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Abstract

A Liouville quantum gravity (LQG) surface is a natural random two-dimensional surface, initially

formulated as a random measure space and later as a random metric space. We show that the LQG

measure can be recovered as the Minkowski measure with respect to the LQGmetric, answering a question

of Gwynne and Miller [GM21c]. As a consequence, we prove that the metric structure of a γ-LQG surface

determines its conformal structure for every γ ∈ (0, 2). Our primary tool is the continuum mating-of-

trees theory for space-filling SLE. In the course of our proof, we also establish a Hölder continuity result

for space-filling SLE with respect to the LQG metric.

1 Introduction

1.1 Overview

Fix γ ∈ (0, 2) and let U ¢ C be an open domain. Let h be the Gaussian free field (GFF) on U or a

minor variant thereof. The γ-Liouville quantum gravity (LQG) surface described by (U, h) is formally the

two-dimensional Riemannian manifold with metric tensor

eγh(dx2 + dy2) (1.1)

where dx2 + dy2 is the Euclidean metric tensor. LQG was introduced by Polyakov [Pol81] in the physics

literature as a canonical model of two-dimensional random geometry. Since then, LQG has been identified as

the scaling limit of various types of random planar maps, as described in surveys [Gwy20, GHS, Mil18, She22].

The expression (1.1) does not make literal sense because the GFF h does not admit pointwise values; it is

defined only as a random distribution. Nevertheless, it is possible to rigorously construct the area measure

and distance function corresponding to (1.1) through regularization and renormalization techniques.

The γ-LQG volume measure µh is the Gaussian multiplicative chaos measure associated with the GFF h,

which can be constructed via various regularization methods [Aru20, Ber17, DS11, Kah85, RV14]. In the

context of LQG, it was first defined by Duplantier and Sheffield [DS11] to be the almost sure weak limit

µh := lim
ε→0

εγ
2/2eγhε(z) d2z, (1.2)

where hε(z) is the average of h on the circle ∂Bε(z) and d2z is the Lebesgue measure on U . Note that for a

smooth function f : U → R, the volume form associated with the Riemannian metric tensor ef (dx2 + dy2)

is efd2z. With probability one, µh is mutually singular with respect to the Lebesgue measure but has no
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point masses and assigns a positive mass to any open set. The circle average approximation can be replaced

by other mollification methods for the GFF; see [Aru20, Ber17, Kah85, RV14] for further details. Notably,

let pε2/2(z) =
1

πε2 exp(−|z|2/ε2) be the heat kernel at time ε2/2 and let

h∗
ε(z) := (h ∗ pε2/2)(z) =

∫

U

h(w)pε2/2(z − w) d2w. (1.3)

Then limε→0 ε
γ2/2eγh

∗
ε(z)d2z = µh in probability with respect to the topology of weak convergence of mea-

sures.1

More recently, the γ-LQG metric Dh was constructed as the scaling limit of Liouville first passage percolation

(LFPP) in the case that U = C and h is a whole-plane GFF. For z, w ∈ C and ε > 0, the ε-LFPP metric is

defined by

Dε
h(z, w) := inf

P :z→w

∫ 1

0

eξh
∗
ε(P (t))|P ′(t)| dt, (1.4)

where the infimum is taken over all piecewise continuously differentiable paths P from z to w. Note that for

a smooth function f : C → R, the distance between z and w corresponding to the Riemannian metric tensor

ef (dx2 + dy2) is infP :z→w

∫ 1

0
ef(P (t))/2|P ′(t)| dt. Here,

ξ :=
γ

dγ
, (1.5)

where dγ > 2 is the dimension of γ-LQG. The constant dγ is obtained a priori as a scaling exponent corre-

sponding to various approximations of the γ-LQG metric space [DG20, DZZ19]. Ding, Dubédat, Dunlap, and

Falconet [DDDF20] showed that for a suitable choice of deterministic scaling constants {aε}ε>0, the family

of rescaled LFPP metrics {a−1
ε Dε

h}ε∈(0,1) is tight. Building furthermore on [DFG+20, GM20a, GM20b],

Gwynne and Miller [GM21c] showed that the subsequential limit is unique and defined γ-LQG metric as the

limit

Dh := lim
ε→0

a
−1
ε Dε

h (1.6)

in probability with respect to the local uniform topology on C×C. In particular, Dh almost surely induces

the Euclidean topology. A posteriori, dγ was identified as both the Hausdorff dimension [GP22] and the

Minkowski dimension [AFS20] of the γ-LQG metric space (C, Dh).

It is natural to ask how the measure µh and the metricDh are related. In this paper, we show that µh is almost

surely equal to the Minkowski content measure with respect to Dh (Theorem 1.1). This answers [GM21c,

Problem 7.10]. Our result can be viewed as an LQG analog of [LR15], which constructed the Minkowski

content for Schramm–Loewner evolution (SLE) curves and showed that it is equivalent to the so-called

natural parameterization of SLE [LS11].

A particular consequence of our result is that Dh almost surely determines µh. It was shown in [AFS20,

Theorem 1.3] that the pointed metric measure space (C, 0, Dh, µh) almost surely determines h up to rotation

and scaling. Therefore, our result shows that the pointed metric space (C, 0, Dh) almost surely determines

h modulo rotation and scaling (Corollary 1.2).

The primary tool in our proofs is the mating-of-trees theorem of Duplantier, Miller, and Sheffield [DMS21].

This theorem says that the left/right boundary length process for a space-filling SLE curve η on an LQG

surface is a correlated two-dimensional Brownian motion. Roughly speaking, this result is useful for two

reasons. First, it gives a source of exact independence since the LQG surfaces traced by the curve η during

disjoint time intervals are independent. In particular, this leads to a short proof of a lower bound for the

number of LQG metric balls needed to cover a given set (Proposition 4.1) without needing a separate two-

point estimate. Second, the mating-of-trees theory provides a convenient way of decomposing space into

1Most works on Gaussian multiplicative chaos require GFF to be regularized using compactly supported mollifiers. The

heat kernel mollification of GFF is considered in [RV14] (which calls it “white noise decomposition”), where it is shown that

εγ
2/2eγh

∗
ε(z)d2z converges to µh in law. One can extend this to convergence in probability by applying existing methods, for

instance by checking [Ber17, Lemma 3.5] using the covariance formula Cov(h∗

ε(z), h
∗

r(w)) = π
∫
∞

(ε2+r2)/2 pt(z − w) dt.
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regions of equal LQG mass, namely the segments η([x − ε, x]) for x ∈ εZ, where η is parameterized by

µh-mass. See Section 2.6 for more details on the proof method.

The mating-of-trees theory has many applications in the study of random conformal geometry, including

LQG and SLE; see [GHS20] for a survey of these applications. This is the first paper to use this theory to

prove properties of the LQG metric for general γ ∈ (0, 2). We expect that there will be more applications

of the mating-of-trees theory to the LQG metric in the future. In the course of our proof, we obtain some

estimates for space-filling SLE on an LQG surface, which are of independent interest. We especially highlight

the Hölder continuity result (Theorem 1.4), which is already used in the paper [BGS22] to prove a result

about random permutations.

Previously, Le Gall [LG22] showed that the volume measure of the Brownian sphere is equal to a constant

multiple of the Hausdorff measure associated with the gauge function r4 log log(1/r). This implies that Dh

almost surely determines µh for γ =
√
8/3, due to the equivalence between the Brownian sphere and the√

8/3-LQG sphere established by Miller and Sheffield [MS20, MS21a, MS21b]. See also [GM21c, Corol-

lary 1.4] for the fact that the Miller–Sheffield metric agrees with the limit of LFPP. In a sense, our result is a

generalization of Le Gall’s result to general γ ∈ (0, 2), but with Minkowski content instead of Hausdorff mea-

sure. Our proof and Le Gall’s have some superficial similarities, but the main techniques are fundamentally

different.

Acknowledgements. We thank the anonymous referee for useful remarks on an earlier version of this work

and Greg Lawler for helpful discussions. E.G. was partially supported by a Clay research fellowship. J.S.

was partially supported by a scholarship from Kwanjeong Educational Foundation.

1.2 Main results

We say that a random distribution h on C is a whole-plane GFF plus a continuous function if there is a

coupling of h with a random continuous function f : C → R such that h − f has the law of a whole-plane

GFF (see Section 2.2 for the definition of the whole-plane GFF). Our main theorem states that for each

γ ∈ (0, 2), the Minkowski content measure (see Definition 2.4) exists on the γ-LQG metric space (C, Dh)

and is equal to the corresponding γ-LQG measure µh.

Theorem 1.1. Fix γ ∈ (0, 2). There exists a deterministic sequence {bε}ε>0 such that the following is true.

Let h be a whole-plane GFF plus a continuous function and Dh be the corresponding γ-LQG metric. Suppose

A ¢ C is either:

(i) a deterministic bounded Borel set; or

(ii) a random compact set, measurable with respect to the Borel σ-algebra induced by the Hausdorff distance

on C, that is coupled with the random distribution h

such that µh(∂A) = 0 almost surely. Let Nε(A;Dh) be the minimum number of Dh-balls of radius ε > 0

required to cover A. Then,

lim
ε→0

b
−1
ε Nε(A;Dh) = µh(A) in probability. (1.7)

We do not exclude the possibility that the limit (1.7) may hold almost surely. However, our methods are

insufficient to prove how fast the sequence b
−1
ε Nε(A;Dh) converges. We expect that stronger LQG metric

estimates than those currently available are necessary to prove quantitative bounds required for almost sure

convergence.

A corollary of Theorem 1.1 is that the metric space structure of a γ-LQG surface is sufficient information to

determine not only its metric measure space structure but also its conformal structure, in the sense that it

almost surely determines the field h.

3



Corollary 1.2. Let γ ∈ (0, 2). Suppose h is a whole-plane GFF normalized to have a mean zero on

the unit circle. Let Dh and µh be the corresponding γ-LQG metric and measure, respectively. Then the

random pointed metric space (C, 0, Dh) almost surely determines the random pointed metric measure space

(C, 0, Dh, µh), and moreover the field h up to rotation and scaling of the complex plane.

By considering (C, 0, Dh) as a random pointed metric space, we forget the parameterization of Dh in the

complex plane. More precisely, we consider it as a random element in the space of isometry classes of

complete and locally compact length spaces endowed with the local Gromov–Hausdorff topology (as defined

by Gromov in [Gro99]). Similarly, the random pointed metric measure space (C, 0, Dh, µh) in Corollary 1.2

is measurable with respect to the local Gromov–Hausdorff–Prokhorov topology [ADH13]. It was known

previously that the random pointed metric measure space (C, 0, Dh, µh) almost surely determines the field h

up to rotation and scaling. For γ =
√
8/3, this fact was first established in [MS21b] as a key component of

the equivalence between the Brownian sphere and the
√
8/3-LQG sphere. An explicit way of reconstructing

h from the pointed metric measure space (C, 0, Dh, µh) was given in [GMS20], which was extended to all

γ ∈ (0, 2) in [AFS20].

Our choice of scaling constants {bε}ε>0 has the following description which depends only on γ ∈ (0, 2). Let

(C, hγ , 0,∞) be a γ-quantum cone under the circle average embedding (see Section 2.5.1 for definitions). Let

η be a whole-plane space-filling SLEκ′ curve from ∞ to ∞ with κ′ = 16/γ2 that is sampled independently of

hγ . Then parameterize η by the γ-LQG measure: that is, η(0) = 0 and µh(η[s, t]) = t− s for all real s f t.

(We review this setup further in Section 2.5.) Let Dhγ be the γ-LQG metric associated with hγ . For ε > 0,

define

bε := E[Nε(η[0, 1];Dhγ )]. (1.8)

While we do not have an exact formula for bε, the following properties justify calling the limit in (1.7) the

dγ-Minkowski content of A with respect to the metric Dh (also see Section 2.1).

Proposition 1.3. Let bε be as in (1.8). There exist constants 0 < c1 < c2 < ∞ such that for all ε ∈ (0, 1),

c1ε
−dγ f bε f c2ε

−dγ . (1.9)

Moreover, the function ε 7→ bε is regularly varying with index −dγ ; i.e., for every r > 0 we have

lim
ε→0

brε

bε
= r−dγ . (1.10)

As a byproduct of our proof of Theorem 1.1, we obtain a Hölder continuity result for the space-filling SLE

curve on an LQG metric space.

Theorem 1.4. Let γ ∈ (0, 2) and κ′ ∈ (4,∞) be constants, which do not necessarily satisfy κ′ = 16/γ2. Let

hγ be the field of a γ-quantum cone under the circle average embedding, and let η be a whole-plane space-

filling SLEκ′ from ∞ to ∞ which is sampled independently of hγ and then parameterized by µhγ . Almost

surely, η on the metric space (C, Dhγ ) is locally Hölder continuous with any exponent less than 1/dγ and is

not locally Hölder continuous with any exponent greater than 1/dγ .

Theorem 1.4 is used in [BGS22, Section 4] to show that the dimensions of the supports of certain random

permutons defined in terms of SLE-decorated LQG are almost surely equal to one. Since LQG decorated

by space-filling SLE is related to many other mathematical objects [GHS], we expect that the theorem will

have more applications in the future.

1.3 Notations

We use the following notations throughout the paper.
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• The constant γ ∈ (0, 2) is fixed, and we do not consider multiple values of γ simultaneously. When we

do not specify the value of γ (e.g., in expressions such as “LQG metric ball” or “quantum dimension”),

we refer to the corresponding γ-LQG quantities.

• We write dγ for the dimension of γ-LQG. We also use the γ-dependent constants

Q =
γ

2
+

2

γ
and ξ =

γ

dγ
. (1.11)

• Given a random distribution h on C, we denote the associated γ-LQG metric as µh and the γ-LQG

measure as Dh.

• We denote by Br(z) the Euclidean ball of radius r centered at z. Br(z;Dh) := {w ∈ C : Dh(z, w) < r}
is the Dh-metric ball of radius r centered at z. For a set A ¢ C, we denote by Br(A) :=

⋃
z∈A Br(z)

and Br(A;Dh) :=
⋃

z∈A Br(z;Dh) its r-neighborhoods in the Euclidean and LQG metrics, respectively.

• We say that an event Eε indexed by ε > 0 occurs with superpolynomially high probability if, for each

p > 0, we have P(Eε) g 1− εp for sufficiently small ε > 0.

• Let X and Y be random variables coupled on a probability space, taking values in measurable spaces X
and Y, respectively. We say that Y is almost surely determined by X if there is a measurable function

F : X → Y such that Y = F (X) almost surely.

1.4 Outline

We review the necessary preliminaries in Section 2. With these preliminaries in hand, we present a detailed

overview of our proof of the main results in Section 2.6. Section 3 is dedicated to showing the tightness

of the Minkowski content approximations. In Section 4, we prove a key stepping stone towards the main

results: the convergence in (1.7) of the normalized covering number b−1
ε Nε(A;Dh) to the γ-LQG area µh(A)

when A is a space-filling SLE segment of fixed LQG area. We extend this convergence to general sets A and

fields h and complete the proofs of the main results in Section 5.

2 Preliminaries

We review a few preliminaries, including the Minkowski content measure on a metric space (Section 2.1),

the axiomatic characterization of the LQG metric (Section 2.3), and the continuum mating-of-trees theory

(Section 2.5).

We also prove some extensions of known LQG results. In Section 2.4, we show that the conformal coordinate

change rule for the LQG metric [GM21b] extends to certain random scalings and translations. In Section 2.5,

we use these results to prove that the mating-of-trees theorem is, in a certain precise sense, compatible with

the LQG metric.

In Section 2.6, we give an overview of the proof of Theorem 1.1 and a comparison with Le Gall’s proofs in

[LG22].

2.1 Minkowski content measure

Let (X, d) be a metric space. Given a set A ¢ X, let Nε(A; d) be the minimum number of metric balls with

radius ε > 0 required to cover A. The Minkowski dimension of a set A is defined as

dimM(A; d) = lim
ε→0

logNε(A; d)

log ε−1
(2.1)
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if the limit exists. There are several equivalent descriptions of the Minkowski dimension. For instance, we

can replace the covering number Nε(A; d) with the packing number Npack
ε (A; d), which is the maximum

possible number of disjoint metric balls with radius ε whose centers all lie in A. These two definitions are

equivalent because Npack
ε (A; d) f Nε(A; d) f Npack

ε/2 (A; d) for every ε > 0.

The Minkowski dimension of the γ-LQG metric is the Minkowski dimension of any open set with respect

to the γ-LQG metric. In [AFS20], this quantity was shown to be equal to dγ . The proof was based on the

estimate (2.2) on the volume of LQG metric balls, which we utilize prominently throughout our paper.

Theorem 2.1 ([AFS20, Theorem 1.1]). Let h be a whole-plane GFF normalized so that h1(0) = 0. For any

compact set K ¢ C and ζ > 0, almost surely,

sup
ε∈(0,1)

sup
z∈K

µh(Bε(z;Dh))

εdγ−ζ
< ∞ and inf

ε∈(0,1)
inf
z∈K

µh(Bε(z;Dh))

εdγ+ζ
> 0. (2.2)

Moreover, for any bounded Borel measurable set A ¢ C containing an open set, almost surely,

lim
ε→0

logNε(A;Dh)

log ε−1
= dγ . (2.3)

The Minkowski content is a method of assigning sizes to subsets of a metric space by using the quantities

used to find their Minkowski dimensions. It has several different definitions in the literature which are not

equivalent. One such definition is the following: if the limit computed in (2.1) equals δ, then the Minkowski

content of A is

Contδ(A; d) = lim
ε→0

εδNε(A; d) (2.4)

if the limit exists. Replacing Nε(A; d) with other quantities that give rise to equivalent definitions of the

Minkowski dimension, such as Npack
ε (A; d), do not necessarily give identical values for the Minkowski content.

As such, it makes sense to introduce the following general notion of Minkowski content.

Definition 2.2. For a constant δ > 0 and a family of constants b = {bε}ε>0, we say that b is a sequence of

δ-dimensional rescaling coefficients if the following two conditions are satisfied.

(i) There exist constants 0 < c1 < c2 < ∞ and ε0 > 0 such that c1ε
−δ f bε f c2ε

−δ for every ε ∈ (0, ε0).

(ii) The function ε 7→ bε is regularly varying at 0 with index −δ. That is, limε→0 brε/bε = r−δ for every

r > 0.

For instance, {ε−δ}ε>0 is a trivial sequence of δ-dimensional rescaling coefficients. Proposition 1.3 says that

{bε}ε>0 as defined in (1.8) is a sequence of dγ-dimensional rescaling coefficients. In Definition 2.2, we require

condition (ii) so that εδbε does not fluctuate arbitrarily as ε → 0.

Definition 2.3. Let (X, d) be a metric space and b = {bε}ε>0 be a sequence of δ-dimensional rescaling

coefficients. For A ¢ X with dimM(A; d) = δ, the Minkowski content of A with respect to coefficients b is

the limit

Contb(A; d) = lim
ε→0

b−1
ε Nε(A; d). (2.5)

if it exists. In that case, we say that A is Minkowski measurable with respect to coefficients b.

Theorem 1.1 states that with b = {bε}ε>0 as in (1.8), for every bounded Borel set A ¢ C with µh(∂A) = 0,

the Minkowski content of A with respect to b exists and is almost surely equal to µh(A). The condition

µh(∂A) = 0 is natural; if an open set A ¢ X is Minkowski measurable with respect to coefficients b, then

Contb(A; d) = Contb(A; d). This is since Nε(A; d) f Nε(A;D) f N(1−ζ)ε(A; d) for every ε > 0 and ζ ∈ (0, 1),

and we require bε to vary regularly.

In general, it is difficult to a priori find the correct coefficients {bε}ε>0 such that the limit (2.5) exists.

Indeed, we will use (2.4) as an ansatz for the Minkowski content in γ-LQG, and we show only in a later

stage of the proof that (1.8) is the correct rescaling coefficient to use.
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One reason for considering the Minkowski content for the LQG metric space is that the Minkowski content

is extremely useful in the context of random fractal subsets. For instance, the Minkowski content has been

used to construct natural measures on the Schramm–Loewner evolution (SLE) curve and its subsets (e.g.,

[AS11, HLLS22, Law15, LR15, Zha22]). However, the Minkowski content has been considered traditionally

in the context of fractal subsets of Euclidean spaces. When A is a fractal subset of a Euclidean space Rn,

the Minkowski dimension of A can be defined equivalently as

dimM(A) = n− lim
ε→0

log(volBε(A))

log ε
. (2.6)

This is why the δ-dimensional Minkowski content of A ¢ Rn for δ < n is defined usually as

Contδ(A) = lim
ε→0

volBε(A)

εn−δ
. (2.7)

We eventually wish to construct a Borel measure from the Minkowski content on an LQG metric space and

compare it with the LQG measure in Corollary 1.2. However, Minkowski content is not countably additive

in general. Thus, we define a Minkowski content measure to be any Borel measure that is compatible with

some version of the Minkowski content. The following definition aligns with various definitions of similar

concepts in the literature (e.g., [HRWX21, Zha22]).

Definition 2.4. Let (X, d) be a locally compact metric space whose Minkowski dimension is δ > 0: i.e.,

dimM(U ; d) = δ for every totally bounded open set U ¢ X. A Minkowski content measure on X is a Borel

measure µ on X that satisfies the following conditions.

(i) The measure µ is finite on all compact subsets of X.

(ii) There is a sequence b = {bε}ε>0 of δ-dimensional rescaling coefficients such that Contb(K; d) exists

and equals µ(K) for every compact set K ¢ X with µ(∂K) = 0.

In other words, Theorem 1.1 states that the LQG measure µh is a Minkowski content measure on the LQG

metric space (C, Dh). In the proof of Corollary 1.2, we give an explicit method to recover µh as a Minkowski

content measure on the LQG metric space (C, Dh). In particular, we give a random π-system of compact sets

coupled with the GFF h which a.s. generates the Borel σ-algebra, so that the values of Minkowski content

Contb(K;Dh) for the sets K in this π-system a.s. uniquely determine the Minkowski content measure µh.

