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INTERNAL DLA ON MATED-CRT MAPS
AHMED BOU-RABEE AND EWAIN GWYNNE

ABSTRACT. We prove a shape theorem for internal diffusion limited aggregation on mated-
CRT maps, a family of random planar maps which approximate Liouville quantum gravity
(LQG) surfaces. The limit is an LQG harmonic ball, which we constructed in a companion
paper. We also prove an analogous result for the divisible sandpile.

1. INTRODUCTION

In this article we study the large-scale behavior of a random growth model (IDLA) on a
random graph (the mated-CRT map) which approximates a random fractal surface embedded
in the plane (Liouville quantum gravity, LQG). We establish, for each v € (0,2), the con-
vergence in probability of the IDLA cluster on the y-mated-CRT map to a so-called 7-LQG
harmonic ball (Theorem 1.4). Harmonic balls are random subsets of the plane characterized
by a mean-value property for harmonic functions with respect to the LQG measure (Defini-
tion 1.3). In a companion work [BRG22], harmonic balls are constructed via Hele-Shaw flow
and it is shown that they are neither Lipschitz domains nor LQG metric balls.

FIGURE 1. Left: IDLA on the Tutte embedding of a finite ¥ = v/2 mated-
CRT map with boundary, with 10* vertices. Walkers are added until the first
time one of them hits a boundary vertex. Cells are colored according to the
first time one of their vertices is hit by a random walk. Right: Illustration of
the graph upon which IDLA is run. The finite mated-CRT map with boundary
can be constructed from a pair of conditioned Brownian motions via a similar
procedure as in Definition 1.1. Away from the boundary, it locally looks like
the infinite mated-CRT map considered in this paper, but its Tutte embedding

is easier to define and simulate. See Remark 1.5 for further discussion.
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1.1. Background. We now briefly and somewhat informally describe the aforementioned
objects, delaying the more technical definitions to Section 2 below. Minimal prior knowledge
of LQG is needed to read this article.

1.1.1. Internal DLA. Internal diffusion limited aggregation (Internal DLA or IDLA) was
first introduced to model the physical process of ‘material removal’ by Meakin-Deutch in
[MD&6]. It was also independently introduced by Diaconis-Fulton in [DF91] as a special case
of a commutative algebra.

In its simplest form, IDLA produces an increasing sequence of subsets of the vertex set
of a graph G (often taken to be a lattice such as Z?) as follows. Fix a root vertex o for G.
Send out an explorer starting from o and allow it to travel according to a simple random
walk on GG until it reaches an unoccupied vertex, at which point it stops and occupies that
vertex. This process is repeated, each explorer starts at the root and walks randomly until
it reaches an unoccupied vertex. For n > 1, the time n IDLA cluster is the collection of
occupied vertices after n iterations of this.

Following remarkable work by several groups of mathematicians, the large n behavior
of the IDLA clusters is now well understood on several families of graphs: Z? [LBG92,
Law95, AG13a, AG13b, JLS12, JLS13, JLS14a, Lucl4, BDCKL20, Dar20a], Cayley graphs
of groups with polynomial [Bla04] and exponential [BB07, Hus08] growth, supercritical per-
colation clusters [Shel(O, DCLYY13], Sierpinski gasket graphs [CHSHT20], comb lattices
[HS12, AR16], and cylinders [JLS14b, LS19, Sil20]. In most of these cases, the scaling limit
of the IDLA clusters is described by a metric ball in the corresponding ambient space (the
main result of the paper will give an example where the scaling limit of IDLA is not a metric
ball).

We would like to examine what happens when G is taken to be a random graph embedded
in the plane. Specifically, instead of taking some deterministic lattice which approximates
Euclidean space, we take G' to be a graph which approximates a Liouwville quantum gravity

(LQG) surface.

1.1.2. Liouville quantum gravity. LQG was introduced by Polyakov in the 1980s in the con-
text of bosonic string theory [Pol81] as a model of a ‘random two-dimensional Riemannian
manifold’. LQG is too rough to be defined as a manifold in the rigorous sense, although the
following loose description can be made precise via various regularization procedures. For
v € (0,2) and a domain D C C, a y-LQG surface parameterized by D is the two-dimensional
Riemannian manifold with Riemannian metric tensor e (dx? + dy?), where dz? + dy? is the
Euclidean metric tensor and h is a variant of the Gaussian free field (GFF) on D.

Of particular relevance to this work is the associated volume form, the ~v-Liouville measure
or v-LQG measure. This is a Radon measure on D which is (informally) given by

(1.1) pn(dz) = ™3 dz,

where dz denotes two-dimensional Lebesgue measure [Kah85, RV11, DS11]. We will give
a precise definition of u;, and the relevant variants of the GFF in Section 2. For now, the
reader only needs to know that pj, is a random non-atomic, locally finite Radon measure
on D which assigns positive mass to every open subset of D and is mutually singular with
respect to Lebesgue measure. The works [DDDF20, GM21] showed that an LQG surface
can also be endowed with a canonical random metric, but we will not need this metric in

the present paper.
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FiGURE 2. Left: A sample construction of the mated-CRT map. We draw
the graphs of C'— L and R in the interval [0, 12¢] where C'is a large constant
chosen so that the graphs do not intersect. Each vertical strip containing
the interval [a — €, a] for a € €Z corresponds to a vertex in the mated-CRT
map. The adjacency condition (1.2) for L (resp. R) corresponds to two vertices
a,b € €7 being adjacent if there is a horizontal line segment above the graph
of C'— L (resp. below the graph of R) which intersects the graph only in the
vertical strips which contain the intervals [a — ¢, a] and [b— ¢, b]. In the figure,
we have illustrated, for each pair (a,b) for which this adjacency condition
holds, the lowest (resp. highest) such horizontal line segment in green. Right:
A planar embedding of the mated-CRT map on the left, under which it is
a triangulation. Edges arising from the adjacency condition for L (resp. R)
which do not join consecutive vertices are shown in red (resp. blue). Edges
joining consecutive vertices are shown in black. A similar illustration appeared
as [GMS19a, Figure 1].

1.1.3. Random planar maps and the mated-CRT map. LQG is widely expected, and in some
cases rigorously known, to describe the scaling limit of random planar maps. A planar map
is a graph embedded in C in such a way that no two edges cross, viewed modulo orientation
preserving homeomorphisms C — C. Uniform random planar maps (including uniform trian-
gulations, quadrangulations, etc.) converge to /8/3-LQG surfaces in the Gromov-Hausdorff
sense [Le 13, Miel3, MS20, MS21] and, in the case of triangulations, when embedded via
the so-called Cardy embedding [HS19]. Similar convergence results are expected to hold for
various types of non-uniform random planar maps toward v-LQG with v # /8/3. For
example, random planar maps sampled with probability proportional to the Ising model
partition function are expected to converge to v/3-LQG (see, e.g., [GHS19, Section 3.1] for
more on such conjectures).

Mated-CRT maps are a one-parameter family of random planar maps, indexed by v €
(0,2), whose connection to LQG is better understood than for most other random planar
maps. In particular, it was proven by Gwynne-Miller-Sheffield [GMS21, GMS22] that the
re-scaled counting measure on vertices of the y-mated-CRT map converges to the v-LQG
measure when the map is embedded into C via the Tutte embedding (i.e., the embedding

where the position of each vertex is the average of the positions of its neighbors). Building on
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this, it was also shown by Berestycki-Gwynne in [BG20] that random walk on the mated-CRT
map converges to so-called Liouville Brownian motion, see Section 2.7 for the definition.

The mated-CRT map is built via a pair of correlated linear Brownian motions as in Figure
2.

Definition 1.1 (Mated-CRT map). Fizy € (0,2) and consider a two dimensional Brownian
motion (L, Ry)ier started at the origin with correlation coefficient given by — cos(my?/4). For
e > 0, the y-mated-CRT map with cell size € associated to (L, Ry)ier is the graph G¢ whose
vertex set is eZ = VG, with two vertices a < b connected by an edge if and only if

tela—e,al te[b—e,b] tela,b—e]
where X can be either L or R. There are two edges connecting a and b if |b — a| > ¢ and

(1.2) is satisfied for both L and R. See Figure 2 for an illustration and a description of the
planar map structure of G°.

By Brownian scaling, the law of G° (as a graph) does not depend on e. However, ¢ is
a convenient scaling parameter when talking about limits, as we will see just below. The
definition of the mated-CRT map is a semi-discrete generalization of so-called mating-of-
trees bijections between random planar maps and random walk excursions. For instance, the
Mullin bijection [Mul67, Ber07, Shel6] is a discrete analog of Definition 1.1 which produces
a planar map decorated by a spanning tree from a two-dimensional random walk excursion.
See [GHS19] for a survey of mating-of-trees bijections and their applications.

The main reason why the mated-CRT map is more tractable than other random planar
maps is that, due to the results of [DMS21], it has an a priori embedding into C defined in
terms of LQG and Schramm-Loewner evolution (SLE). We will now discuss this embedding.

1.1.4. SLE/LQG embedding. In this paper, we work with an embedding of the mated-CRT
map constructed via a space-filling Schramm-Loewner evolution (SLE) curve. We remark,
however, that by [GMS21, BG20], our results extend to the so-called Tutte (or harmonic)
embedding of the mated-CRT map — see Figure 1 and Remark 1.5.

Let h be the random distribution on C corresponding to a vy-quantum cone (a slight
modification of the whole-plane GFF). Let u;, be the v-LQG measure associated to h. Let
n be a whole-plane space-filling SLE, independent of h, with parameter x = 16/7? € (4, 00).
We parameterize 1 so that 7(0) = 0 and pup,(n([a, b])) = b—a for every a,b € R with a < b. We
will review the definitions of h and 7 in Section 2 below. For now, the unfamiliar reader can
just think of 1 as a random continuous, space-filling curve in C from oo to oo parameterized
by a locally finite Radon measure.

Definition 1.2 (SLE/LQG embedding of the mated-CRT map [DMS21]). For v € (0,2)
and € > 0, let G° be the e-mated CRT map with vertex set VG© as defined in Definition 1.1.
The SLE/LQG embedding is defined as follows. Each vertex a € VG* = eZ corresponds to a
cell,

(1.3) H: :=n(la —¢,al).

Two distinct vertices a,b € VG are connected by one (resp. two) edges if and only if
H: N H; has one (resp. two) connected components which are not singletons. This provides

an embedding of G° into C by sending each vertex a € VG® to the point n(a) € HS then
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F1GURE 3. Top left: A space-filling SLE curve n for x > 8 divided into cells
n([a—e,al) for a collection of a € ¢Z. Top right: The same curve with a blue
path showing the order in which cells are traversed by 7. Bottom left: A
point in each cell, corresponding to a vertex in G¢, is displayed in red and red
edges are drawn to adjacent neighbors. Bottom right: The same as bottom
left but with the black edges removed — this illustrates the embedding of G®
into C. A similar figure has appeared previously as [GMS19a, Figure 4].

drawing edges between adjacent vertices in such a way that no two edges cross (the precise
locations of the edges is unimportant for our purposes).

The equivalence of the above SLE/LQG description of the mated-CRT map and the Brow-
nian motion description, Definition 1.1, is a consequence of the main result of the seminal
work [DMS21]. See, in particular, [DMS21, Lemma 8.8]. For an illustration of the SLE/LQG
embedding, see Figure 3.

1.1.5. Harmonic balls. In this article we show that IDLA on the SLE/LQG embedding of
the mated-CRT map converges to a harmonic ball.

Definition 1.3 (Harmonic ball). Fiz vy € (0,2) and let up, be the LQG measure (1.1) where

h is a variant of the Gaussian free field. A v-LQG harmonic ball is a domain A C C which
5



satisfies the following mean-value property for harmonic functions:
(1.4) / f)dpn(y) = pn(A)f(0), Vf:C — R harmonic in a neighborhood of cl(A).
A

In a companion paper [BRG22], it is shown that if v € (0,2) and h is a suitable variant
of the GFF on C, then there is a unique growing family of LQG harmonic balls {A;}i~0,
parameterized so that p,(A;) = t. These harmonic balls are constructed directly in the
continuum via a certain optimization problem involving the measure py. This optimization
problem, as well as several important properties of harmonic balls proved in [BRG22], are
used in our proof. A statement of the facts about LQG harmonic balls which will be needed
later appears in Theorem 2.3 below. It is also shown in [BRG22] that LQG harmonic balls
are neither Lipschitz domains nor LQG metric balls.

1.2. Main results. Fix v € (0,2) and for ¢ > 0 let G° be the e-mated CRT map as
in Definition 1.1, with vertices VG° embedded into C via the SLE/LQG embedding as in
Definition 1.2. For a set X C C and § > 0 we denote the J-outer and d-inner neighborhoods
of X by

B (X) :={x € C:dist(z, X) < §}
By (X) :={y € X : dist(y, X°) > 4}

where dist denotes Euclidean distance.

(1.5)

1.2.1. Internal DLA. Our notation for the IDLA cluster on G° is as follows. Begin with
A.(0) = 0. For m > 1, inductively let A.(m) be the union of A.(m — 1) and the first point
at which a simple random walk on G¢ started at the origin 0 € VG° exits A.(m — 1). By
filling in the mated-CRT map cells corresponding to vertices in A, (Definition 1.2) we may
map a subset A, C VG° to a subset of C via

(1.6) A= H;.

a€A;

Theorem 1.4. Let {A:}i>0 be the growing family of v-LQG harmonic balls with p,(Ay) = t,
as discussed just after Definition 1.3, with h the field corresponding to the y-quantum cone,
as in Definition 1.2. For each 6 > 0 andt > 0, it holds with probability tending to 1 ase — 0
that the union of the cells corresponding to the time |te ' |-IDLA cluster approzimates A; in
the following sense:

By (M) C Ac([te™']) C B (M),

where By are as in (1.5).

Remark 1.5 (Convergence under the Tutte embedding). One may also prove a version
of Theorem 1.4 for the disk version of the mated-CRT map under the Tutte embedding, as
depicted in Figure 1. The quantum disk is the canonical LQG surface with the topology of the
disk [HRV18, DMS21]. In [GMS21], the authors introduce a disk version of the mated-CRT
map with a distinguished boundary and define its Tutte embedding (the definition of the Tutte
embedding is easier for planar maps with boundary, which is why one wants to consider the
disk version of the mated-CRT map). They also show that the Tutte embedding of the disk
version of the mated-CRT map is close, in the uniform distance, to its SLE/LQG embedding.

Using the fact that the generalized function representing the quantum disk behaves like a GFF
6



away from its boundary, one can extend the results of [BRG22] to define a growing family of
harmonic balls on the quantum disk started at a uniformly sampled interior point and stopped
at the first time when they hit the boundary. Via another absolute continuily argument, one
can extend the result of Theorem 1.J to get that the IDLA clusters on the mated-CRT map
with the disk topology, stopped at the first time they hit the boundary, converge to harmonic
balls on the quantum disk under the SLE/LQG embedding. We will not provide the details of
these absolute continuity arguments in this paper, but see [BG20, Section 7.4] and Theorem
2.3 below for similar arguments. Using the results of [GMS21], one gets that IDLA clusters
on the disk version of the mated-CRT map also converge to harmonic balls under the Tutte
embedding.

1.2.2. Diwisible sandpile. Our proof of convergence of IDLA proceeds by first establishing an
analogous result for an auxiliary particle system which may be thought of as the ‘expected
value’ of IDLA.

The divisible sandpile is a deterministic diffusion process on a graph G, which, to the best
of our knowledge, was first introduced by Zidarov [Zid90, page 108-118] and (independently)
studied by Levine in his thesis [Lev07]. Start with masses (real numbers) on vertices of a
graph and redistribute the mass according to the following rule. Whenever a vertex has
mass ¢ larger than one, it is unstable and topples by distributing the excess mass, (t — 1),
to each of its neighbors equally. This process, called stabilizing, continues until every vertex
has mass less than or equal to one. Although stabilizing may take infinite time, if we have a
finite amount of mass on an infinite graph, the end configuration exists and does not depend
on the order in which unstable sites are toppled [LMPU16]. From another perspective, the
divisible sandpile is simply the Jacobi iterative algorithm, e.g., [GVL13, Chapter 10], for
solving the Poisson equation.

In one variant of the model, called the single-source divisible sandpile, we start with a
pile of mass ¢ > 0 at a root vertex o in G and stabilize. The final collection of vertices
which contain some mass is the cluster. In each IDLA convergence theorem recalled in
Section 1.1.1, it has been shown that the limit shape of the single-source divisible sandpile
cluster coincides with that of IDLA. This relationship was first observed and established
on Z¢ by Levine-Peres in [LP09]. See [Rus20] for a survey relating IDLA and the divisible
sandpile.

In our setting, the IDLA cluster also shares the same limit shape as the divisible sandpile.
Denote by D.(t) the divisible sandpile cluster starting with mass ¢ > 0 at the origin in G°.

Theorem 1.6. Theorem 1./ holds with the divisible sandpile cluster started with mass te™?

at the origin, D.(te™Y), in place of the IDLA cluster started with [te™'| explorers at the
origin, A([te™']).

The divisible sandpile has an explicit description in terms of a discrete optimization prob-
lem, which we recall in Section 4 below. In particular, from this optimization problem it
is easy to deduce that the divisible sandpile cluster enjoys a certain discrete mean-value
property; the clusters are discrete harmonic balls [LP10, Equation (5)]. From this, it is no
surprise that divisible sandpile clusters converge to continuum harmonic balls.

We would also like to point out that the divisible sandpile appears to be the only way
to find discrete harmonic balls. In fact, this property of the divisible sandpile was used to

establish logarithmic fluctuations of IDLA around its limit shape in [JL.S12, JLS13, JLS14a].
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FIGURE 4. A close up of the interface in Figure 1.

1.3. Open problems. We suggest several directions for further study. The most pressing
problem is to extend our convergence result to other random planar maps. This problem is
mentioned in the companion work [BRG22, Problem 1].

Problem 1. Show that the scaling limit of IDLA and the divisible sandpile on random planar
maps, other than mated-CRT maps, is also described by v-LQG harmonic balls. For example,
on a uniform random planar map establish convergence of IDLA to a 1/8/3-LQG harmonic
ball.

Our proofs of Theorems 1.4 and 1.6 rely heavily on the convergence of random walk on
the mated-CRT map to Liouville Brownian motion. This fact has not been established for
random planar maps besides the mated-CRT map. We speculate that a solution to Problem 1
which does not use the convergence of random walk might rely on special symmetries of
random planar maps, for example, the peeling process for uniform planar maps [Ang03,
CLG17, Curl6).

The next two questions concern IDLA on the mated-CRT map. While we have estab-
lished a qualitative convergence theorem much more quantitative results are known on Z<.
Lawler [Law95] used fine estimates on the Green’s function in Z¢ to establish subdiffusive
fluctuations of IDLA around its limit shape. Later, Asselah-Gaudillere [AG13a, AG13b] and
independently Jerison-Levine-Sheffield [JL.S12; JLS13] established logarithmic fluctuations.
We do not expect logarithmic fluctuations in our setting, mainly because the cell sizes in the
mated-CRT map have a ‘multi-fractal” behavior. See Figure 4.

Problem 2. Provide bounds on the rate of convergence of IDLA on the mated-CRT map.

After proving logarithmic fluctuations in Z¢, in a remarkable work, Jerison-Levine-Sheffield
showed that the scaling limit of the fluctuations themselves exists. Namely, fluctuations
of IDLA on Z% converge weakly to a variant of the Gaussian free field [JLS14a, JLS14b].
Darrow extended the analysis of Jerison-Levine-Sheffield on Z? to the case of multiple sources
[Dar20b].

