 1− s2,

where Xa,ε is simple random walk started at a ∈ VGε.
Proof of Lemma 6.7 assuming Lemma 6.8. By the strong Markov property and Lemma 2.8,
the trace of a random walk started at a ∈ cl(Θ) contains the trace of a random walk started
at some site b ∈ VGε(∂(Θ + Br/2)) with probability approaching one as ε → 0. Moreover,

if S ¢ VGε(Θ + Br) satisfies |S \ Θ| < s1r
2´−

ε−1 then A := S \ Θ satisfies |A| < s1r
2´−

ε−1.
Therefore, for all z ∈ C, |A ∩ VGε(Br(z))| < s1r

2´−

ε−1.
The previous three sentences imply, by Lemma 6.8 (under the conditions of the lemma)

that

P[Ξ ∩ VGε(Θ + Br) \ (S ∪Θ) = ∅|h, ¸] f 1− s2,

which implies Lemma 6.7. □

Proof of Lemma 6.8. Let É = É(µ) > 0 be as in Lemma 2.16. We may assume, by possibly
taking É smaller, that 2´−É f ³, where ´− and ³ are as in Lemmas 2.7 and 2.9. This will
be used in (6.16) below.
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Let Er(z) = Er(z;C) and C > 0 be the event and parameter from Lemma 6.4. By Lemma
6.4, it holds with polynomially high probability as ¶ → 0 that for each z ∈ (BÄ−3

√
¶ \B10

√
¶)∩

¶
100

Z2, there exists rz = rz(¶) ∈ [¶, ¶1/2] such that Erz(z) occurs. By Lemma 2.7, it also holds
with polynomially high probability as ¶ → 0 that

(6.7) µh (B¶(x)) g ¶´
−

, ∀x ∈ B1−¶.

By the Borel-Cantelli lemma, a.s. there exists a random δ
′ > 0 such that the preceding two

sentences hold for all dyadic ¶ < δ
′. We restrict to the event that the statements in Lemmas

2.9, 2.16, and 2.18 all hold, which happens with probability tending to 1 as ε → 0. (For
Lemma 2.9 we suppose that convergence holds for some countable family of polynomials
which are dense in the uniform topology in BÄ.) Our calculations below will require ε to
be small in a deterministic way, so we fix a small deterministic π (which we will determine
below) and an ε < π.

Step 1: Reduction to random walk in a good annulus.
We surround Θ by good annuli. By our assumptions on Θ, by possibly taking π smaller,
depending only on s0, we can arrange that

(6.8) (Θ + B20
√
¶) \ (Θ + B√

¶) ò BÄ \B10
√
¶, ∀¶ < π ' δ

′.

By (6.8) and the fact that rz ∈ [¶, ¶1/2], we obtain that for each ¶ < π ' δ
′ there exists

Z = Z(¶) ¢ (BÄ−¶ \B10
√
¶) ∩ ¶

100
Z2 for which

(6.9) (Θ + B4
√
¶) \ (Θ + B3

√
¶) ò

⋃

z∈Z
Brz/2(z) ò BÄ−10

√
¶

and

(6.10)
⋃

z∈Z
B3rz(z) ò (Θ + B2

√
¶)
c.

We now fix a dyadic ¶ ∈ (10εÉ,π ' δ
′) and let r ∈ [¶,

√
¶] < Ä/4. We continue with this

choice of r as the lemma statement follows once we choose δ =
√
π ' δ

′.
By (6.9) and the strong Markov property of simple random walk, it suffices to prove the

lemma with a replaced by b ∈ VGε(∂B(4/3)rz(z)) for z ∈ Z. We in fact prove the following

stronger statement: a simple random walk Xb,ε
t started at such b hits

E := VGε(Brz/4
(¸(b))) \ A

before exiting VGε(Brz/4
(¸(b))) with conditional probability given (h, ¸) bounded from below

by a constant. See Figure 7.

Step 2: Random walk in a good annulus.
Let Àrz be the first time that Xb,ε

t hits VGε(∂Brz/4
(¸(b))) and let

(6.11) V =

Àrz
∑

t=0

1{Xb,ε
t ∈ E} =

(

number of visits of E by Xb,ε before time Àrz
)

.

By the second moment method,

(6.12) P[V g 1|h, ¸] g (E[V |h, ¸])2
E[V 2|h, ¸] .
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In the next two steps we show that

(6.13) E[V |h, ¸] g ε−1C−1 × µh(Bc0rz(¸(b)))

and

(6.14) E[V 2|h, ¸] f Cε−2

(

sup
v∈Arz,2rz (z)

∫

Arz,2rz (z)

(

log
1

|u− v| + 1

)

dµh(u)

)2

,

for some large deterministic constant C = C(Ä, µ) > 0. Combining (6.13) and (6.14) together
with the definition of the event Er(z) in (6.2), leads to a constant order lower bound in (6.12).
This completes the proof by the definition (6.11) of V .

Step 3: Lower bound on the numerator.
We lower bound the numerator:

E[V |h, ¸] =
∑

b′∈E
GrεBrz/4(¸(b))

(b, b′) (definition of V and GrεBrz (¸(b))
)

g
∑

b′∈VGε(Bc0rz (¸(b)))∩E
GrεBrz/4(¸(b))

(b, b′) (where c0 is as in (6.1))

g
(

inf
b′∈VGε(Bc0rz (¸(b)))

GrεBrz/4(¸(b))
(b, b′)

)

(|VGε(Bc0rz(¸(b))| − |A ∩ VGε(Brz(¸(b))|)

g
(

inf
b′∈VGε(Bc0rz (¸(b)))

GrεBrz/4(¸(b))
(b, b′)

)

ε−1(µh(Bc0rz(¸(b)))− s1r
2´− − ε³)(6.15)

(by the assumption on A and Lemma 2.9).

