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Abstract

A Liouville quantum gravity (LQG) surface is a natural random two-dimensional surface, initially
formulated as a random measure space and later as a random metric space. We show that the LQG
measure can be recovered as the Minkowski measure with respect to the LQG metric, answering a question
of Gwynne and Miller [GM21c¢]. As a consequence, we prove that the metric structure of a v-LQG surface
determines its conformal structure for every v € (0,2). Our primary tool is the continuum mating-of-
trees theory for space-filling SLE. In the course of our proof, we also establish a Holder continuity result
for space-filling SLE with respect to the LQG metric.

1 Introduction

1.1 Overview

Fix v € (0,2) and let U C C be an open domain. Let h be the Gaussian free field (GFF) on U or a
minor variant thereof. The 7-Liouville quantum gravity (LQG) surface described by (U, k) is formally the
two-dimensional Riemannian manifold with metric tensor

e (da® + dy?) (1.1)

where dz? + dy? is the Euclidean metric tensor. LQG was introduced by Polyakov [Pol81] in the physics
literature as a canonical model of two-dimensional random geometry. Since then, LQG has been identified as
the scaling limit of various types of random planar maps, as described in surveys [Gwy20, GHS, Mil18, She22].

The expression (1.1) does not make literal sense because the GFF h does not admit pointwise values; it is
defined only as a random distribution. Nevertheless, it is possible to rigorously construct the area measure
and distance function corresponding to (1.1) through regularization and renormalization techniques.

The 7-LQG volume measure py is the Gaussian multiplicative chaos measure associated with the GFF h,
which can be constructed via various regularization methods [Aru20, Ber17, DS11, Kah85, RV14]. In the
context of LQG, it was first defined by Duplantier and Sheffield [DS11] to be the almost sure weak limit

Wh = lin}) £ /2erhe(z) g2 (1.2)
e—

where h.(z) is the average of h on the circle 9B, (z) and d?z is the Lebesgue measure on U. Note that for a
smooth function f : U — R, the volume form associated with the Riemannian metric tensor e/ (dz? 4 dy?)
is efd?z. With probability one, uy, is mutually singular with respect to the Lebesgue measure but has no
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point masses and assigns a positive mass to any open set. The circle average approximation can be replaced
by other mollification methods for the GFF; see [Aru20, Berl7, Kah85, RV14] for further details. Notably,
let pe2/2(2) = 3 exp(—|z[*/e?) be the heat kernel at time £2/2 and let

hi(z) = (h*peyo)(2) = /Uh(w)psz/g(z —w) d*w. (1.3)

Then lim._,g eV’ /2e7hi(:) g2, = Wy in probability with respect to the topology of weak convergence of mea-

sures.l

More recently, the v7-LQG metric Dy, was constructed as the scaling limit of Liouville first passage percolation
(LFPP) in the case that U = C and h is a whole-plane GFF. For z,w € C and € > 0, the e-LFPP metric is
defined by
1
D5 (z,w) := inf / eShe(PW)| P/ (1) dt, (1.4)

P:iz—w 0

where the infimum is taken over all piecewise continuously differentiable paths P from z to w. Note that for
a smooth function f : C — R, the distance between z and w corresponding to the Riemannian metric tensor

ef (dx? + dy?) is infp., fol ef(PW)/2| P/(1)| dt. Here,

= — 1.5
d'y ’ ( )
where d, > 2 is the dimension of v-LQG. The constant d is obtained a priori as a scaling exponent corre-
sponding to various approximations of the v-LQG metric space [DG20, DZZ19]. Ding, Dubédat, Dunlap, and
Falconet [DDDF20] showed that for a suitable choice of deterministic scaling constants {a.}.0, the family
of rescaled LFPP metrics {a;'D5}.c(0,1) is tight. Building furthermore on [DFG*20, GM20a, GM20b],
Gwynne and Miller [GM21c¢] showed that the subsequential limit is unique and defined v-LQG metric as the
limit
—1; —1 e
Dy = lim a7 D (1.6)

in probability with respect to the local uniform topology on C x C. In particular, D, almost surely induces
the Euclidean topology. A posteriori, d, was identified as both the Hausdorft dimension [GP22] and the
Minkowski dimension [AFS20] of the v-LQG metric space (C, Dy,).