Problem 3. Do the fluctuations of IDLA on the mated-CRT map around its limilt shape

have a scaling limit?
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1.4. Paper and proof outline. Our proof uses three main inputs; the pairing of IDLA and
the divisible sandpile, regularity properties of the mated-CRT map, and the convergence of
random walk on the mated-CRT map to Liouville Brownian motion.

The connection between IDLA and the divisible sandpile was implicit in the first work
on IDLA by Lawler-Bramson-Griffeath [LBG92] and made explicit in the thesis of Levine
[Lev07]. In particular, following the arguments of [LBG92], a lower bound on the divisible
sandpile cluster implies the same lower bound for the IDLA cluster. The divisible sandpile,
being deterministic and enjoying a variational description, i.e., the least action principle for
its odometer (see Section 4 below for definitions), is more tractable than IDLA.

In the cases considered so far, e.g., [LP09, HS12, HSH19], convergence of the divisible
sandpile is proved by explicitly bounding its odometer via sharp estimates on stopped Green’s
functions. These sharp estimates are unavailable in our setting and hence we proceed with
a somewhat more robust method. Roughly, we use the fact that the mated-CRT map has
an elliptic Harnack inequality and random walk converges to Brownian motion to show that
the divisible sandpile odometer converges to its continuum counterpart, the odometer for
Hele-Shaw flow (the solution to the optimization problem used to construct harmonic balls).

We start by recalling in Section 2 several mated-CRT map estimates and the invariance
principle for random walk proved in [BG20, GMS19b]. In this section we also record some
basic properties of harmonic balls and Hele-Shaw flow on an LQG surface which we proved
in a companion paper [BRG22].

In Section 3, we use the estimates proved in [BG20, GMS19b] to establish a general
tightness lemma (Lemma 3.1) for bounded functions with bounded graph Laplacian on the
mated-CRT map. We then use this lemma to establish the convergence of solutions to the
discrete Dirichlet problem on the mated-CRT map to solutions of the continuum Dirichlet
problem (Lemma 3.5) and convergence of the discrete Green’s kernel to the continuum
Green’s function (Lemma 3.3).

In Section 4, we define the odometer for the divisible sandpile model on the mated-CRT
map and state some basic properties of it which are proved in the Appendix, Section A. We
then prove convergence of the divisible sandpile odometer to its continuum counterpart. Our
proof method is similar to, but easier than, that used to show convergence of the Abelian
sandpile odometer [BR21, PS13, BS91]. In Section 4 we also observe that the convergence of
the divisible sandpile odometer implies a lower bound on the divisible sandpile cluster: i.e.,
for fixed ¢, > 0 it holds with probability tending to 1 as € — 0 that

(1.7) By (Ay) C D.(te™).

In Section 5 we apply the technique of Lawler-Bramson-Griffeath [LBG92] together with
the divisible sandpile lower bound (1.7) and random walk estimates proved in [BG20] to
prove an analogous lower bound for the IDLA cluster. In fact, the lower bound holds for the
stopped IDLA cluster where random walkers which exit (a mated-CRT map approximation
of) A; are stopped. By the Abelian property of IDLA, Lemma 6.3, the IDLA cluster can be
built by first generating the stopped IDLA cluster and then restarting the stopped random
walkers. Thus, an upper bound of the form

(1.8) A([te™')) € B (M)

will follow if one can show that the restarted random walks cannot travel further than a

Euclidean distance of § away from A,.
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In fact, if the limit shape has the correct size, i.e., has volume equal to the total number
of walkers, and has a measure zero boundary, then by the lower bound and conservation
of mass, the number of restarted walkers can be made arbitrarily small. These two limit
shape properties are true for an LQG harmonic ball, as proved in the companion paper
[BRG22]. Therefore, the proof of the upper bound then reduces to controlling the behavior
of order de~! restarted random walks near the boundary of A,. We do this by combining the
arguments of [DCLYY13] together with those from LQG theory.

Specifically, it was shown by Duminil-Copin-Lucas-Yadin-Yehudayoff [DCLYY13] that if
a graph is regular enough, namely is volume doubling, and has a metric which can be
controlled by the Euclidean metric, then a small number of walkers cannot spread very
far. The mated-CRT map does not enjoy these properties, even approximately, and thus
we cannot apply the Duminil-Copin-Lucas-Yadin-Yehudayoff argument directly. Instead, we
use methods from LQG theory to provide weak harmonic measure estimates for random walk
on the mated-CRT map. A modification of the iterative argument of Duminil-Copin-Lucas-
Yadin-Yehudayoff then yields the upper bound. See the beginning of Section 6 for a detailed
outline of the argument.

In Section 7 we use the harmonic measure estimates proved in Section 6 to prove an upper
bound on the divisible sandpile cluster. The argument here is a simplified, discrete version
of the upper bound for LQG harmonic balls from [BRG22, Section 6].

All of the aforementioned results were proved conditional on ¢ being small. In Section &8
we combine the upper and lower bounds together with a scaling argument to remove this
constraint on ¢ and complete the proof.

1.5. Notation and conventions.

e Inequalities/equalities between functions/scalars are interpreted pointwise.

e For a set D C C, 9D denotes its topological boundary, cl(D) = D U 9D its closure,
and int(D) its interior.

e For a set A C VG°, 0A is the set of vertices in VG \ A which are joined by an edge
to a vertex in A and cl(A) = AU OA is its closure. The set int(A) are the vertices
in A which do not share an edge with a vertex in A°.

e For two sets X, Y C C, we write X € Y if cl(X) C Y.

e B,.(x) denotes the open ball of Euclidean radius r > 0 centered at € C, when x
is omitted, the ball is centered at 0. When D C C, we write B,(D) = {z € C :
dist(xz, D) < r}.

e For 0 < r; < ry, denote an open annulus centered at z € C by

(1.9) A,y (2) = By (2) \ cl(By, (2))

and A, ., == A, ,(0).

o Let {E7}.-0 be a one-parameter family of events. We say that E” occurs with
polynomially high probability as » — 0 if there exists p > 0 such that P[E"] >
1 —0O(rp).

e For two sets X,Y C C, we define dist(X,Y) = inf,cx ey dist(z,y) where dist
denotes the Euclidean distance between two points.

e For a set D C C, C(D) denotes the set of continuous functions on D.
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2. PRELIMINARIES

In this section we recall several preliminary results on the Gaussian free field, Liouville
quantum gravity, space-filling SLE, harmonic balls, random walk on the mated-CRT map,
and Liouville Brownian motion. Of note, we record the convergence of random walk on
the mated-CRT map to Liouville Brownian motion [BG20] and the regularity properties of
7-LQG harmonic balls established in [BRG22].

2.1. Gaussian free field. In this paper, we work with a particular kind of Gaussian free
field h which arises naturally from the scaling limit of random planar maps. This field
corresponds to an LQG surface called a y-quantum cone. For our purposes we just define
the field and give its scaling properties — a complete definition of the surface is given in
[DMS21].

We start by defining the whole-plane Gaussian free field (GFF) h® which is the centered
Gaussian random generalized function on C with covariances

max(|z|, 1) max(|y|, 1)
[z — |

(2.1) Cov(h®(z), h%(y)) := log , Vz,yeC.
The GFF A is not defined pointwise as the covariance kernel in (2.1) diverges to oo as
x — y. However, for z € C and 7 > 0, one can define the average of h® over the circle of
radius 7 centered at z, which we denote by hS(z) [DS11, Section 3.1]. The whole plane GFF
is sometimes defined modulo additive constant. Our choice of covariance in (2.1) corresponds
to fixing this additive constant so that AT(0) = 0 (see, e.g., [Varl7, Section 2.1.1]).

The circle average of h®, ¢t — hT,(0) is a Brownian motion, [DS11, Section 3.1]. The
field corresponding to the y-quantum cone is constructed by enforcing its circle-average to
correspond to a particular conditioned Brownian motion. Fix v € (0,2) and let

2 v
2.2 =—4 =
(22) Q==+
Definition 2.1 (Circle average embedding of the y-quantum cone). The circle average em-
bedding of the ~-quantum cone is the distribution h defined as follows. Let B be a standard
linear Brownian motion and let B be an independent standard linear Brownian motion con-
ditioned so that By + (Q — )t > 0 for allt > 0. Let

' {Bt+7t, t>0
t =

~

(2.3)
B, +~t, t<0.

The distribution h is defined so thatt — h.-+(0) has the same law as the process A and h—hy,
is independent from hy. and has the same law as the analogous process for the whole-plane
GFF, hC.

We note that the field h in Definition 2.1 has the property that sup{r > 0 : h,.(0)4+Q logr =

0} = 1. Furthermore, it is immediate from Definition 2.1 that h restricted to the unit disk
11



agrees in law with the corresponding restriction of a whole-plane GFF plus —vlog| - |,
normalized so that its circle average over the disk is zero:

d
(2.4) hlp, = (h° —~log|-|)|p,-

The law of the whole-plane GFF, viewed modulo additive constant, is invariant under
complex affine transformations of C. This implies the following scaling property for h®,

(2.5) h® £ hS(x - +y) — hi(y), Yz eC\{0}, VyeC.

The distribution A has a similar scale invariance. For b > 0, let
1

(2.6) Ry, :=sup{r > 0: h,(0) + Qlogr = —logb}.
8

Then, by [DMS21, Proposition 4.13(i)],

1
(2.7) h(Ry) + Qlog Ry, — 5 logb < h.

2.2. Liouville quantum gravity. Liouville quantum gravity (LQG) is a one-parameter
family of random fractal surfaces which were introduced by Polyakov in the 1980s in the
context of bosonic string theory [Pol81]. We give some basic properties of LQG and refer
the interested reader to the introductory texts [BP21, She22, Gwy20].

Let u; denote the v-LQG area (Liouville) measure associated to h, the vy-quantum cone
defined in (2.1). One of the several ways of defining py, is as the a.s. weak limit

(2.8) p, = lim €727

e—0
where dz denotes Lebesgue measure and h.(z) is the circle average [DS11, SW16]. In fact,
the measure p;, can be constructed for any random generalized function h of the form h+ f
where f is a possibly random continuous function and A is the whole-plane GFF, defined in
(2.5). In particular, this includes the y-quantum cone from Definition 2.1. For later use, we
record some basic properties of the LQG measure.

Fact 2.2 (LQG measure). The LQG area measure py, satisfies the following properties.

I. Radon measure. A.s., py, is a non-atomic Radon measure.
II. Locality. For every deterministic open set U C C, pu,(U) is given by a measurable
function of h|y.
III. Weyl scaling. A.s., ¥ - py = pyyy for every continuous function f: C — R.
IV. Conformal covariance. A.s., the following is true. Let U,U C C be open and let
¢ be a conformal map from U to U. Then, with Q as in (2.2),

(2.9) Phop+Qlog |o|(A) = pn(¢(A))  for all Borel measurable A C U.

The first three properties in Fact 2.2 are immediate from the definition (2.8). The con-
formal covariance property was proven to hold a.s. for a fixed conformal map in [DSI11,

Proposition 2.1] and extended to all conformal maps simultaneously in [SW16].
12



2.3. Harmonic balls. A harmonic ball is a domain which satisfies the mean-value property
for harmonic functions with respect to the LQG measure — Definition 1.3. These balls are

constructed in a companion work via the following optimization problem. For each t > 0
and ball B, = B,(0), let

(2.10) wpr = inf{w € C(cl(B,)) : Aw < py, in B, and w > —tGp, (0,-) in cl(B,)},

where C(cl(B,)) denotes the set of continuous functions on the closed ball, Aw is interpreted
in the distributional sense, G g is the Green’s function for standard Brownian motion on
B, with zero boundary conditions, and the infimum is pointwise. The definition in (2.10) is
the obstacle problem formulation of Hele-Shaw flow [Sak85] and may be thought of as the
continuum analogue of the odometer for the divisible sandpile, defined below in Section 4.

Theorem 2.3 (Combination of Theorems 1.1 and 5.5 and Lemma 3.2 in [BRG22]). On an
event of probability one, there exists a unique family of harmonic balls {A}i~o satisfying the
following properties:

(a) For eacht >0, up(A:) =t, up(0A:) =0, and A, is equal to the interior of its closure.

(b) The domains Ay are bounded, connected, open, contain the origin, increase continu-
ously in t (in the Hausdorff topology), and satisfy Ni=oN; = {0}.

(c¢) If, for some r >0, Ay C B,, then, for all p > r,

A, = int (cl ({m € B, W (z) > —tGBp(O,a:)}>> .
Moreover, Ef ? 18 continuous and satisfies

AW = ppla,  om B,
Efp:() on 0B,.

Strictly speaking, [BRG22] considers the case where h is not the quantum cone but rather
a whole-plane GFF plus a log-singularity. Transferring the proof to the quantum cone is a
standard absolute continuity argument which we now provide.

Lemma 2.4. On an event of probability one, there exists a unique family of harmonic balls
{At}o<t<T which satisfies the properties of Theorem 2.3 (with t restricted to be in (0,T)),
where

T = sup{t >0: At C Bl/g}.

Proof. By (2.4), the restrictions to the unit disk of the quantum cone field A and the
whole-plane GFF plus —vylog| - | agree in law. Since harmonic balls depend locally on
the field [BRG22, Proposition 1.3], this equality in law together with [BRG22, Theorems
1.1 and 5.5 and Lemma 3.2] directly implies the existence of a family of harmonic balls
{A:}o<t<r satisfying the properties in Theorem 2.3. Uniqueness of such a family is guaran-
teed by [BRG22, Proposition 5.6] (that proposition is stated for a family of harmonic balls
defined for all times, but the proof still works if the harmonic balls are only defined up to
some fixed time). O

We will now extend the above construction to all time using the scale invariance property
of the y-quantum cone. The following is the quantum cone analog of [BRG22, Lemma 5.7
(which gives a similar statement for the LQG harmonic balls associated with the whole-plane
GFF).

13



Lemma 2.5. For b > 0, define the random radius R, > 0 as in (2.6). A.s., there ezists a
unique family of harmonic balls {AyYoeicyre such that { Ry Ay Yocrers has the same law as
{At}o<t<r, where T is as in Lemma 2./, and

Tb = Sup{t >0: R;lAbt C BI/Q}-

In fact, we have the equality of joint laws

1
(h7 {At}0<t<T) £ <h(Rb') + Qlog Ry — ; log b, {Rb_lAbt}O<t<T”> .

Proof. Fix b > 0 and let
1
h* := h(Ry") + Qlog Ry — S log b,

so that, as in (2.7), h® 2 h. By Lemma 2.4, a.s. there exists a unique family of harmonic

balls {A%}_,.v which satisfies the properties of Theorem 2.3 for the measure j» (with ¢
restricted to be in (0,7°)), where

T" = sup{t > 0: A} C Bys}.
Define
Abt = RbAi), VO <t< Tb

and note that by the properties of A?, the LQG coordinate change formula, and Weyl scaling
(Fact 2.2), a.s.,

t= ,U/hb(Ag) = bfl,uh(Abt), VO <t < Tb.

For similar reasons, the domains {A;}q-;<prv are a.s. harmonic balls and satisfy parts (a)
and (b) of Theorem 2.3 for the measure yy, (with ¢ constrained to be less than bT%). These
properties are enough to apply [BRG22, Proposition 5.6] (which works if the harmonic balls
are only defined up to some fixed time) and conclude that {A;}g—icpre is the unique such
family. As h® has the same law as h, this shows the equality of joint laws. 0

Proof of Theorem 2.5. By Lemma 2.5, a.s. for every integer b > 0, there exists a unique
family of harmonic balls {A;};cpre which satisfies the conditions of the theorem statement

up to time bT?, where T? is as in Lemma 2.5. Since 7° 2L T for each b > 0, where T' is as in
Lemma 2.4, and T is a strictly positive random variable, we deduce that limp_,. bT? = oo
in probability. This complete the proof. 0

By applying the proof of Lemma 2.5 to the infinite family of harmonic balls given by
Theorem 2.3, we have the following.

Lemma 2.6. For each b > 0, we have the equality of the joint laws
1
(ko) £ (BUR) + Qog By — L1080, (R Ao ).

where the random radius Ry, > 0 is as in (2.6).
14



2.4. Whole plane space-filling SLE. The Schramm-Loewner evolution (SLE,) for x > 0
was introduced by Schramm in [RS05] as the only conformally invariant family of random
curves which satisfy the domain Markov property. There are three phases of SLE,: the curves
are simple when x € (0, 4], have self-intersections but are not space-filling for x € (4, 8), and
are space-filling when x > 8.

In the embedding of the mated-CRT map, we work with the whole plane space-filling SLE
7, a variant of SLE introduced in [MS17, Sections 1.2.3 and 4.3]. This is a random space-
filling curve n in C from oo to oo which fills all of C and does not intersect the interior of
its past.

For context, we informally describe how one constructs space-filling SLE. When x > 8,
whole plane space-filling SLE is simply ordinary SLE. In this case the cells n([z — ¢, z]) are
topological rectangles and their boundaries are the union of four SLE, curves for k = 16/x.
When k € (4,8), n is built by taking ordinary SLE, and ‘filling in’ bubbles which are
disconnected from infinity. This results in a somewhat complicated geometry. In particular,
for k € (4,8) it is possible for the intersection of two cells to be an uncountable, totally
disconnected Cantor-like set. Pairs of cells which intersect in this manner do not correspond
to edges of the mated-CRT map in Definition 1.2.

In this paper, we mainly just use the fact that the law of 7 is scale-invariant:

(2.11) 1 < n, ¥r >0, when viewed as curves modulo time parameterization.

For a detailed treatment of SLE see [Wer04, Law05] and for a more in-depth exposition of
whole plane space-filling SLE see [GHS19, Section 3.6].

2.5. Mated-CRT map. We defined most of what we need concerning the mated-CRT map
in Section 1.1.3. We provide some additional notation which we will use in the sequel.

We fix the convention that when referring to points in C, we use the letters x,y, z; while
vertices in the mated-CRT map correspond to letters a,b. Sets in C are X,Y, D, while sets
of vertices in the mated-CRT map are A, B.

For e > 0 and v € (0,2) let G° be the mated-CRT map with vertex set VG embedded in
the plane via a whole plane space-filling SLE curve n with x = 16/7? as in Definitions 1.1
and 1.2.

It is important to note that while a.s. each vertex in the mated-CRT map has a finite
number of neighbors, the number of neighbors may be arbitrarily large. Write deg®(a) for
the degree of a € VG°. We will need a way to pass between vertices in the map and points
in C: for x € C, let

(2.12) a;, := (smallest a € €Z such that x € H:).
For a set D C C, we define
(2.13) G°(D) := (subgraph of G° induced by {a € eZ : H; N D # 0})

and write VG*(D) for the vertices in G*(D). Several times throughout the paper we will
work with the sets VG*(D) \ VG*(9D) rather than VG®(D) to account for the coarseness of
the cells in the mated-CRT map. Indeed, even if D is a smooth, bounded open set, typically
VG®(D) overlaps with VG(0D) — see Figure 5.
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FIGURE 5. A set D C C and the set of mated-CRT map cells corresponding
to the vertices in G°(D), as in (2.13). The boundary of the domain 9D is
drawn in red and the cells of G%(D) are filled in pink. A point x € C and
the cell containing it, H jL , is drawn in light blue. A similar figure appeared
in [GMS19a, Figure 5].

2.6. Cell size and volume estimates. In this section, we recall some estimates proved in
the appendix of [BG20]. The following estimate gives worst-case upper and lower bounds
for the LQG mass of Euclidean balls.