We claim that for a sufficiently small, deterministic choice of π > 0 and s1 > 0,

(6.16) µh(Bc0rz(¸(b)))− s1r
2´− − ε³ g C ′µh(Bc0rz(¸(b)))

for some deterministic constant C ′ = C ′(Ä, µ). Indeed, for a deterministic constant c = c(Ä, µ)
which will change from line to line we have

µh(Bc0rz(¸(b)))− s1r
2´− − ε³

=
1

2
µh(Bc0rz(¸(b))) +

1

2
µh(Bc0rz(¸(b)))− s1r

2´− − ε³

g 1

2
µh(Bc0rz(¸(b))) + c× r´

−

z − s1r
2´− − ε³ (by Lemma 2.7)

g 1

2
µh(Bc0rz(¸(b))) + c× ¶´

− − s1 × ¶´
− − ε³ (since rz > ¶ and r <

√
¶)

g 1

2
µh(Bc0rz(¸(b))) + c× ¶´

− − ε³ (for small s1 < c)

g 1

2
µh(Bc0rz(¸(b))) + c× εÉ´

− − ε2´
−É (¶ > εÉ and ³ g 2´−É by assumption)

g 1

2
µh(Bc0rz(¸(b))) (for π small depending only on c).
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Therefore,

E[V |h, ¸]

g
(

inf
b′∈VGε(Bc0rz (¸(b)))

GrεBrz/4(¸(b))
(b, b′)

)

ε−1(µh(Bc0rz(¸(b)))− s1r
2´− − ε³) (by (6.15))

g 1

2
ε−1(µh(Bc0rz(¸(b)))− s1r

2´− − ε³) (by (6.1) and Lemma 2.16)

g 1

2
ε−1 × C ′µh(Bc0rz(¸(b))) (by (6.16)),

which implies (6.13) with C−1 := C ′/2.

Step 4: Upper bound on the denominator
We finally upper bound the denominator in (6.12); here the deterministic constant C =
C(Ä, µ) > 0 also changes from line to-line:

E[V 2|h, ¸]
f E[À2

rz
|h, ¸]

f Cε−2

(

sup
v∈Brz/4

(¸(b))

∫

Brz/4+ε³ (¸(b))

(

log
1

|u− v| + 1

)

dµh(u)

)2

(by Lemma 2.18)

f Cε−2

(

sup
v∈Arz,2rz (z)

∫

Arz,2rz (z)

(

log
1

|u− v| + 1

)

dµh(u)

)2

(since rz g ¶ g 10ε³ and b ∈ VGε(∂B(4/3)rz(z)).

This shows (6.14). □

We next show that with exponentially high probability in r, if one starts k f r2´
−

ε−1

walkers somewhere in the closure of the current cluster cl(Θ), then the number of walkers
which are absorbed before exiting VGε(Θ+Br) is at least a constant fraction of k. The proof
uses the constant-order lower bound given by Lemma 6.7 together with a concentration
inequality for negative binomials. The statement is a modification of [DCLYY13, Lemma
6]. Note that [DCLYY13, Lemma 6] is much stronger than what we have below, but that
stronger statement is not needed to complete the proof of the IDLA upper bound. For the
statement, we recall the definition of the modified IDLA aggregate from Definition 6.2.

Lemma 6.9. There exists deterministic É = É(µ) > 0 and s3 > 0 so that for each s0 ∈ (0, 1),
there exists s4, s5 ∈ (0, 1) and a random Ã(h)-measurable δ > 0 such that with probability
approaching one as ε goes to zero, the following holds for r ∈ [10εÉ, δ] for all sets Θ ¢ VGε
such that Θ ò BÄ/2 and Bs0 ¢ Θ with Θ as in (1.6): for each k f s5r

2´−

ε−1 and a1, . . . , ak ∈
cl(Θ),

P[|A(Θ; a1, . . . , ak → VGε(Θ + Br)) \Θ| f s4k|h, ¸] f exp(−s3k).
Proof. For s0 ∈ (0, 1), let É, s1, s2 be as in Lemma 6.7 and fix ε and r g 10εÉ for which the
event of Lemma 6.7 occurs. Set s5 = min( s1

s−1
2 +C

, s1) for a deterministic constant C > 0 from

(6.17) below. Let k f s5r
2´−

ε−1 and a1, . . . , ak ∈ Θ be given.
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Θ + Br/2
Arz,2rz(z)

Θ + Br

Brz/4(η(b))

A

η(b)

z

η(a)

Figure 7. Illustration of part of the proof of Lemma 6.7; only parts of the
sets are shown and aspect ratios are not drawn to scale. The set Θ + Br/2 is

shown in blue with a solid black boundary, the boundary of Θ+Br is shown as
a dashed black line. A good annulus Arz ,2rz(z) is shown in gray, an interior ball
is outlined in black, and the set A is shown in light-red. A random walk started
at a must hit VGε(B(4/3)rz(z)) for some z ∈ Z at a point b ∈ VGε(∂B(4/3)rz(z)).
The proof then reduces to showing a random walk started at b with probability
bounded from below must exit A before exiting VGε(Brz/4(b)).

Start with the set Θ completely occupied and consider an infinite number of walkers each
started at an arbitrary site in cl(Θ) and stopped upon exiting VGε(Θ + Br). Let N (k1)
denote the number of such walkers needed until k1 walkers have been absorbed into the
cluster. That is, N (k1) counts the number of walkers needed until the aggregate has an
additional k1 walkers in VGε(Θ + Br) \Θ.

We seek to iteratively apply Lemma 6.7. Define S0 = Θ and for each k′ ∈ {1, . . . , k1}
condition on the first (k′ − 1) walkers to determine the current aggregate Sk′−1. We then
apply Lemma 6.7 with S := Sk′−1 to the k′-th walker under the conditional law given the
first (k′ − 1) walkers. By the Markov property of IDLA this implies that

N (k1) f NegBinom(k1, s2), ∀k1 f s1r
2´−

ε−1

where NegBinom(k1, s2) denotes a random variable drawn from a negative binomial dis-
tribution with n = k1 and p = s2, sampled independently from (h, ¸). Therefore, by a
concentration inequality for negative binomial random variables, for each k1 f s1r

2´−

ε−1,

(6.17) P[N (k1) f (s−1
2 + C)k1|h, ¸] f exp(−ck1), for deterministic constants C, c > 0.

Thus, if we choose k1 = (s−1
2 + C)−1 × k, we have by our choice of s5 and (6.17),

P
[

N ((s−1
2 + C)−1 × k) f k|h, ¸

]

f exp(−ck),
where the deterministic constant c has changed compared to (6.17). By definition of N , this
implies the desired conclusion with s3 = c and s4 = (s−1

2 + C)−1. □

6.3. Iteration. We now prove a general bound on how far walkers can spread by iterating
Lemma 6.9. The iteration uses the Abelian property of IDLA and involves starting and
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stopping walkers which reach a certain distance of the current cluster. The proof is similar
to that of [DCLYY13, Theorem 2].