It is natural to ask how the measure pj, and the metric Dy, are related. In this paper, we show that py, is almost
surely equal to the Minkowski content measure with respect to Dj, (Theorem 1.1). This answers [GM21c,
Problem 7.10]. Our result can be viewed as an LQG analog of [LR15], which constructed the Minkowski
content for Schramm-Loewner evolution (SLE) curves and showed that it is equivalent to the so-called
natural parameterization of SLE [LS11].

A particular consequence of our result is that Dj almost surely determines pp,. It was shown in [AFS20,
Theorem 1.3] that the pointed metric measure space (C, 0, Dy, pp) almost surely determines h up to rotation
and scaling. Therefore, our result shows that the pointed metric space (C, 0, Dp,) almost surely determines
h modulo rotation and scaling (Corollary 1.2).

The primary tool in our proofs is the mating-of-trees theorem of Duplantier, Miller, and Sheffield [DMS21].
This theorem says that the left/right boundary length process for a space-filling SLE curve 7 on an LQG
surface is a correlated two-dimensional Brownian motion. Roughly speaking, this result is useful for two
reasons. First, it gives a source of exact independence since the LQG surfaces traced by the curve n during
disjoint time intervals are independent. In particular, this leads to a short proof of a lower bound for the
number of LQG metric balls needed to cover a given set (Proposition 4.1) without needing a separate two-
point estimate. Second, the mating-of-trees theory provides a convenient way of decomposing space into

IMost works on Gaussian multiplicative chaos require GFF to be regularized using compactly supported mollifiers. The
heat kernel mollification of GFF is considered in [RV14] (which calls it “white noise decomposition”), where it is shown that
77 /2e7hE(2) g2, converges to pp in law. One can extend this to convergence in probability by applying existing methods, for
instance by checking [Berl7, Lemma 3.5] using the covariance formula Cov(hf(z), hi(w)) =7 f(z%_HQ)/Q pt(z — w)dt.



regions of equal LQG mass, namely the segments n([x — ¢,z]) for © € ¢Z, where 7 is parameterized by
pp-mass. See Section 2.6 for more details on the proof method.

The mating-of-trees theory has many applications in the study of random conformal geometry, including
LQG and SLE; see [GHS20] for a survey of these applications. This is the first paper to use this theory to
prove properties of the LQG metric for general v € (0,2). We expect that there will be more applications
of the mating-of-trees theory to the LQG metric in the future. In the course of our proof, we obtain some
estimates for space-filling SLE on an LQG surface, which are of independent interest. We especially highlight
the Holder continuity result (Theorem 1.4), which is already used in the paper [BGS22] to prove a result
about random permutations.

Previously, Le Gall [LG22] showed that the volume measure of the Brownian sphere is equal to a constant
multiple of the Hausdorff measure associated with the gauge function r*loglog(1/r). This implies that Dy,
almost surely determines pj, for v = \/%, due to the equivalence between the Brownian sphere and the
\/8/3-LQG sphere established by Miller and Sheffield [MS20, MS21a, MS21b]. See also [GM21c, Corol-
lary 1.4] for the fact that the Miller—Sheffield metric agrees with the limit of LFPP. In a sense, our result is a
generalization of Le Gall’s result to general vy € (0,2), but with Minkowski content instead of Hausdorff mea-
sure. Our proof and Le Gall’s have some superficial similarities, but the main techniques are fundamentally
different.

Acknowledgements. We thank the anonymous referee for useful remarks on an earlier version of this work
and Greg Lawler for helpful discussions. E.G. was partially supported by a Clay research fellowship. J.S.
was partially supported by a scholarship from Kwanjeong Educational Foundation.