Lemma 2.7 (Lemma A.1 in [BG20]). For each 3% € (0,(2 —~)?/2) and 8~ > (2+7)?/2 it
holds with polynomially high probability as 6 — 0 that

(2.14) 8% < pn(Bs(2)) < 6%, Vze By

For convenience, we fix 8% in a fashion depending only on v so that when we refer to
Lemma 2.7 we may just refer to a single choice of 5.

The next lemma gives similar worst-case upper and lower bounds for the size of the cells
in the mated-CRT map.

Lemma 2.8 (Lemma 2.4 in [BG20]). Fiz a small parameter ¢ € (0,1) and p € (0,1). With
polynomially high probability as e — 0, the Fuclidean diameter of each mated-CRT map cell
H which intersects B, satisfies

C

Gt ; e Gz —¢
(2.15) g < diam(H;) < e@? ",

The following lemma is a quantitative version of the important fact that the counting
measure on vertices in the mated-CRT map converges weakly to the LQG area measure.

Lemma 2.9 (Lemma A4 in [BG20)). Fiz p € (0,1). There exists « = a(y) > 0 and

B = B(y) > 0 such that with polynomially high probability as e — 0, the following is true.
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Let D C B, and let f : B.o(D) — [0,00) be a non-negative function which is e°-Lipschitz
continuous and satisfies || flle < €. For a € VG (D), let we be an arbitrary point of
H:necl(D). If we let uy be the v-LQG area measure induced by h, then

216) = [ fodm) —e s Y R <t f L S e

aeVGe(D

simultaneously for every choice of D and f as above.

An analogous result to the above holds when cells are weighted by their degrees, in which
case, since the mated-CRT map is a planar triangulation, there is an extra factor of 6 in the
limit.

Lemma 2.10 (Corollary A.6 in [BG20]). Fore > 0, let u5 be the measure whose restriction

to each cell H; for a € €Z is equal to deg®(a)un|n=. Then as e — 0, we have p; — 6y in
probability w.r.t. the vague topology.

2.7. Liouville Brownian motion and random walk. Liouville Brownian motion (LBM)
is the natural diffusion associated with v-LQG and was constructed in [Berl5, GRV16].
Roughly, LBM is obtained from ordinary Brownian motion by changing time so that pu, is
invariant. That is, LBM started at z € C is defined as B, ), where By is Brownian motion

started at z and .

o(t) = lim e’ 2e7he(BY) g,

e—0 0
where h. is the average of h over the circle of radius ¢.
In this paper we consider LBM rescaled by its (annealed) median exit time from a ball,

(2.17) X7 = Biipmyy V2 €C,
where
(2.18) mo = median(inf{t > 0: [Bj_. | > 1/2}).

For z € C and € > 0, let X** : N — VG° be a simple random walk on G° started from aZ
(defined in (2.12)). On occasion we will also write, for a € VG, the walk started from a as
X e,

LBM was shown in [BG20] to describe the scaling limit of random walk on the mated-CRT
map. To state this precisely, we introduce the scaling factor

(2.19) m. = (median exit time of n(X°¢) from By s),
where By, is the Euclidean ball of radius 1/2 centered at 0. By (1.8) in [BG20],
(2.20) C~ e <m. < Ce™!,  for all sufficiently small & > 0,

where C' > 1 is a deterministic constant depending only on 7. We also extend the domain
of definition of the embedded walk N > j — 7(X>*) from N to [0,00) by piecewise linear
interpolation.

Theorem 2.11 (Theorem 1.2 [BG20]). For each compact subset K C C and each z € K, the
conditional law of the embedded linearly interpolated walk (n(X,,))e=0 given (h,n) converges
in probability to the law of rescaled ~v-LBM, defined by (2.17), started from z associated
with h with respect to the Prokhorov topology induced by the local uniform metric on curves
[0,00) — C.
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2.8. Discrete potential theory. Recall the notation for simple random walk from Section

2.7. We denote the Green’s function for simple random walk killed upon exiting a set D C C
by

Gri(a, b)
:= E[number of times that X% hits b before exiting VG*(D) \ VG*(0D)|h, ]
and its normalized version, the Green’s kernel by
Gri)(a,b)
deg(b)

(2.21)

(2.22) gry(a,b) =

By defining
Gry(a,-) = Griy(-,a) =0, VYa & VG (D)\ VG (OD)
we extend the domain of definition of both the Green’s function and kernel to all of VG®.
For a € VG*, the exit time of simple random walk on the mated-CRT map from a domain

D c C is defined by

(2.23) 75" = (first exit time of X*¢ from VG*(D) \ VG*(9D))

and its mean is

(2.24) Qp(a) = B[ |h, ] = > Grpa,b).
beVGE (D)\VG* (9D)

We will also need to consider the normalized expected exit time, for a € VG©
(2.25) ap(a) = > grp(a,b).

beVGe (D)\VG* (8D)
Let A® denote the degree normalized graph Laplacian on G°,

“u(a) = — _ .
(2.26) Atu(a) = deg®(a) %(U(b) u(a)) Va € VG®,
for functions u : VG° — R,

where the sum b ~ a is over the sites b € VG which are joined by an edge to a. As A® is
the generator of simple random walk on G¢, for D C C, by, e.g., [LL10, Proposition 6.2.3],

227 (arins ™ e e
A () = —1/deg*(-) in VG*(D) \ VG (8D
(2.28) {q%?) (:)0 et otherwgse> \ o
and for each a € VG*(D) \ VG*(0D),
(2.20) {Af Gijy(na) = —1{- =a} in VG*(D)\VG*(aD)
Gry(-,a) =0 otherwise
and

€ g€ _ {=a} . c c
(2.30) {A grp(a, ) = —ig—() in VG*(D) \ VG*(dD)

gri(a,-) =0 otherwise.
18



Remark 2.12. For a subset A of VG, we overload notation and define G1%, gr%, Q%, and
q° as above with the instances of VG*(D) \ VG*(0D) replaced by A. Each of (2.27), (2.28),
(2.29), and (2.30) hold with this same substitution.

We also write A for the continuum Laplacian on C. The operator A® shares several basic
properties with its continuum counterpart A, e.g., linearity and monotonicity. Of importance
to us is the following mazimum principle for A®. Recall that a function v : VG — R is
subharmonic (resp. superharmonic) on A C VG® if A®u > 0 (resp. A®u < 0) on A and is
harmonic if it is both subharmonic and superharmonic. When we need to emphasize the
distinction between C and VG°, we qualify functions as A-harmonic or A°-harmonic.

Lemma 2.13. For every connected subset A C VG*, if u : cl(A) — R is subharmonic on A,
then

. < .
(2.31) max u(a) < max u(b)

Proof. This is standard. Consider a point a € A and apply the definition of subharmonicity
to find a neighbor cl(A) 3 b ~ a for which u(b) > u(a). O

In this article, we will use discrete Green’s function and exit times estimates established in
[BG20]. Fixa p € (0,1) — several of our estimates will be stated only on B,. The reason for
working on B, is that h|p, agrees in law with the corresponding restriction of a whole-plane
GFF plus ylog(1/] - |), see (2.4). Consequently the constants in several of these estimates
will depend on p. First, we recall an upper bound on the Green’s kernel.

Lemma 2.14 (Lemma 5.4 in [BG20]). There exists = 5(y) > 0 and C = C(p,v) > 0 such
that with polynomially high probability as € — 0,

1
gry (a,b) < Clog (—) +C
(@) @)~ 70
simultaneously for all a,b € VG*(B,) with |n(a) —n(b)| > &°.

We will also need an upper bound on the Green’s function. Recall that the Green’s
function is the Green’s kernel multiplied by the degree. Since the vertex degrees on the
mated-CRT map are unbounded, we cannot directly apply the previous lemma. Nevertheless,
the following crude upper bound will suffice.

Lemma 2.15 (Lemma 5.6 in [BG20]). For each ¢ € (0,1), it holds with polynomially high
probability as ¢ — 0 that
sup  Gri (a,b) < e
a,beVGE(B,) !
We also need a lower bound on both the Green’s kernel and function.

Lemma 2.16 (Lemma 4.4 in [BG20]). There ezists w = w(y) > 0 and C = C(p,v) > 0 such
that with polynomially high probability as e — 0 the following holds. For each a € VG*(B,_.v)
and each r € [e¥,dist(n(a), 0B,)],

c - _ r _
Gr%, (e (@, b) > 1%, (ay) (@, b) > C~Hlog (m Ne 1) -1,

Vb € VG*(B,/3(n(a))).
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We conclude this subsection by formulating an upper bound on the expected exit time
function in terms of the coarseness of the e-mated CRT map and a certain continuum quan-
tity. To that end, we consider the following random variable (from (5.1) in [BG20])

(2.32) JM@%:wRLO%<VEM>+QdmmLimDCC

zeD

and recall the following bounds.

Lemma 2.17. Almost surely,

sup M(D) < o0
DCB,

and with polynomially high probability as § — 0
sup M (B;s(y)) < 6%,
y€B,
for some deterministic ¢ = q(vy) > 0.
Proof. Step 1: M(D) < c0.
As py, is a locally finite measure, it suffices to bound the log integrand in (2.32). By [BG20,

Lemma A.3|, there are constants co, ¢; depending only on p and ~ such that for each A > 1,
it holds with probability at least 1 — coe™'4 that

(2.33) sup [ 1o (ﬁ) din() < A(un(D) + e=14).

By the Borel-Cantelli lemma, this shows suppcp, M(D) < oo almost surely.

Step 2: supyep , M(B;(y)) < 64
This follows by a partition of the integral into dyadic annuli as in the proof of [BG20, Lemma
A.3]. An explicit proof is given in the proof of Corollary 5.2 in [BG20] — this bound is exactly
(5.3) there. O

By [BG20], we can bound the expected exit time in terms of this random variable.

Lemma 2.18 (Proposition 5.1 in [BG20]). There exists deterministic o = a(y) > 0 and
C = C(p,7) > 0 such that with polynomially high probability as € — 0 it holds simultaneously
for every Borel set D C B, with pu,(D) > €% that for all a € VG*(D)

N
E[(757)N|h,n) < NICNe™N (sup/ (log (#) + 1) duh(w)) VN e N,
2€D J B.a (D) |2 — wl
in particular, for all D C B,

q5(a) < 95 (a) < Ce'M(B.«(D)), Va e VG (D).

By combining the previous two lemmas, we have the following bound on the expected exit
time.

Lemma 2.19. There exists a deterministic « = () > 0 such that with polynomially high
probability as € — 0 it holds simultaneously for every Borel set D C B, with u,(D) > &

75, < 95, < 0.
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Moreover, for some deterministic ¢ = q(y) > 0, it holds with probability tending to 1 as
e — 0 and then 6 — 0 that

€ 5 —1
Ubs(y) < Qs S X 0%

for every y € C such that Bs(y) C B,.

Proof. Apply Lemma 2.17 with some fixed p" € (p, 1) to Lemma 2.18 and absorb the constants
into the factor of §9. O

3. CONVERGENCE OF THE DIRICHLET PROBLEM

In this section we use the estimates recalled in the previous section to prove uniform
convergence of both the Green’s kernel and the solution to the Dirichlet problem to their
continuum counterparts. Throughout this section, we fix p € (0, 1) such that B, € B;.

3.1. Scaling. Recall the definition of m. and recall from (2.20) that m. < e~!. For a set
D C B,, we rescale a function, u® : VG°(D) — R by defining u* : D — R in a piecewise
constant fashion

(3.1) w(z) == m."u(a5), Vx €D,

x

where a is as in (2.12). That is, @° is constant within the cells of the mated-CRT map.

Throughout this section, we work with functions which are of order e7*. We do this
because this is the order of the expected exit time function, Lemma 2.18, and the divisible
sandpile odometer in Section 4.

3.2. Tightness. In this subsection we prove a general tightness result concerning bounded
functions with bounded Laplacian.

Lemma 3.1. For every connected set D C B, and o(h,n)-measurable sequence € 3 ¢ — 0,
if a sequence of functions u® : VG*(D) — R indezxed by € € £ satisfies

|A®u®| < C on VG*(D) \ VG*(OD)
uf < Ce™t on VGE(D)
uniformly over e € € for some o(h,n)-measurable C > 0, then the following is true. Almost
surely, there exists a o(h,n)-measurable subsequence & C € and a function uw € C(D) such
that for every compact subset O @ D, we have that u® — uw uniformly in O as & > ¢ — 0.
Moreover, if D is simply connected, u® is discrete harmonic in VG*(D)\ VG(0D), and if

u® has Hélder continuous boundary data, in the sense that there exists x € (0,1] and C' > 0
so that

(3:2)  Ju(a) —ui ()] < C'(eV |n(a) —n())X, Va,be VG (ID), Vee(0,1)
then the convergence occurs uniformly in cl(D).

Lemma 3.1 will follow from the Arzéla-Ascoli theorem and the following Hélder continuity

of A®-harmonic functions on the mated-CRT map.
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Lemma 3.2 (Theorem 3.9 in [GMS19b]). There exists £ = £(p,~y) € (0,1) and A = A(p,v) >
0 such that the following holds with polynomially high probability as € — 0. Let D C B, be a
connected domain and let f¢: VG*(D) — R be A®-harmonic on VG*(D) \ VG*(0D). Then,

eV In(a) = n()[\*
3.3 fé(a) — fE(b)| < A sup | fe(d ( - , Va,be VG (D).
(33) 1@ - SO (afevgew)' @) (Gt o (D)
Moreover, if D is simply connected and if f¢ has Holder continuous boundary data in the
sense of (3.2), then there exists a C > 0 such that
(3.4)

|f*(a) = f°(b)] < max {C,A ( sup Ife(a')|> } (e VIn(a) =n®))*, Va,be VG (D).
a'€VG (D)

Proof of Lemma 5.1. The conclusions of Lemmas 2.8, 2.19, and 3.2 hold with probability

approaching one as £ 5 ¢ — 0. In particular, by the Borel-Cantelli lemma, almost surely,

there exists a deterministic subsequence & C & such that the conclusions of all of these

lemmas hold for all sufficiently small € € £&. We henceforth restrict to such an event.

We first prove interior convergence: let O € D C B, be given. By the Arzéla-Ascoli
theorem, and the boundedness assumption on u°, it suffices to prove the following estimate:
almost surely, for each small & > 0, there exists possibly random choices of § = §(k) > 0 and
g1 = 51(k,5) € & so that for all € € (0,81) N 51,

(3.5) z—y| <6 = |u(z) —u (y)| <k, Vz,yeO.
We now prove (3.5). Let & > 0 be given, fix § > 0 to be determined below, in a manner

depending on k. By Lemma 2.8,

(3.6) sup diam(H7) <62, Vee & N(0,e)
a€VGe (B,)

where €7 depends on ¢ through Lemma 2.8.

As O € D, there exists d; > 0 so that O + Bs, € D. Suppose ¢ € (0, min(6%,6;)/100) and
let z € O be given. Let § = 62+ 6 and f¢ : VG*(cl(Bs(x))) — R be the harmonic extension
of u®,

ATfe =0 on VG (Bs(x)) \ VG*(0Bs(x))
fe=u" on VG (0B;(x)).
By the maximum principle (Lemma 2.13) and our uniform boundedness assumption on u°,
(3.7) sup |fe(a")] < sup |uf(a)] < Ce™t, Vee (0,e1)NE.
a'€VGe (cl(Bs())) a'€VGe (cl(Bs()))

By the assumption |[A®u®| < C and (2.27), the functions (u® — f°) £C x Q3 are super
(resp. sub) harmonic on VG*(Bs(z))\VG®(0Bs(z)) and identically equal to 0 on VG*(0Bs(x))
for each . Therefore, by the maximum principle,

" = [ < C x Qf,y on VG (cl(Bs(x)))
for all € € (0,e1) N &;. Thus, we have, for such €, by the triangle inequality,

(38) s @ -w Bl < s @) - FOIF20x swp Q5 ().
a,beVGe (Bs(x)) a,beVG® (Bs(x)) a€VG® (Bs(x))
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By Lemma 2.19, we may take £; smaller, depending only on 9, so that
(3.9) 20x  sup  Qp,(a) <10, Vee (0,6)NE
a€VG®(Bs(x)) -

for a deterministic ¢ = q(y) > 0.
It remains to bound the first term in (3.8): with A = A(p,7) > 0 and £ € (0,1) as in
Lemma 3.2,

sup [ f*(a) — f7(b)]

a,beVG* (Bs(z))

oY (=Y Inf) — (e -
SA( sup()!f()!) p )( 5))) (Lemma 3.2)

o €VGE(Bs(x)) a.beVGE (B () \dist(n(a), 0Bs(x

y £V In(a) = n(0)
<ac (G ony) (07

6+ 62
51/2 _ 52
(3.10) <& 'k/2 (for small § = §(k,¢)),

for all e € (0,e1) N &;.
By plugging (3.9) and (3.10) into (3.8), we get that for sufficiently small § = d(k, &),

sup  |uf(y) —uf(x)] < ek, Vee€ (0,e1)NE.
yeVGe(Bs(x))

3
< ACe™? < > (by (3.6) and since § = 6'/2 + )

By combining this inequality with (3.6) and the definition (3.1) of @, we have (3.5).

We now assume the conditions of the moreover clause. Since we have assumed u® is
harmonic, we can apply (3.4) of Lemma 3.2 to get the analogue of (3.5) up to the boundary:
for each k > 0, there exists 6 = §(k,C’, x) > 0 such that for each small enough ¢ € &,

(3.11) lr—y| <0 = | (x) —u (y)| <k, Vz,ye€ VG (D).
And so, we may conclude using the Arzéla-Ascoli theorem. OJ

3.3. Uniform convergence of the Green’s kernel. For z € C, let
X : N = VG°

be a simple random walk on G° started from the vertex a5 € VG, defined in (2.12), stopped
upon exiting VG*(B,) \ VG°(0B,). Let X* be LBM started at z stopped upon exiting B,
and let X

X*¢:[0,00) = C
be the process t — n(X%,) extended from m.~'N to [0, c0) by piece-wise linear interpolation.

met

The goal of this section is to prove the following.

Lemma 3.3. Fiz a deterministic choice of r > 0 and z € C such that B,.(z) C B, and
y € B(2). Let g°(-) :==e gy, (a5, ) and define G° as in (3.1). For each small § > 0 and
O C cl(B.(2)) \ {y} which lies at positive distance from y, with probability tending to 1 as
e —0,

m
(3.12) Sup g (z) — ?O X G, (y, )| <6,
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where Gp, () (y, ) is the continuum Green’s function for standard Brownian motion killed
upon eziting B,(z).

Lemma 3.3 will be shown as a consequence of the following result and Lemma 3.1.

Lemma 3.4. For each deterministic choice of z € C and r > 0 such that B,(z) C B,, each
y € B,(2), and each bounded, Holder-continuous, o(h,n)-measurable function f : B.(z) — R,

mt S G (@) @) o x [ G o) e din()

z€VGE (Br(2)) r(2)

in probability as e — 0, where G, () is the continuum Green’s function, and ay is as in
(2.12).

Proof. This follows from convergence of random walk on G° to LBM and the fact that the
discrete and continuum Green’s functions can be represented in terms of these objects.
The conclusions of Lemmas 2.19 and 2.8 hold with probability approaching one as ¢ — oc.
Restrict to the event that these occur for all small enough e.
Let the deterministic parameters y € B,(z) C B, and f : B,(z) — C a bounded and
Hoélder continuous function which is o(h,n)-measurable be given. Consider the bounded,
continuous functional on the space of continuous curves w : [0, 00) — B,,

T
:/ Flw)dt, VT > 0.
0

By boundedness and Theorem 2.11,

(3.13) lim B[6].(X%)|h, n] = U F(XY)dt|h, n} VT > 0,

where the convergence is in probability.