Lemma 6.10. There exists a deterministic exponent ´ = ´(Ä, µ) > 0 and a constant C =
C(Ä, µ) > 0 so that for each s0 ∈ (0, 1) there exists a Ã(h)-measurable random variable δ0

such that with probability approaching one as ε → 0, for each Θ ò BÄ/2 with Bs0 ¢ Θ and
each ¶0 < δ0 the following is true. The IDLA cluster started with Θ completely occupied and
j f +¶0ε−1, walkers at sites {a1, . . . , aj} ¢ cl(Θ) is contained in a C¶´0 neighborhood of Θ:

A(Θ; a1, . . . , aj) ¢ VGε(B+

C¶´0
(Θ)) ¢ VGε(BÄ).

Proof. For s0 ∈ (0, 1), let the parameters É, s3, s4, s5 and random variable δ be as in Lemma
6.9. We truncate on the event of Lemma 6.9 and fix an ε. Below we use the fact that
Lemma 6.9 is stated for all choices of Θ satisfying the hypotheses and IDLA is a Markov
process, Lemma 6.3. Throughout the proof we introduce several other events which occur
with probability approaching one as ε→ 0 and will truncate on those events.

Let ´− be as in Lemma 2.7. Let δ0 = δ0(δ, Ä, µ) < δ be such that (δ0s
−1
5 )1/2´

− f δ, so
that Lemma 6.9 holds with r ∈ (10εÉ, (δ0s

−1
5 )1/2´

−

). At the end of the proof, we reveal, in a
deterministic fashion, how small δ0 must be so that the final cluster is contained in VGε(BÄ).
Fix ¶0 < δ0.

Fix É0 ∈ (0, É) which we will choose in (6.22) below. Set Θ0 = Θ, P0 = {a1, . . . , aj}, and
for k g 1, inductively define (using the notation of Definition 6.2)











Current radius: rk := max
(

(|Pk−1| × ε× s−1
5 )1/2´

−

, 10εÉ0

)

Current cluster: Θk := A(Θk−1;Pk−1 → VGε(Θk−1 +Brk))

Stopped walkers: Pk := P (Θk−1;Pk−1 → VGε(Θk−1 +Brk)).

Define the stopping time

(6.18) Äε,3 = min{k g 0 : Θk ̸¢ BÄ}.
In the analysis below, we will truncate on a high probability event which ensures that
Äε,3 = ∞.

Denote the first time there are fewer than ε−É0 stopped walkers by

(6.19) Äε,2 = min
(

min{k g 0 : |Pk| f ε−É0}, Äε,3
)

and the first time (before Äε,2) that the current radius is less than 10εÉ0 by

(6.20) Äε,1 = min (min{k g 0 : rk f 10εÉ0}, Äε,2) .
By the Abelian property of IDLA, Lemma 6.3, the distribution of the final IDLA cluster
A(Θ; a1, . . . , a+¶0ε−1,) coincides with that of Θ∞. Thus, it suffices to iteratively control how
far the clusters Θk spread. In the first step, we control how far the aggregate spreads until
time Äε,1, in the second, until time Äε,2. In the third step, we control how far ε−É0 walkers
can spread. We show in the final step, after making δ0 smaller in a deterministic way, that
in fact we have Äε,2 < Äε,3 and Äε,3 = ∞.

Before proceeding, we note that by Lemma 2.8 (after truncating on another high proba-
bility event), for each · > 0,

(6.21) diam(Hε
a) f ε2/(2+µ)

2−· ∀a ∈ VGε(BÄ).
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Choose · in a way which depends only on µ and then choose É0 small enough so that

(6.22) ε−É0
0 × ε

2/(2+µ)2−·
0 f ε

É0/2
0 , ∀ε0 ∈ (0, 1).

Step 1: t < Äε,1.
All of our parameter choices so far have been so that we can iteratively apply Lemma 6.9
for each k ∈ {1, . . . , Äε,1 − 1} with Θ = Θk, r = rk, and k = |Pk−1| g ε−É0 .
By (6.21) and (6.22) and the fact rk g 10εÉ0 , there is a ‘shell’ of additional vertices in Θk

that are not in Θk−1; that is, ∂Θk ∪ Θk−1 is not connected. Therefore, at least one walker
is absorbed in each step and hence we have Äε,1 f Äε,2 f ε−1. Thus, by Lemma 6.9 (with
s3 > 0 and s4 ∈ (0, 1) from there) and a union bound over all k = 1, . . . , +ε−1,,
(6.23) P [∃k ∈ {1, . . . , Äε,1 − 1} : |Pk| g (1− s4)|Pk−1||h, ¸] f ε−1 exp(−s3ε−É0).

We henceforth truncate on the event in (6.23), which happens with probability tending to 1
as ε→ 0 to see that

(6.24) |Pk| f (1− s4)|Pk−1|, ∀k ∈ {1, . . . , Äε,1 − 1}.
This implies that |Pk| f (1−s4)k|P0| f (1−s4)k¶0ε−1 for each k f Äε,1−1. By the definition
of rk, this, in turn, implies that

(6.25) rk f (¶0 × (1− s4)
k−1 × s−1

5 )1/2´
−

, ∀k ∈ {1, . . . , Äε,1 − 1}.
Therefore,

(6.26)

Äε,1−1
∑

k=1

rk f
Äε,1−1
∑

k=1

(¶0 × (1− s4)
k−1 × s−1

5 )1/2´
− f C × ¶

1/2´−

0 × 1

1− (1− s4)1/2´
−
,

where C = C(s5) > 0 is deterministic.

Step 2: k ∈ [Äε,1, Äε,2).
In this step we again apply Lemma 6.9 for each k ∈ {Äε,1, . . . , Äε,2} with the same choice
of parameters as in Step 1 except now the radius is fixed rk = 10εÉ0 . Note that rk g
(|Pk−1|×ε×s−1

5 )1/2´
−

by definition and hence the conditions of Lemma 6.9 are satisfied. We
show that

(6.27) Äε,2 f C log ε−1 + Äε,1, for deterministic C = C(s4, µ) > 0

and hence

(6.28)

Äε,2
∑

k=Äε,1

rk f C × εÉ0 × log ε−1, for deterministic C = C(s4, µ) > 0.

To see (6.27), we first use exactly the same argument as in Step 1 (and truncate on another
event) to get that

|Pk| f (1− s4)|Pk−1|, ∀k ∈ {Äε,1, . . . , Äε,2}.
Hence, by the definition (6.19) of Äε,2,

ε−É0 f |PÄε,2−1| f (1− s4)
Äε,2−Äε,1−1ε−1

which implies (6.27) upon re-arranging.
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Step 3: k g Äε,2.
It remains to control how far the remaining ε−É0 walkers can go before being absorbed. We
do this crudely by appealing to the upper bound on the Euclidean diameter of cells in the
mated-CRT map: by (6.21) and (6.22) we have that ε−É0 walkers cannot go farther than
Euclidean distance εÉ0/2 before being absorbed into the cluster,

(6.29) dist(Θ∞,ΘÄε,2) < εÉ0/2,

since each walker occupies at least one cell.