1.2 Main results

We say that a random distribution h on C is a whole-plane GFF plus a continuous function if there is a
coupling of h with a random continuous function f : C — R such that h — f has the law of a whole-plane
GFF (see Section 2.2 for the definition of the whole-plane GFF). Our main theorem states that for each
v € (0,2), the Minkowski content measure (see Definition 2.4) exists on the 7-LQG metric space (C, Dy,)
and is equal to the corresponding v-LQG measure py,.

Theorem 1.1. Fizy € (0,2). There exists a deterministic sequence {b.}eso such that the following is true.

Let h be a whole-plane GFF plus a continuous function and Dy, be the corresponding v-LQG metric. Suppose
A C C is either:

(i) a deterministic bounded Borel set; or

(ii) a random compact set, measurable with respect to the Borel o-algebra induced by the Hausdorff distance
on C, that is coupled with the random distribution h

such that pp(0A) = 0 almost surely. Let N.(A; Dy) be the minimum number of Dp-balls of radius € > 0
required to cover A. Then,
lir% b N.(A; D) = pun(A) in probability. (1.7)
e—

We do not exclude the possibility that the limit (1.7) may hold almost surely. However, our methods are
insufficient to prove how fast the sequence bZ1N.(A; Dj) converges. We expect that stronger LQG metric
estimates than those currently available are necessary to prove quantitative bounds required for almost sure
convergence.

A corollary of Theorem 1.1 is that the metric space structure of a v-LQG surface is sufficient information to
determine not only its metric measure space structure but also its conformal structure, in the sense that it
almost surely determines the field h.



Corollary 1.2. Let v € (0,2). Suppose h is a whole-plane GFF normalized to have a mean zero on
the unit circle. Let Dy and pp be the corresponding v-LQG metric and measure, respectively. Then the
random pointed metric space (C,0, Dy) almost surely determines the random pointed metric measure space
(C,0, Dy, up), and moreover the field h up to rotation and scaling of the complex plane.

By considering (C,0, D) as a random pointed metric space, we forget the parameterization of Dy, in the
complex plane. More precisely, we consider it as a random element in the space of isometry classes of
complete and locally compact length spaces endowed with the local Gromov—Hausdorff topology (as defined
by Gromov in [Gro99]). Similarly, the random pointed metric measure space (C,0, Dy, up,) in Corollary 1.2
is measurable with respect to the local Gromov—Hausdorff-Prokhorov topology [ADH13]. It was known
previously that the random pointed metric measure space (C, 0, Dy, up) almost surely determines the field h
up to rotation and scaling. For v = \/8/737 this fact was first established in [MS21b] as a key component of
the equivalence between the Brownian sphere and the \/%—LQG sphere. An explicit way of reconstructing
h from the pointed metric measure space (C,0, Dy, up,) was given in [GMS20], which was extended to all
v € (0,2) in [AFS20].
Our choice of scaling constants {b. }.~o has the following description which depends only on v € (0,2). Let
(C,h7,0,00) be a y-quantum cone under the circle average embedding (see Section 2.5.1 for definitions). Let
n be a whole-plane space-filling SLE, curve from co to oo with x’ = 16/42 that is sampled independently of
hY. Then parameterize n by the v-LQG measure: that is, n(0) = 0 and pp(n[s,t]) =t — s for all real s < ¢t.
(We review this setup further in Section 2.5.) Let Dy~ be the v-LQG metric associated with h?. For € > 0,
define

b = E[N. (1[0, 1]; Dy ). (18)

While we do not have an exact formula for b, the following properties justify calling the limit in (1.7) the
d-Minkowski content of A with respect to the metric Dy, (also see Section 2.1).

Proposition 1.3. Let b, be as in (1.8). There exist constants 0 < ¢; < c3 < 0o such that for all € € (0,1),
c1e”h < b < g (1.9)

Moreover, the function € — b, is reqularly varying with index —d.; i.e., for every r > 0 we have

lim bre _ r (1.10)

e—0 ba

As a byproduct of our proof of Theorem 1.1, we obtain a Holder continuity result for the space-filling SLE
curve on an LQG metric space.