The term on the left in (3.13) can be used to control its discrete counterpart. Indeed, as
f is Holder continuous and bounded and the cell size of the mated-CRT map is controlled
by Lemma 2.8, for all £ small depending only on h, 7,

[Tm.] [Tm:]

m.~ Zf (XVF)) — Ce? < ¢ (X¥e) <. Zf (XV9)) 4 Ce?

for all T > 0, where C' = C(f) > 0, ¢ = q(v, f) > 0, and a;, is as in (2.12). Thus, by (3.13),

[Tm:]

: , -1 Y€ ZJ
(3.14) limm. "' E Zf (XPN|h,n _E[/ f(X dt]hn] VT > 0,

in probability as ¢ — 0. By Lemmas 2.17, 2.18 and the boundedness of f, with T;’(i) the
first exit time as in (2.23),

[Tm:]
|m. ! Z fn(XPN| <m.! S;l[() )| ()] ; c) <oo, VI'>0, Vee(0,1),
— TEDy
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and m. ! E[T;J(i)lh, n] is a.s. bounded uniformly in €. Therefore, as (3.14) holds for each
T > 0, we may take 7" — oo and interchange the limits to see that

o0

Z (XE)|h, 77]

=0

YR [ | f(Xf)dt!h,n]

=mg X ( )GBr(z)(yyx)f(x)th(xl
B (z

Tr?'s_l Z GrgB,(z) (CLZ, b)f(n(b =Mme

beVGE (B, (2))

completing the proof. O

We now use the integral convergence of the Green’s function (Lemma 3.4) together with
Lemma 2.10 and tightness to show uniform convergence of the Green’s kernel away from its
pole.

Proof of Lemma 3.3. Let a sequence of es tending to zero be given. Fix y € B,(z) C B,
and let O € B,.(z) \ {y} be open. Denote by P(B,(z)) the set of polynomials with rational
coefficients in B,.(z).

There exists a deterministic subsequence £ along which a.s. the convergence in Lemma
2.10 occurs and the convergence in Lemma 3.4 occurs for each f € P(B,(z)). We may
further assume, by the Borel-Cantelli lemma, that along this subsequence the conclusions
of Lemma 2.14 and Lemma 2.8 hold. Restrict to the subsequence £ and the event of the
preceding two sentences

By Lemma 2.14, g1y, (ag, -) is uniformly bounded in VG°(O) by a random constant along &,
and by (2.30) is A®- harmonlc in VG°(0O). Thus, by Lemma 3.1, there is a random subsequence
along which g° converges uniformly in O to some continuous function g* : O — R (possibly
depending on the subsequence).

Fix such a subsequence & C &, and subsequential limit g*. Let uj be the measure on C
whose restriction to each cell n([z — €, 2]) for x € €Z is equal to deg®(z) times fipy((z—c,q0))-
As we have assumed a.s. convergence of the measure y; to 6uy, along £ with respect to the
local Prokhorov topology, we have that as & 2 ¢ — 0,

/f 2)dps (o —>6></f Ddn(z), Vf:P(B(2) > R

almost surely. By unpacking the definitions of g° and y;, and using Lemma 2.8 to control
the approximation error, we have that a.s. as £ 3 ¢ — 0,

/ F@F @) —m Y F®) Gy (e, b)| < Cs,

beVGge(0)
for constants C' = C(f) and ¢ = q(v, f) >0
Vf:P(B.(2)) = R.

Combining the previous two indented equations together with Lemma 3.4 shows that g*(z) =

70 x Gp,(-)(y,z). Hence, (3.12) holds when O € B,(z) \ {y}.
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After identifying the limit, we now argue that the convergence occurs up to dB,(z). By
a diagonal argument, we may arrange so that g° converges uniformly to % x Gp,(.)(y, z)
along £ on each compact subset of B,.(z) \ {y}. Let s > 0 be given and let r; € (0,7) be

such that y lies at positive distance from cl(A,, ,(z)) and

sup  Gp.(»(y,v) < s/4
zecl(Ar »(2))
Indeed, this is possible as G, (»)(y, ) is smooth up to the boundary away from its pole and
is identically zero on 0B,(z). By the maximum principle, Lemma 2.13, and local uniform
convergence we have that

sup gy (a,,b) = sup  gry (ay,b) <s/2,
bEVGE (Ary r(2)) beVG®(9Br (2))
for all € sufficiently small. This implies convergence up to the boundary, 0B, (z). 0

3.4. Convergence of the Dirichlet problem. We follow a similar strategy as in the
previous subsection to prove the following.

Lemma 3.5. Fiz a deterministic choice of z € C and r > 0 such that B,(2) C B,, a
bounded, deterministic Hélder-continuous function ¢ : B.(z) — R, and a deterministic
Holder continuous function ¢ : cl(B,(z)) — R. The rescaled solution f (as in (3.1)) to the
discrete Dirichlet problem

Aff*(a) = ¢(n(a)) for a € VG*(B,(2)) \ VG (9B,(2))
J() = me x p(n(b))  for b e VG (0B.(2))

converges in probability in the uniform topology on cl(B,.(z)) to the solution of the continuum
Dirichlet problem,

f=¢ ondB.(z).

Moreover, a.s. the limiting function f is Holder continuous in cl(B,(2)).

{A? =mo) X pp,  on B.(2)

We first prove a pointwise convergence result concerning harmonic functions.

Lemma 3.6. For each deterministic choice of z € C, r > 0 such that B,(z2) C B, and
each deterministic Holder continuous function v : cl(B,.(z)) — R the following occurs. For

y € C, recall that T;J<Z) is the first time simple random walk started at aj, € VG© exits
VG (B, (2)) \ VG (0B,(2)). Fory € B,.(z), let

Tp(» = min{t > 0: X & B,(2)}
denote the first time LBM started at y exits B.(z). Then,

lim E {w (n (X )) [, n} =E[v(xy Jlhn), vyeB(),

"By (2)

where the convergence is in probability as € — 0.
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Proof. The proof is nearly identical to that of Lemma 3.4, but for completeness we sketch
the proof.

Let the parameters y € B,(z) and ¢ : cl(B,) — R, a Holder continuous function, be given.
Consider the bounded functional on the space of continuous curves w : C([0,00)) — cl(B,(z))

defined by
¢¥(w) := Y (w(r)),

where 7 is the first time w(t) & B,(z). Recall from the beginning of Section 3.3 that X¥< is
the piece-wise linear interpolation of random walk started at a; on VG® stopped upon exiting

VG*(B,) \ VG°(0B,). By Theorem 2.11,

(3.15) lim E 6% (X*9)|h,n| = B [0(X2)[h,],

e—0

in probability as ¢ — 0. We conclude by observing that the term on the left-hand-side of
(3.15) is asymptotically close to its discrete counterpart. Indeed, as v is Holder continuous
on cl(B,(z)) and the cell-size of the mated-CRT map can be controlled by Lemma 2.8,

[¢%(XV9) = p(n(X2ew))| < O x &,
in probability as € — 0, for some C' = C(¢)) > 0 and q = ¢(~,) > 0. 0

This pointwise convergence is used together with tightness and integral convergence of the
Green’s function to prove uniform convergence of solutions to the discrete Dirichlet problem.

Proof of Lemma 5.5. Decompose f¢ = f; + f5 where

Affi(a) =0 for a € VG*(B,(2)) \ VG*(0B,(2))
fi(0) = meg(n(b)) for b € VG (9B,(2))

and

{Nfé(a) = ¢(n(a)) for a € VG(B,(2)) \ VG=(9B,(2))
f5() =0 forbe VG (IB,.(z)).

Step 1: Pointwise convergence.
Let a deterministic sequence &€ be given. Recall from [LL10, Corollary 6.2.4] that both f§
and f5 can be expressed in terms of the Green’s function of random walk. Hence, by Lemma
3.6 and Lemma 3.4 respectively, there is a deterministic subsequence & C & along which
a.s. 7? and 7; converge pointwise at every rational point in B,(z) to f, and f, where

Af, =0 on B,(z)
fi=¢ ondB,(z)

and

Afy =moup x 1 on B,(2)
fa=0 ondB,(z)

respectively.
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Step 2: Local uniform convergence.
We now show local uniform convergence in B,(z). By the maximum principle (Lemma 2.13),
fi < m.sup,ep ) |¢(x)|. Moreover, as

z€B(z)

fa + ( sup |1Z)(x)]> X Q% ()

is super (resp. sub) harmonic in VG*(B,(z)) \ VG*(9B,(z)) and zero on VG*(0B,(z)), the
maximum principle also implies that |f5] < (sup,e Br(2) ()] Q7 .y By the previous two

sentences and Lemma 2.19 we have that 7;: and 7; are bounded by a random constant along
a deterministic subsequence of &. Thus, by Lemma 3.1 there is a random subsubsequence
&y C & along which fi converges uniformly in B,(z) and f; locally uniformly in B,(z) to
contiil*uous_functions f1:B.(2) > Rand f, : B,(z) = R. By Step 1 we have that f, = f,
and f, = f,.

Step 3: Uniform convergence.

We now argue that f; converges uniformly in cl(B,(z)) to f> by a standard barrier argument.
Define

(3.16) My = sup [i(a')].

a’€Br(z)

and recall from (2.27) that the function QF, ) : VG*(cl(B,(z))) — R satisfies

A5, (a) = =1 for a € VG (B,(2)) \ VG*(0B,(2))
Q5 () (b) =0 for b€ VG (9B, (z)).

By the same argument as Steps 1 and 2, My x QF ., converges locally uniformly in B,(2)
along & to M, x ﬁBr(z) where

AﬁBr(z) =—1 on B,(z)
ﬁBT(z) =0 on 0B,(z).

By, for example, [BRG22, Proposition 2.5, Qp,(.) is Hélder continuous in ¢l(B,(z)). Since
f5 £ My x Q) is super (resp. sub) harmonic in VG*(B,(z)) \ VG*(0B,(z)) and is 0 on
VG®(0B,(z)), we deduce convergence up to the boundary using the maximum principle
exactly as in the proof of Lemma 3.3. U

3.5. Convergence of the normalized expected exit time. Recall that for a domain
D C B,, the normalized exit time is defined as q7,(a) = > ,cpge(py\vee(ap) 850 (a; b) and by
(2.28) solves the following discrete Dirichlet problem,

{qu%(-) = —(deg®)() in VG*(D)\ VG(aD)
)

=0 otherwise.

As the function (deg®)~! is not Holder continuous, Lemma 3.5 does not directly imply that the
normalized expected exit time converges. Nevertheless, we can use tightness and convergence

of the Green’s kernel to show the following.
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Lemma 3.7. Fiz a deterministic choice of z € C and r > 0 such that B,(z) C B,. As
e — 0, 05, (. converges uniformly in cl(B,(2)) to qp, (. in probability where

{AaBr(z) =—mo/6 X on B,(2)

aBT(z) 0 on 8Br(z)

Proof. Fix a deterministic choice of z € C and r > 0 such that B,(z) C B,. We split the
proof into steps.

Step 1: Identify a subsequence.
Let a sequence of €s tending to 0 be given and fix a deterministic subsequence £ along which
the convergence result in Lemma 3.3 occurs in cl(B,(z)) and Lemmas 2.9 and 2.19 occur
almost surely. Also suppose that along this subsequence the convergence in Lemma 3.5 occurs
for ¢ = 0 and for ¢ within a countable family of bump functions F(B,(z)) with the following
property. For each rational ' > 0 and rational 2’ € B,(z) such that By(z') C B,(z), there is
a function in F(B,(z)) which takes values in [0, 1], is 1 on By ('), and is 0 on B,.(z)\ Bag ().

By Lemma 2.19 and our choice of subsequence, we have that that qj ., is uniformly
bounded by a random constant along £. Since deg® > 1, by (2.28), the unscaled function
also has bounded Acf-Laplacian. Thus, by Lemma 3.1, there is a random subsequence &
along which g (., converges. In the remainder of the proof we use convergence of the Green’s
kernel away from its pole to identify the subsequential limit.

Step 2: Convergence away from the singularity.
Let x € B.(2) N Q? and a rational § > 0 such that Bs(z) € B,.(z) be given. We would like
to apply the uniform convergence of the Green’s kernel away from its pole (Lemma 3.3). So,
we ‘carve out’ the singularity at the pole of gr%,'(/:)(-, -) by considering,

76_ €
qEBr(z)(.) = Z grB,«(z)('7 b)
beEVGE (Br(2))\(VG* (0Br(2))UVG* (Bs()))

96+ €
A5, (1) = Z 8, ().
beVGE (Bs(z))

Observe that the same argument leading to (2.28) shows that

Mgy (@) = —(deg(a)) !
x1{a € VG*(B,()) \ (VG*(0B,(2)) U VG (By(x)))}

3.17
(347 on VGE(B, () \ VG*(95, (=)
q%‘:(;) =0 otherwise.
and
(3.18) Asquf?z)(a) = —(deg®(a))""1{a € VG*(Bs(x))} on VG*(B,(2)) \ VG*(IB,(2))
' q;’f(z) =0 otherwise.

Apply the same argument as in the last paragraph of Step 1 to a countable set of rationals
&' > 0 and 2’ € Q? to see that there is a random subsequence of & (independent of § and x)
along which @ ), ﬁfg’f(;), ﬁ‘;fz;) converge uniformly in B,(z) to continuous functions a5, ()

ﬁgf(;), ﬁgfé) (with the limit possibly depending on the subsequence).
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Fix such a subsequence & C & and limits g (,), a7 B X ﬁ*B‘s(Z and observe that

. gt
(3.19) T, (2) = Upr o) T T o)
Let ¢g°(-) := e~ 1%, (. (a5, ) so that by Lemma 3.3,

g7 () = (mo/6)G, () (2, -)

uniformly in cl(B,(z)) \ Bs(x) as & 3 ¢ — 0. As ¢° is zero on 0B, (z), it satisfies the Holder
continuity estimate (3.4) from Lemma 3.2 in B,.(z) \ Bs(z). This allows us to use g° as a
test function in Lemma 2.9 so that

—e mo
[ dwdmw - [ Galmadn)
By(2)\Bs(a) By(2)\Bs(x)
as & >e — 0.

By unpacking the definition of §°(y) and using Lemma 2.8, we see that the left-hand-side
of the above converges to the same limit as ﬁ;‘:(;) (). This implies

mo

(3:20 @ =" [ Gap@ndn)
Br(2)\Bs(x)

Step 3: Remove the singularity.
We claim that we may conclude once we show that

(3.21) (1511% sup qB Z)(y) = 0.
yeBr(2)

Indeed, (3.20), (3.21), and (3.19) together imply that

. m
o) = [ Gl nim)

Since AGp,(2)(7, ) = —d(+) in B,(2), the integral above is equal to qp,(,)(). This completes
the proof as x was an arbitrary rational and qj (,) is continuous.

It remains to show (3.21). Recall the definition of smooth bump functions F(B,(z)) from
Step 1. Let ¢s € F(B,(2)) be a smooth, positive bump function which is 1 on Bs(z) and 0 on
B,(2) \ Bas(x) and consider the solution to the Dirichlet problem, f§ : VG*(cl(B,(z))) — R
defined by

f5(b) =0 for be VG (IB,(z)).

Since q%’f(z) + f5 is sub (resp. super) harmonic in VG*(B,(z)) \ VG°(0B,(z)) and is 0 on
VG (0B,(z)), by the maximum principle,

g ot € : €
(3:22) a5 < 1f5] 0 VG(B.(2)).
By Lemma 3.5, 72 converges uniformly in B,(z) to fs where

{AT(; = mops X pp,  on B(z)

{Nf;(a) = ¢s(n(a)) for a € VG*(B,(2)) \ VG (9B, (2))

fs=0 on dB,(z).
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We can represent

F5() = mo / G )y

< mo/ G, (-, y)dpn(y)
Bas(z2)
S mg X M(BQ§(Z)>
Hence, by the second half of Lemma 2.17 there exists ¢ = ¢(y) > 0 such that
fs <09 for all § sufficiently small,

which by (3.22), implies (3.21), completing the proof. O

4. CONVERGENCE OF THE DIVISIBLE SANDPILE ODOMETER

Fix p € (0,1) and ¢ > 0. We briefly recall the single-source divisible sandpile model,
introduced in Section 1.2.2, and define its odometer. In the model, we start with a continuous
amount of mass (te~!) at the origin 0 € VG and zero elsewhere. At each time step, vertices
a € VG° which have mass o(a) > 1, where ¢ is the current configuration, are unstable and
topple, distributing the excess mass (o(a) — 1) equally among the neighbors of a. Since
G° is an infinite graph eventually each site a will have mass at most 1. Denote the final
configuration of mass by s : VG — [0, 1].

The odometer, which we denote by v : VG — [0,00), tracks the total amount of mass
each site has emitted during this process. In particular, by definition of the graph Laplacian,
we have that

UE
4.1 s¢ =te 19y + deg® XA [ —— ).
( ) t 0 g degé‘
(The two deg® factors in the above expression are needed to ensure the above expression
matches the prior description of toppling.)
By definition, we see that the divisible sandpile cluster satisfies

(4.2) D.(te™) = {x € VG : s > 0} = cl({w € VG : vf > 0}).

The reason for the closure in (4.2) is that there are some sites with mass in the cluster which
have not toppled. These sites, by definition, must have a neighbor which has toppled.
A fundamental property in the study of the sandpile is the least action principle,

£

(4:3) dqe}tg8 = min{w : VG — [0, 00) : A%w + deg®(0) e 16, < (deg®) 1},

where the minimum is pointwise. See, e.g., [LP09, Lemma 3.2] for a proof. This property is
closely related to (2.10). In fact, one sees from the definition that if D.(te™!) C VG*(B,) \
VG®(0B,), then we can express, using (2.30), the solution to (4.3) as

deg®(a)

wa @ et ) i (0.) fora € VG(B,) \ VG (9B,
' 10 otherwise
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where
w; :=min{w : VG(cl(B,)) = R : A®w < (deg®)~! on VG*(B,) \ VG*(IB,)

(4.5) and w > —(te™") x g1, (0,)}

where the minimum is pointwise. And, in general,

€

(4.6) dZtg - > )+ (te7Y) x @i, (0,-) on VGE(B,).

Let w; be the re-scaled version of w; as in (3.1). We will show the convergence of w; to
its continuum counterpart defined by (2.10). In order to ensure the divisible sandpile cluster
is contained in B, we consider ¢ € (0,7}) where

(47) T1 = Sup{t >0: At C Bp/g},

where A; is the LQG harmonic ball as in Theorem 2.3. We take B, 3 rather than B, in the
above definition to allow some room for error in the discrete estimates of Section 6.

Theorem 4.1. Recall the median exit time mq defined in (2.18). For each t > 0, on the
event {t < 11} we have that w; converges uniformly in B, as e — 0 to %Ef“ in probability,

P

_B, . : )
where w, ” s as in Theorem 2.35.

The extra factor of %% in Theorem 4.1 is a result of the factor m. appearing in the
scaling definition (3.1) and the fact that since the mated-CRT map is a planar triangulation,
E[deg®(0)] = 6.

A result similar to that of Theorem 4.1 was proved on Z? by Levine and Peres in [.P09]
using different methods. Levine and Peres used precise estimates on the lattice Green’s func-
tion in Z? which are unavailable in our setting. Our approach is similar to (but easier than)
the method used to prove convergence of the Abelian sandpile — see [PS13, BR21]. (Also
see [BS91] for a systematic approach to proving convergence of finite-difference schemes.)