Step 4: Reduce ε and δ0 and conclude.
By combining Steps 1-3, the final aggregate Θ∞ is contained in Θ + BR, where

R = C × ¶
1/2´−

0 (by (6.26))

+ C × εÉ × log ε−1 (by (6.27))

+ εÉ0/2 (by (6.29))

for deterministic constants C = C(s4, s5, ´
−, µ). The first term in R dominates for small

ε. This completes the proof after we decrease δ0 in a deterministic fashion and then ε
depending on ¶0 so that R < Ä/4 and hence the time Äε,3 of (6.18) is infinite, as Θ ò BÄ/2

by assumption. □

6.4. Proof of upper bound. We now prove the upper bound by combining the asymptot-
ically correct lower bound together with the general bound of the previous subsection. The
idea is the following. By the Abelian property, we may construct the IDLA cluster by first
letting walkers evolve until they exit VGε(Λt), where Λt is as in Theorem 2.3. By the lower
bound, Proposition 5.1, most of the walkers will have been absorbed into the aggregate at
this point. In fact, as the LQG measure of the boundary of harmonic balls is zero (Theorem
2.3), the number of remaining walkers can be made arbitrarily small. Thus, we may apply
Lemma 6.10 to see that the remaining walkers do not spread too far.

Proof of Proposition 6.1. Let the parameters ´, C be as in Lemma 6.10. Let ¶ ∈ (0, Ä) be
given. Truncate on the event that t < T1 and let Λt be the harmonic ball satisfying the
conditions in Theorem 2.3. Since Λt is open and contains the origin, we have that there
exists a random Ã(h)-measurable s0 ∈ (0, 1) so that Bs0 ò Λt. Recall the notation B±

¶ from
(1.5). Since µh(∂Λt) = 0 (Theorem 2.3),

(6.30) lim
¶³0

(

µh(B
+
¶ (Λt))− µh(B

−
¶ (Λt))

)

= 0.

Denote by

Aε(+tε−1, → VGε(Λt)) := A(∅; 0, . . . , 0 → VGε(Λt))
the IDLA aggregate formed by +tε−1, walkers started at the origin stopped upon exiting
VGε(Λt) and let Pε(+tε−1, → VGε(Λt)) denote the positions of the stopped (not absorbed)
walkers on the boundary of VGε(Λt). We have by Proposition 5.1 that for each ¶0 ∈ (0, Ä),

(6.31) B−
¶0
(Λt) ¢ Aε(+tε−1, → VGε(Λt))

except on an event of probability tending to 0 as ε→ 0.
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Choose, as in the statement of Lemma 6.10, a Ã(h)-measurable δ0 depending on s0. As-
sume that Cδ0

´ < ¶. By (6.30), we may choose a ¶0 < δ0 sufficiently small so that

(6.32) µh
(

B+
¶0
(Λt) \B−

¶0
(Λt)

)

f δ0/2.

The aggregate lower bound (6.31) implies

|Pε(+tε−1, → VGε(Λt))| f tε−1 − |VGε(B−
¶0
(Λt))|

except on an event of probability tending to 0 as ε→ 0. Let ³ = ³(µ) > 0 be the parameter
from Lemma 2.9. Since by Theorem 2.3, µh(Λt) = t, we have by Lemma 2.9, except on an
event of probability tending to 0 as ε→ 0,

ε−1 (t− ε³) f |VGε(B+
¶0
(Λt))| f ε−1

(

µh(B
+
¶0
(Λt)) + ε³

)

and

|VGε(B−
¶0
(Λt))| g ε−1

(

µh(B
−
¶0
(Λt))− ε³

)

.

The previous three indented equations imply that except on an event of probability tending
to 0 as ε→ 0,

|Pε(+tε−1, → VGε(Λt))| f ε−1
(

µh(B
+
¶0
(Λt) \B−

¶0
(Λt)) + 3ε³

)

.

This implies by (6.32) that

(6.33) |Pε(+tε−1, → VGε(Λt))| f δ0ε
−1

except on an event of probability tending to 0 as ε→ 0.
By the Abelian property of IDLA (Lemma 6.3), the distribution of the final aggregate

coincides with that created after releasing the paused walkers:

Aε(+tε−1,) d
= A(Aε(+tε−1, → VGε(Λt));Pε(+tε−1, → VGε(Λt))),

where the equality in distribution is conditional on h and ¸. Since IDLA is a Markov process
and Λt ò BÄ/2 (t < T1), we may apply Lemma 6.10 with Θ = Aε(+tε−1, → VGε(Λt)) and
at most δ0ε

−1 walkers started at Pε(+tε−1, → VGε(Λt)) to see that except on an event of
probability approaching zero as ε→ 0,

Aε(+tε−1,) ¢ B+

Cδ0
´(Aε(+tε−1, → VGε(Λt)) ¢ B+

Cδ0
´(Λt).

This concludes the proof upon recalling ¶ > Cδ0
´. □

7. Divisible sandpile upper bound

We combine Lemma 6.7 together with ideas from [BRG22, Section 6.5] to prove an upper
bound on the divisible sandpile cluster. For the statement, recall the notation of the cluster
Dε from (4.2) and Dε from (1.6).

Proposition 7.1. Recall the time T1 from (4.7). For each ¶ ∈ (0, Ä) and t > 0, on the event
{t < T1}, it holds except on an event of probability tending to 0 as ε→ 0 that

Dε(tε
−1) ¢ B+

¶ (Λt),

where Λt is as in Theorem 2.3.
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Recall from (4.3) the least action principle for the divisible sandpile odometer,

vεt
degε

= min{w : VGε → [0,∞) : degε×∆εw + tε−1¶0 f 1},

and that

(7.1)
Λεt = {a ∈ VGε : vεt > 0}

Dε(tε
−1) = cl(Λεt).