Theorem 1.4. Let v € (0,2) and k' € (4,00) be constants, which do not necessarily satisfy k' = 16/v2. Let
hY be the field of a y-quantum cone under the circle average embedding, and let n be a whole-plane space-
filling SLE,: from oo to oo which is sampled independently of hY and then parameterized by pp~. Almost
surely, n on the metric space (C, Dp~) is locally Hélder continuous with any exponent less than 1/d. and is
not locally Holder continuous with any exponent greater than 1/d.,.

Theorem 1.4 is used in [BGS22, Section 4] to show that the dimensions of the supports of certain random
permutons defined in terms of SLE-decorated LQG are almost surely equal to one. Since LQG decorated
by space-filling SLE is related to many other mathematical objects [GHS], we expect that the theorem will
have more applications in the future.

1.3 Notations

We use the following notations throughout the paper.



e The constant v € (0,2) is fixed, and we do not consider multiple values of 7 simultaneously. When we
do not specify the value of v (e.g., in expressions such as “LQG metric ball” or “quantum dimension”),
we refer to the corresponding v-LQG quantities.

e We write d,, for the dimension of v-LQG. We also use the y-dependent constants
2
Q=-+4+= and &= —. (1.11)
Y

e Given a random distribution h on C, we denote the associated v-LQG metric as up and the v-LQG
measure as Dy,.

e We denote by B,(z) the Euclidean ball of radius r centered at z. B, (z; Dp,) := {w € C: Dy(z,w) < r}
is the Dj-metric ball of radius r centered at z. For a set A C C, we denote by B,.(A) := .., Br(2)

and B,(A; Dy,) := U, 4 Br(2; Dy) its r-neighborhoods in the Euclidean and LQG metrics, respectively.

e We say that an event E. indexed by € > 0 occurs with superpolynomially high probability if, for each
p > 0, we have P(E.) > 1 — eP for sufficiently small £ > 0.

e Let X and Y be random variables coupled on a probability space, taking values in measurable spaces X
and Y, respectively. We say that Y is almost surely determined by X if there is a measurable function
F: X — Y such that Y = F(X) almost surely.

1.4 Outline

We review the necessary preliminaries in Section 2. With these preliminaries in hand, we present a detailed
overview of our proof of the main results in Section 2.6. Section 3 is dedicated to showing the tightness
of the Minkowski content approximations. In Section 4, we prove a key stepping stone towards the main
results: the convergence in (1.7) of the normalized covering number b N, (A; Dj,) to the v-LQG area pj,(A)
when A is a space-filling SLE segment of fixed LQG area. We extend this convergence to general sets A and
fields h and complete the proofs of the main results in Section 5.

2 Preliminaries

We review a few preliminaries, including the Minkowski content measure on a metric space (Section 2.1),
the axiomatic characterization of the LQG metric (Section 2.3), and the continuum mating-of-trees theory
(Section 2.5).

We also prove some extensions of known LQG results. In Section 2.4, we show that the conformal coordinate
change rule for the LQG metric [GM21b] extends to certain random scalings and translations. In Section 2.5,
we use these results to prove that the mating-of-trees theorem is, in a certain precise sense, compatible with
the LQG metric.

In Section 2.6, we give an overview of the proof of Theorem 1.1 and a comparison with Le Gall’s proofs in
[LG22].

2.1 Minkowski content measure

Let (X, d) be a metric space. Given a set A C X, let N.(A;d) be the minimum number of metric balls with
radius € > 0 required to cover A. The Minkowski dimension of a set A is defined as

dimy(A4;d) = lim log N (43 d)

e=0 log e—1 (2'1)



if the limit exists. There are several equivalent descriptions of the Minkowski dimension. For instance, we
can replace the covering number N.(4;d) with the packing number NP2%(A;d), which is the maximum
possible number of disjoint metric balls with radius ¢ whose centers all lie in A. These two definitions are

equivalent because NP**(A;d) < N_(A;d) < fo;k(A; d) for every & > 0.