Before proceeding we point out that convergence of the odometer implies a lower bound
on the divisible sandpile cluster.

Proposition 4.2. For each 6 € (0,p) and t > 0, on the event {t < 1}, it holds except on
an event of probability tending to 0 as € — 0 that

By (Ay) € Do(te ™).

Proof assuming Theorem j.1. Fix § € (0, p) and ¢ > 0 and restrict to the event that {t < 7’ }.
Let a deterministic sequence of s approaching zero be given. Recall from Theorem 2.3 that

(4.8) A, = int ({x € B, W > —1Gp, (0, -)}) ,

where G, is the Green’s function for A on B,. Since Ef ? is continuous and G'g, (0, -) blows
up at the origin, we can pick r € (0,1) so that

(4.9) inf tGp,(0,7) > sup —wr* (y).

€ By yEBy

Since g1, is superharmonic, by the maximum principle, Lemma 2.13,

4.10 inf g5 (0,a) = inf g5 (0,b), ¥ € (0,p).
( ) aEVlgI;(Br/)bIBV( a) bEVglgl(aBr/)ger( ) " ( p)
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Let ¢°(-) := e 'gr} (0,-) and define g° as in (3.1). By Theorem 4.1, there exists a

. . . . . _B
deterministic subsequence, &, along which a.s. wj converges uniformly in B, to “w,”.

Further, by Lemma 3.3 we may arrange so that, a.s. along £, g° converges uniformly in A, ,
to "¢ x G,(0,-). By (4.8) and the continuity of the two functions involved, there exists
s > 0 so that

w, " () > —tGp (0,2) + s

4.11
(4.11) for all z € A; such that dist(xz,0A;) > §/4.

We may further assume that a.s., the cell-size estimates of Lemma 2.8 hold for all sufficiently
small € € €.

Therefore, by the uniform convergence of w; in B, and the uniform convergence of g in
A, , we have by (4.9)

wi(a) > sup —(te7') x g1, (0,b), Va € VG*(B,), Ve € & sufficiently small
bEVGE (0Bay) !

and thus by (4.10)
w(a) > —(te™') x gr5; (0,a), Va € VG(B,), Ve € & sufficiently small.

P

Also, by uniform convergence of w; in B, and uniform convergence of g° in A, , and (4.11)

we have
wi(a) > —(te™!) x gry; (0,a)

P

Va € VG*(A; \ B,) such that dist(n(a),0A:) > 6/2
Ve € & sufficiently small.

Combining the previous two indented equations with the definition of D., (4.2), and (4.6)
completes the proof. 0

4.1. Basic properties of the divisible sandpile. For completeness, we recall some basic
properties of the discrete least supersolution. Since these results are standard, the proofs are
given in Appendix A. We also note that continuum analogs of these properties are proven
in [BR21, Appendix A].

Lemma 4.3. Recall the definition of q3 from (2.25). For allt >0 and £ > 0,
max(—qg,, —(te™") x g1, (0,-)) < wj <0
and A*w; < (deg®)™' on VG(B,) \ VG*(0B,).

For the statement of the next lemma, we denote the discrete cluster by

(4.12) A ={a € VG (B,) : wi(a) > —(te ") ot (0,a)}.
Observe that by (4.2) for ¢t € (0,7}),
(4.13) D.(te™h) = cl(AS).

Lemma 4.4. For allt > 0 and ¢ > 0, we have that A*w; = (deg®)™ on A and 0 < Afw; <
(deg®)~t on VG*(B,) \ VG (0B,). Moreover, A; is connected and if t=' > 1, then 0 € A.

We conclude with a discrete conservation of mass lemma.
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Lemma 4.5. For all t > 0 and € > 0, we have that |A;| < te™t. Moreover, if Ai C
int(VG*(B,) \ VG°(0B,)), then

> Aui(a)deg(a) =te
a€VG®(B,)\VG*(9B,)

4.2. Convergence of the odometer along subsequences. In this subsection we prove
tightness of the re-scaled odometer function w; defined in (4.5) and (3.1). In subsequent
subsections we show that, for ¢ € (0, 7)), each subsequential limit is given uniquely by (2.10).

Lemma 4.6. Almost surely, for each t > 0 and each deterministic sequence of €s converging
to 0, there exists a o(h,n)-measurable subsequence and a Hélder continuous function w; €
C(cl(B,)) such that w; — w; uniformly in cl(B,).

We will prove Lemma 4.6 by combining Lemma 3.1, the results of the previous subsection,
and the following lemma.
Lemma 4.7. A.s., for each deterministic sequence of €s converging to 0, there exists a
deterministic subsequence € and a random constant C' so that for each t > 0,

sup [wi(z)| < C, Ve €.

2€B,
Proof. By Lemma 4.3,
(4.14) —qp, Sw; <0, VE>0,Ve >0
and by Lemma 2.18 and (2.20)
(4.15) —qp, = —Com.M(B,)

for some deterministic constant Cy = Cy(p, ) with polynomially high probability as e — 0,
where M(B,) is as in (2.32). By Lemma 2.17, M(B,) is finite almost surely. Hence, the
previous two indented inequalities complete the proof by the definition of w; and the Borel-
Cantelli lemma. U

We now use the tightness lemma, Lemma 3.1, to prove subsequential convergence.

Proof of Lemma 4.6. By Lemma 4.7 and Lemma 4.4, for each ¢ > 0, the assumptions of
Lemma 3.1 are satisfied along a deterministic subsequence for the functions w;. Hence,
w; converges a.s. locally uniformly in B, along a random subsequence. To see that the
convergence occurs uniformly in cl(B,), we use the standard barrier argument given in Step
3 of the proof of Lemma 3.5. To implement the barrier argument we use that 0 < Afw; <
1. O

4.3. Properties of the subsequential limit. Convergence of the discrete Dirichlet prob-
lem, Lemma 3.5, is used to establish some properties of each subsequential limit of the
odometer. We will use this in the next subsection to uniquely identify the limit.

Lemma 4.8. A.s., for each deterministic sequence of € — 0, there exists a deterministic
subsequence so that a subsequential limit w; of w; along this subsequence (as given by Lemma
4.6) satisfies the following:
(1) 0 > w; > —t7%2Gp,(0,-) on cl(B,);
(2) Aw; >0 on B,;
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(3) Aw; < "2y, on B, and Aw; = Ty, on {x € B, : w;(v) > —t"2Gp,(0,1)}.

Proof. By Lemma 3.3, we may take a deterministic subsequence along which, the convergence
of g° from that lemma, with y = 0 and B,(2) = B,, occurs almost surely. Take another
subsequence for which the convergence of Lemma 3.5 occurs a.s. for all z € Q? and rational
r > 0,9 =0,and all ¢ € F(B,(z)), the set of polynomials with rational coefficients restricted
to cl(B,(z)). Further suppose that along this subsequence the convergence in Lemma 3.7
holds for all z € Q% and rational » > 0. By Lemma 4.6, there is a random subsequence £ of
the preceding subsequence such that limgs. 0 w; — wy.

Step 1: Proof of (1).
By Lemma 4.3,

(4.16) 0>w; > —(te™!)gry (0,-) on VG (cl(B,)), Ve>0.

This inequality persists in the limit by the uniform convergence of w; and the convergence
of the rescaled version of 71 grp, to " Gp,, for €3 e — 0 as given by Lemma 3.3.

Step 2: Proof of (2).
Let 6 > 0, a rational r > 0, and a z € Q? such that B,(z) € B, be given. For each ¢ € &
consider the discrete harmonic function f§ defined by

Affs(a) =0 for a € VG*(B,(2)) \ VG*(0B,(2))
f5(b) = m.¢?(n(b)) +6 for b € VG*(0B,(2))

where ¢° € F(B,(z)) is a rational polynomial satisfying

(4.17) sup ¢ (x) — W (x)] < §/4.
z€cl(Br(z))

By Lemma 4.4, w; is A®-subharmonic. Thus, by the maximum principle, Lemma 2.13, we
have

sup (w; = f5)(a) < sup  (w; = f5)(b).
a€VG® (Br(2))\VG* (9B (2)) bEVGE (0B, (2))

As w; converges uniformly to w; in cl(B,), by definition of f§ and (4.17), we have

sup  (w; — f5)(b) <0, Vsmalleef.
bEVGE (0B, (2))

By combining the previous two indented equations, we have

(4.18) f5s(a) > w;i(a), VaeVG (B, (z)), Vsmalleecf.

By Lemma 3.5, we have that f; converges uniformly in cl(B,(z)) to a harmonic function
fs - cl(B,(2)) — R which satisfies

Afs;=0 on B,(2)
(4.19) {7; =¢°+d ondB,(z2).
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Therefore,

W (2) < f5(2) (by (4.18) and uniform convergence)

= / fs (by harmonicity)
0B (2)

—[ @+ by @9,
8B, ()

As the choice of rational r > 0 and z € Q? was arbitrary and the above inequality holds for
any 0 > 0, by (4.17), and the continuity of w; (z), we have

w;(z) < / wy, forall” >0 and z € C such that B,(z) C B,,
OBr(z)

completing the proof.

Step 3: Proof of (3).
We will show that

(4.20) Awy < %,uh on B,,
and then
(4.21) Aw; = %uh on {w; > —t7%Gp,},

appealing to the argument of Step 2.
Let rational r > 0 and z € Q* such that B,(z) C B, and § > 0 be given. Recall that for

cach e > 0, q3 ., satisfies

A%y . (a) = —(deg®(a))™t for a € VG°(B,(2)) \ VG (0B, (z))

0%, () =0 for b € VG (0B, (2)).
By Lemma 4.4,
(4.22) A*(q%, ) T wi)(a) <0 for a € VG (B,(2)) \ VG (0B,(2)).
By Lemma 3.7, q3 (., converges uniformly in cl(B,(2)) to qp,(,) where

qBr(z) =0 on 8Br(z)

As (93, () + w;) is discrete superharmonic (4.22), the same argument as in Step 2 shows
that
(4.24) A(dp,) +wi) <0 on B.(2).
Combining this with (4.23) shows (4.20).

We now show (4.21). Fix rational » > 0 and z € Q? so that

— mo
B,(z) C {z € B, : w;(x) > —t?GBp(x)}.

By the continuity and uniform convergence of the two functions involved, for all ¢ € &£

sufficiently small, we have that

(4.25) wi(a) > —(te™) grf”(()g,(ja), Va € VG*(B,(2)).



The inequality (4.25) and Lemma 4.4 together show that

(4.26) A (g5, )+ wi)(a) =0 Va € VG*(B.(2)) \ VG (0B,(2))

for all € € £ sufficiently small. Again applying the argument of Step 2 twice, we see that
(4.27) A(dp, ) +w;) =0 on B,(2),

completing the proof by (4.23). O

4.4. Proof of Theorem 4.1. Note that by the definition of 7 and Theorem 2.3,
A, = int (cl ({;p € B, W > —Gp (0, -)})) , Ve (0,T)).

By (1) and (3) of Lemma 4.8 we have that each possible subsequential limit miow; as in
Lemma 4.6 is admissible in (2.10) and hence

(4.28) %wf”” <w;, Vte(0,Ty).

For the other direction, we note that by part (c¢) of Theorem 2.3, we have, for each ¢t € (0,77),
AW = pply, on B,
and by (3) of Lemma 4.8
Aw; = %,uh on {ze€B,:w(r)> —t%GBP(O,x)}

and by (4.28),

mo

: GBP(O,-)}>) . Ve (0,7).

Consequently, by the above three displays we have for each t € (0,7}), (in the weak sense)

Atcint(cl<{:ceBp:wj>—

A — gy =0 on A,

and

A(@! — %mfﬂ) =AW >0 onB,\A

with the last inequality coming from (2) of Lemma 4.8.
Therefore, for each t € (0,7}),

6

_ _B
w; — 2w, " =0 on 0B,

{A(w;‘ — Mo >0 on B,
6

and hence by the maximum principle in the continuum,
m
(4.29) ?waﬂ > w!

which, together with (4.28) shows that w} = w, ’. O
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5. IDLA LOWER BOUND

We use the convergence of the divisible sandpile and the argument of Lawler-Bramson-
Griffeath [LBG92] to prove the following lower bound on the IDLA cluster. As in the
previous section we fix a p € (0,1) so that B, € B;y. Recall the notation for the subset of C
corresponding to a subset of VG, (1.6).

Proposition 5.1. Recall the time T from (4.7). For each ¢ € (0,p) andt > 0, on the event
{t < T}, it holds except on an event of probability tending to 0 as € — 0 that
By (M) € A([te™'])
where Ay is as in Theorem 2.3. Moreover, this lower bound holds even when walkers are
stopped upon exiting VG (Ay).
Our proof of Proposition 5.1 relies on the following result of Lawler-Bramson-Griffeath
[LBG92]. Recall Remark 2.12.

Lemma 5.2 (Reformulation of Section 3 in [LBG92]). Suppose O C O5 C VG*(B,) are
o(h,n)-measurable domains containing the origin such that for K. > 0, some deterministic
q > 0 and random o(h,n)-measurable finite random variable s > 0,
(5.1) K. Grp.(0,a) > (1+48) Y Grg.(b,a), Vae O,

beOs

and

Zbeog Gri)g (b,a)

5.2 = >ec 1 VaeOf
( ) GI'COS(G,G/) Z € ) ac 1>
with probability approaching one as € goes to zero, then

(5.3) 07 C A(|K.])

with probability approaching one as € goes to zero. Moreover, the bound (5.3) holds even
when walkers are stopped upon eziting O3.

We will give the proof of Lemma 5.2 at the end of this section, following the argument
of [LBG92]. We will first prove Proposition 5.1 by verifying the two conditions of Lemma
5.2. Specifically, we will show that an approximate mean-value inequality (5.1) is satisfied
for the discrete divisible sandpile cluster A;.

Lemma 5.3. For each § € (0,p) and t > 0 on the event {t < T\}, there exists a o(h,n)-
measurable finite random variable s = §(0) > 0 such that, except on an event of probability
tending to 0 as e — 0,

(54) (t=7") Gri-(0,a) > (148) Y Gri-(ba), forallac A; st dist(n(a),dn(A;)) > d.
beAS
We will also prove the lower bound in (5.2).

Lemma 5.4. There exists a deterministic ¢ > 0 such that, for each § € (0,p) andt >0 on
the event {t < T}, it holds except on an event of probability tending to 0 as e — 0 that
ZbeA; Grii(b, a)

(5.5) G (e a) >e 1 foralla € A s.t. dist(n(a),on(A7)) > 0.
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These lemmas imply Proposition 5.1.

Proof of Proposition 5.1, assuming Lemmas 5.2, 5.3, and 5.4. We restrict to the event that
{t < Ty} for t > 0. By Lemmas 5.3 and 5.4 (with §/4 instead of §) we may apply Lemma 5.2
with the sets Of = {a € AS : dist(n(a),dn(A5)) > §/4} and O5 = AS and K. = te~! which
shows, together with the cell-size estimates given by Lemma 2.8

B; 5 (A7) € Ac([te™]),

except on an event of probability going to zero as ¢ — 0, with the bound holding even
when walkers are stopped upon exiting Aj. By Proposition 4.2 and (4.13), (and the cell-size
estimates again) we have

B(;/2<At) - A_ia
except on an event of probability going to zero as ¢ — 0. 0

We now prove Lemmas 5.2, 5.3, and 5.4. We start with Lemma 5.4, which relies on the
estimates established in [BG20] as recalled in Section 2.

Proof of Lemma 5./. We restrict to the event that {t < 77} for t > 0. By the fact A] C
VG®(B,) and Lemma 2.15, we have

(56) Gl‘f\i (CL, CL) < Gr‘;“(a7 a) < 6_1/2, = Vgs(Bp)

except on an event of probability going to zero as ¢ — 0. Therefore, it suffices to show that
there exists a deterministic constant C' > 0 independent of € such that

(5.7) > Gri(b,a) > Co7', Va € A; : dist(n(a), (A7) > 6
bEAS

except on an event of probability going to zero as ¢ — 0. Indeed, we just need the desired
estimate for ¢ small and we may absorb the factor of Cd into /2 for ¢ small enough,
depending on C and 4.

Let a € AS such that dist(n(a),dn(A7)) > 0 be given and observe that

Z Gri:(b,a) > Z Grigb_ﬂ(a)(b, a).
beEAS beVG® (Bs /2 (a))
By Lemma 2.16 and Lemma 2.9
Y. Gigw(bae) > Co,
bEVG® (Bs/2(a))

for some deterministic constant C' = C'(p, ) except on an event of probability going to zero
as e — 0. U

We next prove the approximate mean-value inequality using the basic properties of the
discrete obstacle problem and the convergence afforded by Theorem 4.1.

Proof of Lemma 5.3. We restrict to the event that {t < 771} for ¢ > 0. As the function deg®
is reversible for simple random walk on VG*, by, for example, [LP16, Exercise 2.1],

Gri; (a, )/ deg? (8) = Gri (b,a)/ deg™(a), Va,b e A;.
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Therefore, we can rewrite the desired inequality as

L1y e deg 5(@)
te™!) Gri-(a,0 (1+s) GI - ( .
By the definitions in Section 2.8 and Remark 2.12, this shows that it suffices to establish
(5.8) (=) (a,0)> (1+5)d5(a), Va € A; : dist(n(a), O(A) > 6,

for some finite o(h,n)-measurable random variable s = s(p,~,d) > 0 not depending on ¢,

except on an event of probability going to zero as ¢ — 0. Define
(5.9 vi (a) = wi(a) + (te™") g1, (a, 0)
. U5 (a) = (t=™) gri;(aa 0) — qu( a)

and note that on A7

= (deg®) ™! — deg®(0) H(te H1{- = 0} — A°Tf (by (2.30) and Lemma 4.4)

= (deg®) ! — deg®(0) ' (te™")1{- = 0} — (—deg®(0) ' (te ")1{- = 0} + (deg®) ")
(by (2.30) and (2.28))
—0.

Since wi = gry; (+,0) = qj. = 0 on 9A], this implies that
Af(vf —95) =0 on A]
(v —07) =0 on OAS.
By the maximum principle, Lemma 2.13, this implies that
vy > v on Aj.

By uniform convergence of 75, (scaling defined in (3.1)) which comes from Theorem 4.1 and
Lemma 3.3, for some finite o(h,n)-measurable random variable C' = C(J) > 0, we have that

% (a) > vi(a) > Ce™, Va € Af : dist(n(a), In(AS)) > 6,
except on an event of probability going to zero as € — 0. Also, by Lemma 2.18

sup 3. (a) < Cre,
acA;
with probability approaching one as e — 0 for some finite o (h, n)-measurable random variable

C7 > 0 not depending on . By combining the previous two indented equations with the
definition (5.9) of ©f, we have (5.8) with s := (C/C}). O

We conclude by including, for completeness, the arguments of [LBG92].

Proof of Lemma 5.2. Recall that for each ¢ > 0, the IDLA cluster is formed by running

independent random walks X%¢(i) := X¢(i) started at the origin on G° and stopped upon
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exiting the cluster. We let each independent random walk evolve forever even after it has
left the occupied cluster and introduce the stopping times:

o' =min{t: X:(i) ¢ A.(i — 1)}

= the time it takes the ¢th walker to leave the occupied cluster
7. = min{t : X7 (i) = b}

= the time it takes the ¢th walker to hit site b
T" = min{t : X:(i) ¢ O3}

= the time it takes the ¢th walker to leave Oj3.