In this section we mainly work with the stopped odometer, defined by

(7.2) uεt = min{w : VGε(BÄ) → [0,∞) : ∆εw + degε(0)−1tε−1¶0 f (degε)−1},
which, as discussed in the beginning of Section 4, relates to wεt via u

ε
t = wεt+(tε−1)×grεBÄ

(0, ·).
The reason for doing so is that the results of Section 4, a priori, apply just to the stopped
odometer. However, as we will show, for small t, the odometer

vεt
degε

agrees with the stopped

odometer. In particular, it is straightforward to see that

(7.3) uεt = 0 on cl(VGε(∂BÄ)) =⇒ uεt =
vεt
degε

in VGε(cl(BÄ)).

Therefore, the upper bound for the divisible sandpile cluster will follow from (7.1) once we
show that uεt is zero near the boundary of Λt for t < T1.
Our strategy for the upper bound is similar to the argument in [BRG22, Section 6], but

with some simplifications. We start by establishing harmonic comparison lemmas in Section
7.1 which allow us to compare the mass of the cluster to the size of the stopped odometer.
We then use these lemmas together with an iteration to show the upper bound in Section 7.2
as follows. By convergence of the stopped odometer away from the origin, we have that uεt is
small near VGε(∂Λt). This implies that the amount of mass in the shell VGε(Λt+Br)\VGε(Λt)
is small. Hence, by Lemma 6.8 the probability that a random walk exits the cluster before
exiting this shell is bounded from below. By comparison, this implies the size of the odometer
must be small on VGε(∂(Λt + Br)). Iterate this argument with shells of decreasing size to
see that the odometer must be zero outside of VGε(Λt +BR) for some small R.

This is simpler than [BRG22, Section 6] as we do not have to redo [BRG22, Sections 6.1-
6.3] since we have already proved a harmonic measure estimate in Lemma 6.7. In particular,
we do not consider ‘very good annuli’ explicitly. Further, since we have an a priori strong
upper bound on the size of the odometer on VGε(∂Λt) due to its convergence (Theorem 4.1),
the inductive counterpart of [BRG22, Section 6.5] is shorter.

7.1. Harmonic comparison. In this subsection, we prove discrete analogues of the har-
monic comparison lemmas for the Hele-Shaw odometer from [BRG22, Section 6.4]. First
note that since ∆εuεt = ∆εwεt + (tε−1) × ∆ε grεBÄ

, by combining (2.30) and Lemma 4.3 we
have that

(7.4)

0 f ∆εuεt + degε(0)−1tε−1¶0 f (degε)−1 on VGε(BÄ)

uεt g 0 on VGε(BÄ)

∆εuεt + degε(0)−1tε−1¶0 = (degε)−1 on Λεt

uεt = 0 on VGε(BÄ) \ Λεt .
We use this to show the following.
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Lemma 7.2. There exists deterministic constants C = C(Ä, µ) > 0, c0 = c0(Ä, µ) ∈ (0, 1)
such that with polynomially high probability as ε → 0, the following holds. For all t > 0,
all connected sets Θ ¢ VGε(BÄ) containing the origin, and all s > 0, z ∈ C such that
VGε(Bs(z)) ¢ VGε(BÄ) \Θ,

|VGε(Bc0s(z)) ∩ Λεt | f C × sup
∂Θ

uεt .

Proof. Truncate on the events of Lemmas 2.16 and 2.8. By (7.4) we have that ∆εuεt g 0
away from the origin and ∆εuεt = (degε)−1 on Λεt \ {0}. Hence, by the maximum principle,
as uεt = 0 on ∂BÄ and u

ε
t is subharmonic away from the origin,

(7.5) sup
Λε
t∩VGε(Bs(z))

uεt f sup
∂Θ

uεt .

We will prove the desired inequality by comparing uεt to the following function

fε(·) =
∑

b∈VGε(Bs(z))∩Λε
t\VGε(∂Bs(z))

grεBs(z)(·, b)

which, for the same reasoning leading to (2.28), satisfies
{

∆εfε(·) = − degε(·)−11{· ∈ Λεt} in VGε(Bs(z)) \ VGε(∂Bs(z))

fε(·) = 0 otherwise.

We then compute:

sup
VGε(Bs(z))

fε f sup
VGε(Bs(z))

(uεt + fε) (uεt g 0)

f sup
VGε(∂Bs(z))

(uεt + fε) (uεt + fε is subharmonic)

= sup
VGε(∂Bs(z))

uεt (fε = 0 on VGε(∂Bs(z)))

f sup
∂Θ

uεt (by (7.5)).

Let c0 be as in (6.1) so that by Lemma 2.16

fε g
∑

b∈VGε(Bc0s(z))∩Λε
t

grεBs(z)(·, b) g
1

2
|VGε(Bc0s(z)) ∩ Λεt | .

Combining the previous two indented equations completes the proof. □

Lemma 7.3. The following holds for all t > 0 and all sets B ¢ VGε(BÄ) \ {0}:

uεt(b) f
(

sup
∂B

uεt

)

P[Xb,ε exits B before hitting B \ Λεt |h, ¸], ∀b ∈ B,

where Xb,ε is a simple random walk on Gε started from the vertex b ∈ VGε.
Proof. The function

f(b) :=

(

sup
∂B

uεt

)

P[Xb,ε exits B before hitting B \ Λεt |h, ¸]
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satisfies










∆εf = 0 on B ∩ Λεt
f = 0 on B ∩ (Λεt)

c

f = (sup∂B u
ε
t) on Bc ∩ Λεt

Therefore, by (7.4), we have










∆ε(uεt − f) g 0 on B ∩ Λεt
(uεt − f) = 0 on B ∩ (Λεt)

c

(uεt − f) f 0 on Bc ∩ Λεt ,

which implies the claim by the maximum principle and the fact uεt = 0 on (Λεt)
c. □

7.2. Iteration. The proof of Proposition 7.1 proceeds by a similar iteration to the proof of
Proposition 6.1 but with the odometer replacing the role of the random walks. We show
that the maximum of the odometer decreases across shells of increasing radii. Eventually
the odometer will be so small the upper bound we derive from the following estimate will
suffice.

Lemma 7.4 (Lemma 4.2 [LP09]). The following is true for all t > 0 with polynomially high
probability as ε→ 0. For every point a ∈ Dε(tε

−1) \ {0} there is a path a = a0 ∼ a1 ∼ · · · ∼
am = 0 in Dε(tε

−1) with

uεt(ai+1) g uεt(ai) + log(ε−1)−2.

Proof. By [GMS19b, Lemma 2.6] it holds with polynomially high probability as ε→ 0 that

(7.6) max
a∈VGε(BÄ)

degε(a) f (log ε−1)2.