The Minkowski dimension of the v-LQG metric is the Minkowski dimension of any open set with respect
to the v-LQG metric. In [AFS20], this quantity was shown to be equal to d. The proof was based on the
estimate (2.2) on the volume of LQG metric balls, which we utilize prominently throughout our paper.

Theorem 2.1 ([AFS20, Theorem 1.1}). Let h be a whole-plane GFF normalized so that hi(0) = 0. For any
compact set K C C and { > 0, almost surely,
(B:(2; D))

Be(z; D P
sup supw < oo and inf inf 27

> 0. 2.2
ce(0.1) €K gdv—¢ c€(0,1) z€K gy ¢ (2:2)

Moreover, for any bounded Borel measurable set A C C containing an open set, almost surely,

e>0 loge ' dy. (2:3)

The Minkowski content is a method of assigning sizes to subsets of a metric space by using the quantities
used to find their Minkowski dimensions. It has several different definitions in the literature which are not
equivalent. One such definition is the following: if the limit computed in (2.1) equals ¢, then the Minkowski
content of A is

Cont(4; d) = lim e°N.(A;d) (2.4)

if the limit exists. Replacing N.(A4;d) with other quantities that give rise to equivalent definitions of the
Minkowski dimension, such as N?2%(4; d), do not necessarily give identical values for the Minkowski content.
As such, it makes sense to introduce the following general notion of Minkowski content.

Definition 2.2. For a constant § > 0 and a family of constants b = {b.}.~0, we say that b is a sequence of
d-dimensional rescaling coefficients if the following two conditions are satisfied.

(i) There exist constants 0 < ¢; < ¢ < 00 and gy > 0 such that c1679 < b, < e 9 for every € € (0,0).

(ii) The function ¢ + b, is regularly varying at 0 with index —d. That is, lim. ;o by /b. = 7~ for every
r> 0.

For instance, {¢7%}.+¢ is a trivial sequence of §-dimensional rescaling coefficients. Proposition 1.3 says that
{bc}e>0 as defined in (1.8) is a sequence of d,-dimensional rescaling coefficients. In Definition 2.2, we require
condition (ii) so that °b. does not fluctuate arbitrarily as & — 0.

Definition 2.3. Let (X, d) be a metric space and b = {b.}.~¢ be a sequence of d-dimensional rescaling
coefficients. For A C X with dimy(A4;d) = 6, the Minkowski content of A with respect to coefficients b is
the limit

Conty(A; d) = lim b1 N.(A;d). (2.5)

if it exists. In that case, we say that A is Minkowski measurable with respect to coefficients b.

Theorem 1.1 states that with b = {b.}.~¢ as in (1.8), for every bounded Borel set A C C with pup(0A4) =0,
the Minkowski content of A with respect to b exists and is almost surely equal to up(A). The condition
un(0A) = 0 is natural; if an open set A C X is Minkowski measurable with respect to coefficients b, then
Conty(A; d) = Conty(A; d). This is since N.(A;d) < N.(A; D) < N_¢)-(A;d) for every e > 0 and ¢ € (0,1),
and we require b. to vary regularly.

In general, it is difficult to a priori find the correct coefficients {b.}.~¢ such that the limit (2.5) exists.
Indeed, we will use (2.4) as an ansatz for the Minkowski content in 7-LQG, and we show only in a later
stage of the proof that (1.8) is the correct rescaling coefficient to use.