For a € VG®, let E,(¢) denote the event that a does not belong to the cluster A.(K.). We
claim that to prove (5.3), it suffices to show that with probability approaching one as ¢ — 0,

(5.10) P[E,(g)|h,n] < exp(—ce™€), Va € Of,

for some deterministic ¢ > 0 which is independent of ¢ and a. Indeed, since the cells
of VG° have ujp-mass ¢ and intersect only along their boundaries there exists a random
C =C(p,7) > 0 so that
VG (B,)| < Ce™,

with polynomially high probability as ¢ — 0. Therefore, (5.3) can be obtained from (5.10)
and a union bound over all a € Of.

Our aim now is to show (5.10). Fix an e for which (5.1) holds and a b € O5. Consider the
random variables

M=> 17 <T}
i<K.
= number of walks that visit b before leaving O3
L= Zl{aing<Ti}
i<K.
= number of walks that visit b before leaving O5 but after exiting the current cluster.
Observe that for all £ > 0,
P[Ey(e)|h,n] < P[M = L|h, 1]
(5.11) < PYM < k}U{L > k}|h,n)
< PM < klh,n] + P[L > k|h,n].
We will choose k below to minimize this bound. First note that by, for example, [L1.10,
Lemma 4.6.1]
Grog(a,b)
Gro (b, 0)
for all a € VG where P?[n, < T'|h,n] denotes the probability that an independent walker

started at a € VG© hits site b before it leaves O5.
As M is a sum of i.i.d. random variables, by (5.12)

(5.12) Pm < T|h,n] =

Gr- (0,0
(5.13) B(M{h 1] = KBl < Ty = K. x 000
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The random variable L is not a sum of independent random variables, but each walk which
contributes to the sum in L can be mapped to the point at which it exits the current cluster.
Therefore, by the strong Markov property,

(5.14) L<L:=)Y 1Yn<T}
acO5

where 1%{7, < T'} denotes the event that an independent walker started at a € VG® hits site
b before it leaves O5. Hence, by (5.12) we have that

Zaeog Gros (a,0)

5.15 E[L|h. 7] = Pe T|h.n] =
( ) [ ’ 777] Z [Tb< ’ 777] Gr%;(b,b)

a€0§

By the assumption (5.1), we have that (5.13) and (5.15) imply that there exists a deter-
ministic ¢ > 0 and o(h, n)-measurable finite random variable s > 0 so that with probability
approaching one as € — 0,

(5.16) E[M|h,n] > (1 +s)E[L|h, 7] > (1 +s)e77,

with the latter inequality following by the assumption (5.2).
Recall that if S is a finite sum of independent indicators with mean g, then

1
(5.17) P[|S—pl > p*"] <2exp (—Zum)

for all sufficiently large p (see, e.g., [LBG92, Lemma 3.3]). Now, set k = (1 4 s/4) E[L|h, 7]
in (5.11) and compute

P[L > (1+8/4) E[LIR, ]|, 7)
<P|L>(1+s/4)E[LIhnllhn] (by (5.14)
\h, ] + E[L|h, n)*/*|, 77] (by (5.16) for all € small depending on s)

E[ﬁ|h,n]1/2) (by (5.17) with p = E[L|h, 7))

Similarly,
P[M < (1+s/0) E[L|h,mlh ]
<P [M <E[M|h,n] — E[M|h,n]**lh,n] (by (5.16) for all ¢ small depending on s)
< 2exp <—}lg—q/2) (by (5.16) and (5.17) with p = E[M|h, n]).

Therefore, if we set k = (1 + s/4) E[L|h, 7] and use (5.11), we have (5.10), completing the

proof. O
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6. IDLA UPPER BOUND

As in the previous section we fix a p € (0,1) so that B, € B;. Recall the notation for the
subset of C corresponding to a subset of VG°, (1.6). Here we prove that the IDLA cluster is
contained in a harmonic ball.

Proposition 6.1. Recall the time T from (4.7). For each ¢ € (0,p) andt > 0, on the event
{t <11}, it holds except on an event of probability tending to 0 as € — 0 that

A([t=71]) € Bf (M),
where Ay is as in Theorem 2.5.

Our proof of the upper bound combines ideas of Lawler [Law95] and Duminil-Copin-Lucas-
Yadin-Yehudayoff [DCLYY13]. The idea is utilize the diffusive, ‘smoothing’ nature of IDLA.
That is, it is extremely unlikely that a random walk travels a long distance without hitting
many sites while doing so. Since the IDLA cluster is built by running independent random
walks, the cluster itself has this same property.

In our setting, we would like to use this smoothing to assert the following: given the current
cluster © C VG*(B,), after adding de~* walkers to the origin, the resulting cluster must be
contained in VG°(B/,;.(©)), (for some constants ¢, C') with extremely high probability.

Duminil-Copin-Lucas-Yadin-Yehudayoff [DCLYY13] showed that IDLA does indeed have
this property if the underlying graph is regular enough. Roughly, they required the graph to
obey volume doubling and have an intrinsic metric which can be controlled by the Euclidean
metric. Unfortunately, these required properties do not hold on the mated-CRT map. In
particular, with positive probability, it is possible for random walkers to travel a long Eu-
clidean distance in the mated-CRT map without hitting many cells. Fortunately, this is not
the case for ‘most’ of the mated-CRT map.

We formalize ‘most’ by considering the behavior of random walk on a Euclidean annulus
intersected with the mated-CRT map (under the usual SLE/LQG embedding). Roughly, for
a ‘good’ annulus, for all sufficiently small ¢, it is difficult for a random walk on VG* to travel
across the annulus without hitting many cells along the way.

We start in Section 6.1 by defining what it means for an annulus to be good. We then use
the definition of good annulus in Section 6.2 to provide estimates for the hitting measure
of random walk on the mated-CRT map. We then use these estimates together with an
iterative argument to prove the upper bound in Section 6.3.

Below we frequently make use of the Abelian nature of IDLA. This Abelian property
was first observed by Diaconis-Fulton in [DF91] and states that the distribution of the final
IDLA cluster is unaffected by the order in which walkers are sent out. In particular, we
may use this to ‘start’ and ‘stop’ walkers as they go through certain sets. To that end, we
introduce the following definitions. For continuity of literature, we use the same notation as

[DCLYY13).
Definition 6.2. Given sets © C ©" C VG*, and vertices ay,...,a; € O, denote by
A(O;aq,...,ay — O) C VG*

the IDLA aggregate with the following initial condition: the set © is completely occupied, k

independent simple random walks are started at aq,...,a, and the walkers are stopped upon
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exiting ©'. Let
P(©;ay,...,ap — ©O") C 06/

be the final positions of those walkers among aq,...,ar, which are stopped before being ab-
sorbed into the aggregate. We write

A(O;ay,...,a;) = A(O;ay,...,ap — VG),
when the walkers are not stopped, i.e., © = VG,
In this notation, the Abelian property of IDLA is the following.

Lemma 6.3 (Section 4 [DF91)). For every o(h,n)-measurable choice of © C ©' C VG and
ai,...,ax C O, the conditional laws given (h,n) of

A©say,...,a) and A(A(O;ay,...,a — O'); P(O;ay,...,a, — 0))

agree. That is, the IDLA aggregate has the same (conditional) distribution as any restarted,
stopped IDLA aggregate.

6.1. Good annuli. Let ¢y = ¢o(p,7) € (0,1/5) be a deterministic constant chosen so that

1 1
6.1 Co'llog ([ — ) —1>-.
(6.1 cos () <12 5
where Cy = Cy(p, ) is the constant from Lemma 2.16. This will be used in Lemma 6.9
below.
For z € C, r > 0, and parameter C' > 0, let E.(z) := E,.(z;C) be the event that the
following is true:

1
(6.2) sup / <log + 1) dpp(u) < C min  pip(Begr(w)).
Ay 2r(2) |u - U|

vEA, 2, (2) wEA 27 (2)

An annulus A, 5,(2) for which E,(z) holds it said to be good. In this subsection we prove
that there are many good annuli in B,,.

Lemma 6.4. There exists a constant C' depending only on v such that the following holds

with polynomially high probability as 6 — 0. For each z € (B, 35 \ Byyz) N %Zg there is

at least one radius v € [6,6Y%) N {7 " }uen for which E,(z) occurs, where E.(2) = E.(2;C)
is as in (6.2).

The argument is similar to [BRG22, Section 6.2]. We start by showing that for each z € C
and r > 0, the event E,.(z) occurs with high probability provided C' > 0 is chosen to be large
(Lemma 6.5). We will then use the near-independence of the GFF across disjoint concentric
annuli (Lemma 6.6) to show that for each fixed z € C, it holds with very high probability
when § is small that there is at least one radius r € [5,0%] N {77"},en for which E,(z)
occurs. Finally, we will take a union bound over all z € B, 3 /5 \ Bioys N %.OZQ.

Throughout this section, we use the fact, recalled in (2.4), that in B; the y-quantum cone
field h agrees in law with the whole-plane GFF plus —vlog| - | normalized so that its circle

average over By is 0. Also recall the notation for annuli from (1.9).
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Lemma 6.5. For each p € (0,1), there exists C' = C(p) > 0 such that the event E,.(z) :=
E.(z;C) of (6.2) satisfies
P[E.(2)] > p, Vr>0,
Vz € C such that A, /33,(2) C B, and dist(A,33.(2),{0}) > r/100.

Proof. Denote the left and right sides of the inequality in the event (6.2) by £(z) and R"(z)
respectively. We first show that it suffices to prove the lemma with h replaced by hC, i.e.,
the GFF without a log-singularity (y = 0 in (2.4)). We then prove the lemma for hC.

Step 1: Reduction to h*.

Recall that h restricted to B; agrees in law with h® — ylog| - | where h® is a whole-plane
GFF. So, we can couple h® and h so that h|g, = h®|p, — vlog| - |. Suppose the statement
of the lemma holds for h® with C; > 0 in place of C.

Fix r > 0 and then z such that the annulus A, /3 3,(2) lies at Euclidean distance at least
7/100 from the origin. Note that F;.(z) depends only on hls . (-)- Thus, the log function
is bounded above and below in the region of dependence of E,(z). Hence, by Weyl scaling
(Fact 2.2), there is a constant A > 0 depending only on ~ such that

£1:) L)

6.3 .
(6.3) RhG) = REC)
Thus,
£ (2) Lh(z)
r < r <
R = R =

and hence (6.2) occurs for C':= A x C} if it occurs for hC.

Step 2: Whole-plane GFF.
We use the fact that the law of h® is both scale and translation invariant modulo additive
constant (2.5). By the Weyl scaling property of the measure p, (Fact 2.2), the event E,.(z) is
a.s. determined by h viewed modulo additive constant. From this and the LQG coordinate
change formula for puy, we infer that the probability of F,(z) does not depend on r or z.

Hence, it suffices to find C' > 0 as in the lemma statement such that P[E;(0)] > p. This
£l(0)
RH0)

however, follows immediately from the fact that is a positive, finite random variable. [J

The following lemma is a special case of [GM20, Lemma 3.1].

Lemma 6.6 ([GM20]). Fiz 0 < s1 < sg < 1. Let {rg}ren be a decreasing sequence of positive
numbers such that ryi1/re < s1 for each k € N and let {E,, }ren be events such that E,,
is a.s. determined by hla,,,, .. (0), viewed modulo additive constant, for each k € N. For
K € N, let N(K) be the number of k € [1, K| NZ for which E,, occurs. For each o > 0
there exists p = p(a, s1,52) € (0,1) and C = C(«, s1,52) > 0 (independent of the particular
choice of {ry} and {E,,}) such that if

(6.4) P[E,]>p, VkcEN,
then
(6.5) P[N(K)=0] <Ce ¥, VKN,

We now prove the desired claim.
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Proof of Lemma 6./. The event E,(z) depends only on the measure uyla, ., (-) Moreover,
multiplying this measure by a constant does not change whether E,(z) occurs. Therefore,
E,(2) is a.s. determined by hla,, , () viewed modulo additive constant.

We now apply Lemma 6.6 with K = |log, e~*/2], the radii ry,...,rx € [5,0"2]N{7 " }hen,
the events E,, = F, (z), and an appropriate universal constant choice of a. We find that
there exist universal constants p € (0,1) and ¢ > 0 such that if P[E,.(2)] > p for each r > 0
and each z € B, \ Big,, then for all z € B, \ By,

(6.6) P [E,(2) occurs at least once for 7 € [3,62] N {7 " }pen] > 1 — O5(5%)

with a universal implicit constant in the Ogs(-).

By Lemma 6.5, there exists C' = C(v) > 0 such that for this choice of C, one has P[E,(z)] >
p for each r > 0 and each z € B, \ Byo,. Therefore, the estimate (6.6) holds for this choice of
C. We then conclude by means of a union bound over all z € (B, ;5\ Bygy5) N 272 O

6.2. Harmonic measure estimates. Equipped with the prevalence of good annuli, we
are now ready to prove the following random walk estimate. Roughly, it states that with
probability bounded away from zero, random walk cannot travel through an annulus of
constant size without hitting at least a mesoscopic number of vertices. See Figure 6 for an
illustration.

Much stronger versions of this estimate have been proved on Z¢ [Law95, Lemma 11] and
the supercritical percolation cluster [DCLY Y13, Lemma 5.

Lemma 6.7. There exists deterministic w = w(y) > 0 so that for each sy € (0, 1), there exists
s1,82 € (0,1) and a random o(h)-measurable § > 0 such that with probability approaching
one as € goes to zero, the following is true for all r € [10e¥, 8] and all sets © C VG such
that © € B,2 and By, C © with © as in (1.6).

Let a € cl(©) and let S C VG*(O© + B,) be such that |S\ O] < 51727 c~! where 3~ is as in
Lemma 2.7. Let = denote the trace of a random walk started at a and stopped upon exiting

VG(© + B,). Then,
PENVG (O + B,) \ (SUB) # 0|h,n] > ss.

A law of large numbers version of this estimate is Lemma 6.9 below and this will be used
to show that the IDLA cluster cannot develop long tentacles in Lemma 6.10.

The set © in Lemma 6.7 may be thought of as the current IDLA cluster and S as the
cluster after releasing an additional, small number of walkers (fewer than s;72°"¢~1). The
lemma states that with (conditional) probability bounded from below by a constant, s,
which is independent of r and ¢, a random walk started at an arbitrary vertex in cl(©) will
be absorbed into the intermediate cluster (i.e., hit a vertex not in S U ©) before exiting the
B, neighborhood of the initial cluster, VG*(© + B,). In the case when © is a large IDLA
cluster, the condition By, C © is satisfied for some small 54 € (0, p) for all small £ due the
lower bound, Proposition 5.1 and the corresponding property for harmonic balls, Theorem
2.3.

To prove the divisible sandpile upper bound in Section 7, we require the following stronger
version of Lemma 6.7.

Lemma 6.8. There exists deterministic w = w(y) > 0 so that for each sy € (0, 1), there exists

s1,82 € (0,1) and a random o(h)-measurable § > 0 such that with probability approaching
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FIGURE 6. An illustration of the statement in Lemma 6.7. The filled in cells
corresponding to vertices in the cluster © are shown in light blue and a neigh-
borhood, © + B, is outlined by a dashed black line. The set S\ © is shown in
red. Random walk started at a vertex in cl(©) is unlikely to exit VG*(O + B,.)
via paths which stay in S.

one as € goes to zero, the following is true for all r € [10e¥,68] and all sets © C VG® such
that © € B,js and By, C © with © as in (1.6).

For all A C VG*(© + B,) \ © such that, for all z € C, |ANVG(B.(2))| < 517?71,
where B~ is as in Lemma 2.7, we have

sup P[X%¢ exits VG*(O + B,) \ © through Alh,n] <1 — so,
a€VG*(9(6+B,2))

where X*¢ is simple random walk started at a € VG©.

Proof of Lemma 6.7 assuming Lemma 6.8. By the strong Markov property and Lemma 2.8,
the trace of a random walk started at a € cl(©) contains the trace of a random walk started
at some site b € VG°(9(© + B, 2)) with probability approaching one as ¢ — 0. Moreover,
if S C VG(O + B,) satisfies |S\ O] < 5172 7! then A := S\ © satisfies |A| < 5,729 ¢ L.
Therefore, for all z € C, |[ANVG®(B,.(z))] < 5172 L.

The previous three sentences imply, by Lemma 6.8 (under the conditions of the lemma)
that

PENVG (O + B,)\ (SUBO) =0|h,n] <1 — s9,

which implies Lemma 6.7. 0]

Proof of Lemma 0.8. Let w = w(7y) > 0 be as in Lemma 2.16. We may assume, by possibly
taking w smaller, that 26~ w < «a, where f~ and « are as in Lemmas 2.7 and 2.9. This will

be used in (6.16) below.
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Let E,(z) = E.(z;C) and C' > 0 be the event and parameter from Lemma 6.4. By Lemma
6.4, it holds with polynomially high probability as ¢ — 0 that for each z € (B, 35\ Bjyy5) N

180Z2 there exists r, = r.(J) € [6,6'/?] such that F,_(z) occurs. By Lemma 2.7, it also holds

with polynomially high probability as 6 — 0 that
(67) L, (B(;(Z‘)) > 55_, Vx € Bi_s.

By the Borel-Cantelli lemma, a.s. there exists a random &' > 0 such that the preceding two
sentences hold for all dyadic § < 8. We restrict to the event that the statements in Lemmas
2.9, 2.16, and 2.18 all hold, which happens with probability tending to 1 as ¢ — 0. (For
Lemma 2.9 we suppose that convergence holds for some countable family of polynomials
which are dense in the uniform topology in B,.) Our calculations below will require € to
be small in a deterministic way, so we fix a small deterministic 7 (which we will determine
below) and an € < .

Step 1: Reduction to random walk in a good annulus.
We surround © by good annuli. By our assumptions on ©, by possibly taking 7r smaller,
depending only on sy, we can arrange that

(6.8) (©+ By s5) \ (O+4 Bys) € B,\ By5, V6 <mAd.

By (6.8) and the fact that r, € [0,d'/2], we obtain that for each § < m A §' there exists
Z = Z(5) C (By—s \ Bygy5) N 155Z* for which

(6.9) (©+ B,y5)\ O+ Byy5) € | Br.jo(2) € B, 1005
z€Z
and
(6.10) U Bse.(2) € (O + Byyp)”.
z€Z

We now fix a dyadic § € (10e¥, 7 A &) and let » € [6,/8] < p/4. We continue with this

choice of r as the lemma statement follows once we choose § = vV A §'.
By (6.9) and the strong Markov property of simple random walk, it suffices to prove the
lemma with a replaced by b € VG*(0B4/3)r.(2)) for z € Z. We in fact prove the following

stronger statement: a simple random walk Xf © started at such b hits

¢ .= VQE(Br2/4(7I<b)>) \ A

before exiting VG*(B,_, (n(b))) with conditional probability given (h,7) bounded from below
by a constant. See Figure 7.

Step 2: Random walk in a good annulus.
Let & be the first time that X" hits VG*(9B,. , (n(b))) and let

&re
6.11 = 1 S = (number of visits o v X7° before time &) .
1% Xree ber of f & by X" bef &.
t=0
By the second moment method,
(E[V|A,n])>

(6.12) PIV 2 b 1] = oo -
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In the next two steps we show that

(6.13) E[V[h,n] > e™'C™" X pin(Beor. (n(0)))
and
1 2
(6.14) E[V?|h,n) < Ce? sup / (Iog — 1) dpp(u) |
veA"z»Ql‘z (Z) Arz,Qrz (Z) |U - Ul

for some large deterministic constant C' = C'(p,y) > 0. Combining (6.13) and (6.14) together
with the definition of the event F,.(z) in (6.2), leads to a constant order lower bound in (6.12).
This completes the proof by the definition (6.11) of V.