Let a0 = a. Inductively, assume that i g 0 and ai ∈ Dε(tε
−1) has been defined. If ai = {0},

set m = i and conclude the induction. If ai ̸= 0, let ai+1 be a neighbor of ai maximizing
uεt(ai+1). Then ai+1 ∈ Λεt . Indeed, either ai ∈ Λεt and hence ai+1 ∈ Λεt or i = 0 and ai is on
the boundary of Λεt . In the latter case, by definition there is some site in Λεt neighboring ai
with a strictly positive odometer. Since ∆εuεt = (degε)−1 on Λεt , (7.4), we have that

uεt(ai+1) g
1

degε(ai)

∑

y∼ai

uεt(y) (choice of ai+1)

= uεt(ai) + ∆εuεt(ai) (definition of ∆ε)

= uεt(ai) + degε(ai)
−1

g uεt(ai) + log(ε−1)−2 (by (7.6)).

As the number of vertices in Dε(tε
−1) is finite and contains the origin, Lemma 4.5, there

must be a finite i for which ai = 0. □

Proof of Proposition 7.1. Let ¶ ∈ (0, Ä) be given. Truncate on the event that t < T1 and
let Λt be the harmonic ball satisfying the conditions in Theorem 2.3. Since Λt is open and
contains the origin, we have that there exists a random Ã(h)-measurable s0 ∈ (0, 1) so that
Bs0 ò Λt.
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Θk−1

Θ + Br

Θ

A

Θk

Br(z
′)

Figure 8. Illustration of the objects appearing in Step 1 of the proof of
Proposition 7.1. Part of the current cluster Θk−1 is shown in light blue and
parts of the boundaries of the intermediate clusters Θ and Θ +Br, defined in
(7.16) and the next cluster Θk are outlined by dashed lines. The ball Br(z

′) is
shown in light gray and part of the set A, defined in (7.16), is shown in red.

For this s0, let the parameters É, s1, s2, δ be as in Lemma 6.8. Let ´− be as in Lemma 2.7
and

(7.7) s6 := s−1
1 c0

−2´−

42´
− × C

where C and c0 are the deterministic constants from Lemma 7.2. Let δ0 = δ0(δ, Ä, µ) < δ

be such that (δ0s6)
1/2´− f δ, so that Lemma 6.8 holds with r ∈ (10εÉ, (δ0s6)

1/2´−

). At
the end of the proof we state how small δ0 must be so that the final cluster is contained in
VGε(BÄ). Fix ¶0 < δ0 and decrease δ0 so that 2 × C1 × δ0

´ < ¶ for a random constant C1

to be determined below.
By the uniform convergence of the scaled version uεt of u

ε
t away from the origin (Theorem

4.1 and Lemma 3.3) and the fact that Λt a.s. contains a neighborhood of 0, on the event
{t < T1},
(7.8) sup

VGε(∂Λt)

uεt < ¶0ε
−1,

except on an event of probability tending to 0 as ε→ 0. Fix É0 ∈ (0, É) which we will choose
in (7.13) below. Set Θ0 = VGε(Λt), r0 = ¶0, O0 = max∂Θ0 u

ε
t and for k g 1, inductively

define

(7.9)











Current cluster: Θk := VGε(Θk−1 +Brk−1
)

Current radius: rk := max
(

(|Ok−1| × ε× s6)
1/2´−

, 40c0
−1εÉ0

)

Current maximum odometer: Ok := max∂Θk
uεt .

Denote the first time the odometer is smaller than ε−É0 by

(7.10) Äε,2 = min{k g 0 : |Ok| f ε−É0}
and the first time (before Äε,2) that the current radius is less than 40c0

−1εÉ0 by

(7.11) Äε,1 = min
(

min{k g 0 : rk f 40c0
−1εÉ0}, Äε,2

)

.
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By Lemma 2.8, for each · > 0,

(7.12) diam(Hε
a) f ε2/(2+µ)

2−· ∀a ∈ VGε(BÄ),

w.p. tending to 1 as ε→ 0. Choose · in a way which depends only on µ and then choose É0

small enough so that

(7.13) ε−É0
0 × ε

2/(2+µ)2−·
0 f ε

É0/2
0 , ∀ε0 ∈ (0, 1).

Step 1: k < Äε,1.
We first show that for each t ∈ {1, . . . , Äε,1 − 1},
(7.14) Ok f (1− s2)Ok−1,

except on an event of probability tending to 0 as ε → 0. By Lemma 7.2, for all z ∈ C and
s > 0 such that Bs(z) ¢ BÄ \Θk−1:

(7.15) |VGε(Bc0s(z)) ∩ Λεt | f C × sup
∂Θk−1

uεt ,

where c0 is as in Lemma 7.2, except on an event of probability tending to 0 as ε → 0. As
we justify just below, this implies we can apply Lemma 6.8 with parameters

(7.16)

r = c0rk/4

Θ = VGε(Θk−1 +Brk/4)

A = Λεt ∩ {VGε(Θ + Br) \Θ}.
See Figure 8 for an illustration of these sets. Indeed, we have that A ¢ VGε(Θ + Br) \ Θ
and, by (7.15), for z ∈ C:

|A ∩ VGε(Br(z))| = |A ∩ VGε(Bc0rk/4(z))|
f |Λεt ∩ VGε(Bc0rk/4(z

′))|
(for some z′ ∈ C s.t. Brk/4(z

′) ¢ BÄ \Θk−1 by definition of A (7.16))

f C × sup
∂Θk−1

uεt (by (7.15))

= C ×Ok−1 (definition of Ok−1 (7.9))

= r2´
−

k × ε−1 × s−1
6 × C (definition of rk (7.9))

= s1r
2´−

ε−1 (definition of r and s6 (7.16) and (7.7)).

Thus, as r g 10εÉ the hypotheses of Lemma 6.8 are satisfied and we may apply it to get
(7.17)

sup
a∈VGε(∂(Θk−1+Brk/4+c0rk/8))

P[Xa,ε exits VGε(Θk−1 +Brk/4+c0rk/4) \ VGε(Θk−1 +Brk/4))

before exiting A|h, ¸] f (1− s2)

except on an event of probability tending to 0 as ε→ 0. Next, by Lemma 7.3 applied to the
set

B := VGε(Θk−1 +Brk/4+c0rk/4) \ VGε(Θk−1 +Brk/4)

together with the maximum principle for uεt (u
ε
t = 0 on VGε(∂BÄ)),

uεt(b) f Ok−1 × P[Xb,ε exits B before exiting A|h, ¸], ∀b ∈ B.
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Another application of the maximum principle shows

Ok f sup
b∈VGε(∂(Θk−1+Brk/4+c0rk/8))

uεt(b).