One reason for considering the Minkowski content for the LQG metric space is that the Minkowski content
is extremely useful in the context of random fractal subsets. For instance, the Minkowski content has been
used to construct natural measures on the Schramm-Loewner evolution (SLE) curve and its subsets (e.g.,
[AS11, HLLS22, Lawl5, LR15, Zha22]). However, the Minkowski content has been considered traditionally
in the context of fractal subsets of Euclidean spaces. When A is a fractal subset of a Euclidean space R",
the Minkowski dimension of A can be defined equivalently as

. _ . log(vol B:(A))
dimpy(A) =n — gg% BT — (2.6)
This is why the d-dimensional Minkowski content of A C R™ for § < n is defined usually as
1B.(A
Conts(A) = Tim YL B4 (2.7)

e—0 gn—90

We eventually wish to construct a Borel measure from the Minkowski content on an LQG metric space and
compare it with the LQG measure in Corollary 1.2. However, Minkowski content is not countably additive
in general. Thus, we define a Minkowski content measure to be any Borel measure that is compatible with
some version of the Minkowski content. The following definition aligns with various definitions of similar
concepts in the literature (e.g., [HRWX21, Zha22]).

Definition 2.4. Let (X, d) be a locally compact metric space whose Minkowski dimension is § > 0: i.e.,
dimy; (U; d) = § for every totally bounded open set U C X. A Minkowski content measure on X is a Borel
measure g on X that satisfies the following conditions.

(i) The measure p is finite on all compact subsets of X.

(ii) There is a sequence b = {b.}c~o of d-dimensional rescaling coefficients such that Cont,(K;d) exists
and equals p(K) for every compact set K C X with p(0K) = 0.

In other words, Theorem 1.1 states that the LQG measure py, is a Minkowski content measure on the LQG
metric space (C, D). In the proof of Corollary 1.2, we give an explicit method to recover u; as a Minkowski
content measure on the LQG metric space (C, Dy). In particular, we give a random m-system of compact sets
coupled with the GFF h which a.s. generates the Borel g-algebra, so that the values of Minkowski content
Conty (K; Dy,) for the sets K in this m-system a.s. uniquely determine the Minkowski content measure py,.

2.2 Whole-plane GFF

We give a brief introduction to the whole-plane GFF insofar as it is relevant to the rest of the paper. We refer
the reader to the introductory sections of [DMS21, MS17] and the expository articles [BP, She07, WP21] for
further details.

The whole-plane Gaussian free field (GFF) h is a centered Gaussian process on C with covariances

(max{|z], 1}) (max{|w], 1})
|2 — wl

Cov(h(z), h(w)) = G(z,w) := log , Vz,weC. (2.8)
This definition does not make literal sense since lim,_,,, G(z, w) = 0o, but we can make sense of the whole-
plane GFF as a random distribution (i.e., generalized function). Let M be the collection of signed Borel
measures p with compact supports on C and [, ~ G(z,w) |p|(dz)|p|(dw) < co. We define [WP21, Section 3.1]
the whole-plane GFF as the centered Gaussian process indexed by M with

Covl(h pa), (hop2)) = [ Glz,w) pa(d=)ps(ao). (2.9)



A random distribution h on C is called a whole-plane GFF plus a continuous function if there exists a
coupling of h with a random continuous function f : C — R such that h — f has the law of a whole-plane
GFF.

Given a whole-plane GFF h, we define the circle average on the circle B, (z) as the pairing h,(z) := (h, A, )
where A, , is the uniform probability measure on the circle 9B, (z). The following properties of the circle
average process were given in [DS11, Section 3.1].

Lemma 2.5. There exists a version of whole-plane GFF h such that the map (z,7) — h.(2) is a.s. continuous
on C x (0,00). Moreover, for each z € C, the process {Bi}ier, Bi := he-¢(2), is a two-sided standard
Brownian motion with the initial value By = h1(z2).

Let h be a whole-plane GFF plus a continuous function. By the circle average part of h, we refer to the
function f(z) = h|.(0). By the lateral part of h, we refer to the distribution g = h — f. The following is a
key property of the whole-plane GFF used in this paper.

Lemma 2.6 ([DMS21, Lemma 4.9]). The circle average and lateral parts of the whole-plane GFF are
independent.