2.2 Whole-plane GFF

We give a brief introduction to the whole-plane GFF insofar as it is relevant to the rest of the paper. We refer

the reader to the introductory sections of [DMS21, MS17] and the expository articles [BP, She07, WP21] for

further details.

The whole-plane Gaussian free field (GFF) h is a centered Gaussian process on C with covariances

Cov(h(z), h(w)) = G(z, w) := log
(max{|z|, 1})(max{|w|, 1})

|z − w| , ∀z, w ∈ C. (2.8)

This definition does not make literal sense since limz→w G(z, w) = ∞, but we can make sense of the whole-

plane GFF as a random distribution (i.e., generalized function). Let M be the collection of signed Borel

measures ρ with compact supports on C and
∫
C×C

G(z, w) |ρ|(dz)|ρ|(dw) < ∞. We define [WP21, Section 3.1]

the whole-plane GFF as the centered Gaussian process indexed by M with

Cov((h, ρ1), (h, ρ2)) =

∫

C×C

G(z, w) ρ1(dz)ρ2(dw). (2.9)

7



A random distribution h on C is called a whole-plane GFF plus a continuous function if there exists a

coupling of h with a random continuous function f : C → R such that h − f has the law of a whole-plane

GFF.

Given a whole-plane GFF h, we define the circle average on the circle ∂Br(z) as the pairing hr(z) := (h, λz,r)

where λz,r is the uniform probability measure on the circle ∂Br(z). The following properties of the circle

average process were given in [DS11, Section 3.1].

Lemma 2.5. There exists a version of whole-plane GFF h such that the map (z, r) 7→ hr(z) is a.s. continuous

on C × (0,∞). Moreover, for each z ∈ C, the process {Bt}t∈R, Bt := he−t(z), is a two-sided standard

Brownian motion with the initial value B0 = h1(z).

Let h be a whole-plane GFF plus a continuous function. By the circle average part of h, we refer to the

function f(z) = h|z|(0). By the lateral part of h, we refer to the distribution g = h − f . The following is a

key property of the whole-plane GFF used in this paper.

Lemma 2.6 ([DMS21, Lemma 4.9]). The circle average and lateral parts of the whole-plane GFF are

independent.

We note that the term whole-plane GFF also refers to the random distribution considered modulo additive

constant. Our choice of covariance kernel in (2.8) corresponds to fixing the additive constant so that the

average h1(0) of h over the unit circle is zero [Var17, Section 2.1.1]. The law of the whole-plane GFF is

invariant under deterministic complex affine transformations of C, modulo additive constant. That is, if

a ∈ C \ {0} and b ∈ C, then

h(a ·+b)− h|a|(b)
d
= h. (2.10)

In the few instances where we refer to the whole-plane GFF in this sense, we always write explicitly that we

are considering it modulo additive constant.

Remark 2.7. We close our discussion of the planar GFF with a brief discussion of the free-boundary GFF

on the upper half-plane H = {z : Im z > 0}, which will be relevant in Section 2.5.4. This is a random

distribution h̃ on H which has the law of (h(z)+h(z̄))/2 where h is a whole-plane GFF; it can be rigorously

defined as a centered Gaussian process indexed by signed Borel measures in M which are supported on H,

with Cov(h̃(ρ1), h̃(ρ2)) =
∫
H×H

[G(z, w)+G(z, w̄)]ρ1(dz)ρ2(dw) where G is the whole-plane Green’s function

given in (2.8). For x ∈ R and r > 0, we define h̃r(x) to be the paring h̃(λ̃x,r) where λ̃x,r is the uniform

probability measure on the semicircle ∂Br(x)∩H. Define h̃∥(z) := h̃(z)− h̃|z|(0) be the projection of h̃ onto

the space of functions that have average zero on all semi-circles centered at the origin (“lateral part”). Then,

similarly to Lemma 2.6, the semicircle averages {h̃r(0)}r>0 and the lateral part h̃∥ are independent [DMS21,

Lemma 4.2].

2.3 LQG metric axioms

Due to its variational formulation, it is difficult to work with the definition (1.6) of the LQG metric. The

axiomatic characterization of the LQG metric given in [GM21c] is often a more tractable means of studying

the LQG metric.

Before we state the LQG metric axioms, we recall the following definitions regarding metric spaces. Let

(X,D) be a metric space. A curve in X is a continuous function P : [a, b] → X. The D-length of P is

len(P ;D) = sup
T

|T |∑

i=1

D(P (ti−1), P (ti)) (2.11)

where the supremum is over all partitions T : a = t0 < t1 < · · · < t|T | = b. For Y ¢ X, the internal metric

of D on Y is defined as

DY (x, y) = inf
P¢Y

len(P ;D) (2.12)
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where the infimum is over all paths P in Y from x to y.

We say that (X,D) is a length space if for each x, y ∈ X and ε > 0, there exists a curve P in X from x to y

with len(P ;D) < D(x, y) + ε. We say that a metric D is continuous metric on an open domain U ¢ C if it

induces the Euclidean topology on U . In the following, we equip the space of continuous metrics on U with

the local uniform topology for functions U × U → [0,∞).

Definition 2.8. For γ ∈ (0, 2), a γ-LQG metric is a Borel measurable function h 7→ Dh from the space of

distributions on C to the space of the continuous metrics on C such that the following are true whenever h

is a whole-plane GFF plus a continuous function. Here, Q and ξ are constants defined in (1.11).

I. Length space. (C, Dh) is almost surely a length space. That is, the Dh-distance between any two points

in C is the infimum over the Dh-lengths of curves between these two points.

II. Locality. Let U ¢ C be a deterministic set. Then the internal metric DU
h is almost surely determined

by (cf. Section 1.3) the restriction h|U .2

III. Weyl scaling. For a continuous function f : C → R, define

(eξf ·Dh)(z, w) := inf
P :x→y

∫ len(P ;Dh)

0

eξf(P (t)) dt ∀z, w ∈ C (2.13)

where the infimum is over all curves from z to w parameterized by Dh-length. The following holds

almost surely: we have Dh+f = eξf ·Dh for every continuous function f : C → R.

IV. Coordinate change for translation and scaling. For each fixed deterministic r > 0 and z ∈ C, almost

surely

Dh(ru+ z, rv + z) = Dh(r·+z)+Q log r(u, v) ∀u, v ∈ C. (2.14)

In [GM21c], it was shown that the random metric defined in (1.6) using LFPP is a γ-LQG metric as in

the sense of the above definition, and each γ-LQG metric is a deterministic constant multiple of it. Hence,

it makes sense to refer to (1.6) as the γ-LQG metric. The paper [DFG+20] contains an extensive list of

estimates for the LQG metric deduced from the axiomatic definition, which we introduce as necessary.

Finally, we refer the reader to [GM20a, Remark 1.2] for the definition of the γ-LQG metric on a proper

subdomain of C.

2.4 Quantum surfaces

Recall from (1.11) that Q = 2/γ + γ/2. Consider the pair (U, h) where U ¢ C is an open set and h is a

distribution on U . A γ-quantum surface (or a γ-LQG surface) is an equivalence class of such pairs where

(U, h) ∼ (Ũ , h̃) if there exists a conformal transformation φ : Ũ → U such that

h̃ = h ◦ φ+Q log |φ′|. (2.15)

An embedding of a quantum surface is a choice of representative (U, h) from the equivalence class.

We often consider quantum surfaces with additional structures. As before, let U ¢ C be an open set and

h be a distribution on U . Let z1, . . . , zk be points in U . A γ-quantum surface with k marked points is an

equivalence class of the tuples (U, h, z1, . . . , zk) where (U, h, z1, . . . , zk) ∼ (Ũ , h̃, z̃1, . . . , z̃k) if there exists a

conformal transformation φ : Ũ → U such that zj = φ(z̃j) for j = 1, . . . , k in addition to (2.15). If η is

a curve in U , then a curve-decorated γ-quantum surface is an equivalence class of triples (U, h, η) where

(U, h, η) ∼ (Ũ , h̃, η̃) if there exists a conformal transformation φ : Ũ → U such that η = φ ◦ η̃ in addition to

(2.15). We define a curve-decorated γ-quantum surface with k marked points by combining these definitions.

2The restriction h|U of the whole-plane GFF h to U can be defined precisely as the process {(h, ρ)}ρ∈MU
where the index

set MU comprises signed Borel measures ρ ∈ M (recall Section 2.2) with supp(ρ) ¢ U .
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The equivalence relation (2.15) of a γ-LQG surface is chosen so that the γ-LQG measure and metric transform

naturally between different embeddings of the same quantum surface. Suppose h is a GFF plus a continuous

function on an open set U ¢ C.3 Let φ : Ũ → U be a fixed conformal transformation. It was established in

[DS11] that, almost surely,

µh(A) = µh◦φ+Q log |φ′|(φ
−1(A)) for every Borel A ¢ U (2.16)

and in [GM21b] that, almost surely,

Dh(z, w) = Dh◦φ+Q log |φ′|(φ
−1(z), φ−1(w)) for every z, w ∈ U. (2.17)

While not sufficiently emphasized in the early literature on LQG, it is necessary to include random conformal

transformations in the definition of quantum surfaces to be able to compare their laws under a canonical

embedding rule. For instance, there are uncountably many ways to embed a quantum surface with the disk

topology into the unit disk D if it is unmarked or has only one or two marked boundary points. To specify a

canonical embedding, we need to use information about the GFF. This requires a random conformal change

of coordinates since the field is random.

Nevertheless, this random change in coordinates does not present an issue for the LQG measure. The

following theorem implies that if φ is the random conformal transformation that maps a given embedding

(U, h) of a quantum surface to its canonical embedding (Ũ , h̃), then it is a.s. the case that the LQG measure

µh̃ is well-defined and equal to the pushforward measure φ∗µh.

Theorem 2.9 ([SW16, Theorem 1.4]). Let U ¢ C be a simply connected domain and h be a GFF plus a

continuous function on U . Let Λ be the collection of all conformal maps φ : Ũ → U where Ũ ¢ C is any

simply connected domain. It is almost surely the case that for all φ ∈ Λ, the measures µh◦φ+Q log |φ′| are

well-defined and the transformation rule (2.16) holds simultaneously for all φ ∈ Λ.

2.4.1 Coordinate change for random translation and scaling

An analog of Theorem 2.9 for the LQG metric is expected to be true but has not yet been established. (After

the acceptance of this article, it was proven in [Dev23] that, almost surely, (2.17) holds for all complex affine

transformations simultaneously.) In the following two lemmas, we show that the transformation rule (2.17)

holds almost surely for a certain subset of random conformal maps from C to itself. These are random

translations (Lemma 2.10) and random scalings where the scaling factor is almost surely determined by the

circle average part of the field (Lemma 2.11). These correspond exactly to the random transformations that

determine a canonical embedding, which appears in the continuum mating-of-trees theory, which we present

in the next section.

Lemma 2.10. Suppose h is a whole-plane GFF plus a continuous function and z ∈ C is any random point

(not necessarily independent from h). If h(·+z) has the law of a whole-plane GFF plus a continuous function,

then, almost surely,

Dh(·+z)(u, v) = Dh(u+ z, v + z) for all u, v ∈ C. (2.18)

Proof. Denote ĥ := h(·+ z). Let ε > 0 and suppose P : [0, 1] → R is a piecewise continuously differentiable

path. Letting P̂ (t) := P (t) + z, almost surely,

∫ 1

0

eξĥ
∗
ε(P (t))|P ′(t)| dt =

∫ 1

0

eξh
∗
ε(P̂ (t))|P̂ ′(t)| dt (2.19)

for all such paths P . From the definition (1.4) of the ε-LFPP metric, almost surely, Dε
ĥ
(u, v) = Dε

h(u+z, v+z)

for all u, v ∈ C. Since the rescaled ε-LFPP metric a
−1
ε Dε

h converges in probability with respect to the local

3We say that a random distribution h on an open subset U ¢ C is a GFF plus a continuous function if it can be coupled

with a random continuous function f : U → C such that h − f has the law of a zero-boundary GFF on U (or a whole-plane

GFF if U = C). Note the definition of the whole-plane GFF plus a continuous function above Theorem 1.1.
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uniform topology on C× C to Dh [GM21c, Theorem 1.1], so does a−1
ε Dε

ĥ
. If ĥ is a whole-plane GFF plus a

continuous function, then the LQG metric Dĥ is the limit.

We remark that we can use (2.18) to define Dh(·+z) even when h(·+z) does not have the law of a whole-plane

GFF plus a continuous function.

As for random scaling, we only consider the case for which the scaling factor r is measurable with respect

to the circle average part of the field (recall the discussion just above Lemma 2.6).

Lemma 2.11. Let h be a whole-plane GFF plus a continuous function whose circle average and lateral parts

are independent (by Lemma 2.6; this is the case for the whole-plane GFF). If r > 0 is a random scaling

factor which is almost surely determined by the circle average part of h, then almost surely

Dh(ru, rv) = Dh(r·)+Q log r(u, v) ∀u, v ∈ C. (2.20)

Proof. Let us denote the circle average part and the lateral part of h as hcirc and hlat, respectively. Let h̃circ be

an independent and identically distributed copy of hcirc, which is also independent of hlat. Let h̃ := h̃circ+hlat,

which is a whole-plane GFF plus a continuous function independent of hcirc. Let f = h − h̃ = hcirc − h̃circ.

From Lemma 2.5, t 7→ he−t(0) and t 7→ h̃e−t(0) are independent random continuous functions on R. Hence,

f is almost surely a continuous function on C \ {0}.
We claim that the Weyl scaling axiom holds for f even though it may be discontinuous at 0. That is, almost

surely,

Dh = eξf ·Dh̃ (2.21)

as random continuous metrics on C. To make sense of the right-hand side, we first define eξf ·Dh̃ between

points in C \ {0} as in (2.13) except that we take the infimum over all curves that stay in C \ {0}. We then

extend eξf · Dh̃ to a continuous metric on all of C if possible; this is how the LQG metric is defined for a

field with logarithmic singularities in the discussion preceding [DFG+20, Theorem 1.10]. Since Dh is a.s. a

continuous length metric on C, it suffices to check that, almost surely, the Dh-lengths and the eξf ·Dh̃-lengths

agree for all curves in C\{0}. For δ > 0, let fδ be a random function which is almost surely continuous on C

and agrees with f on C \Bδ(0). By the locality axiom, almost surely, the Dh-lengths and the Dh̃+fδ
-lengths

agree for all curves in C \Bδ(0). By the Weyl scaling axiom, Dh̃+fδ
= eξfδ ·Dh̃ almost surely. Letting δ → 0

proves the claim.

By the same reasoning, Dh(r·)+Q log r = eξf(r·) ·Dh̃(r·)+Q log r almost surely. Since r > 0 is independent of h̃,

by the coordinate change axiom (2.14) for deterministic scaling, we almost surely have

Dh̃(ru, rv) = Dh̃(r·)+Q log r(u, v) ∀u, v ∈ C. (2.22)

The lemma now follows by combining (2.21) and (2.22).

It is straightforward to check that Lemmas 2.10 and 2.11 are also valid when h is equal to a whole-plane

GFF plus a continuous function plus a finite number of logarithmic singularities of the form −α log | · −z|
for z ∈ C and α < Q. In particular, they can be applied to a γ-quantum cone.

2.5 Mating-of-trees theory

The continuum mating-of-trees theorem is the central tool we utilize in this paper. We first review the setup

for the theorem, in particular the definitions and properties of the γ-quantum cone and the whole-plane

space-filling SLEκ′ curve. We state the mating-of-trees theorem afterward.
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2.5.1 Quantum cone

In the previous section, we discussed that for some quantum surfaces, we must use information about the field

to define a canonical embedding of the surface. In this paper, we consider doubly-marked quantum surfaces

parameterized by the Riemann sphere: i.e., those with embeddings of the form (C, h, 0,∞). Fixing the two

marked points at 0 and ∞ gives an embedding of the quantum surface that is unique only up to scaling.

One choice of canonical embedding for such a quantum surface is called the circle average embedding.

Definition 2.12. We say that an embedding (C, h, 0,∞) of a doubly-marked γ-LQG surface is a circle

average embedding if

sup{r > 0 : hr(0) +Q log r = 0} = 1 (2.23)

where hr(0) is the circle average of h on ∂Br(0).

That is, given an embedding (C, h, z,∞) of a γ-LQG surface where one marked point is at z ∈ C and the

other marked point is at ∞, the circle average embedding of this LQG surface is (C, h(R ·−z)+Q logR, 0,∞)

where

R := sup{r > 0 : hr(z) +Q log r = 0}. (2.24)

From the perspective of circle average embedding, the quantum surface induced by a whole-plane GFF is

unnatural in that it does not satisfy scale invariance. That is, if h is a whole-plane GFF and C is a nonzero

constant, the circle average embeddings of (C, h, 0,∞) and (C, h+C, 0,∞) do not agree in law. The natural

scale-invariant analog of such a surface is called the quantum cone.

Definition 2.13. Let {At}t∈R be a real-valued stochastic process with the following distribution.

• For t < 0, At = B̂−t + γt where {B̂s}sg0 is a standard Brownian motion with B̂0 = 0 conditioned so

that B̂s + (Q− γ)s > 0 for every s > 0.

• For t g 0, At = Bt + γt where {Bs}sg0 is a standard Brownian motion with B0 = 0 that is sampled

independently of {B̂s}sg0.

A γ-quantum cone is a doubly-marked quantum surface whose circle average embedding (C, hγ , 0,∞) has

the following law.

• The circle average process t 7→ hγ
e−t(0) has the same law as the process A.

• The lateral part hγ − hγ
|·|(0) of h

γ agrees in law with the lateral part of a whole-plane GFF.

• The circle average and the lateral parts of hγ are independent.

A γ-quantum cone has the following scale invariance property.

Proposition 2.14 ([DMS21, Proposition 4.13(i)]). Let (C, hγ , 0,∞) be the circle average embedding of a

γ-quantum cone. Let C be a real constant. Then the quantum surfaces represented by (C, hγ , 0,∞) and

(C, hγ + C, 0,∞) agree in law. That is, let

RC := sup {r : hγ
r (0) +Q log r + C = 0} (2.25)

so that (C, hγ(RC ·) +Q logRC + C, 0,∞) is the circle average embedding of the γ-LQG surface represented

by (C, hγ + C, 0,∞). Then hγ d
= hγ(RC ·) +Q logRC + C.

Since µhγ+C = eγCµhγ , this property means that the law of a γ-quantum cone is invariant under scaling its

LQG measure by a positive constant. Similarly, the fact that Dhγ+C/γ = eξCDhγ implies that the law of a

quantum cone is invariant under scaling its LQG metric by a constant. Note that the spatial scaling factor

12



(2.25) is a random variable that depends on the circle averages of hγ . Hence, it is only due to Lemma 2.11

that the scale invariance of the quantum cone extends to the LQG metric.

Another reason to consider the γ-quantum cone is that it is the γ-LQG surface one obtains by starting with

a generic γ-LQG surface, choosing a marked point on it from the γ-LQG measure, and then “zooming in”

near the marked point. More precisely, we have the following lemma, which is helpful for transferring results

about a whole-plane GFF to a γ-quantum cone and is used in Section 4.1.

Lemma 2.15. Let dh denote the law of a whole-plane GFF with h1(0) = 0. Let let (z, h) be a pair sampled

from the probability measure Z−11D(z)µh(dz)dh where Z = E[µh(D)] is the normalization constant. Then,

the field under the circle average embedding of the quantum surface (C, h + C, z,∞) — i.e., h(RC ·) +
Q logRC +C where RC is defined as in (2.25) — converges locally in total variation distance as C → ∞ to

hγ , the field of the γ-quantum cone under circle average embedding.

Proof. By [DMS21, Lemma A.10], we can sample (z, h̃) from Z−11D(z)µh(dz)dh by first sampling (z, h) from

Z−11D(z)dzdh, then letting h̃ = h−γ log | ·−z|+γ logmax(| · |, 1). Conditioned on z ∈ D, the field under the

circle average embedding of (C, h̃+C, z,∞) converges locally in total variation distance to hγ as C → ∞ as

in [DMS21, Proposition 4.13(ii)]. It follows that the desired convergence also holds without conditioning on

z.

2.5.2 Space-filling SLE

The whole-plane space-filling SLEκ′ curve from ∞ to ∞, defined for κ′ > 4, is a random space-filling

continuous curve which intersects itself but does not cross itself. Such a curve was initially constructed for

the chordal version (0 to ∞ in H) in [MS17, Theorem 1.16], and extended to the whole-plane version from ∞
to ∞ in [DMS21, Footnote 4]. We refer to these sources and [GHS, Section 3.6] for more detailed descriptions

of the curve. Here, we summarize the construction and structure of the space-filling SLE curve as given in

these references.

The space-filling SLEκ′ curve is defined in terms of flow lines, which are SLE16/κ′ -type curves coupled with

a GFF introduced in the context of imaginary geometry [MS16, MS17]. In particular, the whole-plane

space-filling SLEκ′ curve is the Peano curve tracing between dual space-filling trees formed by flow lines.