The previous two indented equations together with (7.17) imply (7.14).
We now use (7.14), the definition of rk, and the initial bound given by (7.8) to see that

(7.18) rk f (¶0 × (1− s2)
k × s6)

1/2´−

, ∀k ∈ {1, . . . , Äε,1 − 1}
and consequently,

(7.19)

Äε,1−1
∑

k=0

rk f
Äε,1−1
∑

k=0

(¶0 × (1− s2)
k × s6)

1/2´− f C × ¶
1/2´−

0 × 1

1− (1− s2)1/2´
−
,

except on an event of probability tending to 0 as ε → 0 where C = C(s6) > 0 is a random
constant.

Step 2: t ∈ [Äε,1, Äε,2).
We again apply Lemma 6.8 for each k ∈ {Äε,1, . . . , Äε,2} with the same choice of parameters
as in Step 1. Reasoning similar to the proof of Step 1 shows that

Ok f (1− s2)Ok−1, ∀k ∈ {Äε,1, . . . , Äε,2}
except on an event of probability tending to 0 as ε → 0. Hence, by the definition (7.10) of
Äε,2,

ε−É0 f |OÄε,2−1| f C(1− s2)
Äε,2−Äε,1−1ε−1, for C = C(s6) > 0

which, upon re-arranging, implies

(7.20) Äε,2 f C log ε−1 + Äε,1, for random C = C(s2, s6) > 0

and hence

(7.21)

Äε,2
∑

k=Äε,1

rk f C × εÉ0 × log ε−1, for random C = C(s2, s6) > 0

except on an event of probability tending to 0 as ε→ 0.

Step 3: k g Äε,2.
We control the size of the odometer by Lemma 7.4 and the upper bound on the Euclidean
diameter of cells in the mated-CRT map. By Lemma 7.4, w.p. tending to 1 as ε→ 0, there is
a path of at most log(ε−1)2ε−É0 cells from the boundary of the support of uεt to ∂ΘÄε,2 along
which the odometer increases by ε−É0 . Thus, by the definition of Äε,2, (7.12), and (7.13)

(7.22) uεt(a) = 0 for a ∈ VGε(BÄ) such that dist(¸(a), ¸(ΘÄε,2)) g εÉ0/2 log(ε−1)2

except on an event of probability tending to 0 as ε→ 0.

Step 4: Reduce ε and δ0 and conclude.
Recall that we have set Θ0 = VGε(Λt), so that Θ0 is the union of the ε-mated-CRT map cells
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which intersect Λt. By combining Steps 1-3, (7.1), and (7.3), the divisible sandpile cluster,
Dε(tε

−1) is contained in Θ0 +BR, where

R = C1 × ¶
1/2´−

0 (by (7.19))

+ C1 × εÉ × log ε−1 (by (7.20))

+ εÉ0/2 log(ε−1)2 (by (7.22))

for random constants C1 = C1(s2, s6, ´
−, µ), provided that R < Ä/2, except on an event of

probability tending to 0 as ε→ 0. The first term in the definition of R dominates for small ε.
Decrease δ0 in a deterministic fashion and then decrease ε depending on ¶0 so that R < Ä/2
and hence uεt = vεt . This completes the proof after recalling that ¶ > 2× C1δ0

´. □

8. Convergence

We start by combining Propositions 5.1, 6.1, 4.2, and 7.1 into the following statement.

Proposition 8.1. Recall the time T1 from (4.7) and the notation B±
¶ from (1.5). For each

¶ ∈ (0, Ä) and t > 0, on the event {t < T1}, it holds except on an event of probability tending
to 0 as ε→ 0 that

B−
¶ (Λt) ¢ X ε(tε

−1) ¢ B+
¶ (Λt)

for X ∈ {A,D}, where Λt is as in Theorem 2.3, i.e., both the IDLA cluster and divisible
sandpile cluster converge.

To prove Theorems 1.4 and 1.6, we will combine the previous proposition with a scaling
argument to transfer from t ∈ (0, T1) to an arbitrary t > 0.

8.1. Proof of Theorems 1.4 and 1.6. We use the scale-invariance property of the µ-
quantum cone. Fix b > 0 and for Rb as in (2.6), let

hb := h(Rb·) +Q logRb −
1

µ
log b and ¸b = R−1

b ¸(b·).

By Lemma 2.6, (h, {Λt}t>0)
d
= (hb, {R−1

b Λbt}t>0). Hence, by the scale-invariance of the law
of ¸, viewed modulo time parametrization, and the independence of ¸ and (h, {Λt}t>0),

(8.1) (h, ¸, {Λt}t>0)
d
= (hb, ¸b, {R−1

b Λbt}t>0).

Hence, if we let

T b := sup{t > 0 : R−1
b Λbt ¢ BÄ/3}

then T b has the same law as T1, defined in (4.7). By Proposition 8.1, for each ¶ ∈ (0, Ä) and
t > 0, on the event {t < T1}, it holds except on an event of probability tending to 0 as ε→ 0
that

B−
¶ (Λt) ¢ X ε(tε

−1) ¢ B+
¶ (Λt),

for X ∈ {A,D}, i.e., both the IDLA cluster and divisible sandpile cluster converge. Let
X ∈ {A,D} be given. By (8.1), this implies that for each ¶ ∈ (0, Ä) and t > 0, on the event
{t < T b}, it holds except on an event of probability tending to 0 as ε→ 0 that

B−
¶ (R

−1
b Λbt) ¢ R−1

b X ε(btε
−1) ¢ B+

¶ (R
−1
b Λbt).
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By applying the above statement with t/b in place of t and ¶/Rb in place of ¶, then re-scaling
space by Rb, we get the following. For each ¶ ∈ (0, Ä) and t > 0, on the event {t < b× T b},
it holds except on an event of probability tending to 0 as ε→ 0 that

B−
¶ (Λt) ¢ X ε(tε

−1) ¢ B+
¶ (Λt).

As b > 0 was arbitrary, it remains to show that in probability,

(8.2) lim
b→∞

b× T b = ∞.