We note that the term whole-plane GFF also refers to the random distribution considered modulo additive
constant. Our choice of covariance kernel in (2.8) corresponds to fixing the additive constant so that the
average h1(0) of h over the unit circle is zero [Varl7, Section 2.1.1]. The law of the whole-plane GFF is
invariant under deterministic complex affine transformations of C, modulo additive constant. That is, if
a € C\ {0} and b € C, then

h(a - +b) — hig (b) £ h. (2.10)

In the few instances where we refer to the whole-plane GFF in this sense, we always write explicitly that we
are considering it modulo additive constant.

Remark 2.7. We close our discussion of the planar GFF with a brief discussion of the free-boundary GFF
on the upper half-plane H = {z : Imz > 0}, which will be relevant in Section 2.5.4. This is a random
distribution A on H which has the law of (h(z)+ h(Z))/2 where h is a whole-plane GFF; it can be rigorously
defined as a centered Gaussian process indexed by signed Borel measures in M which are supported on H,
with Cov(h(p1), h(p2)) = JaxulG(z,w) + G(z,0)]p1(dz) p2(dw) where G is the whole-plane Green’s function
given in (2.8). For z € R and r > 0, we define h,(z) to be the paring h(\,,) where )., is the uniform
probability measure on the semicircle 9B, (z) NH. Define }~LH (2) == h(z) — fz‘z‘ (0) be the projection of h onto
the space of functions that have average zero on all semi-circles centered at the origin (“lateral part”). Then,
similarly to Lemma 2.6, the semicircle averages {h,.(0)},>o and the lateral part BH are independent [DMS21,
Lemma 4.2].

2.3 LQG metric axioms

Due to its variational formulation, it is difficult to work with the definition (1.6) of the LQG metric. The
axiomatic characterization of the LQG metric given in [GM21c] is often a more tractable means of studying
the LQG metric.

Before we state the LQG metric axioms, we recall the following definitions regarding metric spaces. Let
(X, D) be a metric space. A curve in X is a continuous function P : [a,b] — X. The D-length of P is

7|
len(P; D) = sup > D(P(ti_1), P(t;)) (2.11)
T =
where the supremum is over all partitions T': a = tg < t; < --- <ty =b. For Y C X, the internal metric
of D on'Y is defined as
Y _ )
DY (z,y) = Igrclg len(P; D) (2.12)



where the infimum is over all paths P in Y from x to y.

We say that (X, D) is a length space if for each z,y € X and e > 0, there exists a curve P in X from z to y
with len(P; D) < D(z,y) + . We say that a metric D is continuous metric on an open domain U C C if it
induces the Euclidean topology on U. In the following, we equip the space of continuous metrics on U with
the local uniform topology for functions U x U — [0, 00).

Definition 2.8. For v € (0,2), a v-LQG metric is a Borel measurable function h + Dj, from the space of
distributions on C to the space of the continuous metrics on C such that the following are true whenever h
is a whole-plane GFF plus a continuous function. Here, @) and & are constants defined in (1.11).

I. Length space. (C, Dy,) is almost surely a length space. That is, the Dj-distance between any two points
in C is the infimum over the Dy-lengths of curves between these two points.

IT. Locality. Let U C C be a deterministic set. Then the internal metric D}(L] is almost surely determined
by (cf. Section 1.3) the restriction k.2

III. Weyl scaling. For a continuous function f : C — R, define

len(P;Dy,)
(e - Dp)(z,w) ;= inf SFEO) gt vz, w e C (2.13)
P:x—y Jq
where the infimum is over all curves from z to w parameterized by Djp-length. The following holds
almost surely: we have Dy, = eff . Dy, for every continuous function f : C — R.