Here is the detailed construction. Let κ = 16/κ′. Starting from a whole-plane GFF h, for each z ∈ C

and θ ∈ R, we can define the flow line starting from z with angle θ as a random curve a.s. determined by

h with the law of a whole-plane SLEκ(2 − κ) curve from z to ∞ [MS17, Theorems 1.4]. We consider the

angles ±π
2 ; denote the flow line starting from z with angle ±π

2 as η±z , and orient the flow line from z to

∞. For every z, w ∈ C, almost surely, η+z and η+w merge and so do η−w and η−w . Moreover, for each z ∈ C,

η+z and η−z almost surely do not cross each other [MS17, Theorem 1.7]. Thus, given a dense countable

subset {zj}j∈N of C, the unions of flow lines {η+zj}j∈N and {η−zj}j∈N form dual trees rooted at ∞ with leaves

{zj}j∈N [MS17, Theorem 1.10]. To define concretely the Peano curve between these dual trees, define a total

order on {zj}j∈N by saying that zj comes before zk if zk lies in the connected component of C \ (η+zj ∪ η−zj )

whose boundary consists of the left side of η−zj and the right side of η+zj (when orienting these flow lines

from zj to ∞). There almost surely exists a unique space-filling curve η which traces the points {zj}j∈N in

this order, which is visualized in Figure 1. The curve η is continuous when parameterized by the Lebesgue

measure on C. Moreover, η almost surely does not depend on the choice of the dense countable set {zj}j∈N;

it is a measurable function of the GFF which generates the flow lines [MS17, Theorem 1.16]. This η is the

whole-plane space-filling SLEκ′ curve from ∞ to ∞. Here are a few basic properties of this curve following

from the definition, which were collected in [GHS, Section 3.6.4].

• For each fixed z ∈ C, almost surely, η visits z only once. If z = η(t), then ∂η(−∞, t] = ∂η[t,∞) =

η+z ∪ η−z .

• Let η be parameterized by Lebesgue measure with η(0) = 0. Then ηR : t 7→ η(−t) has the same law as

η. This property is referred to as reversibility.
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Figure 1: Definition of whole-plane space-filling SLE. Almost surely, the flow lines {η+zj}j∈N and {η−zj}j∈N

each merge to form two trees. The flow lines in this illustration determine the ordering z1 < z2 < z3, the

order in which the space-filling SLE curve η visits these three points. In particular, η fills the four colored

regions in the order (a)→(b)→(c)→(d).

• Let φ be a deterministic conformal transformation of the Riemann sphere C ∪ {∞} which fixes ∞.

That is, φ is a composition of scaling, rotation, and translation. Then φ ◦ η has the same law as η up

to reparameterization.

• For κ′ g 8, η(−∞, 0] and η[0,∞) are both homeomorphic to the closed half-plane H. Note that

η−0 ∪ η+0 = η(−∞, 0] ∩ η[0,∞). Conditioned on η−0 ∪ η+0 , the conditional law of η|[0,∞) is that of a

chordal SLEκ curve from 0 to ∞ in η[0,∞), and the conditional law of the time reversal of η|(−∞,0]

is that of a chordal SLEκ curve from 0 to ∞ in η(−∞, 0]. Moreover, the two curves are conditionally

independent given η−0 ∪ η+0 . See also [DMS21, Footnote 4].

• For κ′ ∈ (4, 8), the interiors of η(−∞, 0] and η[0,∞) are both infinite chains of Jordan domains. Again

η−0 ∪η+0 = η(−∞, 0]∩η[0,∞). Conditioned on η−0 ∪η+0 , the curve η|[0,∞) and the time reversal of η|(−∞,0]

are conditionally independent concatenations of chordal SLEκ curves in the connected components of

η[0,∞) and η(−∞, 0], respectively. The two curves are conditionally independent given η−0 ∪ η+0 . See

also [DMS21, Footnote 4].

The following proposition states that every segment of a whole-plane space-filling SLEκ′ curve contains a

Euclidean ball of comparable size with high probability. In [GHM20], this estimate was used to show that η

parameterized according to the Lebesgue measure is locally Hölder continuous with any exponent less than

1/2 and is not locally Hölder continuous with any exponent greater than 1/2 with respect to the Euclidean

metric (cf. Theorem 1.4). This is a key estimate in the proof of Theorem 1.1.

Proposition 2.16 ([GHM20, Proposition 3.4 and Remark 3.9]). Fix κ′ > 4 and let η be a whole-plane space-

filling SLEκ′ curve from ∞ to ∞. For each r ∈ (0, 1) and R > 0, the following happens with superpolynomially

high probability as ε → 0: for each δ ∈ (0, ε] and every a < b such that η[a, b] ¢ BR(0) and diam η[a, b] g δ1−r,

the set η[a, b] contains a Euclidean ball of radius at least δ.

2.5.3 Translation and scale invariance of quantum cone decorated with space-filling SLE

Let γ ∈ (0, 2) and κ′ ∈ (4,∞). Let (C, hγ , 0,∞, η) be the circle average embedding of a γ-quantum cone

decorated by an independent whole-plane space-filling SLEκ′ curve η from ∞ to ∞. Reparameterize η by

the γ-LQG measure µhγ . That is, η(0) = 0 and µhγ ([s, t]) = t − s for all s < t.4 This is the default

parameterization of η that we consider in the rest of this paper.

4The a.s. continuity of the reparameterized curve follows from Proposition 2.16 combined with the fact that every bounded

open subset of C a.s. has positive µhγ -mass.
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We already saw in Proposition 2.14 that the circle average embedding of a γ-quantum cone is invariant

under adding a deterministic constant to the field. This operation also preserves the law of the independent

space-filling SLEκ′ curve η decorating the quantum cone.

Lemma 2.17. For each fixed constant C ∈ R, the circle average embedding of (C, hγ + C/γ, 0,∞, η(eC ·))
agrees in law with (C, hγ , 0,∞, η).

Proof. Let RC be as in (2.25), so that for h̃ := hγ(RC ·) + Q logRC + C/γ, the circle average embedding

of (C, hγ + C/γ, 0,∞, η) is (C, h̃, 0,∞, R−1
C η). Recall from proposition 2.14 that h̃

d
= hγ . Since η modulo

reparameterization is independent from hγ , it is also independent from RC . By the scale invariance of

whole-plane space-filling SLEκ′ (see previous section), R−1
C η modulo reparameterization agrees in law with η

modulo reparameterization and is independent of h̃. Therefore, the joint law of (h̃, R−1
C η) agrees with that of

(hγ , η) with the curves viewed modulo reparameterization. Since µh̃ = eCµhγ (RC ·), the µh̃-parameterization

of R−1
C η is given by R−1

C η(eC ·).

Another important property of (C, hγ , 0,∞, η) is that for each fixed t ∈ R, the law of the circle average

embedding is invariant under re-centering this quantum surface at η(t) (i.e., translating by −η(t)).

Lemma 2.18 ([DMS21, Lemma 8.3]). The law of (C, hγ , 0,∞, η) as a path-decorated quantum surface is

invariant under shifting a fixed amount of γ-LQG area. That is, for each t ∈ R, the circle average embedding

of (C, hγ , η(t),∞, η(·+ t)) agrees in law with (C, hγ , 0,∞, η).

We emphasize that Lemmas 2.17 and 2.18 hold for any γ ∈ (0, 2) and κ′ > 4, including when κ′ ̸= 16/γ2.

The key fact behind both the proof of Lemma 2.17 presented above and the proof of Lemma 2.18 in [DMS21]

is Lemma 2.15, which implies that we get a γ-quantum cone if we zoom in at a point sampled according to

the γ-LQG measure on a space-filling SLE′
κ curve η. The only property of η used here is that it is almost

surely a continuous space-filling curve. With the additional property that the law of η is scale-invariant, we

have that the law of η is preserved when zooming in according to an independent field. Both properties are

true regardless of the value of κ′ > 4. (The condition κ′ = 16/γ2 is necessary to identify the law of η(−∞, t]

and η[t,∞) as independent quantum surfaces for each t ∈ R; see Proposition 2.22.)

Notice that both lemmas state the invariance in law of the circle average embedding of a path-decorated

quantum surface (either after adding a constant to the field or re-centering the quantum cone). In our

applications of these results, we consider the laws of random variables defined almost surely in terms of

the pointed curve-decorated metric measure space structure of these quantum surfaces: e.g., Nε(η[s, t];Dhγ )

where s < t are fixed numbers. The scaling and stationarity properties of such random variables do not

follow trivially from Lemmas 2.17 and 2.18 because mapping one embedding of a quantum surface to its

circle average embedding involves a random scaling factor that is determined by the circle average part of

the field. Nevertheless, we can use Lemmas 2.10 and 2.11 to translate Lemmas 2.17 and 2.18 in terms of the

laws of pointed curve-decorated metric measure spaces.

Remark 2.19. Consider the equivalence relation on pointed curve-decorated metric measure spaces where

(X,x, d, µ, η) ∼ (X ′, x′, d′, µ′, η′) if there exists an isometry f : X → X ′ such that f(x) = x′, f∗µ = µ′, and

f ◦ η = η′. We identify a pointed curve-decorated metric measure space with the equivalence class that it

belongs to. The pointed Gromov–Hausdorff–Prokhorov–uniform (GHPU) metric introduced in [GM17] is a

natural choice of metric on the space of above equivalence classes of noncompact pointed curve-decorated

metric measure spaces. The precise definition of this metric is not essential for our purposes; instead, we

will only need the corresponding Borel σ-algebra.

Let h and h̃ be two instances of whole-plane GFF plus a continuous function, and let η and η̃ be random

continuous space-filling curves. Suppose (h, η)
d
= (h̃, η̃) with respect to the product of the following two

topologies: the weak-* topology for distributions on C with respect to smooth and compactly supported test
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functions5, and the local uniform topology on functions C → C. Note that µh is almost surely determined

by h [DS11, RV14] and Dh is a.s. determined by h [GM21c]; analogous statements hold for h̃, µh̃, and Dh̃.

Hence, if η (resp. η̃) is parameterized by µh (resp. µh̃) and η(0) = η̃(0) a.s., then (Dh, µh, η)
d
= (Dh̃, µh̃, η̃)

with respect to the product of the local uniform topology on functions C× C → R, the weak-* topology on

signed Borel measures on C, and the local uniform topology on functions R → C. It is straightforward to

check from the definition of the local GHPU metric that the following map is continuous: the map from the

tuple (d, µ, η) of a continuous metric, a signed Borel measure, and a continuous curve whose space is assigned

the above product topology, to the pointed curve-decorated metric measure space (C, 0, d, µ, η) whose space

is assigned the local GHPU topology. Therefore, (C, 0, Dh, µh, η)
d
= (C, 0, Dh̃, µh̃, η̃) w.r.t. the local GHPU

topology. This conclusion continues to hold when h has finitely many singularities of the form −α log | · −z|
with α < Q since Dh is almost surely a continuous metric determined by h [DFG+20, Theorem 1.10]. (For

α > Q, almost surely, Dh(z, w) = ∞ for every w ∈ C \ {z}.)

Proposition 2.20. Let (C, hγ , 0,∞, η) be a γ-quantum cone in the circle average embedding that is decorated

with an independent whole-plane space-filling SLEκ′ curve, which is then parameterized so that η(0) = 0 and

µhγ (η[a, b]) = b− a for every a < b. The following statements hold w.r.t the local GHPU topology on pointed

curve-decorated metric measure spaces.

(i) For each fixed s > 0,

(C, 0, s1/dγDhγ , sµhγ , η(s·)) d
= (C, 0, Dhγ , µhγ , η). (2.26)

(ii) For each fixed t ∈ R,

(C, η(t), Dhγ , µhγ , η(·+ t))
d
= (C, 0, Dhγ , µhγ , η). (2.27)

Proof. Given a conformal map φ : C → C and an embedding (C, h, x,∞, η) of a path-decorated quantum

surface, denote

φ∗h := h ◦ φ−1 +Q log |(φ−1)′| (2.28)

and

φ∗(C, h, x,∞, η) := (C, φ∗h, φ(x),∞, φ ◦ η). (2.29)

That is, φ∗(C, 0,∞, h, η) is the pushforward of the embedding (C, 0,∞, h, η) under φ using (2.15). For a

continuous metric d on C and a Borel measure µ on C, denote their pushforwards under φ as φ∗d and φ∗µ,

respectively.

(i) Let s > 0 be fixed and denote h̃ := hγ + (log s)/γ. Let r := Rlog s be defined as in (2.25) and define

φ : C → C by φ(z) = r−1z so that φ∗(C, h̃, 0,∞, η(s·)) is the circle average embedding. Setting

C = log s in Lemma 2.17 gives (C, φ∗h̃, 0,∞, φ ◦ η(s·)) d
= (C, hγ , 0,∞, η). As discussed in Remark 2.19,

this implies

(C, 0, Dφ∗h̃
, µφ∗h̃, φ ◦ η(s·)) d

= (C, 0, Dhγ , µhγ , η) (2.30)

w.r.t. the local GHPU topology.

Since r is a.s. determined by the circle average part of h̃, Lemma 2.11 implies Dφ∗h̃
= φ∗Dh̃ almost

surely. By Theorem 2.9, µφ∗h̃
= φ∗(µh̃) almost surely. Hence,

(C, 0, Dφ∗h̃
, µφ∗h̃

, φ ◦ η(s·)) = (C, 0, φ∗Dh̃, φ∗µh̃, φ ◦ η(s·))
= (C, 0, Dh̃, µh̃, η(s·))
= (C, 0, s1/dγDhγ , sµhγ , η(s·))

(2.31)

almost surely as pointed curve-decorated metric measure spaces. We obtain (2.26) by combining (2.30)

and (2.31).

5This is equivalent to the topology corresponding to considering the whole-plane GFF as a stochastic process indexed by

signed Borel measures M (recall Section 2.2) by Itô’s isometry for the GFF [BP, Section 1.7].
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(ii) The proof is similar to part (i). Let t ∈ R be fixed. Let r > 0 be the random constant such that

the circle average embedding of (C, hγ , η(t),∞, η(· + t)) is its pushforward under φ(z) := r(z − η(t)).

Lemma 2.18 gives (C, φ∗h
γ , 0,∞, φ ◦ η(·+ t))

d
= (C, hγ , 0,∞, η), which implies

(C, 0, Dφ∗hγ , µφ∗hγ , φ ◦ η(·+ t))
d
= (C, 0, Dhγ , µhγ , η) (2.32)

w.r.t. the local GHPU topology.

Since r is a.s. determined by the circle average part of hγ(· + η(t)), Lemmas 2.10 and 2.11 imply

Dφ∗hγ = φ∗Dhγ almost surely. (It follows from the proof of Lemma 2.18 in [DMS21] that hγ(·+ η(t))

is a whole-plane GFF plus a continuous function plus −γ log | · |.) By Theorem 2.9, µφ∗hγ = φ∗µhγ

almost surely. Hence,

(C, 0, Dφ∗hγ , µφ∗hγ , φ ◦ η(·+ t)) = (C, 0, φ∗Dhγ , φ∗µhγ , φ ◦ η(·+ t))

= (C, η(t), Dhγ , µhγ , η(·+ t))
(2.33)

almost surely as pointed curve-decorated metric measure spaces. We obtain (2.27) by combining (2.32)

and (2.33).

From Proposition 2.20, we immediately obtain the following stationarity and scaling result for the number

of LQG metric balls needed to cover a space-filling SLEκ′ segment.

Corollary 2.21. Let (C, hγ , 0,∞, η) be as in Proposition 2.20. For any s > 0, t ∈ R, and ε > 0,

Nε(η[t, t+ s];Dhγ )
d
= Nε(η[0, s];Dhγ )

d
= Nεs−1/dγ (η[0, 1];Dhγ ). (2.34)

2.5.4 Mating-of-trees theorem

The above results are valid for any choices of γ ∈ (0, 2) and κ′ > 4. In contrast, the following independence

property requires an exact relation between γ and κ′. As in Proposition 2.20, let (C, hγ , 0,∞, η) be the circle

average embedding of a γ-quantum cone decorated with an independent whole-plane space-filling SLEκ′

curve, which is then parameterized so that η(0) = 0 and µhγ (η[a, b]) = b− a for every a < b.

Proposition 2.22 ([DMS21, Theorem 1.9]). Suppose κ′ = 16/γ2. Denote the interiors of η(−∞, 0]

and η[0,∞) as U− and U+, respectively. Then the γ-LQG surfaces represented by (U−, h
γ |U− , 0,∞) and

(U+, h
γ |U+

, 0,∞) are independent and identically distributed quantum surfaces called 3γ
2 -quantum wedges

(also known as quantum wedges with weight 2− γ2

2 ).

As in Lemmas 2.17 and 2.18, what Proposition 2.22 means is that the fields under the canonical embeddings

of (U−, h
γ |U−

, 0,∞) and (U+, h
γ |U+

, 0,∞) as described in [DMS21, Sections 4.2 and 4.4] are independent and

identically distributed. Likewise, we can rephrase this statement in terms of curve-decorated metric measure

spaces, stated precisely in Proposition 2.23. The key idea is that canonical embedding of a 3γ
2 -quantum

wedge is defined in terms of the field average, similarly to the circle average embedding of a quantum cone.

The subtlety lies in choosing the correct topology for the 3γ
2 -quantum wedge considered as a metric measure

space. Once this is done, we can extend Lemma 2.11 to show that the LQG metric is preserved when we

reparameterize the quantum wedge to its canonical embedding.

Below, we introduce the precise definition of the 3γ
2 -quantum wedge and its canonical embedding as well

as the topology on the metric measure space necessary to establish Proposition 2.23, but we only need the

proposition itself for the proofs of our main results. Upon first reading, we suggest that the reader skip to

the statement of Proposition 2.23.

Recall from Section 2.5.2 the two regimes for the topology of U± depending on the value of γ. For γ ∈ (0,
√
2],

the two domains U± are each almost surely homeomorphic to the upper half plane H. The canonical
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embedding of the 3γ
2 -quantum wedge in this case is (H, h, 0,∞) where sup{r > 0 : hr(0) +Q log r = 0} = 1,

similar to Definition 2.12 of the circle average embedding of a quantum cone. Under this embedding, the

Gaussian field h for the 3γ
2 -quantum cone has the following law defined in terms of the semicircle averages

and the lateral part (recall Remark 2.7).

• The semicircle average process t 7→ he−t(0) has the same law as the following process A.

– For t < 0, At = B̂−2t+
3γ
2 t where {B̂s}sg0 is a standard Brownian motion with B̂0 = 0 conditioned

so that B̂2s + (Q− 3γ
2 )s > 0 for every s > 0.

– For t g 0, At = B2t +
3γ
2 t where {Bs}sg0 is a standard Brownian motion with B0 = 0 that is

sampled independently of {B̂s}sg0.

• The lateral part h− h|·|(0) of h agrees in law with the lateral part of a free-boundary GFF on H.

• The semicircle average and the lateral parts of h are independent.

When γ ∈ (
√
2, 2), a 3γ

2 -quantum wedge is a concatenation of countably many connected components, each of

which is a quantum disk (i.e., a simply connected quantum surface) with two marked points on its boundary.

They are attached to other components via their marked points. We call each component of this quantum

wedge a bead, and a quantum surface with the same topology as the quantum wedge a beaded quantum

surface. In the setup of Proposition 2.22, the space-filling SLEκ′ curve η fills up one component of the

domain U± at a time, inducing a chronological order on them. We define the canonical embedding of the
3γ
2 -quantum cone in this regime by specifying the embedding of each component. We embed each bead to

(H, h, 0,∞) so that hr(0)+Q log r achieves its maximum at r = 1.6 Under this embedding, the 3γ
2 -quantum

wedge has the following law.

1. Sample a Poisson point process Λ with intensity measure du¹ dh, where du is the Lebesgue measure

on (0,∞) and dh is an infinite measure on distributions on H with the following description.

• Let dh̃ be the probability measure on the space of distributions onH corresponding to the Gaussian

field h̃ sampled in the following way.

– The semicircle average process t 7→ h̃e−t(0) has the same law as the following process A.

∗ For t < 0, At = B̂−2t +
3γ
2 t where {B̂s}sg0 is a standard Brownian motion with B̂0 = 0

conditioned so that B̂2s + (Q− 3γ
2 )s > 0 for every s > 0.

∗ For t g 0, At = B2t +
3γ
2 t where {Bs}sg0 is a standard Brownian motion with B0 = 0

that is sampled independently of {B̂s}sg0.

– The lateral part h̃ − h̃|·|(0) of h̃ agrees in law with the lateral part of a free-boundary GFF

on H.

– The semicircle average and the lateral parts of h̃ are independent.

• Sample (m,h) from the infinite law m1−4/γ2

dm ¹ dh̃, where dm is the Lebesgue measure on

(0,∞). Then, dh agrees with the infinite law of the distribution h = h̃+(2/γ) logm. Here, the sum

h̃+(2/γ) logm refers to the distribution on H obtained by adding the constant function (2/γ) logm

to the distribution h̃. The number (2/γ) logm corresponds to the value of the semicircle average

h1(0) under the canonical embedding described above.

2. To each point (u, h) in the p.p.p. Λ, correspond to it the quantum surface (H, h, 0,∞). We concatenate

these components according to the first coordinate u in increasing order to sample the 3γ
2 -quantum

wedge. They are concatenated at the marked points 0 and ∞ so that removing the point corresponding

to 0 (resp. ∞) of the component (u, h) ∈ Λ disconnects it from all components (u′, h′) ∈ Λ with u′ < u

(resp. u < u′).

6We cannot use the circle average embedding because hr(0) + Q log r → −∞ almost surely as r → 0 and as r → ∞. The

canonical embedding in [DMS21, Section 4.4] is given on the strip R+ [0, iπ]; to avoid introducing additional notations, we give

an equivalent description under the LQG coordinate change rule corresponding to the conformal map z 7→ ez .
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We deduce from these definitions that reparameterizing the 3γ
2 -quantum wedge appearing in Proposition 2.22

by its canonical embedding preserves the LQG metric. First, we map the quantum wedge (or its bead)

conformally to H, sending the two marked points to 0 and ∞. We can choose this conformal map only using

the flow lines that cut out the quantum wedge, which then preserves the LQG metric a.s. because these flow

lines are independent of the quantum wedge (recall (2.17)). Now, we merely need to scale each component by

a random factor that is almost surely determined by the semicircle averages of the field. Since the semicircle

average part of the quantum wedge is a continuous function that is independent of the lateral part, we can

apply the Weyl scaling axiom as in the proof of Lemma 2.11 to conclude that the LQG metric is preserved

under this scaling.