Step 3: Lower bound on the numerator.
We lower bound the numerator:

E[V|h,n] = Z Grp, L b) (b, V) (definition of V' and Gr (n(b)))

bee

v

Z G, (b)) (where cg is as in (6.1))
b’ €VGE(Begr (n(b)))NE

> (et Gx-az/,dn(b))(b,b')) (VG (Beoe. (1(8))] — 14 0 VG(Be. (1(8)))

Y EVGE (Begr, (n(b)))

> inf Gr5 b b/ -1 Bcr b - e
- (b/evga(éﬂor,z(n(b)» .. st (b )> & (nBeor. (n(0))) = 517 =)

(by the assumption on A and Lemma 2.9).

(6.15)

We claim that for a sufficiently small, deterministic choice of 7w > 0 and s; > 0,

(6.16) pn(Beor. (1(0))) = 510" — € > C"pap(Beyr. (n()))

for some deterministic constant C" = C’(p,y). Indeed, for a deterministic constant ¢ = ¢(p, )
which will change from line to line we have

ftn(Beor. (n(D))) — sir?? — e

= S0 Bean. (1(0))) + 31 (B (10)) = 5377 — e°

> %uh(BCOTZ () +exrl” — 57 — e (by Lemma 2.7)

> %uh(BCOrz(n(b))) +ex 0P =5 x 6% —e* (sincer, > d and 7 < V)

> %,uh(BcOrz (n(b))) +cx 67 —e* (for small 5; < c)

> %uh(BCOTZ (b)) +ex &P — 2% (§>e¥ and a > 28”w by assumption)
> %uh(Bcorz(n(b))) (for 7 small depending only on c).
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Therefore,

E[V|h,n]
: £ / -1 . 287 _ L« 1K
> (g O 0000 ) B, (0) = 177 =) (b (6.15)
1

> 55’1(/%(3601«2 (n(b))) — 517"~ —®) (by (6.1) and Lemma 2.16)

> 52 X C(Beoe. (09) (b (6:10)),

which implies (6.13) with C~! := C"/2.

Step 4: Upper bound on the denominator
We finally upper bound the denominator in (6.12); here the deterministic constant C' =
C(p,v) > 0 also changes from line to-line:

E[V?|h, 1]
< E[& |h,n]

2
1
< Ce? sup / (log + 1) dpep () (by Lemma 2.18)
veBr, 1) /B, o0 () ju = v

2
1
< Ce? sup / (log — + 1) dpip ()
vEAr, 2r, (2) Ar; 2r; (2) u = Ul

(since r, > § > 10e® and b € VG (0B 4/3)r. (2)).
This shows (6.14). O

We next show that with exponentially high probability in r, if one starts & < 726 ¢!

walkers somewhere in the closure of the current cluster cl(©), then the number of walkers
which are absorbed before exiting VG*(© + B,) is at least a constant fraction of k. The proof
uses the constant-order lower bound given by Lemma 6.7 together with a concentration
inequality for negative binomials. The statement is a modification of [DCLY Y13, Lemma
6]. Note that [DCLYY13, Lemma 6] is much stronger than what we have below, but that
stronger statement is not needed to complete the proof of the IDLA upper bound. For the
statement, we recall the definition of the modified IDLA aggregate from Definition 6.2.

Lemma 6.9. There exists deterministic w = w(y) > 0 and s3 > 0 so that for each sy € (0,1),
there exists sq,s5 € (0,1) and a random o(h)-measurable § > 0 such that with probability
approaching one as € goes to zero, the following holds for r € [10e¥, 8] for all sets © C VG*
such that © € B,js and By, C © with © as in (1.6): for each k < ssr** ™' and a,. .., a) €
cl(©),

P[|A(O;ay,...,ap — VG (O + B,)) \ O| < s4k|h,n] < exp(—ss3k).

Proof. For sy € (0,1), let w, s1,$2 be as in Lemma 6.7 and fix € and r > 10¢* for which the

event of Lemma 6.7 occurs. Set s; = min(s,fﬁ, s1) for a deterministic constant C' > 0 from
2

(6.17) below. Let k < 557 e7! and ay, ..., a;, € © be given.
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Ficure 7. Illustration of part of the proof of Lemma 6.7; only parts of the
sets are shown and aspect ratios are not drawn to scale. The set © + B, /2 18
shown in blue with a solid black boundary, the boundary of © + B, is shown as
a dashed black line. A good annulus A, 9, (2) is shown in gray, an interior ball
is outlined in black, and the set A is shown in light-red. A random walk started
at a must hit VG®(Ba/3),, (2)) for some z € Z at a point b € VG*(9B4/3)r. (2)).
The proof then reduces to showing a random walk started at b with probability
bounded from below must exit A before exiting VG*(B,_4(b)).

Start with the set © completely occupied and consider an infinite number of walkers each
started at an arbitrary site in cl(©) and stopped upon exiting VG*(© + B,). Let N (k;)
denote the number of such walkers needed until k; walkers have been absorbed into the
cluster. That is, NM(k1) counts the number of walkers needed until the aggregate has an
additional k; walkers in VG*(© + B,) \ ©.

We seek to iteratively apply Lemma 6.7. Define Sy = © and for each &' € {1,...,k;}
condition on the first (k" — 1) walkers to determine the current aggregate Sy—1. We then
apply Lemma 6.7 with S := Sp,_; to the k’-th walker under the conditional law given the
first (k" — 1) walkers. By the Markov property of IDLA this implies that

N (k1) < NegBinom(ky, s2), Vk; < 528 el

where NegBinom(ky, sy) denotes a random variable drawn from a negative binomial dis-

tribution with n = k; and p = sy, sampled independently from (h,n). Therefore, by a

concentration inequality for negative binomial random variables, for each k; < 5172 ¢71,

(6.17) PN (k1) < (551 + C)ky|h,n] < exp(—ck;), for deterministic constants C, ¢ > 0.
Thus, if we choose k; = (s;' + C)~! x k, we have by our choice of s5 and (6.17),
P [N((sz_l +CO) P x k)< k|h,7ﬂ < exp(—ck),

where the deterministic constant ¢ has changed compared to (6.17). By definition of N, this
implies the desired conclusion with s3 = ¢ and s4 = (s;' 4+ C)~% 0

6.3. Iteration. We now prove a general bound on how far walkers can spread by iterating

Lemma 6.9. The iteration uses the Abelian property of IDLA and involves starting and
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stopping walkers which reach a certain distance of the current cluster. The proof is similar
to that of [DCLY Y13, Theorem 2].

Lemma 6.10. There ezists a deterministic exponent = B(p,v) > 0 and a constant C' =
C(p,v) > 0 so that for each sy € (0,1) there exists a o(h)-measurable random variable §o
such that with probability approaching one as € — 0, for each © & B,» with By, C © and
each &y < &g the following is true. The IDLA cluster started with © completely occupied and
j < [80e™"] walkers at sites {ay,...,a;} C cl(©) is contained in a CS) neighborhood of ©:

A©:ar,....a5) C VG (B, .(0)) C VG (B,).

Proof. For sy € (0,1), let the parameters w, s3, s4, s5 and random variable § be as in Lemma
6.9. We truncate on the event of Lemma 6.9 and fix an €. Below we use the fact that
Lemma 6.9 is stated for all choices of © satisfying the hypotheses and IDLA is a Markov
process, Lemma 6.3. Throughout the proof we introduce several other events which occur
with probability approaching one as ¢ — 0 and will truncate on those events.

Let B~ be as in Lemma 2.7. Let dg = 8o(d, p,7y) < & be such that (dgs;*)/?* < 6, so
that Lemma 6.9 holds with 7 € (10e%, (8gs5")"/??"). At the end of the proof, we reveal, in a
deterministic fashion, how small o must be so that the final cluster is contained in VG*(B,).
Fix 50 < 60.

Fix wp € (0,w) which we will choose in (6.22) below. Set 0% = 0, Py = {a1,...,q;}, and
for k > 1, inductively define (using the notation of Definition 6.2)

Current radius: Ty 1= max ((\Pk,ll X € x 551)1/%87 105“’0>

Current cluster:  ©F := A(©F 1 P,_; — VG*(OF1 + B, ))

Stopped walkers: Py, := P(©* % P, — VG*(0F1 + B,)).
Define the stopping time

(6.18) 7.5 =min{k > 0: 0% ¢ B,}.
In the analysis below, we will truncate on a high probability event which ensures that
Te,3 = OQ.

wo

Denote the first time there are fewer than e7“° stopped walkers by

(6.19) T.p = min (min{k > 0: |Py| < e “°}, 7.3)
and the first time (before 7. 5) that the current radius is less than 10e*° by
(6.20) 7. = min (min{k > 0: 7, < 10e*°}, 7. 5) .

By the Abelian property of IDLA, Lemma 6.3, the distribution of the final IDLA cluster
A(©;ay,. .., af5:-17) coincides with that of ©%. Thus, it suffices to iteratively control how
far the clusters ©F spread. In the first step, we control how far the aggregate spreads until
time 7.1, in the second, until time 7. 5. In the third step, we control how far e*° walkers
can spread. We show in the final step, after making 89 smaller in a deterministic way, that
in fact we have 7.5 < 7.3 and 7.3 = 00.

Before proceeding, we note that by Lemma 2.8 (after truncating on another high proba-
bility event), for each ¢ > 0,

(6.21) diam(HS) < e¥+°=¢ vg e VG (B,).
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Choose ( in a way which depends only on « and then choose wy small enough so that

(6.22) £y 0 x e PHWIC < w02 ye e (0,1).

Step 1: t < 7.;.

All of our parameter choices so far have been so that we can iteratively apply Lemma 6.9
for each k € {1,...,7.; — 1} with © = % r =1}, and k = |P,_,| > e*0.

By (6.21) and (6.22) and the fact r;, > 10e“°, there is a ‘shell’ of additional vertices in ©F
that are not in ©*~!; that is, 90F U ©*~! is not connected. Therefore, at least one walker
is absorbed in each step and hence we have 7.7 < 7.5 < e~ Thus, by Lemma 6.9 (with
s3>0 and s4 € (0,1) from there) and a union bound over all k =1,..., |e7!],

(6.23) PPk e{l,...,7.10 — 1} : |Pu] > (1 — 84)| Pe_1]|h, ] < &7 exp(—s370).

We henceforth truncate on the event in (6.23), which happens with probability tending to 1
as € — 0 to see that

(624) |Pk’ < (1—S4>|P]€,1|, VkE{l,...,T&l—l}.

This implies that |Py| < (1—s4)*|Py| < (1—s84)*dpe~! for each k < 7.1 — 1. By the definition
of ry, this, in turn, implies that

(6.25) e < (6 X (1 —s)" P x sy W27 ke {1,..., 7., —1}.

Therefore,

Te,1—1 Te,1—1

- - 1
(6.26) Z T < Z (6o x (1 —s4)" 1t x 552" < O x 53/2’3 X

1— (1 — sq)/257

where C' = 0(35) > ( is deterministic.

Step 2: k € [T, Te2).
In this step we again apply Lemma 6.9 for each k € {7.1,..., 7.2} with the same choice
of parameters as in Step 1 except now the radius is fixed r, = 10e“°. Note that r, >
(| Pe_1| x & x 551)/25” by definition and hence the conditions of Lemma 6.9 are satisfied. We
show that

(6.27) T.o < Cloge ™ + 7.1, for deterministic C' = C(s4,7) >0

and hence

(6.28) Z e <O x e* xloge™, for deterministic C = C/(sy,7) > 0.
k=T

To see (6.27), we first use exactly the same argument as in Step 1 (and truncate on another
event) to get that
‘Pk| §(1—84)‘P]€,1’, VkG{TE’l,...,Tg’Q}.
Hence, by the definition (6.19) of 7. 5,
e <Py S (1= sy)=2 7T e

which implies (6.27) upon re-arranging.
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Step 3: k> 1. 5.
It remains to control how far the remaining ¢ ~“° walkers can go before being absorbed. We
do this crudely by appealing to the upper bound on the Euclidean diameter of cells in the
mated-CRT map: by (6.21) and (6.22) we have that e~“° walkers cannot go farther than
Euclidean distance 0/2 before being absorbed into the cluster,

(6.29) dist(0®,072) < /2,
since each walker occupies at least one cell.

Step 4: Reduce € and 8o and conclude. B
By combining Steps 1-3, the final aggregate ©> is contained in © + B, where

R=C x 68" (by (6.26))
+C xe¥ xloge ' (by (6.27))
+ %0/ (by (6.29))

for deterministic constants C' = C/(sy, S5,87,7). The first term in R dominates for small
e. This completes the proof after we decrease dg in a deterministic fashion and then e
depending on Jy so that R < p/4 and hence the time 7.3 of (6.18) is infinite, as 0c B,/2
by assumption. 0

6.4. Proof of upper bound. We now prove the upper bound by combining the asymptot-
ically correct lower bound together with the general bound of the previous subsection. The
idea is the following. By the Abelian property, we may construct the IDLA cluster by first
letting walkers evolve until they exit VG(A;), where A, is as in Theorem 2.3. By the lower
bound, Proposition 5.1, most of the walkers will have been absorbed into the aggregate at
this point. In fact, as the LQG measure of the boundary of harmonic balls is zero (Theorem
2.3), the number of remaining walkers can be made arbitrarily small. Thus, we may apply
Lemma 6.10 to see that the remaining walkers do not spread too far.

Proof of Proposition 6.1. Let the parameters 3,C be as in Lemma 6.10. Let § € (0,p) be
given. Truncate on the event that ¢ < 7 and let A; be the harmonic ball satisfying the
conditions in Theorem 2.3. Since A; is open and contains the origin, we have that there

exists a random & (h)-measurable s € (0,1) so that B, € A;. Recall the notation B from
(1.5). Since pp(0OA;) = 0 (Theorem 2.3),

(6.30) lim (un(B; (A1) = ma(B; (Ar))) = 0.
Denote by
A([te™] = VGE(Ay)) == A(D;0,...,0 = VG(Ay))

the IDLA aggregate formed by [te™'| walkers started at the origin stopped upon exiting
VG (A;) and let P.([te™!] — VG°(A;)) denote the positions of the stopped (not absorbed)
walkers on the boundary of VG(A;). We have by Proposition 5.1 that for each dy € (0, p),

(6.31) B; (M) € A([te™] = VG (M)

except on an event of probability tending to 0 as € — 0.
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Choose, as in the statement of Lemma 6.10, a o(h)-measurable dg depending on sg. As-
sume that C'8g” < 6. By (6.30), we may choose a 0y < 8¢ sufficiently small so that

(6.32) Hh (B(;;(At) \ B(%(At)) < do/2.
The aggregate lower bound (6.31) implies
[Po([te™ ] = VG ()| < te™! — [VG*(By, (Ar))]

except on an event of probability tending to 0 as e — 0. Let o = () > 0 be the parameter
from Lemma 2.9. Since by Theorem 2.3, u;,(A;) = t, we have by Lemma 2.9, except on an
event of probability tending to 0 as ¢ — 0,

e (t =€) < VG (B (A))] < et (un( By, (Ar)) +)
and
VG (B, (M) = 7" (un(B5, (Ar)) — 7).

The previous three indented equations imply that except on an event of probability tending
to0ase — 0,

Pt | = VGEAN] < e (un(BE (A By (M) +32%)
This implies by (6.32) that
(6.33) |P.(|te™| = VG (Ay))] < pe™!

except on an event of probability tending to 0 as ¢ — 0.
By the Abelian property of IDLA (Lemma 6.3), the distribution of the final aggregate
coincides with that created after releasing the paused walkers:

d

Ac([te™']) = A(A([te™'] = VG (A); Po([te™" ] = VG (M),

where the equality in distribution is conditional on A and 7. Since IDLA is a Markov process
and A; € B,)» (t < 1), we may apply Lemma 6.10 with © = A([te"!] — VG*(A;)) and
at most dpe~! walkers started at P.([te™'] — VG"(Ay)) to see that except on an event of
probability approaching zero as € — 0,

A(lteY)) € B, (Au((te™] = V(M) © B, (M),

This concludes the proof upon recalling § > C'd,”. U

7. DIVISIBLE SANDPILE UPPER BOUND

We combine Lemma 6.7 together with ideas from [BRG22, Section 6.5] to prove an upper
bound on the divisible sandpile cluster. For the statement, recall the notation of the cluster
D, from (4.2) and D, from (1.6).

Proposition 7.1. Recall the time T from (4.7). For each § € (0, p) andt > 0, on the event
{t < T1}, it holds except on an event of probability tending to 0 as e — 0 that

D.(ts™) C B (Ay),

where Ay is as in Theorem 2.5.
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Recall from (4.3) the least action principle for the divisible sandpile odometer,

1)
Uy

degf‘? = mln{w . Vgg — [O? OO) : degs X Afw + tgil(so < 1}7

and that
Ay ={a € VG :v; > 0}
D (te™!) = cl(A).
In this section we mainly work with the stopped odometer, defined by
(7.2) ué = min{w : VG5(B,) — [0,00) : A%w + deg®(0) 'te 15y < (deg®) ™'},

which, as discussed in the beginning of Section 4, relates to w; via uj = w;+(te™") xgrj (0,).
The reason for doing so is that the results of Section 4, a priori, apply just to the stopped
odometer. However, as we will show, for small ¢, the odometer % agrees with the stopped
odometer. In particular, it is straightforward to see that

(7.1)

I3
(7.3) wi=0 oncl(VGi(OB,)) = ui = dZtg _in VG (cl(B,)).
Therefore, the upper bound for the divisible sandpile cluster will follow from (7.1) once we
show that u7 is zero near the boundary of A, for ¢t < 7.

Our strategy for the upper bound is similar to the argument in [BRG22, Section 6], but
with some simplifications. We start by establishing harmonic comparison lemmas in Section
7.1 which allow us to compare the mass of the cluster to the size of the stopped odometer.
We then use these lemmas together with an iteration to show the upper bound in Section 7.2
as follows. By convergence of the stopped odometer away from the origin, we have that wu; is
small near VG°(0A;). This implies that the amount of mass in the shell VG®(A;+B,)\VG"(A;)
is small. Hence, by Lemma 6.8 the probability that a random walk exits the cluster before
exiting this shell is bounded from below. By comparison, this implies the size of the odometer
must be small on VG*(J(A; + B,)). Iterate this argument with shells of decreasing size to
see that the odometer must be zero outside of VG°(A; + Bg) for some small R.

This is simpler than [BRG22, Section 6] as we do not have to redo [BRG22, Sections 6.1-
6.3] since we have already proved a harmonic measure estimate in Lemma 6.7. In particular,
we do not consider ‘very good annuli’ explicitly. Further, since we have an a priori strong
upper bound on the size of the odometer on VG*(0A;) due to its convergence (Theorem 4.1),
the inductive counterpart of [BRG22, Section 6.5] is shorter.

7.1. Harmonic comparison. In this subsection, we prove discrete analogues of the har-
monic comparison lemmas for the Hele-Shaw odometer from [BRG22, Section 6.4]. First
note that since A*u = Aw; + (te™1) x A® gr,, by combining (2.30) and Lemma 4.3 we
have that

0 < A% + deg®(0) 'te 16y < (deg®)™"  on VG*(B,)
u; >0 on VG*(B,)
AU + deg®(0) e 710y = (deg®)™! on AS
u; =0 on VG*(B,) \ A;.