This, however, follows immediately from the fact that T1 is strictly positive and T1
d
= T b. □

Appendix A. Discrete obstacle problem

We provide the proofs which were omitted in Section 4.1 in the general setting of an
undirected, locally finite, and infinite graph G. We consider a finite, connected set of vertices
of G, denoted by V , which contain a marked vertex which we call the origin, denoted by 0.
The graph Laplacian, ∆, is defined by,

∆u(a) =
1

deg(a)

∑

b∼a
(u(b)− u(a)), for all vertices a of G

where the sum b ∼ a is over the vertices b which share an edge with a and deg(a) denotes
the number of such vertices. Observe that the analogue of the maximum principle, Lemma
2.13, and the following discrete divergence theorem are satisfied on G.

Lemma A.1. Let V G denote all the vertices of G and suppose that f, g : V G → R are
functions which are zero outside of a finite subset of V G. Then

(A.1)
∑

a∈V G
f(a)∆g(a) deg(a) =

∑

a∈V G
g(a)∆f(a) deg(a).

Proof. This is well known for general, undirected graphs — see for example [Tel06, Equation
(2.17)] or [BG20, Lemma 3.6]. □

Let r : V → (0,∞) denote a threshold function and ϕ : cl(V ) → (−∞, 0] the obstacle
which satisfies the following equation

(A.2)

{

∆ϕ = t¶0 on V

ϕ = 0 on ∂V

where t > 0. Consider the following discrete obstacle problem

(A.3) w :=min{u : cl(V ) → R : ∆u f r on V and u g ϕ}.
We will make use of the following function q : cl(V ) → R which is defined by the unique
solution to

(A.4)

{

∆q = r on V

q = 0 on ∂V .

We also denote the discrete cluster by

(A.5) Λ = {a ∈ cl(V ) : w(a) > ϕ(a)}.
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The results of Section 4.1 may be achieved from those of this section via the following
map, for ε > 0, Ä ∈ (0, 1),

t → ε−1t degε(0)−1

w → wεt
G→ Gε
V → VGε(BÄ) \ VGε(∂BÄ)

r → (degε)−1

ϕ→ −(tε−1)× grεBÄ
(0, ·)

q → −qεBÄ

Λ → Λεt .

Lemma 4.3 is a special case of the following.

Lemma A.2. We have that

max(q, ϕ) f w f 0

and ∆w f r on V .

Proof. Step 1: w f 0.
As 0 g ϕ and r > 0 the function which is identically 0 is admissible in (A.3).

Step 2: w g ϕ and ∆w f r.
Observe that in general, for two functions u1, u2 defined on the vertices of the graph G, we
have

∆min(u1, u2) f min(∆u1,∆u2),

where the minimum is pointwise. Indeed, write u = min(u1, u2) and suppose for a vertex a
that u(a) = u1(a). Then, by definition,

∆u(a) =
1

deg(a)

∑

b∼a
(u(b)− u1(a)) f

1

deg(a)

∑

b∼a
(u1(b)− u1(a)) = ∆u1(b).

Therefore, by compactness, the inequalities in the definition of (A.3) are also satisfied by w.

Step 3: w g q.
By Steps 1 and 2, since ϕ is zero on ∂V , we have that w is zero on ∂V . Thus, by (A.4) and
Step 2, (w − q) is superharmonic on V and zero on ∂V , and hence the claim follows by the
maximum principle. □

Lemma 4.4 is a special case of the following.

Lemma A.3. We have that ∆w = r on Λ and r g ∆w g 0 on V . Moreover, Λ is connected
and if t > r(0), contains the origin.

Proof. Step 1: ∆w = r on Λ.
Note that the inequality ∆w f r was established in Lemma A.2. Suppose for sake of
contradiction w > ϕ but ∆w(a) < r(a) for some a ∈ V . Let

¶ = min (r(a)−∆w(a), w(a)− ϕ(a)) > 0
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and consider the function u : V → R defined by,

u := w − ¶ × 1{· = a}.
We will see that the function u is admissible in (A.3), but strictly less than w, a contradiction.
By definition

∆u(b) f ∆w(b) ∀b ̸= a

and

∆u(a) =
1

deg(a)

∑

b∼a
(w(b)− u(a)) = ∆w(a) + ¶ f r(a).

Similarly,

u(b) = w(b) g ϕ(b) ∀b ̸= a

and

u(a) = w(a)− ¶ g w(a)− w(a) + ϕ(a) = ϕ(a),

completing the proof.

Step 2: ∆w g 0.
If a ∈ V ∩ Λc, we have

∆w(a) =
1

deg(a)

∑

b∼a
(w(b)− w(a))

=
1

deg(a)

∑

b∼a
(w(b)− ϕ(a)) (assumption on a)

g ∆ϕ(a) (Lemma A.2)

g 0 (since ϕ is subharmonic).

In light of Step 1, this completes the proof.

Step 3: Λ is connected.
Consider the function v = w − ϕ. If Λ is disconnected then there is a connected component
of Λ not containing the origin; call this component A. By Step 1 and (A.2), we have that











∆v = r on A

v > 0 on A

v = 0 on ∂A,

which contradicts the maximum principle.

Step 4: If t > r(0), Λ contains the origin.
We demonstrate the contrapositive. Observe that the argument in Step 3 shows that Λ is
either empty or contains the origin. If Λ is empty, then

t = ∆ϕ(0) (by (A.2))

= ∆w(0) (as Λ is empty)

f r(0) (by Lemma A.2),

completing the proof. □
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We conclude with a discrete conservation of mass lemma; this is a general version of
Lemma 4.5.

Lemma A.4. If r = deg−1, we have that |Λ| f t× deg(0). Moreover, if Λ ¢ int(V ), then
∑

a∈V
∆w(a) deg(a) = t× deg(0).

Proof. Let v = w − ϕ and extend v to a function on V G, the set of all vertices of G, by
defining it to be zero on cl(V )c. We compute,

−t× deg(0) + |Λ| f
∑

a∈V
∆v(a) deg(a) (by Lemma A.3, (A.2), and r = deg−1)

=
∑

a∈V G
1{a ∈ V }∆v(a) deg(a)

=
∑

a∈V G
v(a) deg(a)∆1{a ∈ V } (by Lemma A.1)

=
∑

a∈V
v(a) deg(a)∆1{a ∈ V } (v = 0 on V c)

= −
∑

a∈V
v(a) (# neighbors of a not in V )

f 0 (since v g 0 by Lemma A.2).

If Λ ¢ int(V ), then v = 0 on all vertices which share an edge with a vertex in ∂V . Thus, an
identical computation, where the first line is replaced by

−t× deg(0) +
∑

a∈V
∆w(a) deg(a) =

∑

a∈V
∆v(a) deg(a)

and the last inequality by an equality, shows the moreover clause. □
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