Therefore, we can restate Proposition 2.22 in the language of random curve-decorated measure metric spaces

as below. We omit a detailed proof, which is analogous to that of Proposition 2.20 except for the additional

consideration that conditioned on η(−∞, 0] ∩ η[0,∞) = η+0 ∪ η−0 , the curve η|[0,∞) and the time reversal of

η|(−∞,0] are conditionally independent and identically distributed (as discussed in Section 2.5.2). Recall that

DU
h denotes the internal metric on U , which was defined in (2.12).

Proposition 2.23. Let κ′ = 16/γ2 and U± be as in Proposition 2.22. Then the random curve-decorated

metric measure spaces represented by (U−, D
U−

hγ , µhγ |U−
, η|(−∞,0]) and (U+, D

U+

hγ , µhγ |U+
, η|[0,∞)) are inde-

pendent and identically distributed.

Remark 2.24. When γ ∈ (0,
√
2], the 3γ

2 -quantum wedge decorated with an independent space-filling

SLE curve is simply connected. Hence, it is measurable with respect to the Borel σ-algebra generated

by the pointed Gromov–Hausdorff–Prokhorov–uniform topology pointed at 0. (The LQG metric extends

continuously to the boundary of the quantum wedge [HM22, Proposition 1.6].) We use this σ-algebra in the

above proposition as we did for the quantum cone in Proposition 2.20.

We require an alternative σ-algebra for γ ∈ (
√
2, 2), since the 3γ

2 -quantum wedge is a beaded surface in this

regime. The different beads lie at an infinite distance from each other by the definition of the internal metric.

We use the Borel σ-algebra with respect to the following metric topology on the space of equivalence classes

of curve-decorated beaded metric measure spaces (with the property that the curve enters the beads in

chronological order and does not re-enter any bead after entering a subsequent bead) modulo measure-and-

curve-preserving isometries. It is given by an extension of the Prokhorov–uniform metric on curve-decorated

beaded domains defined in [GM21a, Section 2.2.5], where we use the GHPU metric instead.

1. Let MGHPU be the space of equivalence classes of compact metric measure spaces decorated with a

continuous curve modulo measure-preserving, curve-preserving isometries. Let dGHPU be the GHPU

metric on MGHPU defined in [GM17, Section 1.3].

2. Given a curve-decorated beaded metric measure space S, for t g 0, let Kt ∈ MGHPU be the bead of S
with the property that the sum of the measures of the previous beads (not including the bead itself) is

at least t, equipped with the curve restricted to this bead. We view K as a function [0,∞) → MGHPU

defined for almost every t. to it a function K : [0,∞) → MGHPU defined as

3. Let MGHPU
bead be the set of all Borel measurable functions K : [0,∞) → MGHPU

bead which are defined almost

everywhere. Define a metric on MGHPU
bead by

dGHPU
bead (K, K̃) =

∫ ∞

0

e−t
(
1 ' dGHPU(Kt, K̃t)

)
dt. (2.35)

Observe that the total contribution to dGHPU
bead of beads of LQG measure less than ε is bounded and tends to

zero as ε → 0.

When γ2 = κ = 16/κ′, define the process {Lt}t∈R (resp. {Rt}t∈R) to be the change in the left (resp. right)

quantum boundary length of η(−∞, t] with respect to 0. Here is the precise construction of this process.

Recall the countable dense set of points {zk}k∈N that we used to define the whole-plane space-filling SLEκ′
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η([0, t])

η((−∞, 0])

η([t,∞))

Lt = νhγ (brown) νhγ (orange)−

Rt = νhγ (purple) νhγ (green)−

η([t,∞))

η((−∞, 0])

η([0, t])

Figure 2: Illustration of the quantum boundary length process (L,R) when κ′ g 8 (left) and κ′ ∈ (4, 8)

(right). Suppose zk = η(t), where t > 0. The left (resp. right) boundary of η(−∞, 0], i.e., the flow line η+0
(resp. η−0 ), is the union of red and orange (resp. green and blue) curves. The left (resp. right) boundary of

η(−∞, t], i.e., the flow line η+zk (resp. η−zk), is the union of red and brown (resp. purple and blue) curves.

curve η. If zk = η(t), then the left (resp. right) boundary of η(−∞, t] is η+zk (resp. η−zk), which is an SLEκ-type

curve. Given a GFF-type field h and an independent SLEκ-type curve η̃, we can define the γ-LQG length

measure νh on η̃ [DS11, She16, Ben18]. The quantum length of the entire flow line η+zk is infinite, but it a.s.

merges with η+0 , so it makes sense to define the difference Lt between the quantum boundary lengths of η+zk
and η+0 as illustrated in Figure 2. Rτk is defined analogously using η−zk and η−0 . A priori, this defines the

processes L and R on a countable dense subset of (random) times t.

The following main theorem of mating-of-trees theory states that, almost surely, the processes L and R can

be continuously extended to all real times and that they together give a complete description of the quantum

surface (C, hγ , 0,∞, η). The term mating-of-trees comes from the observation that the collections of flow

lines {η+z }z∈C and {η−z }z∈C are trees that we can “mate” to obtain the curve-decorated quantum surface

(hγ , η).

Theorem 2.25 ([DMS21, Theorems 1.9 and 1.11], [GHMS17]). Let (C, hγ , 0,∞, η) be the circle average

embedding of a γ-quantum cone decorated by an independent space-filling SLEκ′ curve, which is then re-

paremeterized according to the γ-LQG measure µhγ . Let Lt (resp. Rt) denote the γ-LQG length νhγ of

the left (resp. right) boundary of η(−∞, t] minus that of η(−∞, 0]. Then (L,R) evolves as a correlated

two-dimensional Brownian motion. In particular, there is a non-random constant a > 0 such that

Var(Lt) = a|t|, Var(Rt) = a|t|, and Cov(Lt, Rt) = −a cos

(
4π

κ′

)
|t| for t ∈ R. (2.36)

Moreover, the pair (L,R) almost surely determines both hγ and η up to a rigid rotation of C about the origin.

2.6 Proof strategy

For the proof of Theorem 1.1, we consider the configuration (C, hγ , 0,∞, η) of a γ-quantum cone decorated

with an independent whole-plane space-filling SLEκ′ , where κ′ = 16/γ2. The proof follows the following

outline.

1. In Section 3, we prove that {b−1
ε Nε(η[s, t];Dhγ )}ε∈(0,1) is tight for each s < t using estimates for the

space-filling SLE and the LQGmetric. Hence, the infinite-dimensional random vector (b−1
ε Nε(η[s, t];Dhγ ) :

s, t ∈ Q, s < t) has a weak subsequential limit. Denote it as (X[s,t] : s < t).
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2. In Section 4.1, we show thatX[s,t] is additive: i.e., X[r,t] = X[r,s]+X[s,t] a.s. for every rational r < s < t.

Hence, we can define a “Minkowski content process” {Yt}t∈Q where X[s,t] = Yt−Ys. Roughly speaking,

this step holds because the Minkowski dimension of ∂η[s, t] is less than dγ .

3. In Section 4.2, we prove that {Yt}t∈Q can be extended a continuous process on R with independent and

stationary increments. We also show that X[s,t] = Yt − Ys > 0 a.s. for every s < t. By Blumenthal’s

zero-one law, a strictly increasing Brownian motion cannot be random. Thus, t 7→ Yt must be a

deterministic linear function.

4. Our choice (1.8) of bε ensures that the slope of Yt is exactly 1. Any subsequence of b−1
ε Nε(η[s, t];Dhγ )

has a further subsequence which converges weakly to t − s, so limε→0 b
−1
ε Nε(η[s, t];Dhγ ) = t − s in

probability (Proposition 4.3).

5. In Section 5, we extend to general sets and other GFF-type fields.

We remark that our proof is similar in a superficial sense to Le Gall’s proof in [LG22] that the volume

measure on the Brownian sphere m∞ is a Hausdorff measure. In his proof, Le Gall considers the natural

projection map p : [0, 1] → m∞ and computes the Hausdorff measures of segments p[s, t] of this space-filling

curve. However, the curve p is distinct from the space-filing SLEκ′ curve η appearing in our proof, and

correspondingly, the two proofs use a different set of tools (Brownian snake vs. mating-of-trees).

As for the possibility of constructing the γ-LQG measure as a Hausdorff measure for general γ ∈ (0, 2), a

key step in such a construction would be to identify the suitable gauge function. This comes down to finding

an up-to-constant estimate for the volume of LQG metric balls for general γ ∈ (0, 2). In [LG22], Le Gall

proves the estimate Vol(Br(x)) = Θ(h(r)) as r → 0 for the Brownian sphere, where h(r) = r4 log log(1/r);

from this estimate, h(r) is identified as the correct gauge function. On the other hand, for general γ ∈ (0, 2),

the best available estimate for the γ-LQG volume of γ-LQG metric balls is from [AFS20], which states

µh(Br(z;Dh)) = rdγ+o(1) as r → 0, (We have used this fact extensively in our paper.) Le Gall’s proof of the

up-to-constant metric ball volume estimate strongly relies on the Brownian snake encoding of the Brownian

sphere; currently, we do not have an alternative method to improve the estimate for general γ.

3 Tightness of Minkowski content approximations

Let (C, hγ , 0,∞) be the circle average embedding of a γ-quantum cone and let η be an independent whole-

plane space-filling SLEκ′ curve from ∞ to ∞. Let η be parameterized by µhγ . As discussed in Section 2.1,

we use

lim
ε→0

εdγNε(η[s, t];Dhγ ) (3.1)

as an ansatz for the Minkowski content of η[s, t] with respect to the γ-LQG metric Dhγ . The first step is to

show that this limit exists along subsequences.

The goal of this section is to show that for each fixed s < t, the family of random variables

{εdγNε(η[s, t];Dhγ )}ε∈(0,1) (3.2)

is tight, so that a subsequential limit in distribution exists for εdγNε(η[s, t];Dhγ ) as ε → 0. Moreover, the

tightness of (3.2) is also used to show bε ≍ εdγ (Corollary 4.2); this is why we first use εdγ in (3.1) rather

than bε as in the statement of Theorem 1.1.

Remark. All results in this section hold for any fixed γ ∈ (0, 2) and κ′ ∈ (4,∞), even when γ2 ̸= 16/κ′.
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3.1 Exit time of space-filling SLE from an LQG metric ball

The key estimate in showing the tightness of (3.2) is an upper bound for the probability that the Dhγ -

diameter of a space-filling SLEκ′ segment η[s, t] is large (Proposition 3.12). More precisely, we prove an

equivalent estimate, which is an upper bound for the probability that the exit time

τ1 := inf{t > 0 : η(t) /∈ B1(0;Dhγ )} (3.3)

is small.

Proposition 3.1. The lower tail of the exit time τ1 is superpolynomially small. That is, for each p > 0,

P{τ1 f ε} = o(εp) as ε → 0+. (3.4)

The key input for the proof of Proposition 3.1 is the following relation between the LQG distance and the

circle averages of GFF. Recall that ξ = γ/dγ is the γ-dependent factor which appears in the definition (1.4)

of the LQG metric.

Lemma 3.2 ([DFG+20, Proposition 3.15]). Let h be a whole-plane GFF normalized so that h1(0) = 0. Then,

with superpoynomially high probability as C → ∞, at a rate which is uniform in the choice of z ∈ C \ {0},

Dh−γ log |·|(0, z;B4|z|(0)) f C

∫ ∞

− log
|z|
2

(
eξhe−t (0)−ξ(Q−γ)t + eξhe−t (z)−ξQt

)
dt. (3.5)

Let us first give a heuristic argument for Proposition 3.1. To begin, ∂B1(0;Dhγ ) is macroscopic with high

probability (i.e., it has constant-order Euclidean diameter). Since Dhγ (0, η(τ1)) = 1, there has to be some not

too small r > 0 such that either hr(0) or hr(η(τ1)) is large, along the lines of Lemma 3.2. By Proposition 2.16,

η[0, τ1] ∩ Br(0) and η[0, τ1] ∩ Br(η(τ1)) each contain a macroscopic Euclidean ball. By comparing the

LQG volumes of these Euclidean balls with eγhr(0) and eγhr(η(τ1)), we conclude that with high probability,

τ1 = µhγ (η[0, τ1]) cannot be too small.

There are three main points in making this heuristic rigorous. First, the laws of hγ and h − γ log | · | agree
only when restricted to the unit disk D. To this end, we analyze

τε := inf{t > 0 : η(t) /∈ Bε(0;Dhγ )} (3.6)

instead of τ1, because Bε(0;Dhγ ) ¢ D with increasingly high probability as ε → 0. Observe from Proposi-

tion 2.20 that for each ε > 0,

τε
d
= εdγ τ1. (3.7)

Second, the point z in Lemma 3.2 has to be deterministic, whereas the point η(τ1) is random. The idea to

get around this issue is to take a union bound over z ∈ D∩ εsZ2 for a large constant s and show that there is

some point in D∩ εsZ2 which is close to η(τε) in both Euclidean and LQG distances. Third, we can compare

µhγ (Br(w)) and hr(w) only for fixed w and r. We again need to take a union bound over Euclidean balls

Br(w), polynomially many in ε, that are possibly contained in η[0, τ1].

Proof of Proposition 3.1. If we show that τε = µhγ (η[0, τε]) > εdγ+1 with superpolynomially high probability

as ε → 0, then the proposition follows by (3.7).

Below, we describe an event consisting of six steps on which µhγ (η[0, τε]) > εdγ+1. These events are stated

using constants 0 < a < b < s, 0 < N < s − b, ζ ∈ (0, 1), and q > 2. Eventually, these constants will be

chosen in terms of a single constant p > 0, which we will eventually allow to be arbitrarily large. We shall

then verify that the stated event holds with probability 1 − O(εp/3) as ε → 0 using the lemmas stated and

proven just after the main body of the proof.

Throughout, h refers to the field hγ + γ log | · |, whose restriction to the unit disk agrees in law with the

corresponding restriction of a whole-plane GFF.
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η(τε)
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Br(w)

η[0, τε]

η(τε)
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η[0, τε]

Be−k(z)

Be−k−1(z)

z

η(τε)

(a) (b)

(c) (d)

Bε(0;Dhγ )

η[0, τε]

Figure 3: Proof of Proposition 3.1. Let h = hγ + γ log | · | and p > 0. The constants a, b, s,N, q, ζ are defined

in (3.14) and (3.15) in terms of p. (a) Step 1: With probability 1−O(εp/3), the boundary of Bε(0;Dhγ ) is

contained within the Euclidean annulus Bεa(0) \Bεb(0). In particular, εb < |η(τε)| < εa. (b) Step 2: With

probability 1 − O(εp−Q/ξ), there exists z ∈ εsZ2 for which |η(τε) − z| < εs and Dhγ (η(τε), z) < ε/2. Let

k0 = +− log(|z|/2), and k1 = k0 + N log ε−1. Conditioned on the previous events, with superpolynomially

high probability, at least one of the following two cases holds. (c) Steps 3 and 4, Case 1: There exists

an integer k ∈ [k0, k1] such that γhe−k(0) g γ(Q− γ)k + (dγ + 1
3 ) log ε. For this k, there exists a Euclidean

ball Be−k(1+ζ)(w) contained in the intersection of η[0, τε] and Be−k(0) \ Be−k−1(0) with w ∈ e−k(1+ζ)Z2.

(d) Steps 3 and 4, Case 2: There exists an integer k ∈ [k0, k1] such that γhe−k(z) g γQk+(dγ +
1
3 ) log ε.

For this k, there exists a Euclidean ball Be−k(1+ζ)(w) contained in the intersection of η[0, τε] and Be−k(z) \
Be−k−1(z) with w ∈ e−k(1+ζ)Z2. Steps 5 and 6 (not visualized): We obtain a lower bound of µhγ (Br(w))

in terms of hr(w), which we compare with either he−k(0) (Case 1) or he−k(z) (Case 2). For sufficiently large

p, on the event that all of the previous conditions hold, τε g µhγ (Br(w)) g εdγ+1. By (3.7), this implies

P{τ1 g ε} = 1−O(εp) for any given p > 0.
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1. The points which lie at Dhγ -distance ε from the origin — i.e., ∂Bε(0;Dhγ ) — are within the Euclidean

annulus Bεa(0) \Bεb(0). In particular, εb f |η(τε)| f εa. (Figure 3(a))

2. For εb f |η(τε)| f εa, there exists a point z ∈ εsZ2 satisfying εb f |z| f εa which is close to η(τε)

in both Euclidean and LQG distances: |η(τε) − z| < εs and Dhγ (η(τε), z) f ε/2 precisely. The latter

condition implies Dhγ (0, z) g ε/2 since Dhγ (0, η(τε)) = ε. (Figure 3(b))

3. Given the point z found in the previous step, let k0 = +− log(|z|/2),. There exists an integer k ∈
[k0, k0 +N log ε−1] such that at least one of the circle averages he−k(0) or he−k(z) is bounded below in

terms of the logarithm of the LQG distance Dhγ (0, z). Specifically, at least one of the following two

cases is true.

• Case 1: There exists k ∈ [k0, k0 +N log ε−1] such that

eγhe−k (0) g 2dγε
1
3 eγ(Q−γ)k (Dhγ (0, z))

dγ . (3.8)

• Case 2: There exists k ∈ [k0, k0 +N log ε−1] such that

eγhe−k (z) g 2dγε
1
3 eγQk (Dhγ (0, z))

dγ . (3.9)

Since Dhγ (0, z) g ε/2 by our choice of z, we have

eγhe−k (0) g eγ(Q−γ)kεdγ+
1
3 in Case 1, eγhe−k (z) g eγQkεdγ+

1
3 in Case 2.

4. Given the integer k found in the previous step, let r = e−k(1+ζ). There exists a point w ∈ rZ2 such

that:

• In Case 1, Br(w) ¢ η[0, τε] ∩ (Be−k(0) \Be−k−1(0)). (Figure 3(c))

• In Case 2, Br(w) ¢ η[0, τε] ∩ (Be−k(z) \Be−k−1(z)). (Figure 3(d))

5. For z, k, and w as in the previous three steps, we have the following comparison of circle averages.

• Case 1: |hr(w)− he−k(0)| f kqζ. Therefore, eγhr(w) g eγ(Q−γ−qζ)kεdγ+
1
3 .

• Case 2: |hr(w)− he−k(z)| f kqζ. Therefore, eγhr(w) g eγ(Q−qζ)kεdγ+
1
3 .

6. The LQG measure of the Euclidean ball Br(w) is bounded below by

µh(Br(w)) g ε
1
3 rγQeγhr(w). (3.10)

These are the six steps comprising the event on which τε > εdγ+1 with the choice of constants stated below

((3.14) and (3.15)). Let us first verify that on the stated event, we have the correct lower bound on τε
as claimed. We begin by substituting the lower bound for hr(w) claimed in Step 5 into (3.10). Recall

r = e−k(1+ζ) and hγ = h− γ log | · |.

• Case 1: Since Br(w) ¢ Be−k(0), we have µhγ (Br(w)) g eγ
2kµh(Br(w)). Hence,

µhγ (Br(w)) g eγ
2kµh(Br(w)) g eγ

2kε
1
3 (e−k(1+ζ))γQeγ(Q−γ−qζ)kεdγ+

1
3 (3.11)

• Case 2: Since Br(w) ¢ D, we have µhγ (Br(w)) g µh(Br(w)). Hence,

µhγ (Br(w)) g µh(Br(w)) g ε
1
3 (e−k(1+ζ))γQeγ(Q−qζ)kεdγ+

1
3 . (3.12)
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Collecting exponents, we conclude in both cases that

τε g µhγ (Br(w)) g εdγ+
2
3 e−γ(Q+q)ζk. (3.13)

We now set

a =
1

ξ2p
≍ p−1, b =

p

(Q− γ)2
≍ p, s =

(
2 +

γQ

Q2/2− 2

)
b ≍ p (3.14)

where ≍ means equality up to γ-dependent multiplicative constants when p is large. We also choose

N = 4

√
1 +

6s

p

√
ξp ≍ p1/2, q = N7 ≍ p7/2, ζ = N−10 ≍ p−5. (3.15)

Note that s − b > b = p
(Q−γ)2 > N for sufficiently large p. Since we only consider k f (b + N) log ε−1 =

O(N2 log ε−1) in Step 3,

e−γ(Q+q)ζk g εO(N−1) g ε1/3 (3.16)

for all 0 < ε < 1/2 given that p is sufficiently large. Hence, the lower bound for τε from (3.13) satisfies

τε > εdγ+
2
3 e−γ(Q+q)ζk g εdγ+1 (3.17)

for all large p.

It remains to estimate the probability of the above event. We compute this probability step-by-step given

the constants in (3.14) and (3.15).

1. In Lemma 3.4, we show that for sufficiently large p, Step 1 occurs with probability 1 − O(εp/3) as

ε → 0.

2. In Lemma 3.5, we show that given our choices of a, b, and s, truncated on the event εb f |η(τε)| f εa,

the probability that Step 2 fails is bounded above by O(εp−Q/ξ) as ε → 0.

3. In Lemma 3.6, we show that for each fixed z ∈ B1/4(0) \ {0}, Step 3 occurs with superpolynomially

high probability as ε → 0 at a rate uniform in the choice of z. A union bound over O(ε−2s)-many

points of z ∈ εsZ2 with εb f |z| f εa gives a superpolynomially high probability for this step.

4. Consider ε > 0 sufficiently small so that εs < 1
2eε

b+N (this holds for all small enough ε since we chose

our parameters so that s > b + N). If εb f |z| f εa and η(τε) ∈ Bεs(z), then η[0, τε] ∩ (Be−k(0) \
Be−k−1(0)) and η[0, τε]∩ (Be−k(z) \Be−k−1(z)) are both nonempty and the Euclidean diameters of the

two intersections are at least e−k−1. For the latter set, this is true because η[0, τε] is a connected set

and

η(0) = 0 /∈ B2e−k0−1(z) and η(τε) ∈ Bεs(z) ¢ Be−k0+N log ε−1(z),

where we used εs < 1
2eε

b+N < |z|
2e ε

N < e−k0−1εN . A similar argument works for the former set.