(7.4)

We use this to show the following.
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Lemma 7.2. There exists deterministic constants C = C(p,v) > 0, ¢g = ¢o(p,y) € (0,1)
such that with polynomially high probability as € — 0, the following holds. For all t > 0,
all connected sets © C VG*(B,) containing the origin, and all s > 0, z € C such that
VG (Bs(z)) C VG (B,) \ O,

(VG (Beys(2)) N A7] < C x supu;.
90
Proof. Truncate on the events of Lemmas 2.16 and 2.8. By (7.4) we have that A®uf > 0

away from the origin and A°uf = (deg®)™" on A\ {0}. Hence, by the maximum principle,
as u; = 0 on 0B, and u5 is subharmonic away from the origin,

(7.5) sup  uy < supu;.
AAVGE (Bo(2)) 90

We will prove the desired inequality by comparing u$ to the following function
fo() = Z 25, () (s b)
beVGe (Bs(z))NAS\VGE (8Bs(z))
which, for the same reasoning leading to (2.28), satisfies
AFE() = —deg™ ()T I{- € A7} in VG*(B,(2)) \ VG (9Bs(2))
() =0 otherwise.
We then compute:
sup < sup (up +§7)  (uf 2 0)

VG (Bs(2)) VG*(Bs(2))
< sup  (uf +§°) (4§ +§° is subharmonic)
VG (9Bs(2))
= sup u; (ff=0o0n VG (0Bs(z)))
VG (9Bs(2))
<supu; (by (7.5)).
20

Let ¢y be as in (6.1) so that by Lemma 2.16

£ 1 (3
P2 w2 5 VO (Bas() N A
BEVGE (Begs(2))NAS

Combining the previous two indented equations completes the proof. 0]

Lemma 7.3. The following holds for allt > 0 and all sets B C VG*(B,) \ {0}:
ug (b) < (sup uf) P[XY¢ exits B before hitting B\ As|h,n], Vb€ B,
oB

where X%¢ is a simple random walk on G started from the vertex b € VG°.

Proof. The function

f(b) = (sup u§> P[X"¢ exits B before hitting B\ AS|h, 7]
OB
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satisfies

(Aff =0 on BNAS
f=0 onBnN(A)°
| f = (supppui) on BNA;

Therefore, by (7.4), we have

(

Af(uf — f) >0 on BNA;
(ui — f)=0 on BN (Aj)*
((uf = f) <0 on B°NAj,

which implies the claim by the maximum principle and the fact u = 0 on (Af)°. U

7.2. Tteration. The proof of Proposition 7.1 proceeds by a similar iteration to the proof of
Proposition 6.1 but with the odometer replacing the role of the random walks. We show
that the maximum of the odometer decreases across shells of increasing radii. Eventually
the odometer will be so small the upper bound we derive from the following estimate will
suffice.

Lemma 7.4 (Lemma 4.2 [LP09]). The following is true for all t > 0 with polynomially high
probability as € — 0. For every point a € D.(te™')\ {0} there is a path a = ag ~ aj ~ -+ ~
am = 0 in D.(te™') with

i (aipn) > ug(a;) +log(e ™)™
Proof. By [GMS19b, Lemma 2.6] it holds with polynomially high probability as ¢ — 0 that

—1y2
(7.6) a@r}%ag?( )deg (a) < (loge™)~.

Let ap = a. Inductively, assume that i > 0 and a; € D.(te™!) has been defined. If a; = {0},
set m = ¢ and conclude the induction. If a; # 0, let a;11 be a neighbor of a; maximizing
uf(aiy1). Then a1 € Aj. Indeed, either a; € A] and hence a;11 € A or i =0 and a; is on
the boundary of A;. In the latter case, by definition there is some site in A; neighboring a;
with a strictly positive odometer. Since Au$ = (deg®)™! on Af, (7.4), we have that

Z u;(y) (choice of a;41)

ui(ai-f-l) = dega(a )
Afui(a;) (definition of A®)

i(az
a( 1

)+

a;) + deg®(a;)”

> ug(a;) +log(e™)™>  (by (7.6)).
)

As the number of vertices in D.(te7!) is finite and contains the origin, Lemma 4.5, there

must be a finite ¢ for which a; = 0. ]

Proof of Proposition 7.1. Let 6 € (0,p) be given. Truncate on the event that ¢ < 7 and
let A; be the harmonic ball satisfying the conditions in Theorem 2.3. Since A; is open and
contains the origin, we have that there exists a random o(h)-measurable sq € (0, 1) so that
B, € Ay
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FiGure 8. Mlustration of the objects appearing in Step 1 of the proof of
Proposition 7.1. Part of the current cluster ©;_; is shown in light blue and
parts of the boundaries of the intermediate clusters © and © + B,, defined in
(7.16) and the next cluster O are outlined by dashed lines. The ball B,(z') is
shown in light gray and part of the set A, defined in (7.16), is shown in red.

For this sg, let the parameters w, s1, S2,d be as in Lemma 6.8. Let §~ be as in Lemma 2.7
and

(7.7) s6 1= 57co P4 x C

where C' and ¢g are the deterministic constants from Lemma 7.2. Let dg = do(d,p,7) < 8
be such that (8gs¢)'/?* < 6, so that Lemma 6.8 holds with r € (10£¥, (dgs6)/?%"). At
the end of the proof we state how small 9 must be so that the final cluster is contained in
VG*(B,). Fix §y < dp and decrease &g so that 2 x Cy X 807 < & for a random constant C}
to be determined below.

By the uniform convergence of the scaled version @ of ui away from the origin (Theorem
4.1 and Lemma 3.3) and the fact that A; a.s. contains a neighborhood of 0, on the event
{t < T},

(7.8) sup  uS < doe
VG (9A:)
except on an event of probability tending to 0 as ¢ — 0. Fix wy € (0, w) which we will choose
in (7.13) below. Set ©g = VG°(A;), 1o = o, Og = maxge, u; and for k > 1, inductively
define
Current cluster: O :=VG* (01 + B,,_,)
(7.9) Current radius: ) := max <(|Ok_1\ X € X 36)1/%_,4000_15‘”0)
Current maximum odometer: Oy := maxge, U;.

Denote the first time the odometer is smaller than 7“0 by

(7.10) Teo =min{k > 0:|Of] <7}
and the first time (before 7. 5) that the current radius is less than 40cy~te“0 by
(7.11) 7., = min (min{k > 0 : 7, < 40co™ e}, 72 2) .
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By Lemma 2.8, for each { > 0,
(7.12) diam(H) < ¥+ =C vg e VGo(B,),

w.p. tending to 1 as € — 0. Choose ( in a way which depends only on v and then choose wy
small enough so that

(7.13) g9 X sg/(2+7)2_4 < e ey e (0,1).

Step 1: k < 7.;.
We first show that for each ¢ € {1,...,7.; — 1},

(7.14) O < (1= 82)O-1,

except on an event of probability tending to 0 as ¢ — 0. By Lemma 7.2, for all z € C and
s > 0 such that By(2) C B, \ O4_1:

(7.15) VG (Beys(2)) NA;| < C x sup ug,

Or_1

where ¢g is as in Lemma 7.2, except on an event of probability tending to 0 as ¢ — 0. As
we justify just below, this implies we can apply Lemma 6.8 with parameters

r = corg/4
(7.16) © = VG (Ok_1 + By, j4)
A=A n{VG(©+ B,)\ 6}

See Figure 8 for an illustration of these sets. Indeed, we have that A C VG*(© + B,) \ ©
and, by (7.15), for z € C:

|ANVGE(B,(2))] = [AN VG (Begrya(2))|
< |A? N Vgs(Bcork/él(zl)”
(for some 2’ € C s.t. By, j4(2") C B, \ ©x—1 by definition of A (7.16))

< C x sup u; (by (7.15))
001

= C X Og_1 (definition of Oy (7.9))
=7 x et x szt x € (definition of 7y, (7.9))
= 517?771 (definition of r and sg (7.16) and (7.7)).

Thus, as r > 10* the hypotheses of Lemma 6.8 are satisfied and we may apply it to get
(7.17)

sup I[D[Xa’a exits VQS(@k,l + B’/‘k/4+007'k/4> \ Vga(@kfl + Brk/4))
aevgs(a(@kf1+Brk/4+co'rk/8))

before exiting A|h,n] < (1 — s9)

except on an event of probability tending to 0 as ¢ — 0. Next, by Lemma 7.3 applied to the
set

B := VG (Or_1 + By, jatrcorr/a) \ VG (Or—1 + By, /4)
together with the maximum principle for u§ (uj = 0 on VG*(0B,)),

us (b) < Op_1 x P[X"€ exits B before exiting A|h,n], Vb€ B.
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Another application of the maximum principle shows

O < sup ug (D).
bevgs(a(@kfl+3rk /4+c07"k/8))

The previous two indented equations together with (7.17) imply (7.14).
We now use (7.14), the definition of r, and the initial bound given by (7.8) to see that

(718) Tk S (50 X (]. — SQ)k X 86)1/25_, Yk - {1, ey Tel — ].}

and consequently,

Te,1—1 Te,1—1

(7.19) Z e < (60 % (1 — 52)F x 56)Y/%" < € x 6% x
k=0 k=0

1
1= (1— sp)i/28

except on an event of probability tending to 0 as ¢ — 0 where C' = C(sg) > 0 is a random
constant.

Step 2: t € [T.1,T:2).
We again apply Lemma 6.8 for each k € {7.1,..., 7.2} with the same choice of parameters
as in Step 1. Reasoning similar to the proof of Step 1 shows that

Ok < (1 — SQ)Ok_l, Vk € {7'571, A ,7'572}

except on an event of probability tending to 0 as ¢ — 0. Hence, by the definition (7.10) of
Te,2y
e <|On | £ C(1 = 59) =2 e e for O = Of(sg) > 0

which, upon re-arranging, implies

(7.20) 7.0 < Cloge™ + 1.1, for random C = C(sy,s6) > 0
and hence
Te,2
(7.21) Z e < C x e xloge™, for random C = C(sy,56) > 0
k=Tc 1

except on an event of probability tending to 0 as ¢ — 0.

Step 3: k> 7.5.
We control the size of the odometer by Lemma 7.4 and the upper bound on the Euclidean
diameter of cells in the mated-CRT map. By Lemma 7.4, w.p. tending to 1 as € — 0, there is
a path of at most log(e ™)%™ cells from the boundary of the support of u§ to 96,_, along
which the odometer increases by e=“°. Thus, by the definition of 7., (7.12), and (7.13)

(7.22) ui(a) =0 for a € VG*(B,) such that dist(n(a), n(0,,,)) > e/?log(e~")?
except on an event of probability tending to 0 as € — 0.

Step 4: Reduce £ and 69 and conclude.

Recall that we have set ©g = VG*(/A;), so that Oy is the union of the e-mated-CRT map cells
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which intersect A;. By combining Steps 1-3, (7.1), and (7.3), the divisible sandpile cluster,
D_.(te™!) is contained in ©y + Bgr, where

R=Cyx 6% (by (7.19))
+C) x ¥ xloge™'  (by (7.20))
+ 2 log(e™1)?  (by (7.22))
for random constants C, = C(s2, s¢, 3,7), provided that R < p/2, except on an event of
probability tending to 0 as € — 0. The first term in the definition of R dominates for small e.

Decrease g in a deterministic fashion and then decrease ¢ depending on 4y so that R < p/2
and hence u¢ = v;. This completes the proof after recalling that § > 2 x C}8,". O

8. CONVERGENCE
We start by combining Propositions 5.1, 6.1, 4.2, and 7.1 into the following statement.

Proposition 8.1. Recall the time Ty from (4.7) and the notation By from (1.5). For each
5 € (0,p) andt > 0, on the event {t < T}, it holds except on an event of probability tending
to 0 ase — 0 that

By (A) € Xo(te™) C B (M)
for X € {A, D}, where A; is as in Theorem 2.3, i.e., both the IDLA cluster and divisible
sandpile cluster converge.

To prove Theorems 1.4 and 1.6, we will combine the previous proposition with a scaling
argument to transfer from ¢ € (0,7}) to an arbitrary ¢ > 0.

8.1. Proof of Theorems 1.4 and 1.6. We use the scale-invariance property of the -
quantum cone. Fix b > 0 and for R, as in (2.6), let

1
h* = h(Ry) + Qlog Ry — v logb and 7" = R, 'n(b-).

By Lemma 2.6, (h, {A:}1>0) 4 (ht, {R;lAbt}t>0). Hence, by the scale-invariance of the law
of n, viewed modulo time parametrization, and the independence of n and (h, {A;}~0),

(8.1) (hn {A}es0) = (0 { Ry Auesn).
Hence, if we let
T .= sup{t > 0 : R;lAbt C B3}
then T° has the same law as 77, defined in (4.7). By Proposition 8.1, for each § € (0, p) and

t > 0, on the event {t < 71}, it holds except on an event of probability tending to 0 as e — 0
that

By (Ay) € X.(te™!) C B (M),
for X € {A, D}, i.e., both the IDLA cluster and divisible sandpile cluster converge. Let

X € {A, D} be given. By (8.1), this implies that for each § € (0, p) and ¢ > 0, on the event
{t < T*}, it holds except on an event of probability tending to 0 as e — 0 that

By (Ry 'Ay) C Ry' X (bte™) € By (R, Ayy).
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By applying the above statement with ¢/b in place of ¢ and §/ Ry, in place of §, then re-scaling
space by Ry, we get the following. For each 6 € (0, p) and ¢ > 0, on the event {t < b x T"},
it holds except on an event of probability tending to 0 as ¢ — 0 that

By (Ay) C X (te ") C Bf(Ay).
As b > 0 was arbitrary, it remains to show that in probability,

(8.2) lim b x T = oco.

b—oo

This, however, follows immediately from the fact that 77 is strictly positive and 7T} i1 O

APPENDIX A. DISCRETE OBSTACLE PROBLEM

We provide the proofs which were omitted in Section 4.1 in the general setting of an
undirected, locally finite, and infinite graph G. We consider a finite, connected set of vertices
of G, denoted by V', which contain a marked vertex which we call the origin, denoted by 0.
The graph Laplacian, A, is defined by,

1
~ deg(a)

Aula) Z(u(b) —u(a)), for all vertices a of G

b~a

where the sum b ~ a is over the vertices b which share an edge with a and deg(a) denotes
the number of such vertices. Observe that the analogue of the maximum principle, Lemma
2.13, and the following discrete divergence theorem are satisfied on G.

Lemma A.1. Let VG denote all the vertices of G and suppose that f,g : VG — R are
functions which are zero outside of a finite subset of VG. Then

(A1) > fla)Ag(a)deg(a) = > g(a)Af(a)deg(a).

aeVGE acVG
Proof. This is well known for general, undirected graphs — see for example [Tel06, Equation
(2.17)] or [BG20, Lemma 3.6]. O

Let v : V. — (0,00) denote a threshold function and ¢ : cl(V) — (—o0,0] the obstacle
which satisfies the following equation

{A¢ =tdy onV

(4:2) ¢=0 ondV

where t > 0. Consider the following discrete obstacle problem
(A.3) w:=min{u:cl(V) > R: Au<tvonV and u > ¢}.

We will make use of the following function q : cl(V) — R which is defined by the unique
solution to

(A4) Ag=t onV
q=0 on V.

We also denote the discrete cluster by

(A.5) A={ac€ cl(V)63: w(a) > ¢(a)}.



The results of Section 4.1 may be achieved from those of this section via the following

map, for e > 0, p € (0,1),

t— e tdeg®(0)7!

w — w;

G — §g°

V = VG(B,) \ VG (9B,)

t — (deg®) !

¢ — —(te™") x g5, (0,°)

q— —dp,

A — A7
Lemma 4.3 is a special case of the following.
Lemma A.2. We have that

max(q,¢) < w <0

and Aw <t on V.

Proof. Step 1: w < 0.
As 0 > ¢ and v > 0 the function which is identically 0 is admissible in (A.3).

Step 2: w > ¢ and Aw < t.

Observe that in general, for two functions uy, us defined on the vertices of the graph G, we
have
Amin(uy, ug) < min(Auy, Auy),
where the minimum is pointwise. Indeed, write u = min(uy, u2) and suppose for a vertex a
that u(a) = ui(a). Then, by definition,
1 1

Au(a) = dea(a) ;(U(b) —uy(a)) < deg(a) %(Ul(b) —uy(a)) = Auy (D).

Therefore, by compactness, the inequalities in the definition of (A.3) are also satisfied by w.

Step 3: w > q.
By Steps 1 and 2, since ¢ is zero on V', we have that w is zero on dV. Thus, by (A.4) and
Step 2, (w — q) is superharmonic on V' and zero on 9V, and hence the claim follows by the
maximum principle. 0

Lemma 4.4 is a special case of the following.

Lemma A.3. We have that Aw =t on A and v > Aw > 0 on V. Moreover, A is connected
and if t > ¢(0), contains the origin.

Proof. Step 1: Aw =t on A.
Note that the inequality Aw < t was established in Lemma A.2. Suppose for sake of
contradiction w > ¢ but Aw(a) < t(a) for some a € V. Let

d = min (¢(a) — Aw(a),w(a) — ¢(a)) > 0
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and consider the function v : V' — R defined by,
u:=w—0x1{-=a}.

We will see that the function w is admissible in (A.3), but strictly less than w, a contradiction.
By definition
Au(b) < Aw(b) Yb+#a

and
Aufa) = deg1<a) bZ(w(m — u(a)) = Aw(a) + 6 < t(a).
Similarly,
u(®) = w(b) > B(b) Wb+#a
and

u(a) = w(a) =0 > w(a) —w(a) + ¢(a) = ¢(a),
completing the proof.

Step 2: Aw > 0.
If a € VN A¢, we have

= doa(@) Z(w(b) — ¢(a)) (assumption on a)

b~a

> A¢(a) (Lemma A.2)
>0 (since ¢ is subharmonic).
In light of Step 1, this completes the proof.

Step 3: A is connected.
Consider the function v = w — ¢. If A is disconnected then there is a connected component
of A not containing the origin; call this component A. By Step 1 and (A.2), we have that

Av=1t on A
v>0 onA
v=0 on JA,

which contradicts the maximum principle.

Step 4: If t > ¢(0), A contains the origin.
We demonstrate the contrapositive. Observe that the argument in Step 3 shows that A is
either empty or contains the origin. If A is empty, then

= 20(0)  (by (A2))
= Aw(0) (as A is empty)
<t(0) (by Lemma A.2),

completing the proof. O
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We conclude with a discrete conservation of mass lemma; this is a general version of
Lemma 4.5.

Lemma A.4. Ifv =deg ', we have that |A| < t x deg(0). Moreover, if A C int(V), then
ZAw )deg(a) = t x deg(0).
acV
Proof. Let v = w — ¢ and extend v to a function on VG, the set of all vertices of GG, by
defining it to be zero on cl(V)°. We compute,

—t x deg(0) + |A| < Z Av(a)deg(a) (by Lemma A.3, (A.2), and v = deg™")

= > 1{a € V}Au(a) deg(a)
acVG

= Z v(a)deg(a)Al{a € V} (by Lemma A.1)
aceVGE

=" v(a)deg(a)Al{a €V} (v=0o0n V")
acV

= — Z ) (# neighbors of a not in V')
acV
<0 (since v > 0 by Lemma A.2).

If A C int(V), then v = 0 on all vertices which share an edge with a vertex in V. Thus, an
identical computation, where the first line is replaced by

—t x deg(0 Z Aw(a) deg(a Z Av(a) deg(a)

acV acV
and the last inequality by an equality, shows the moreover clause. 0
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