Hence, Proposition 2.16 implies that for each lattice point z ∈ εsZ2 ∩ (Bεa(0) \ Bεb(0)) and integer

k ∈ [k0, k0+N log ε−1], the following holds with superpolynomially high probability: on the event that

η(τε) ∈ Bεs(z), the sets η[0, τε]∩ (Be−k(0)\Be−k−1(0)) and η[0, τε]∩ (Be−k(z)\Be−k−1(z)) each contain

a Euclidean ball of radius e−(k+1)(1+ ζ
2 ). For sufficiently small ε (hence sufficiently large k0), we can

always find within each of these Euclidean balls a smaller Euclidean ball Br(w) where r = e−k(1+ζ)

and w ∈ rZ2. Now take a union bound over all such pairs (z, k). The number of these pairs is at most

some negative power of ε, so Step 4 holds with superpolynomially high probability in ε.

5. In Lemma 3.7, we show that given an integer k0 g 2, for each

z ∈ εsZ2 ∩ {z ∈ C : |z| ∈ (2e−k0−1, 2e−k0 ]}, (3.18)
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the following event holds with probability 1−O(e−(q2/2−2)ζk0): the comparisons in Step 5 hold for all

possible choices of k and w. There are O(ε−2se2k0)-many points z satisfying (3.18) for each positive

integer k0. Since |z| ∈ [εa, εb] and k0 = +− log(|z|/2),, we only need to consider k0 satisfying a log ε−1+

log(2/e) f k0 f b log ε−1 + log 2. Taking a union bound over these k0 and z, Step 5 holds with

probability

1−O




+b log ε−1,∑

k0=+a log ε−1,

ε−2se2k0e−(q2/2−2)ζk0


 = 1−O

(
ε((

q2

2 −2)ζ−2)a−2s

)
(3.19)

provided that ( q
2

2 − 2)ζ − 2 > 0. The constants q and ζ chosen in (3.15) satisfy this condition for all

sufficiently large p. Moreover, with the further choice of constants a and s in (3.14), the error term

in (3.19) satisfies

1−O

(
ε((

q2

2 −2)ζ−2)a−2s

)
g 1−O

(
ε

N4

3 a−2s
)
g 1−O(εp/3). (3.20)

6. In Lemma 3.8, we show that for each possible choice of z, k, and w, Step 6 holds with superpolynomially

high probability as ε → 0 with rate uniform over all such choices. Now take a union bound over these

z, k, and w, of which there are only polynomially many in ε.

To summarize, the probabilities of the events we truncate on each step are:

• Steps 1 and 5: 1−O(εp/3);

• Step 2: 1−O(εp−Q/ξ);

• Steps 3, 4, and 6: superpolynomially high in ε.

Since the choice of p > 0 was arbitrary, we conclude that τε > εdγ+1 holds with superpolynomially high

probability in ε as ε → 0.

We now state and prove the lemmas used in the proof of Proposition 3.1, which are all based on standard LQG

estimates. First, we record a property of whole-plane GFF that we will use repeatedly. It is a straightforward

consequence of Lemmas 2.5 and 2.6.

Lemma 3.3 ([DG21, Lemma 3.4]). Let h be a whole-plane GFF normalized so that h1(0) = 0. For each

deterministic r > 0, the field (h− hr(0))|Br(0) is independent from the circle average hr(0).

The following lemma calculates the probability of the event {εb f |η(τε)| f εa} appearing in Step 1.

Lemma 3.4. Let Bε(0;Dhγ ) be the LQG metric ball of radius ε and Br(0) be the Euclidean ball of radius r,

both centered at the origin.

(i) For each p > 0, there exists a constant Cp > 0 depending only on p such that for every ε, r ∈ (0, 1),

P {Bε(0;Dhγ ) ¢ Br(0)} g 1− Cpε
pr−(Q−γ)ξp− 1

2 ξ
2p2

. (3.21)

In particular, for each sufficiently large p, as ε → 0,

P
{
Bε(0;Dhγ ) ¢ Bε1/(ξ2p)(0)

}
g 1− Cpε

p/2−(Q−γ)/ξ = 1−O(εp/3). (3.22)

(ii) There exists a constant C > 0 such that for every ε ∈ (0, 1) and r ∈ (0, 1
2 ),

P {Br(0) ¢ Bε(0;Dhγ )} g 1− Cε−
Q−γ

ξ r
(Q−γ)2

2 . (3.23)

In particular, for each sufficiently large p, as ε → 0,

P
{
Bεp/(Q−γ)2 (0) ¢ Bε(0;Dhγ )

}
g 1− Cεp/2−(Q−γ)/ξ = 1−O(εp/3). (3.24)

26



Proof. Let h refer to the field hγ + γ log | · |, whose restriction to D agrees in law with the corresponding

restriction of a whole-plane GFF.

(i) If Bε(0;Dhγ ) ̸¢ Br(0), then Dhγ (0, ∂Br(0)) < ε. By the Markov inequality,

P{Bε(0;Dhγ ) ̸¢ Br(0)} f P {Dhγ (0, ∂Br(0)) < ε} f εp E
[
(Dhγ (0, ∂Br(0)))

−p
]
. (3.25)

By the Weyl scaling and locality properties of the LQG metric, e−ξhr(0)Dhγ (0, ∂Br(0)) is a.s. de-

termined by (h − hr(0))|Br(0), which is independent of hr(0) by Lemma 3.3. By this independence,

[DFG+20, Proposition 3.12], and the fact that hr(0) ∼ N(0, log(1/r)), there exists a constant Cp > 0

such that
E

[
(Dhγ (0, ∂Br(0)))

−p
]

= r(γ−Q)ξp E

[
e−ξphr(0)

]
E

[(
rξ(γ−Q)e−ξhr(0)Dhγ (0, ∂Br(0))

)−p
]

f Cpr
−(Q−γ)ξp− 1

2 ξ
2p2

.

(3.26)

(ii) Let 0 < u < ( 4
γ2 − 1)dγ . If Br(0) ̸¢ Bε(0;Dhγ ), then supw∈Br(0) Dhγ (0, w) > ε, which implies

supw∈Br(0) D
B2r(0)
hγ (0, w) > ε. (Recall the definition (2.12) of the internal metric.) From [DFG+20,

Proposition 3.17], there exists a constant C̃u > 0 depending only on u such that

E

[(
(2r)(γ−Q)ξe−ξh2r(0) sup

w∈Br(0)

D
B2r(0)
h (0, w)

)u]
f C̃u. (3.27)

From the independence of h2r(0) and (h − h2r(0))|B2r(0) (Lemma 3.3) and the fact that h2r(0) ∼
N(0, log(1/(2r))), we have

P

{
sup

w∈Br(0)

D
B2r(0)
hγ (0, w) > ε

}
f ε−u E

[(
sup

w∈Br(0)

D
B2r(0)
h (0, w)

)u]

= ε−u E

[(
(2r)(Q−γ)ξeξh2r(0)

)u]
E

[(
(2r)(γ−Q)ξe−ξh2r(0) sup

w∈Br(0)

D
B2r(0)
h (0, w)

)u]

f (2uC̃u)ε
−ur(Q−γ)ξu− 1

2 ξ
2u2

.

(3.28)

We obtain the lemma by choosing u = 1
ξ (Q− γ) = 1

2 (
4
γ2 − 1)dγ .

The following lemma computes the probability of the event in Step 2, in which we find a point z on the

lattice εsZ2 which is close to η(τε) in both Euclidean and LQG distances. Again, recall the definition of the

internal metric in (2.12).

Lemma 3.5. Suppose 0 < a < b are given. For s > b, let Eε,s be the event that for all z ∈ εsZ2 with

εb f |z| f εa, we have

sup
w∈Bεs (z)

D
B2εs (z)
hγ (z, w) f ε

2
. (3.29)

Then, as ε → 0,

P(Eε,s) = 1−O
(
ε(

Q2

2 −2)s−γQb−Q
ξ
)
. (3.30)

Proof. Recall the notation h = hγ + γ log | · |. Consider a fixed z ∈ εsZ2 with εb f |z| f εa for now. For

ε > 0 is small enough that |z| − 2εs g εb − 2εs g εb/2, by the Weyl scaling axiom, we have

sup
w∈Bεs (z)

D
B2εs (z)
hγ (z, w) f (|z| − 2εs)−ξγ sup

w∈Bεs (z)

D
B2εs (z)
h (z, w)

f
(
εb

2

)−ξγ

sup
w∈Bεs (z)

D
B2εs (z)
h (z, w).

(3.31)
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Let p ∈ (0, 4dγ/γ
2). By Lemma 3.3 and the translation invariance of the law of the whole-plane GFF modulo

the additive constant as in (2.10), e−ξh2εs (z) supw∈Bεs (z)
D

B2εs (z)
h (z, w) is independent of h2εs(z). By this

independence and the fact that h2εs(z) ∼ N(0, log(2εs)), we have

P

{
sup

w∈Bεs (z)

D
B2εs (z)
hγ (z, w) >

ε

2

}
f P

{
sup

w∈Bεs (z)

D
B2εs (z)
h (z, w) >

ε

2

(
εb

2

)ξγ
}

f
(

21+ξγ

ε1+ξγb

)p

E

[(
sup

w∈Bεs (z)

D
B2εs (z)
h (z, w)

)p]

=

(
21+ξγ

ε1+ξγb

)p

E

[(
(2εs)ξQeξh2εs (z)

)p]
E

[(
(2εs)−ξQe−ξh2εs (z) sup

w∈Bεs (z)

D
B2εs (z)
h (z, w)

)p]

=

(
21+ξγ

ε1+ξγb

)p

(2εs)ξQp− 1
2 ξ

2p2

E

[(
(2εs)−ξQe−ξh2εs (z) sup

w∈Bεs (z)

D
B2εs (z)
h (z, w)

)p]
.

(3.32)

By [DFG+20, Proposition 3.9], there exists a constant Cp > 0 depending only on p and γ such that

E

[(
(2εs)−ξQe−ξh2εs (z) sup

w∈Bs
ε(z)

D
B2εs (z)
h (z, w)

)p]
f Cp. (3.33)

By plugging this into the previous inequality, we get that there exists another constant C̃p > 0 depending

only on p and γ such that

P

{
sup

w∈Bs
ε(z)

D
B2εs (z)
hγ (z, w) >

ε

2

}
f C̃pε

p(−1−ξγb+ξQs− 1
2 ξ

2sp). (3.34)

The constant C̃p does not depend on the choice of z ∈ Bεa(0)\Bεb(0). Choose p = Q/ξ = (2+ γ2

2 )
dγ

γ2 <
4dγ

γ2 .

The lemma follows by taking a union bound over O(ε−2s)-many points z ∈ εsZ2 such that εb f |z| f εa.

The following lemma is used in Step 3. This is the key step in the proof of Proposition 3.1, in which we

combine Lemma 3.2 with Dhγ (0, τε) = ε to find an integer k such that either he−k(0) or he−k(z) is large.

Lemma 3.6. Let N > 0 be given. Let z ∈ B1/4(0)\{0} be a fixed point and let k0 be the positive integer such

that 2e−k0−1 < |z| f 2e−k0 . Denote k1 = +k0+N logC, and h = hγ+γ log | ·|. Then, with superpolynomially

high probability as C → ∞, at a rate uniform over the choice of z, there exists an integer k ∈ [k0, k1] such

that either

eγhe−k (0) g C−1eγ(Q−γ)k(DD
hγ (0, z))dγ or eγhe−k (z) g C−1eγQk(DD

hγ (0, z))dγ . (3.35)

Proof. From Lemma 3.2, it holds with superpolynomially high probability as C → ∞, at a rate which is

uniform in the choice of z ∈ B1/4(0) \ {0}, that

DD
hγ (0, z) f D

B4|z|(0)

hγ (0, z) f C

∫ ∞

− log
|z|
2

(
eξhe−t (0)−ξ(Q−γ)t + eξhe−t (z)−ξQt

)
dt. (3.36)

The main idea of the proof is to bound the above integral by a Riemann sum approximation.

By Lemma 2.5, t 7→ he−t(z) is a standard Brownian motion for t g k0 given the initial value he−k0 (z). For

each integer k ∈ [k0, k1 − 1], by the reflection principle,

P

{
sup

t∈[k,k+1]

|he−t(z)− he−k(z)| > ξ−1 logC

}
= O


e

−
(log C)2

2ξ2

logC


 (3.37)
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as C → ∞. The constant here is uniform over z and k. On the complementary event,

eξhe−t (z)−ξQt f Ceξhe−t (z)−ξQk for all t ∈ [k, k + 1]. (3.38)

Since Q− γ = (2/γ)− (γ/2) > 0, the same lower bound applies to the probability that

eξhe−t (0)−ξ(Q−γ)t f Ceξhe−t (0)−ξ(Q−γ)k for all t ∈ [k, k + 1]. (3.39)

On the intersection of the events (3.38) and (3.39),

∫ k+1

k

(
eξhe−t (0)−ξ(Q−γ)t + eξhe−t (z)−ξQt

)
dt f C

(
eξhe−k (0)−ξ(Q−γ)k + eξhe−k (z)−ξQk

)
. (3.40)

We now deal with the integral from k1 to infinity. Since s 7→ he−s−k1 (z) − he−k1 (z) for s g 0 is a standard

Brownian motion, ∫ ∞

0

eξ(he−s−k1
(z)−h

e−k1
(z))−ξQs ds

d
=

2

ξ2
Z 2Q

ξ2
, (3.41)

where Zν is a Gamma random variable of index ν [Duf90, Yor92]. That is, for c g 0,

P{Zν > c} =

∫ ∞

c

sν−1e−s

Γ(ν)
ds. (3.42)

In particular, there exists a number u > 0 depending only on γ such that

P

{∫ ∞

k1

eξhe−t (z)−ξQt dt f Ceξhe−k1
(z)−ξQk1

}
= 1− P

{
Z 2Q

ξ2
>

ξ2

2
C

}
= 1−O

(
e−uC

)
(3.43)

as C → ∞ with the rate uniform on z. Similarly,

P

{∫ ∞

k1

eξhe−t (0)−ξ(Q−γ)t dt f Ceξhe−k1
(z)−ξ(Q−γ)k1

}
= 1− P

{
Z 2(Q−γ)

ξ2
>

ξ2

2
C

}

= 1−O
(
e−uC

) (3.44)

as C → ∞ with the rate uniform on z.

Let u > 0 be a constant to be determined later. Now take a union bound over the events (3.38) and (3.39)

for all integers k ∈ [k0, k0 + uN logC) as well as the events in (3.43) and (3.44). Recalling (3.36) and (3.40),

we find that with superpolynomially high probability as C → ∞, at a rate uniform in z,

DD
hγ (0, z) f C

∫ ∞

− log
|z|
2

(
eξhe−t (0)−ξ(Q−γ)t + eξhe−t (z)−ξQt

)
dt

f C2

k0+uN logC∑

k=k0

(
eξhe−k (0)−ξ(Q−γ)k + eξhe−k (z)−ξQk

)
.

(3.45)

Given (3.45), there must exist an integer k ∈ [k0, k0 + uN logC] satisfying either

eγhe−k (0) g C−2dγeγ(Q−γ)k

(
DD

hγ (0, z)

N logC

)dγ

or eγhe−k (z) g C−2dγeγQk

(
DD

hγ (0, z)

N logC

)dγ

. (3.46)

We now let u = 3dγ and replace C in (3.46) by C1/u. For sufficiently large C, since N > 0 is a fixed constant,

the right hand sides of (3.46) are bounded below by C−1eγ(Q−γ)k(DD
hγ (0, z))dγ and C−1eγQk(DD

hγ (0, z))dγ ,

respectively. Hence, the probability that there exists an integer k ∈ [k0, k0 + N logC] satisfying (3.35) is

bounded below by 1− Cρ/u as C → ∞ for every ρ > 0 as claimed.
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The final two lemmas are standard estimates on the circle averages of GFF and the LQG measure. In Step 5,

we obtain a lower bound on the circle average hr(w) on the boundary of the Euclidean ball Br(w) found in

Step 4. This is done by comparing hr(w) with either he−k(0) (Case 1) or he−k(z) (Case 2) using the following

lemma.

Lemma 3.7. Let h be a whole-plane GFF normalized so that h1(0) = 0. Let ζ ∈ (0, 1) and q > 2 be given

constants. Let z ∈ B2e−2(0) and denote k0 = +− log(|z|/2),. For all C > C0(q, ζ), the following event is true

with probability 1 − O(e−(q2/2−2)ζk0), where the rate is otherwise uniform over all choices of z. For every

integer k g k0, writing r = e−k(1+ζ):

(i) For every w ∈ rZ2 such that Br(w) ¢ Be−k(0) \Be−k−1(0), we have

|hr(w)− he−k(0)| f kqζ. (3.47)

(ii) For every w ∈ rZ2 such that Br(w) ¢ Be−k(z) \Be−k−1(z), we have

|hr(w)− he−k(z)| f kqζ. (3.48)

Proof. [AFS20, Lemma 4.5] proves that the event (i) holds for every k g k0 with probability

1−O

(
∞∑

k=k0

ekζ(2−q2/2)

)
= 1−O(e−(q2/2−2)ζk0). (3.49)

The random variable |hr(w)− he−k(z)| depends on h viewed modulo additive constant. By the translation

invariance (2.10) of the law of the GFF modulo additive constant, it follows that (ii) also holds with the

same probability computed in (3.49) regardless of the choice of z.

In Step 6, we give a lower bound on the LQG measure µh(Br(w)) in terms of the circle average hr(w).

Lemma 3.8. Let h be a whole-plane GFF normalized so that h1(0) = 0. For each fixed w ∈ C and r > 0,

it holds with superpolynomially high probability as C → ∞, with the rate uniform over w and r, that

µh(Br(w)) g C−1rγQeγhr(w). (3.50)

Proof. The case when w = 0 and r = 1 is a standard estimate for the LQG measure. See, e.g., [DS11,

Lemma 4.6] or [RV14, Theorem 2.12]. The case of a general w ∈ C and r > 0 follows from the case when

w = 0 and r = 1 since r−γQe−γhr(w)µh(Br(w))
d
= µh(B1(0)) due to the scale and translation invariance of

the law of h, (2.10), and the LQG coordinate change formula (2.16).

3.2 Proof of tightness

From Proposition 3.1, we can not only deduce that (3.2) is tight, but also that it is uniformly bounded in Lp

for every p g 1. This stronger result is necessary later, specifically for Proposition 4.9. Recall the notation

Nε(A) = Nε(A;Dhγ ) for the number of Dhγ -balls of radius ε needed to cover the set A.

Proposition 3.9. For every p g 1, there exists a constant Cp < ∞ such that for every s < t,

sup
0<ε<|t−s|1/dγ

E[(εdγNε(η[s, t]))
p] f Cp|t− s|p.

In particular, for each fixed s < t, the random variables εdγNε(η[s, t]) for ε ∈ (0, 1) are tight.

Proposition 3.9 is a consequence of the following lemma together with a scaling argument.
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Lemma 3.10. For each p g 1, the number of LQG balls of radius 1 needed to cover η[0, 1] satisfies

E[(N1(η[0, 1]))
p] < ∞. (3.51)

Proof. Let K be a positive integer. For each integer 0 f k < K, define the event

Ek,K =

{
η
[ k
K

,
k + 1

K

]
¢ B1

(
η(k/K);Dhγ

)}
. (3.52)

Clearly,
K−1⋂

k=0

Ek,K ¢ {N1(η[0, 1]) f K} . (3.53)

By Proposition 2.20,

P(Ek,K) = P(E0,K) = P{τ1 > 1/K} for every k. (3.54)

Then

P{N1(η[0, 1]) > K} f
K−1∑

k=0

P(E∁
k,K) = K · P{τ1 f 1/K}. (3.55)

By Proposition 3.1, it follows that P{N1(η[0, 1]) > K} decays faster than any negative power ofK asK → ∞.

Therefore,

E[(N1(η[0, 1]))
p] f

∞∑

K=1

((K + 1)p −Kp) · P{N1(η[0, 1]) g K} < ∞. (3.56)

Proof of Proposition 3.9. It suffices to find a constant Cp < ∞ such that sup0<ε<1 E[(ε
dγNε(η[0, 1])

p] f Cp.

Indeed, by Corollary 2.21,

sup
0<ε<|t−s|1/dγ

E[(εdγNε(η[s, t]))
p]

d
= |t− s|p

(
sup

0<u<1
E[(udγNu(η[0, 1])

p]

)
. (3.57)

We thus restrict our attention to uniform Lp-bounds for {εdγNε(η[0, 1])}0<ε<1.

For each ε ∈ (0, 1),

Nε(η[0, 1]) f
+ε−dγ ,∑

k=0

Nε(η[kε
dγ , (k + 1)εdγ ]). (3.58)

By Corollary 2.21, for every integer k,

N1(η[0, 1])
d
= Nε(η[kε

dγ , (k + 1)εdγ ]). (3.59)

Hence, by Jensen’s inequality,

E [(Nε(η[0, 1]))
p] f (ε−dγ + 1)p−1

+ε−dγ ,∑

k=0

E
[
(Nε(η[kε

dγ , (k + 1)εdγ ]))p
]

f (ε−dγ + 1)pE[(N1(η[0, 1]))
p].

(3.60)

By Lemma 3.10, E[(N1(η[0, 1]))
p] is a finite constant depending only on p and γ. Multiplying both sides

of (3.60) by εdγp, we obtain E[(εdγNε(η[0, 1]))
p] f 2E[(N1(η[0, 1]))

p] =: Cp.
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3.3 Further LQG metric estimates for space-filling SLE

We record two consequences of Proposition 3.1, which we do not use elsewhere in this paper but are of

independent interest. We first show that for each s < t, the Dhγ -diameter of η[s, t], which we denote by

diam(η[s, t];Dhγ ), has finite positive moments of all orders. The other result is the first half of Theorem 1.4,

that for every exponent less than 1/dγ , the space-filling SLEκ′ curve η parameterized by µhγ is almost surely

locally Hölder continuous with respect to Dhγ .

For completeness, we also prove that all negative moments of diam(η[s, t];Dhγ ) are finite and that η is almost

surely not locally Hölder continuous for exponents greater than 1/dγ . These complementary results follow

from the following extension of Theorem 2.1 to the γ-quantum cone.

Lemma 3.11. Let hγ be the field of a γ-quantum cone under the circle average embedding. For ζ ∈ (0, 1)

and k g 1, there exists a constant Ck,ζ such that for all r ∈ (0, 1),

E[(µhγ (D ∩ Br(0;Dhγ )))k] f Ck,ζr
kdγ−ζ . (3.61)

Moreover, for any compact set K ¢ D and ζ > 0, we almost surely have that

sup
r∈(0,1)

sup
z∈K

µhγ (D ∩ Br(z;Dhγ ))

rdγ−ζ
< ∞. (3.62)

Proof. Recall that if h is a whole-plane GFF with h1(0) = 0, then (h− γ log | · |)|D agrees in law with hγ |D.
Hence, (3.61) follows from the proofs of [AFS20, Lemmas 3.16 and 3.18]. The proof of (3.62) from (3.61) is

analogous to that of (2.2) in [AFS20].

We now show that the Dhγ -diameter of η[s, t] has finite moments of all orders.

Proposition 3.12. Let s < t. For each p ∈ R, there exists a constant Cp > 0 only depending on p such that

E[(diam(η[s, t];Dhγ ))p] f Cp|t− s|p/dγ . (3.63)

Proof. By Proposition 2.20, for each s < t,

diam(η[s, t];Dhγ )
d
= diam(η[0, t− s];Dhγ )

d
= (t− s)1/dγdiam(η[0, 1];Dhγ ). (3.64)

Hence, it suffices to show that E[(diam(η[0, 1];Dhγ ))p] < ∞ for all p.

Suppose p > 0. For r > 0, let τr be as in (3.6). Note that for r > 0, if τr > 1 then η[0, 1] ¢ Br(0;Dhγ ) and

hence diam(η[0, 1];Dhγ ) < 2r. By (3.7),

E[((diam(η[0, 1];Dhγ ))p] =

∫ ∞

0

P{diam(η[0, 1];Dhγ ) g x1/p} dx

f
∫ ∞

0

P{τ(x1/p)/2 f 1} dx =

∫ ∞

0

P{τ1 f 2−dγxdγ/p} dx
(3.65)

This integral is finite since by Proposition 3.1, P{τ1 f 2−dγxdγ/p} decays superpolynomially as x → 0.

Now suppose p < 0. If diam(η[0, 1];Dhγ ) < r, then µhγ (Br(0;Dhγ )) g 1. Then, by Proposition 2.20,

E[((diam(η[0, 1];Dhγ ))p] =

∫ ∞

0

P{((diam(η[0, 1];Dhγ ))p > x} dx

=

∫ ∞

0

P{diam(η[0, 1];Dhγ ) < x1/p} dx f
∫ ∞

0

P{µhγ (Bx1/p(0;Dhγ )) g 1} dx

f 1 +

∫ ∞

1

P{µhγ (D ∩ Bx1/p(0;Dhγ )) g 1} dx+

∫ ∞

1

P{Bx1/p(0;Dhγ ) ̸¢ D} dx.

(3.66)
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From (3.61) and Lemma 3.4 (with r = 1/2, say, ε = x1/p, and k in place of p), for each k g 1 and each

ζ > 0, there are constants Ck,ζ , Ck > 0 such that for all x > 1,

P{µhγ (D ∩ Bx1/p(0;Dhγ )) g 1} f Ck,ζx
(kdγ−ζ)/p and P{Bx1/p(0;Dhγ ) ̸¢ D} f Ckx

k/p. (3.67)

We conclude that the right-hand side of (3.66) is finite by choosing a sufficiently large k.

Proposition 3.12 gives a quick proof of Theorem 1.4, on the Hölder continuity of the whole-plane space-filling

SLEκ′ curve η with respect to the LQG metric Dhγ .

Proof of Theorem 1.4. Let us first show that almost surely, η is locally Hölder continuous for any exponent

less than 1/dγ . We proved in Proposition 3.12 that for each p > 0, there exists a constant Cp > 0 such that

for all s < t,

E[(Dhγ (η(s), η(t)))p] f E[(diam(η[s, t];Dhγ ))p] f Cp|t− s|p/dγ . (3.68)

The claim now follows from the Kolmogorov continuity theorem as we let p → ∞.7

On the other hand, for every ζ ∈ (0, dγ), Lemma 3.11 (plus the fact that η is parameterized by µhγ -mass)

implies that there a.s. exists a random cζ > 0 such that diam(η[s, t];Dhγ ) > cζ(t−s)1/(dγ−ζ) for all s < t such

that η[s, t] ¢ D. In particular, η is almost surely not Hölder continuous with exponent greater than 1/dγ in

any neighborhood of 0. By Proposition 2.20, η is almost surely not Hölder continuous with any exponent

greater than 1/dγ in any neighborhood of t ∈ Q, and therefore not in any bounded open interval.

4 Minkowski content of space-filling SLE segments

Remark. We assume κ′ = 16/γ2 throughout this section, as the results in this section rely on Proposi-

tion 2.23. Recall the shorthand Nε(η[s, t]) = Nε(η[s, t];Dhγ ).

We have shown in Proposition 3.9 that for each s < t, the random variables εdγNε(η[s, t]) admit subsequential

limits in law as ε → 0. We need to rule out further the possibility that the subsequential limit is zero, which

is the purpose of Proposition 4.1. Unlike in many results regarding fractal dimensions, where the lower

bound is more difficult to prove than the upper bound, this proposition has a much shorter proof than

Proposition 3.9. This is thanks to the independence of the metric measure space structure on disjoint

space-filling SLE segments, which comes from Proposition 2.23.

Proposition 4.1. There exists a deterministic constant c = c(γ) > 0 such that

lim
ε→0

P{εdγNε(η[0, 1]) > c} = 1. (4.1)

Proof. For r > 0, let pr be the probability that η[0, 1] contains a Dhγ -ball of radius r. By Proposition 2.16,

η[0, 1] almost surely contains a Euclidean ball, which in turn contains a Dh-ball since Dh is a continuous

metric. Hence, pr → 1 as r → 0.

Fix r > 0 such that pr > 0. For this r, define for each positive integer n and integer k ∈ [1, n] the event

En,k :=

{
η

[
k − 1

n
,
k

n

]
contains a Dhγ -ball of radius rn−1/dγ

}
. (4.2)

By Proposition 2.20, P(En,k) = pr for every n and k. Furthermore, En,1, . . . , En,n are independent by

Proposition 2.23. To see this, for fixed t ∈ R, define Ut− and Ut+ to be the interiors of η(−∞, t] and η[t,∞),

respectively. Then, En,k is almost surely determined by (Ut−, D
Ut−

hγ , µhγ |Ut−
, η|(−∞,t]) if t g k

n and by

7The Kolmogorov continuity theorem is usually stated for a stochastic process Xt taking values on a fixed metric space

(S, d). However, the Hölder continuity part of the theorem merely requires that the real-valued random variables d(Xs, Xt) are

measurable and have appropriate uniform moments.
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(Ut+, D
Ut+

hγ , µhγ |Ut+
, η|[t,∞)) if t f k−1

n . These two curve-decorated metric measure spaces are independent

by Proposition 2.23 combined with the translation invariance of Proposition 2.20. Choosing t = k/n, we see

that the random vectors (1En,1 , . . . ,1En,k
) and (1En,k+1

, . . . ,1En,n) are independent. Since this is true for

every k, we conclude that 1En,1
, . . . ,1En,n

are i.i.d. Bernoulli random variables with success probability pr.

We now argue that for every n,

Nrn−1/dγ (η[0, 1]) g
n∑

k=1

1En,k
. (4.3)

Indeed, if
∑n

k=1 1En,k
= m, then there are distinct points z1, . . . , zm ∈ η[0, 1] such that Dhγ (zj , zk) g

2rn−1/dγ for every j ̸= k. Such zj and zk cannot be within a single Dhγ -ball of radius rn−1/dγ , so

Nrn−1/dγ (η[0, 1]) g m. Hence, (4.3) holds. By the law of large numbers,

lim
n→∞

P
{
n−1Nrn−1/dγ (η[0, 1]) g pr

}
= 1. (4.4)

Let ε ∈ (0, 1) and set nε := +ε−dγ ,. Since Nrε(η[0, 1]) increases as ε decreases to 0,

(rε)dγNrε(η[0, 1]) g rdγ (nεε
dγ )

N
rn

−1/dγ
ε

(η[0, 1])

nε
. (4.5)

Since dγ is positive, we have nεε
dγ → 1 as ε → 0. By combining this with (4.4) and (4.5), we get

lim
ε→0

P{(rε)dγNrε(η[0, 1]) g rdγpr} = 1.

Since r is a constant which depends only on γ, this implies (4.1) with c = rdγpr.

Another possibility that we have yet to rule out is that different subsequential limits of εdγNε(η[s, t]) may

take different values. To this end, we replace the rescaling coefficients from ε−dγ to

bε := E[Nε(η[0, 1])] (4.6)

as introduced in (1.8), so that any subsequential limit of b−1
ε Nε(η[0, 1]) has mean 1. Indeed, {bε}ε>0 is a

sequence of dγ-dimensional rescaling coefficients (recall Definition 2.2).

Corollary 4.2. There exists a deterministic constant C > 0 such that for every ε ∈ (0, 1),

C−1ε−dγ < bε < Cε−dγ .

The upper bound follows immediately from Proposition 3.9 and the lower bound from Proposition 4.1. Note

that this corollary is the first part of Proposition 1.3.

The following proposition is the main result of this section.

Proposition 4.3. Let κ′ = 16/γ2. Then, for each fixed s < t,

lim
ε→0

b
−1
ε Nε(η[s, t]) = t− s in probability. (4.7)

Here is an overview of the proof of Proposition 4.3. Let

IQ = {[s, t] : s, t ∈ Q, s < t} (4.8)

be the collection of all closed intervals with rational endpoints. Suppose we are given an arbitrary sequence

of ε-values decreasing to 0.

1. By Proposition 3.9, we can find a subsequence εn for which the sequence of RIQ -valued random variables

(b−1
εn Nεn(η(I)) : I ∈ IQ) converges in distribution with respect to the product topology on RIQ . Denote

this subsequential weak limit by (XI : I ∈ IQ).
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2. We show in Proposition 4.6 that XI is finitely additive: i.e., for each rational r < s < t, X[r,s]+X[s,t] =

X[r,t] almost surely. We are thus able to construct the “Minkowski content process” {Yt}t∈Q where

Yt = X[0,t] (resp. −X[t,0]) for t g 0 (resp. t < 0), so that X[s,t] = Yt − Ys for every [s, t] ∈ IQ.

3. We show in Proposition 4.9 that {Yt}t∈Q can be extended to a continuous process on R with independent

and stationary increments: i.e., a Brownian motion with drift.

4. From Proposition 4.1, almost surely, Ys < Yt for all rational s < t. Hence, Yt = at for some deterministic

constant a > 0. In fact, a = 1 because we chose bε so that E[b−1
ε Nε(η[0, 1])] = 1 for every ε > 0.

5. In conclusion, we have the following convergence in distribution:

lim
n→∞

b
−1
εn Nεn(η[s, t]) = t− s for all [s, t] ∈ IQ

Since t − s is a deterministic constant, the convergence holds in probability. We started with an

arbitrary sequence of ε decreasing to 0, so (4.7) holds for every rational s < t. This extends to all real

s < t by the following simple observation: if [s1, t1] ¢ [s2, t2], then Nε(η[s1, t1]) f Nε(η[s2, t2]) for all

ε > 0.

4.1 Finite additivity

Given a closed and bounded set A ¢ C, for ε > 0, define

∂εA := {z ∈ A : Dhγ (z, ∂A) < ε} (4.9)

to be the the intersection of A with the ε-neighborhood of ∂A in the LQG metric. Denote

N◦
ε (A) := Nε(A \ ∂εA). (4.10)

Note that every ball counted in N◦
ε (A) is centered at a point in the interior of A. Also,

N◦
ε (A) f Nε(A) f N◦

ε (A) +Nε(∂εA). (4.11)

The following lemma is the main technical input in the proof of finite additivity.

Lemma 4.4. For each fixed s < t,

lim
ε→0

εdγNε(∂εη[s, t]) = 0 almost surely. (4.12)

Consequently,

lim
ε→0

|εdγNε(η[s, t])− εdγN◦
ε (η[s, t])| = 0 almost surely. (4.13)

We first explain how Lemma 4.4 implies that the Minkowski content is additive over finitely many disjoint

space-filling SLE segments, and then prove the lemma in the rest of the subsection. We need the following

classic result on weak convergence in the proof of finite additivity.

Lemma 4.5 ([Bil99, Theorems 2.7 and 3.1]). Suppose (S, d) is a metric space and (Yn, Zn) is a sequence

of S × S-valued Borel-measurable random variables. If Yn
d−→ Y and d(Yn, Zn)

p−→ 0 as n → ∞, then

(Yn, Zn)
d−→ (Y, Y ).

Proposition 4.6 (Finite additivity). Suppose that for some sequence {εn}n∈N of positive numbers decreasing

to zero, (b−1
εn Nεn(η(I)) : I ∈ IQ) converges weakly to (XI : I ∈ IQ) as n → ∞. Then, for every rational

r < s < t, we have X[r,s] +X[s,t] = X[r,t] almost surely.
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Proof. Assume that Lemma 4.4 holds. Then, by Corollary 4.2, we have

lim
n→∞

|b−1
εn Nεn(η(I))− b

−1
εn N◦

εn(η(I))| = 0 almost surely for all I ∈ IQ. (4.14)

Combining this with Lemma 4.5, we obtain

((b−1
εn Nεn(η(I)), b

−1
εn N◦

εn(η(I))) : I ∈ IQ) d−→ ((XI , XI) : I ∈ IQ) as n → ∞. (4.15)

Let r < s < t be any triple of rationals. Fix ε > 0 for now. Note that every metric ball counted in N◦
ε (η[r, t])

has its center in η[r, t]. The idea is to classify these balls based on whether their centers are in η[r, s] or

η[s, t]. Let m = N◦
ε (η[r, t]) and let z1, . . . , zk ∈ η[r, s], zk+1, . . . , zm ∈ η[s, t] be any collection of points such

that
⋃m

j=1 Bε(zj ;Dhγ ) covers η[r, t] \ ∂εη[r, t]. If j f k, then Bε(zj ;Dhγ ) ∩ (η[s, t] \ ∂εη[s, t]) = ∅. Hence,⋃m
j=k+1 Bε(zj ;Dhγ ) covers η[s, t] \ ∂εη[s, t] and N◦

ε (η[s, t]) f m− k. Similarly, N◦
ε (η[r, s]) f k. Therefore,

N◦
ε (η[r, s]) +N◦

ε (η[s, t]) f N◦
ε (η[r, t]) f Nε(η[r, t]) f Nε(η[r, s]) +Nε(η[s, t]). (4.16)

Since this inequality holds for every ε > 0, we have from (4.15) that X[r,t] = X[r,s]+X[s,t] almost surely.

We now begin the proof of Lemma 4.4. The first step in the proof of (4.12) is to show that the Minkowski

dimension of ∂η[s, t] is strictly less than dγ . In fact, we prove that it is at most dγ/2.

Lemma 4.7. For each fixed s < t and δ > dγ/2,

lim
ε→0

εδNε(∂η[s, t]) = 0 almost surely. (4.17)

Proof. By Proposition 2.20, for each s < t and ε > 0,

Nε(∂η[s, t])
d
= Nε(t−s)−1/dγ (∂η[0, 1]). (4.18)

Hence, it suffices to prove the lemma for [s, t] = [0, 1] only. To prove the lemma in this case, we will first use

Theorem 2.25 and an elementary Brownian motion estimate to bound the number of ε−dγ -length space-filling

SLE segments needed to cover ∂η[0, 1]. We will then conclude by combining this bound with Proposition 3.9.

Without loss of generality, we may re-scale the LQG boundary length measure by a γ-dependent constant

factor so that for the boundary length process (L,R) appearing in Theorem 2.25, the variance parameter a

equals 1. Let ∂L and ∂R denote the left and right boundaries of η[0, 1], respectively. Further decompose ∂L

and ∂R into

∂q
0 := ∂q ∩ η(−∞, 0] and ∂q

1 := ∂q ∩ η[1,∞) where q ∈ {L,R}. (4.19)

That is, in Figure 2 with t = 1, the orange boundary corresponds to ∂L
0 , the green boundary to ∂R

0 , the

brown boundary to ∂L
1 , and the purple boundary to ∂R

1 .

Let us first show that limε→0 ε
δNε(∂

L
0 ) = 0 almost surely. Let K be a positive integer, which shall be

determined later. Denote Ik = [ kK , k+1
K ]. We start with the following trivial inequality:

Nε(∂
L
0 ) f

K−1∑

k=0

Nε(∂
L
0 ∩ η(Ik)) f

K−1∑

k=0

1{∂L
0 ∩ η(Ik) ̸= ∅} ·Nε(η(Ik)). (4.20)

We now consider the following geometric encoding of η by (L,R) described in [GHS, Section 4.2.3]: the

times t ∈ [0, 1] such that η(t) ∈ ∂L
0 (resp. ∂R

0 ) are precisely those at which Lt (resp. Rt) attains a running

minimum. Recall that Lt is a standard Brownian motion. A well-known result of P. Lévy states that the

process Lt −min0fsft Ls is a reflected Brownian motion, whereas the set {t ∈ [0, 1] : η(t) ∈ ∂L
0 } has the law

of the zero set of Brownian motion on [0, 1] (e.g., see [MP10, Theorem 2.34]). Then, by the arcsine law for

the last time that a Brownian motion Bt changes sign, for any nonnegative integer k regardless of K,

P{∂L
0 ∩ η(Ik) ̸= ∅} = P{Bt = 0 for some t ∈ Ik} = P

{
Bt = 0 for some t ∈

[
k

k + 1
, 1

]}

= 1− 2

π
arcsin

√
k

k + 1
= 1− 2

π
arctan

√
k.

(4.21)
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For p > 1, by Hölder’s inequality followed by Corollary 2.21 and (4.21),

E[Nε(∂
L
0 )] f

K−1∑

k=0

P(∂L
0 ∩ η(Ik) ̸= ∅)1−

1
p · E

[(
Nε(η(Ik))

)p] 1
p

=

K−1∑

k=0

(
1− 2

π
arctan

√
k

)1− 1
p

· K

εdγ
E

[(
(εK−1/dγ )dγNεK−1/dγ (η[0, 1])

)p] 1
p

.

(4.22)

We now take

K = +ε−dγ ,. (4.23)

From Proposition 3.9, there exists a constant Cp > 0 such that

sup
0<ε<1

E

[(
εK1/dγ )dγNεK−1/dγ (η[0, 1])

)p] 1
p f Cp. (4.24)

Since 1− 2
π arctan

√
k = O(1/

√
k) as k → ∞,

E[εδNε(∂
L
0 )] f 2Cpε

δ
K∑

k=0

(
1− 2

π
arctan

√
k

)1− 1
p

= O
(
εδK1− 1

2 (1−
1
p )
)
= O

(
εδ−

dγ
2 (1+ 1

p ))
)

as ε → 0.

(4.25)

Since δ > dγ/2, the right-hand side tends to 0 as ε → 0 for sufficiently large p. This proves the claim that

limε→0 ε
δNε(∂

L
0 ) = 0 almost surely.

Replacing Lt with Rt gives limε→0 ε
δNε(∂

R
0 ) = 0 almost surely. By the reversibility of the whole-plane

space-filling SLE η and Proposition 2.20,

(C, η(1), Dhγ , µhγ , η(1− ·)) d
= (C, 0, Dhγ , µhγ , η). (4.26)

Consequently, Nε(∂
L
0 )

d
= Nε(∂

L
1 ) and Nε(∂

R
0 )

d
= Nε(∂

R
1 ). Since ∂η[0, 1] = ∂L

0 ∪ ∂R
0 ∪ ∂L

1 ∪ ∂R
1 , we therefore

obtain the lemma statement.

Let us first sketch how to deduce (4.12) from Lemma 4.7. First, note that it suffices to show that for some

fixed ζ ∈ (0, dγ/2), with probability tending to 1 as ε → 0, we have Nε(∂εη[s, t]) f ε−ζNε(∂η[s, t]). The idea

is to sample a collection Xε of +ε−ζNε(∂η[s, t]), i.i.d. points in ∂3ε/2η[s, t] from the LQG measure µhγ , and

show that
⋃

x∈Xε
Bε(x;Dhγ ) covers ∂εη[s, t].

To this end, we sample another set of i.i.d. points W̃ε from µhγ , conditionally independent of Xε given

hγ and η, such that ∂εη[s, t] ¢
⋃

w∈W̃ε
Bε/2(w;Dhγ ) ¢ ∂2εη[s, t]. (Because the Minkowski dimension of

γ-LQG is finite, we only need polynomially many points in ε in W̃ε [Gwy21, Theorem A.3].) For each

w ∈ W̃ε, the conditional probability given hγ , η, and x ∈ Xε that Bε/2(w;Dhγ ) ¢ Bε(x;Dhγ ) is given by

µhγ (Bε/2(x;Dhγ ))/µhγ (∂2εη[s, t]). Using Theorem 2.1 (the volume estimate for LQG metric balls), we show

that this number is no more than ε−ζ/|Xε|. Since the points in Xε are sampled conditionally i.i.d., the

conditional probability that Bε/2(w;Dhγ ) ¢ ⋃x∈Xε
Bε(x;Dhγ ) is no less than 1 − (1 − ε−ζ/|Xε|)|Xε|, which

tends to 1 superpolynomially fast as ε → 0. Since the cardinality of W̃ε is polynomial in ε, by taking a union

bound over points in this set, we conclude that ∂εη[s, t] ¢
⋃

w∈W̃ε
Bε/2(w;Dhγ ) ¢

⋃
x∈Xε

Bε(x;Dhγ ) with

probability increasing to 1 as ε → 0.

What we have above are essentially the statement and the proof of Lemma 4.8, except that they are for the

whole-plane GFF h instead of the γ-quantum cone field hγ . The reason that we prove (4.27) for h first is

that most results about the Minkowski dimension of γ-LQG, such as Theorem 2.1, are stated in terms of h

instead of hγ . After proving Lemma 4.8, we transfer this result to the setting of a γ-quantum cone using

Lemma 2.15 to complete the proof of Lemma 4.4. Recall the notation Bε(A;Dh) :=
⋃

z∈A Bε(z;Dh).
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Lemma 4.8. Let h be a whole-plane field whose law is absolutely continuous with that of the whole-plane

GFF normalized to have mean zero on ∂D. Let K ¢ C be a fixed compact set. Let A ¢ K be a random set,

not necessarily independent from h. Then, for each ζ > 0,

Nε(Bε(A;Dh);Dh) f ε−ζNε(A;Dh) (4.27)

holds with probability tending to 1 as ε → 0.

Proof. Let Xε be a collection of +ε−ζNε(A;Dh), points in B2ε(A;Dh) sampled, given h and A, conditionally

i.i.d. from µh|B2ε(A;Dh) normalized to be a probability measure. We claim that
⋃

x∈Xε
Bε(x;Dh) covers

Bε(A;Dh) with probability increasing to 1 as ε → 0.

To show that
⋃

x∈Xε
Bε(x;Dh) covers Bε(A;Dh), we consider an ε

2 -cover of Bε(A;Dh) and then check that⋃
x∈Xε

Bε(x;Dh) contains this
ε
2 -cover. Let us first compute the conditional probability that an LQG metric

ball Bε/2(w;Dh) appearing in the ε
2 -cover is contained in

⋃
x∈Xε

Bε(x;Dh). If Bε/2(w;Dh)∩Bε(A;Dh) ̸= ∅,

then w ∈ B3ε/2(A;Dh) and Bε/2(w;Dh) ¢ B2ε(A;Dh). Conditioned on h, A, and w ∈ B3ε/2(A;Dh), each

x ∈ Xε has

P
(
Bε/2(w;Dh) ¢ Bε(x;Dh)

∣∣h,A,w
)
g P

(
x ∈ Bε/2(w;Dh)

∣∣h,A,w
)
=

µh(Bε/2(w;Dh))

µh(B2ε(A;Dh))
. (4.28)

Since the points in Xε are conditionally i.i.d. given h and A,

P

(
Bε/2(w;Dh) ¢

⋃

x∈Xε

Bε(x;Dh)

∣∣∣∣∣h,A,w

)
g 1−

(
1− µh(Bε/2(w;Dh))

µh(B2ε(A;Dh))

)+ε−ζNε(A;Dh),

. (4.29)

We now specify the ε
2 -cover of Bε(A;Dh). Let U := B1(K) and W := B2(K). Let Wε be a collection of

+(ε/2)−dγ−ζ, points sampled conditionally i.i.d. from µh|W normalized to be a probability measure, where

Wε and Xε are conditionally independent given h. By [Gwy21, Lemma A.3], the event

E1 :=

{
U ¢

⋃

w∈Wε

Bε/2(w;Dh)

}
(4.30)

occurs with probability tending to 1 as ε → 0. Also, since Dh is almost surely a continuous metric, the event

E2 := {Dh(K, ∂U) g ε} ∩ {Dh(∂U, ∂W ) g ε} (4.31)

occurs with probability tending to 1 as ε → 0. Truncating on the event E1 ∩ E2, we have Bε(A;Dh) ¢ U

and hence

Bε(A;Dh) ¢
⋃

w∈W̃ε

Bε/2(w;Dh) where W̃ε := Wε ∩ B3ε/2(A;Dh). (4.32)

This is the ε
2 -cover we choose for Bε(A;Dh), which holds on the event E1 ∩ E2. By [AFS20, Theorem 1.1],

there exists a random c > 0 which depends only on W and ζ such that a.s. for every ε ∈ (0, 1),

infz∈W µh(Bε/2(z;Dh))

supz∈W µh(B3ε(z;Dh))
g cεζ/2. (4.33)

Note that

µh(B2ε(A;Dh)) f Nε(A;Dh)

(
sup

z∈Bε(A;Dh)

µh(B3ε(z;Dh))

)
(4.34)

since we can cover B2ε(A;Dh) by first choosing an ε-cover of A and then blowing up the radius of every

metric ball in this cover to 3ε. Combining (4.33) and (4.34), we almost surely have

inf
w∈B3ε/2(A;Dh)

µh(Bε/2(w;Dh))

µh(B2ε(A;Dh))
g 1

Nε(A;Dh)
· infz∈W µh(Bε/2(z;Dh))

supz∈W µh(B3ε(z;Dh))
g cεζ/2

Nε(A;Dh)
(4.35)
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truncated on the event E2 so that B2ε(A;Dh) ¢ W . Combining (4.29) with (4.35), for each w ∈ Wε we have

P

(
Bε/2(w;Dh) ¢

⋃

x∈Xε

Bε(x;Dh) or w /∈ B3ε/2(A;Dh)

∣∣∣∣∣h,A,E2

)

g 1−
(
1− cε−ζ/2

ε−ζNε(A;Dh)

)ε−ζNε(A;Dh)

.

(4.36)

Since ε−ζNε(A;Dh) g ε−ζ , the conditional probability in (4.36) becomes superpolynomially high as ε → 0

at a rate uniform on h and A. Since there are ε−dγ−ζ points in Wε, an intersection of (4.36) over the

points w ∈ Wε implies that truncated on the event E2, we have
⋃

w∈W̃ε
Bε/2(w;Dh) ¢

⋃
x∈Xε

Bε(x;Dh) with

superpolynomially high probability as ε → 0. Recalling our choice of the ε
2 -cover of Bε(A;Dh) in (4.32), we

conclude the proof of the lemma by observing that P
{
Bε(A;Dh) ¢

⋃
x∈Xε

Bε(x;Dh)
}
is bounded below by

P


E1 ∩ E2 ∩




⋃

w∈W̃ε

Bε/2(w;Dh) ¢
⋃

x∈Xε

Bε(x;Dh)






 , (4.37)

which tends to 1 as ε → 0.

We are now ready to complete the proof of Lemma 4.4.

Proof of Lemma 4.4. It suffices to show limε→0 ε
dγNε(∂εη[0, 1]) = 0 almost surely, due to Proposition 2.20.

Let (z, h) be sampled from 1D(z)µh(dz)dh normalized to be a probability measure as described in Lemma 2.15.

For each constant C, let φC be the random translation and scaling such that hC := (h+C) ◦φC +Q log |φ′
C |

is the field under the circle average embedding of (C, h + C, z,∞). Given β > 0, choose a large constant

R > 0 such that the event

E3 := {η[0, 1] ¢ BR(0) and Dhγ (∂BR(0), ∂B2R(0)) g 1} (4.38)

has probability at least 1−β/3. Then, choose a large constant C > 0 such that the following two conditions

are satisfied.

(i) The total variation distance between the laws of the fields hγ and hC restricted to B2R(0) is at most

β/3.

(ii) The event E4 := {φC(BR(0)) ¢ B2(0)} has probability at least 1− β/3.

For sufficiently large C, the first item holds by Lemma 2.15 and the second item holds by the conditional

law of h(· − z) as described in [DMS21, Lemma A.10].

Fix ζ ∈ (0, dγ/2). Couple hC and hγ so that their restrictions to B2R(0) agree on an event of probability

1− β/3, which we call E5. Substitute A = φC(∂η[0, 1]) and K = B2(0) in Lemma 4.8. Then, truncated on

E3 ∩ E4 ∩ E5, the event

NεCξ(BεCξ(φC(∂η[0, 1]);Dh);Dh) f (εCξ)−ζNεCξ(φC(∂η[0, 1]);Dh) (4.39)

occurs with probability increasing to the full probability of E3 ∩ E4 ∩ E5 as ε → 0. By Lemmas 2.10 and

2.11, we almost surely have

NεCξ(BεCξ(φC(∂η[0, 1]);Dh);Dh) = Nε(Bε(φC(∂η[0, 1]);Dh+C);Dh+C)

= Nε(Bε(∂η[0, 1];DhC );DhC )
(4.40)

on the left-hand side of (4.39) and

(εCξ)−ζNεCξ(φC(∂η[0, 1]);Dh) = (εCξ)−ζNε(φC(∂η[0, 1]);Dh+C)

= (εCξ)−ζNε(∂η[0, 1]);DhC )
(4.41)
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on the right-hand side. On the event E3 ∩E5, since DhC (∂η[0, 1], ∂B2R(0)) g 1, both Nε(∂η[0, 1];DhC ) and

Nε(Bε(∂η[0, 1];DhC );DhC ) for ε ∈ (0, 1/2) are almost surely determined by hC |B2R(0). Hence, (4.39) implies

εdγNε(∂εη[0, 1];Dhγ ) f C−ξζεdγ−ζNε(∂η[0, 1];Dhγ ). (4.42)

Since dγ − ζ > dγ/2, we deduce from Lemma 4.7 that, truncated on E3 ∩ E4 ∩ E5, the right-hand side of

(4.42) tends to 0 almost surely as ε → 0. This proves the lemma since E3 ∩E4 ∩E5 occurs with probability

at least 1− β, and our choice of β was arbitrary.

4.2 Identifying the Minkowski content process

For the remainder of this section, let (XI : I ∈ IQ) be a weak limit of (b−1
εn Nεn(η(I)) : I ∈ IQ) for some

sequence εn that tends to 0. As described in the proof overview for Proposition 4.3, we define the “Minkowski

content process” {Yt}t∈Q by

Yt :=





X[0,t] t > 0,

0 t = 0,

−X[t,0] t < 0.

(4.43)

By Proposition 4.6, X[s,t] = Yt − Ys a.s. for all [s, t] ∈ IQ. The next step is to show that {Yt}t∈Q extends to

a two-sided Brownian motion with drift.

Proposition 4.9. The process {Yt}t∈Q defined in (4.43) extends to a Lévy process with almost surely con-

tinuous paths: i.e., a two-sided Brownian motion with drift.

Proof. We first show that {Yt}t∈Q extends to a continuous process defined on R. Let p > 1. For every

rational s < t, by Fatou’s lemma, Corollary 4.2, and Proposition 3.9,

E[|Yt − Ys|p] = E[|X[s,t]|p] f lim inf
n→∞

E[|b−1
εn Nεn(η[s, t])|p]

f C1 lim inf
n→∞

E[|εdγ
n Nεn(η[s, t])|p] f C2|t− s|p

(4.44)

for constants C1, C2 > 0 depending only on γ. We deduce from the Kolmogorov continuity criterion that

{Yt}t∈Q can be extended to a process {Yt}t∈R whose paths are almost surely continuous.

It now suffices to check that {Yt}t∈Q has stationary and independent increments since these properties extend

to {Yt}t∈R by continuity.

• Stationary increments. We found in Corollary 2.21 that Nε(η[s, t])
d
= Nε(η[0, t − s]) for every fixed

s < t and ε > 0. Hence, Yt − Ys = X[s,t] and Yt−s = X[0,t−s] agree in law for every rational s < t.

• Independent increments. For each s ∈ R, denote by Us− and Us+ the interiors of η(−∞, s] and

η[s,∞), respectively. We claim that for any ε > 0 and any fixed interval I ∈ IQ, if I ¢ (−∞, s] (resp.

I ¢ [s,∞)), then the quantity N◦
ε (η(I)) is almost surely determined by the curve-decorated metric

measure space (Us−, D
Us−

h , µh|Us−
, η|(−∞,s]) (resp. (Us+, D

Us+

h , µh|Us+
, η|[s,∞)])).

Let us prove the claim. Without loss of generality, assume I ¢ (−∞, s]. Recall the definition

N◦
ε (η(I)) = Nε(η(I) \ ∂εη(I);Dhγ ) (4.45)

where η(I) \ ∂εη(I) := {z ∈ η(I) : Dhγ (z, ∂η(I)) g ε}. Suppose Bε(w;Dhγ ) is a ball counted in

N◦
ε (η(I)). Then Bε(w;Dhγ ) has a nonempty intersection with η(I) \ ∂εη(I), so w must be in the

interior of η(I). Now suppose z is any point within the intersection of Bε(w;Dhγ ) and η(I) \ ∂εη(I).
Then, the Dhγ -geodesic from z to w must be contained in the interior of η(I), or otherwise its Dhγ -

length would be at least

Dhγ (z, ∂η(I)) +Dhγ (w, ∂η(I)) g ε. (4.46)
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Since int(η(I)) ¢ Us−, we have Dhγ (z, w) = D
Us−

hγ (z, w). Since this holds for any z in the intersection

of Bε(w;Dhγ ) and η(I) \ ∂εη(I), we have

Bε(w;D
Us−

hγ ) ∩ (η(I) \ ∂εη(I)) = Bε(w;Dhγ ) ∩ (η(I) \ ∂εη(I)). (4.47)

Since (4.47) holds for any w in the interior of η(I), we obtain

N◦
ε (η(I)) = Nε(η(I) \ ∂εη(I);DUs−

hγ ). (4.48)

Observe that

η(I) \ ∂εη(I) = {z ∈ η(I) : Bε(z;D
Us−

hγ ) ¢ η(I)}. (4.49)

Hence, the right-hand side of (4.48) is a.s. determined by (Us−, D
Us−

h , µh|Us− , η|(−∞,s]).

Let us now deduce from the claim that {Yt}t∈Q has independent increments. Let t0 < t1 < · · · < tm be

a fixed collection of finitely many rational times. Setting s = tk, we see from the claim that for each εn,

the random vector (b−1
εn N◦

εn(η[tj−1, tj ]) : 1 f j f k) is a.s. determined by (Us−, D
Us−

h , µh|Us−
, η|(−∞,s]),

and (b−1
εn N◦

εn(η[tj−1, tj ]) : k+1 f j f m) is a.s. determined by (Us+, D
Us+

h , µh|Us+
, η|[s,∞)). These two

random vectors are thus independent by Proposition 2.23 combined with the translation invariance of

Proposition 2.20. Recalling (4.15), we conclude that (X[tj−1,tj ] : 1 f j f k) and (X[tj−1,tj ] : k+1 f j f
m) are independent. This works for any 1 f k f m, so the random variables X[t0,t1], . . . , X[tm−1,tm]

are independent.

We conclude the proof of Proposition 4.3 by checking that the Minkowski content process has almost surely

positive increments.

Proposition 4.10 (Positive increments). Almost surely, X[s,t] > 0 for every rational s < t.

Proof. By Proposition 4.1, we can find a deterministic constant c > 0 such that with probability tending to

1 as ε → 0, we have Nε(η[0, 1]) g cε−dγ . By Corollary 2.21, for any fixed rational times s < t, it also holds

with probability tending to 1 as ε → 0 that Nε(η[s, t]) g cε−dγ (t − s). Combining this with Corollary 4.2,

we deduce that X[s,t] > 0 almost surely for every rational s < t.

Proof of Proposition 4.3. We proved that {εdγNε(η[s, t])}0<ε<(t−s)1/dγ is tight for any s < t in Proposi-

tion 3.9. By Corollary 4.2, {b−1
ε Nε(η[s, t])}0<ε<(t−s)1/dγ is also tight. Therefore, given any sequence of ε

decreasing to 0, we can find a subsequence εn for which the corresponding sequence of RIQ -valued random

variables (b−1
εn Nεn(η(I)) : I ∈ IQ) converges in distribution w.r.t. the product topology on RIQ .

Now suppose εn is any sequence decreasing to 0 such that (b−1
εn Nεn(η(I)) : I ∈ IQ) has a weak limit

(XI : I ∈ IQ). Define the process {Yt}t∈Q as in (4.43). By Proposition 4.9, {Yt}t∈Q extends to a Brownian

motion with drift. Since {Yt}t∈Q has positive increments (Proposition 4.10), the variance of the Brownian

motion must be zero. That is, there exists a deterministic constant a > 0 such that almost surely, Yt = at

for all t. In other words, for every rational s < t, the subsequence b
−1
εn Nεn(η[s, t]) converges in distribution

to a(t−s) as n → ∞. Since a(t−s) is a deterministic constant, the convergence is in probability. In fact, for

every p g 1, the convergence is also in Lp since sup0<ε<|t−s|1/dγ E[|b−1
ε Nε(η[s, t])|p] < ∞ (Proposition 3.9).

By the definition (1.8) of bε, we have E[b−1
ε Nε(η[0, 1])] = 1 for all ε > 0. Hence, a = 1 regardless of the

choice of the subsequence εn.

In summary, we have that given any sequence of ε decreasing to 0, there exists a subsequence εn such that

limn→∞ b
−1
εn Nεn(η[s, t]) = t − s in probability for all rational s < t. This proves (4.7) for rational s < t.

Now suppose s < t are any fixed real numbers. If s1 < s0 < t0 < t1 are rational numbers such that

[s0, t0] ¢ [s, t] ¢ [s1, t1], then

Nε(η[s0, t0]) f Nε(η[s, t]) f Nε(η[s1, t1]). (4.50)

By taking s1, s0 close to s and t0, t1 close to t, we conclude that limn→∞ b
−1
ε Nε(η[s, t]) = t−s in probability.
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5 Generalization to other sets and fields

In this section, we show that the LQG measure µh can be recovered from Dh in terms of Minkowski content

with respect to bε, not only for the γ-quantum cone but also for other variants of the whole-plane GFF.

In general, Minkowski content is not a measure. Accordingly, we do not expect that the Minkowski content

of an arbitrary bounded Borel set A ¢ C is equal to its LQG measure µh(A). The sufficient condition we

impose is that A is a random bounded Borel set such that

µh(∂A) = 0 a.s. (5.1)

Since ∂A is closed, this condition is equivalent to

lim
δ→0

µh(Bδ(∂A)) = 0 a.s. (5.2)

Since the LQG metric induces the Euclidean topology, another equivalent condition is

lim
δ→0

µh(Bδ(∂A;Dh)) = 0 a.s. (5.3)

Remark 5.1. One sufficient condition for (5.1) is that the LQG Minkowski dimension of A is bounded

above by dγ − ζ for some deterministic constant ζ > 0. That is, limε→0 ε
dγ−ζNε(∂A;Dh) = 0 almost surely.

Note that this condition does not reference the LQG measure µh. Indeed, suppose that h is a whole-plane

GFF with h1(0) = 0. Theorem 2.1 states that

sup
ε∈(0,1)

sup
z∈Br(0)

µh(Bε(z;Dh))

εdγ−
ζ
2

< ∞ a.s. (5.4)

Then, on the event A ¢ Br(0),

µh(∂A) f lim sup
ε→0

(
Nε(∂A;Dh) · sup

z∈Br(0)

µh(Bε(z;Dh))

)
= 0 a.s. (5.5)

Letting r → ∞, we obtain (5.1) since A is almost surely bounded. This implication holds even when

we replace h with a whole-plane GFF plus continuous function because µh+f is almost surely absolutely

continuous with respect to µh for any random continuous function f : C → R.

Remark 5.2. Let A ¢ C be a deterministic bounded Borel set whose boundary has zero Lebesgue measure,

and let h be a whole-plane GFF plus continuous function. We claim that A satisfies (5.1). Indeed, let

r > 0 such that A ¢ Br(0). Let h0 be a zero-boundary GFF on Br(0). From [DS11, Proposition 1.2], we

have E[µh0(∂A)] =
∫
∂A

crad(z;Br(0))
γ2/2 d2z where crad(z;Br(0)) is the conformal radius of Br(0) viewed

from z. Since the Lebesgue measure of ∂A is zero, we get E[µh0(∂A)] = 0 and µh0(∂A) = 0 almost surely.

By the Markov property of the whole-plane GFF [MS17, Proposition 2.8], we can couple h0 and h so that

(h− h0)|Br(0) is a continuous function. Since adding a continuous function to the field results in weighting

the Liouville measure by a continuous function, we also get the desired statement for h.

5.1 General sets on the quantum cone

In Proposition 4.3, we found that whenever s < t are fixed real numbers, b−1
ε Nε(η[s, t];Dhγ ) converges in

probability to t− s = µhγ (η[s, t]). The goal of this subsection is to replace η[s, t] with more general subsets

of C; in particular, we consider bounded Borel sets satisfying (5.1). We can also consider random subsets of

C coupled with the field hγ . The idea is to bound such a set from inside and outside by unions of finitely

many SLE cells — i.e.,
⋃

I¢I η(I) where I ¢ IQ := {[s, t] : s, t ∈ Q, s < t} is a random collection of finitely

many closed intervals with dyadic rational endpoints.
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Proposition 5.3. Let hγ be the field of a γ-quantum cone in the circle average embedding. Let A ¢ C be

either a deterministic bounded Borel set or a random compact set coupled with hγ and η (as in Theorem 1.1)

such that µhγ (∂A) = 0 almost surely. Then,

lim
ε→0

b
−1
ε Nε(A;Dhγ ) = µhγ (A) (5.6)

in probability.

Proof. As introduced in the above proof idea, we first consider the case A =
⋃

I∈I η(I) where I is a random

collection of finitely many closed bounded intervals with dyadic rational endpoints. Concretely, fix a positive

integer k and consider a random collection I ¢ {[j/2k, (j +1)/2k] : j ∈ Z} coupled with hγ and η which a.s.

has finitely many elements. We work in the same way we proved the finite additivity of Minkowski content

of SLE cells (Proposition 4.6). Recall that ∂εη(I) = {z ∈ η(I) : Dhγ (z, ∂η(I)) < ε}. For such I, for each

ε > 0, we almost surely have

∑

I

1{I∈I}b
−1
ε [Nε(η(I);Dhγ )−Nε(∂εη(I);Dhγ )]

f b
−1
ε Nε

(
⋃

I∈I

η(I);Dhγ

)
f
∑

I

1{I∈I}b
−1
ε Nε(η(I);Dhγ )

(5.7)

where the two sums are over all intervals I of the form [j/2k, (j+1)/2k]. Both sums converge in probability

as ε → 0 to
∑

I∈I µhγ (η(I)) = µhγ (
⋃

I∈I η(I)) since each term in these sums converges in probability to

1{I∈I}η(I) as seen in Proposition 4.3 and Lemma 4.4. Therefore,

lim
ε→0

b
−1
ε Nε

(
⋃

I∈I

η(I);Dhγ

)
= µhγ

(
⋃

I∈I

η(I)

)
in probability. (5.8)

Let A ¢ C now be a deterministic bounded Borel set or a random compact set coupled with hγ and η such

that µhγ (∂A) = 0 almost surely. For each integer k, let

Ik :=
{[
j/2k, (j + 1)/2k

]
: j ∈ Z, η

([
j/2k, (j + 1)/2k

])
¢ A

}
(5.9)

and

Jk :=
{[
j/2k, (j + 1)/2k

]
: j ∈ Z, η

([
j/2k, (j + 1)/2k

])
∩A ̸= ∅

}
. (5.10)

That is,
⋃

I∈Ik
η(I) and

⋃
I∈Jk

η(I) are approximations of A from inside and outside, respectively. For each

j and k, note that η([j/2k, (j + 1)/2k]) is a random compact subset of C that is measurable w.r.t. the Borel

σ-algebra generated by the Hausdorff distance on compact subsets of C; hence, Ik and Jk are measurable.

Almost surely, Ik and Jk contain finitely many intervals since A is bounded and limt→±∞ η(t) = ∞. Since⋃
I∈Ik

η(I) ¢ A ¢ ⋃I∈Jk
η(I), we have

b
−1
ε Nε

(
⋃

I∈Ik

η(I);Dhγ

)
f b

−1
ε Nε(A) f b

−1
ε Nε

(
⋃

I∈Jk

η(I);Dhγ

)
(5.11)

almost surely for each ε > 0. As in (5.8), we have

lim
ε→0

b
−1
ε Nε

(
⋃

I∈Ik

η(I);Dhγ

)
= µhγ

(
⋃

I∈Ik

η(I)

)
(5.12)

and

lim
ε→0

b
−1
ε Nε

(
⋃

I∈Jk

η(I);Dhγ

)
= µhγ

(
⋃

I∈Jk

η(I)

)
(5.13)
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in probability for each k.

We claim

lim
k→∞

µhγ

(
⋃

I∈Ik

η(I)

)
= µhγ (A) = lim

k→∞
µhγ

(
⋃

I∈Jk

η(I)

)
(5.14)

almost surely, which, in combination with (5.12) and (5.13), completes the proof of the proposition. Note

that for each integer k,

µhγ

(
⋃

I∈Ik

η(I)

)
f µhγ (A) f µhγ

(
⋃

I∈Jk

η(I)

)
. (5.15)

Because
⋃

I∈Ik
I increases and

⋃
I∈Jk

I decreases as k increases, it suffices to prove

lim
k→∞

[
µhγ

(
⋃

I∈Jk

η(I)

)
− µhγ

(
⋃

I∈Ik

η(I)

)]
= lim

k→∞
µhγ


 ⋃

I∈Jk\Ik

η(I)


 = 0 (5.16)

almost surely. Note that

Jk \ Ik =
{[

j/2k, (j + 1)/2k
]
: j ∈ Z, η

([
j/2k, (j + 1)/2k

])
∩ ∂A ̸= ∅

}
. (5.17)

Since A is bounded and t 7→ η(t) is continuous,

lim
k→∞

max
I∈Jk

diam(η(I);Dhγ ) = 0 (5.18)

with probability one. Hence,

lim
k→∞

µhγ


 ⋃

I∈Jk\Ik

η(I)


 f lim

δ→0
µhγ (Bδ(∂A;Dhγ )). (5.19)

almost surely. As discussed in the beginning of this section, because Dhγ induces the Euclidean topology,

P{µhγ (∂A) = 0} = 1 implies limδ→0 µhγ (Bδ(∂A;Dhγ )) = 0 almost surely and thus our claim.

5.2 Generalization to other GFF variants

The final technical detail that allows us to replace hγ in Proposition 5.3 with any whole-plane GFF plus a

continuous function is that bε is regularly varying with index −dγ .

Proof of Proposition 1.3. We proved (1.9) in Corollary 4.2. It remains to show (1.10). Recall from Corol-

lary 2.21 that Nε(η[0, r
−dγ ];Dhγ )

d
= Nrε(η[0, 1];Dhγ ) for every ε > 0. Hence, by Proposition 4.3,

r−dγ =
limε→0 b

−1
ε Nε(η[0, r

−dγ ];Dhγ )

limε→0 b
−1
rε Nrε(η[0, 1];Dhγ )

=
limε→0 b

−1
ε Nrε(η[0, 1];Dhγ )

limε→0 b
−1
rε Nrε(η[0, 1];Dhγ )

= lim
ε→0

brε

bε
. (5.20)

Proof of Theorem 1.1. The proof proceeds by standard arguments based on the fact that the Minkowski

content depends locally on h and behaves nicely under adding a constant to h. Specifically, if f is a

deterministic smooth function with compact support on C and h is a whole-plane GFF with circle average

normalization hr(z) = 0 on a fixed circle ∂Br(z) disjoint from the support of f , then the laws of h+ f and h

are mutually absolutely continuous [MS17, Proposition 2.9]. Using this fact, we transfer our results from a

γ-quantum cone to a whole-plane GFF in steps, introducing more generality in our choice of the field h and

the deterministic bounded Borel or random compact set A. In each stage, we assume µh(∂A) = 0 almost

surely.
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1. The field h is a whole-plane GFF with h1(0) = 0, and A ¢ B1/4(1/2) almost surely.

Note that µh(A), µh(∂A), and limε→0 Nε(A;Dh) are a.s. determined by h|B1/3(1/2). Since h− γ log | · |
and hγ agree in law when restricted to D (Definition 2.13), the laws of hγ and h restricted to B1/3(1/2)

are mutually absolutely continuous. We deduce from Proposition 5.3 that limε→0 b
−1
ε Nε(A;Dh) =

µh(A) in probability.

2. The field h is a whole-plane GFF with normalization h4r(−2r) = 0, and A ¢ Br(0) a.s. for some fixed

r > 0.

Denote h̃ := h(4r · −2r). By (2.10), h̃ is a whole-plane GFF with h̃1(0) = 0. Since A ¢ Br(0), we have

(4r)−1A+ 1/2 ¢ B1/4(1/2). We saw in Step 1 that if µh̃((4r)
−1A+ 1/2) = 0 almost surely, then

lim
ε→0

b
−1
ε Nε((4r)

−1A+ 1/2;Dh̃) = µh̃((4r)
−1A+ 1/2) (5.21)

in probability. From the coordinate change axiom (2.14) for deterministic translation and scaling, we

almost surely have

Dh(4ru− 2r, 4rv − 2r) = Dh̃+Q log(4r)(u, v) = (4r)ξQDh̃(u, v) ∀u, v ∈ C. (5.22)

Then, almost surely,

Nε(4r)ξQ(A;Dh) = Nε((4r)
−1A+ 1/2;Dh̃) ∀ε > 0. (5.23)

On the other hand, from the coordinate change rule (2.16) for the LQG measure, almost surely,

µh(A) = µh̃+Q log(4r)((4r)
−1(A+ 2r)) = (4r)γQµh̃((4r)

−1A+ 1/2). (5.24)

One consequence of (5.24) is that µh(∂A) = 0 implies µh̃((4r)
−1(∂A) + 1/2) = 0. Hence, we deduce

from (5.21) combined with (5.23) and (5.24) that

lim
ε→0

b
−1
ε Nε(4r)ξQ(A;Dh) = (4r)−γQµh(A) (5.25)

in probability. Since we have

lim
ε→0

bε(4r)ξQ

bε
= (4r)−γQ (5.26)

from Proposition 1.3, we conclude that limε→0 b
−1
ε Nε(A;Dh) = µh(A) in probability.

3. The field h is any whole-plane GFF plus a continuous function, but A ¢ Br(0) for some fixed r > 0.

We can write h = ĥ + f where ĥ is a whole-plane GFF with normalization ĥ4r(−2r) = 0 and f is a

random continuous function (which is not necessarily independent from ĥ). Again, the goal is to show

that for any Borel A ¢ Br(0) with µĥ+f (∂A) = 0 almost surely,

lim
ε→0

b
−1
ε Nε(A;Dĥ+f ) = µĥ+f (A) (5.27)

in probability. Since f is a.s. bounded on Br(0), we have µĥ(∂A) = 0 almost surely. The idea is to

use that f is a.s. locally uniformly continuous. To this end, consider the collection of dyadic squares

Sk = {[m
2k
, m+1

2k
] + [ n

2k
, n+1

2k
]i ¢ Br(0) : m,n ∈ Z} and define

Ak = {S ∈ Sk : S ¢ A} and Ak = {S ∈ Sk : S ∩A ̸= ∅} (5.28)

to be the subcollections whose unions approximate A from inside and outside, respectively. For each

dyadic square S = [m
2k
, m+1

2k
] + [ n

2k
, n+1

2k
]i ∈ Sk, denote its union with all adjacent dyadic squares by

Ŝ = [m−1
2k

, m+2
2k

] + [n−1
2k

, n+2
k ]i. Denote

mS = min
Ŝ

f and MS = max
Ŝ

f. (5.29)
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In Step 2, we established (5.27) when f = 0. By Remark 5.2, µĥ(∂S) = 0 a.s. for all S ∈ ⋃kg1 Sk.

Also note limε→0 bε exp(−ξMS)/bε = eγMS from (1.10). Given any sequence of ε decreasing to 0, we can

choose a subsequence εn such that almost surely,

eγMSµĥ(S) = lim
n→∞

b
−1
εn Nεn exp(−ξMS)(S;Dĥ) for all S ∈

⋃

kg1

Sk. (5.30)

For S = [m
2k
, m+1

2k
] + [ n

2k
, n+1

2k
]i ∈ Sk and j ∈ N, denote

Sj :=

[
m

2k
+

1

2k+j
,
m+ 1

2k
− 1

2k+j

]
+

[
n

2k
+

1

2k+j
,
n+ 1

2k
− 1

2k+j

]
i. (5.31)

We again have µĥ(∂Sj) = 0 by Remark 5.2. Take a further subsequence of εn such that, almost surely,

eγmSµĥ(Sj) = lim
n→∞

b
−1
εn Nεn exp(−ξMS)(Sj ;Dĥ) for all S ∈

⋃

kg1

Sk, j ∈ N. (5.32)

By the Weyl scaling axiom (2.13), for each S ∈ Sk and j ∈ N, we almost surely have

Nε exp(−ξmS)(Sj ;Dĥ) f Nε(Sj ;Dh) f Nε(S;Dh) f Nε exp(−ξMS)(S;Dĥ) (5.33)

for all sufficiently small ε > 0. (The threshold is random; it depends on ĥ and f .) On one hand, from

(5.30) and (5.33), we almost surely have

∑

S∈Ak

eγMSµĥ(S) =
∑

S∈Ak

lim
n→∞

b
−1
εn Nεn exp(−ξMS)(S;Dĥ) g

∑

S∈Ak

lim
n→∞

b
−1
εn Nεn(S;Dh)

= lim
n→∞

b
−1
εn

∑

S∈Ak

Nεn(S;Dh) g lim sup
n→∞

b
−1
εn Nεn(A;Dh).

(5.34)

On the other hand, for each k and j, we almost surely have

∑

S∈Ak

Nε(Sj ;Dh) f Nε(A;Dh) (5.35)

for all sufficiently small ε > 0, since infS,S̃∈Sk,S ̸=S̃ Dh(Sj , S̃j) > 0. Combining this with (5.32) and

(5.33), we almost surely have

∑

S∈Ak

eγmSµĥ(Sj) =
∑

S∈Ak

lim
n→∞

b
−1
εn Nεn exp(−ξmS)(Sj ;Dĥ) f

∑

S∈Ak

lim
n→∞

b
−1
εn Nεn(Sj ;Dh)

= lim
n→∞

b
−1
εn

∑

S∈Ak

Nεn(Sj ;Dh) f lim inf
n→∞

b
−1
εn Nεn(A;Dh).

(5.36)

For each S ∈ Sk, since µĥ(∂S) = 0, we have limj→∞ µĥ(Sj) = µĥ(S) almost surely. Combining (5.34)

and (5.36) and letting j → ∞, we almost surely have that

∑

S∈Ak

eγmSµĥ(S) f lim inf
n→∞

b
−1
εn Nεn(A;Dh)

f lim sup
n→∞

b
−1
εn Nεn(A;Dh) f

∑

S∈Ak

eγMSµĥ(S).
(5.37)

Since Ak \ Ak = {S ∈ Sk : S ∩ ∂A ̸= ∅}, it follows from the equivalence between (5.1) and (5.2) that

limk→∞

∑
S∈Ak\Ak

µĥ(S) = 0. In addition,

M := sup
k∈N

max
S∈Sk

MS f sup
Br+1(0)

f < ∞ and lim
k→∞

max
S∈Sk

(exp(γMS)− exp(γmS)) = 0 (5.38)
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almost surely because f is and uniformly continuous on BR(0). Hence, the right-hand side of the

inequality
∑

S∈Ak

eγMSµĥ(S)−
∑

S∈Ak

eγmSµĥ(S) f eγM
∑

S∈Ak\Ak

µĥ(S) +
∑

S∈Ak

(eγMS − eγmS )µĥ(S). (5.39)

converges almost surely to 0 as k → ∞. By this together with (5.37), since εn is a subsequence of an

arbitrary sequence of ε decreasing to 0,

lim
k→∞

∑

S∈Ak

eγmSµĥ(S) = lim
ε→0

b
−1
ε Nε(A;Dh) = lim

k→∞

∑

S∈Ak

eγMSµĥ(S) in probability. (5.40)

On the other hand, since µh(∂S) = 0 and thus µh = µĥ+f is finitely additive for S ∈ Sk,

∑

S∈Ak

eγmSµĥ(S) f
∑

S∈Ak

µh(S) f µh(A) f
∑

S∈Ak

µh(S) f
∑

S∈Ak

eγMSµĥ(S) (5.41)

almost surely. We found in (5.40) the leftmost and the rightmost terms of this inequality converge to

the same limit in probability as k → ∞, which must be equal to µh(A) almost surely. Therefore, we

conclude that

µh(A) = lim
ε→0

b
−1
ε Nε(A;Dh) (5.42)

in probability.

4. The field h is any whole-plane GFF plus a continuous function and A ¢ C is any random bounded

Borel set.

Let Ek be the event {A ¢ Bk(0)}. Given any sequence of ε decreasing to 0, using a diagonal argument

we can find a subsequence εn such that limn→∞ b
−1
εn Nεn(A;Dh) = µh(A) a.s. on Ek for all integer k.

Since P(
⋃

k∈N Ek) = 1, we conclude that the limit limn→∞ b
−1
ε Nε(A;Dh) = µh(A) holds in probability.

This completes the proof of (1.7) for general Gaussian field h and set A.

We finally show that the pointed metric space (C, 0, Dh) almost surely determines the marked quantum

surface (C, h, 0).

Proof of Corollary 1.2. Let L (resp. M) be the space of isometry classes of complete, locally compact length

spaces with a marked point (resp. a marked point and a locally finite Borel measure), endowed with the

local Gromov–Hausdorff (resp. local Gromov–Hausdorff–Prokhorov) topology. We consider L (resp. M) as a

complete probability space endowed with the probability measure PL
h (resp. PM

h ) corresponding to (C, 0, Dh)

(resp. (C, 0, Dh, µh)). Let f : M → L be the natural projection. We claim that f is injective on a set E ¢ M

with PM
h (E) = 1. If so, since M is a Polish space [ADH13], by the measurable selection theorem (see, e.g.,

[Bog07, Theorem 6.9.1]), there is a measurable function g : L → M such that g ◦ f is the identity map on E.

This means that (C, 0, Dh) almost surely determines (C, 0, Dh, µh).

To this end, consider a sequence A1, A2, . . . of measurable functions from continuous metrics on C to compact

subsets of C. Let Π(D) := {A1(D), A2(D), . . . } be the collection of these sets without ordering: i.e., Π is

a function from the set of continuous metrics on C to the power set of compact subsets of C. For now, we

prescribe the following set of properties that these functions should satisfy; we shall construct an explicit

sequence of such maps at the end of the proof.

• Almost surely, µh(∂Aj(Dh)) = 0 for every j.

• Almost surely, Π(Dh) is a π-system which generates the Borel σ-algebra on C.

• If D and D′ are continuous metrics on C such that φ : (C, D) → (C, D′) is an isometry preserving 0,

then φ(Π(D)) = Π(D′).
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By Theorem 1.1 and a standard diagonalization argument, the first property implies that there is a sequence

εn decreasing to 0 such that, almost surely,

lim
n→∞

b
−1
εn Nεn(Aj(Dh);Dh) = µh(Aj(Dh)) for every j. (5.43)

Hence, there exists a Borel subset Ẽ of the product space of continuous metrics on C and Borel measures

on C with P{(Dh, µh) ∈ Ẽ} = 1 on which the first two bulleted properties as well as (5.43) hold. By the

π-λ theorem, if two Borel measures agree on a π-system, then they must be identical. Hence, the projection

(D,µ) 7→ D, where D is a continuous metric on C and µ is a Borel measure on C, is injective on Ẽ.

Let E be the image of Ẽ under the “forget the embedding” map: i.e., (D,µ) 7→ (C, 0, D, µ) where the latter

is a pointed metric measure space.8 Let (D,µ), (D′, µ′) ∈ Ẽ be any two elements which are mapped into the

same pointed metric space (C, 0, D) = (C, 0, D′) under the natural embedding (D,µ) 7→ (C, 0, D). That is,

there is an isometry φ : (C, D) → (C, D′) fixing 0. By the last bulleted property, Π(D′) = φ(Π(D)) and

µ′(φ(A)) = lim
n→∞

b
−1
εn Nεn(φ(A);D

′) = lim
n→∞

b
−1
εn Nεn(A;D) = µ(A) (5.44)

for every A ∈ Π(D). Since Π(D′) is a π-system, we conclude that µ′ = φ∗µ. That is, the pointed metric

measure spaces (C, 0, D, µ) and (C, 0, D′, µ′) are identical. Therefore, the natural projection f : M → L,

(C, 0, D, µ) 7→ (C, 0, D) is injective on E.

It remains to show the existence of measurable maps A1, A2, . . . with the bulleted properties. For each

continuous metric D on C, define

Z(D) = {z ∈ C : there are exactly three distinct D-geodesics from 0 to z}. (5.45)

Let K(D) be the collection of all compact K ¢ C that are of the following form:

1. Let z1, z2, . . . , zn be any finite subset of Z(D);

2. For k = 1, . . . , n, let ηk be any D-geodesic between zk−1 and zk (where z0 = zn);

3. Let η = η1 ∪ η2 ∪ . . . ηn be the closed curve formed by concatenating the geodesics;

4. Let K be the union of η and all bounded components of C \ η.

Finally, let Π(D) consist of any finite intersections of sets in K(D). These sets are defined only using the

pointed metric structure (C, 0, D) so that if φ : (C, D) → (C, D′) is an isometry fixing 0, then φ(Z(D)) =

Z(D′), φ(K(D)) = K(D′), and φ(Π(D)) = Π(D′).

For the γ-LQG metric Dh, almost surely, the set Z(Dh) is countable and dense [Gwy21, Theorem 1.2], and

any two points in Z(Dh) are joined by finitely many Dh-geodesics [Gwy21, Theorem 1.7]. Moreover, since

Dh is a.s. a continuous metric, we can a.s. find for every z ∈ Q2 and r ∈ Q>0 a set K ∈ K(Dh) such

that K contains the Euclidean ball Br(z) and is contained in the Euclidean ball B2r(z). Hence, Π(Dh) is

a.s. a countable π-system generating the Borel σ-algebra on C. Using the measurable selecction theorem

inductively, we can find a sequence of measurable functionsA1, A2, . . . such that Π(D) = {A1(D), A2(D), . . . }
almost surely.

Finally, we claim that the quantum Minkowski dimension of ∂Aj(Dh) is a.s. no more than 1 for every j.

Since Dh is a continuous metric on C, the lengths of Dh-geodesics between all points in Z(Dh) (which are

equal to the Dh-distances between these points) are finite. Because (C, Dh) is a length space, a curve η

with Dh-length L < ∞ satisfies Nε(η;Dh) f L/ε. This is since if η is parameterized by Dh-length, then

{Bε(P (εk);Dh) : k = 1, 2, . . . , +L/ε,} covers η. For every j, since ∂Ak(Dh) is a finite union of Dh-geodesics

8It is straightforward to check that the natural embedding (D,µ) 7→ (C, 0, D, µ) is a continuous map whose domain is a

Polish space, so E is an analytic set. Since PM
h

is a complete probability measure, E is PM
h
-measurable (see, e.g., [Kec95,

Theorem 21.10]).
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between points in Z(Dh), its LQG Minkowski dimension is at most 1 as claimed. Therefore, by Remark 5.1,

we have that µh(∂Aj(Dh)) = 0 a.s. for every j.

As these functions A1, A2, . . . satisfy all three bulleted properties stated above, we conclude that (C, 0, Dh)

a.s. determines (C, 0, Dh, µh). The rest of the corollary follows since the pointed metric measure space

(C, 0, Dh, µh) a.s. determines the field h up to rotation and scaling of the complex plane centered at the

origin [AFS20, Theorem 1.3].
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