IV. Coordinate change for translation and scaling. For each fixed deterministic 7 > 0 and z € C, almost
surely
Dp(ru+ 2,70+ 2) = Dp(rg2)+Qlogr(u,v)  Vu,v € C. (2.14)

In [GM21c], it was shown that the random metric defined in (1.6) using LFPP is a v-LQG metric as in
the sense of the above definition, and each v-LQG metric is a deterministic constant multiple of it. Hence,
it makes sense to refer to (1.6) as the v-LQG metric. The paper [DFG'20] contains an extensive list of
estimates for the LQG metric deduced from the axiomatic definition, which we introduce as necessary.

Finally, we refer the reader to [GM20a, Remark 1.2] for the definition of the v-LQG metric on a proper
subdomain of C.

2.4 Quantum surfaces

Recall from (1.11) that @ = 2/v + v/2. Consider the pair (U, h) where U C C is an open set and h is a
distribution on U. A 7y-quantum surface (or a v-LQG surface) is an equivalence class of such pairs where
(U, h) ~ (U, h) if there exists a conformal transformation ¢ : U — U such that

h=hoo¢+Qlog|d| (2.15)

An embedding of a quantum surface is a choice of representative (U, h) from the equivalence class.

We often consider quantum surfaces with additional structures. As before, let U C C be an open set and
h be a distribution on U. Let z1,...,2; be points in U. A vy-quantum surface with k marked points is an
equivalence class of the tuples (U, h, z1, ..., z) where (U, h, z1,...,2) ~ (U, h,Z1,..., Zy) if there exists a
conformal transformation ¢ : U — U such that z; = ¢(3;) for j = 1,...,k in addition to (2.15). If 7 is
a curve in U, then a curve-decorated ~y-quantum surface is an equivalence class of triples (U,h,n) where
(U,h,n) ~ (U, h, 7j) if there exists a conformal transformation ¢ : U — U such that n = ¢ o 7] in addition to

(2.15). We define a curve-decorated v-quantum surface with k marked points by combining these definitions.

2The restriction h|y of the whole-plane GFF h to U can be defined precisely as the process {(h, p)},crm,, where the index
set My comprises signed Borel measures p € M (recall Section 2.2) with supp(p) C U.



The equivalence relation (2.15) of a y-LQG surface is chosen so that the 7-LQG measure and metric transform
naturally between different embeddings of the same quantum surface. Suppose h is a GFF plus a continuous
function on an open set U C C.3 Let ¢ : U — U be a fixed conformal transformation. It was established in
[DS11] that, almost surely,

1in(A) = fhoptQlog o (07 (A))  for every Borel A C U (2.16)
and in [GM21Db] that, almost surely,

Dp(2,w) = Dpogigiog|er| (¢ (2), ¢ (w)) for every z,w € U. (2.17)

While not sufficiently emphasized in the early literature on LQG, it is necessary to include random conformal
transformations in the definition of quantum surfaces to be able to compare their laws under a canonical
embedding rule. For instance, there are uncountably many ways to embed a quantum surface with the disk
topology into the unit disk D if it is unmarked or has only one or two marked boundary points. To specify a
canonical embedding, we need to use information about the GFF. This requires a random conformal change
of coordinates since the field is random.

Nevertheless, this random change in coordinates does not present an issue for the LQG measure. The
following theorem implies that if ¢ is the random conformal transformation that maps a given embedding
(U, h) of a quantum surface to its canonical embedding (U, /~1), then it is a.s. the case that the LQG measure
u7, is well-defined and equal to the pushforward measure ¢, uy,.

Theorem 2.9 ([SW16, Theorem 1.4]). Let U C C be a simply connected domain and h be a GFF plus a
continuous function on U. Let A be the collection of all conformal maps ¢ : U — U where U C C is any
simply connected domain. It is almost surely the case that for all ¢ € A, the measures ppop+Qiog|¢r| aTE
well-defined and the transformation rule (2.16) holds simultaneously for all ¢ € A.

2.4.1 Coordinate change for random translation and scaling

An analog of Theorem 2.9 for the LQG metric is expected to be true but has not yet been established. (After
the acceptance of this article, it was proven in [Dev23] that, almost surely, (2.17) holds for all complex affine
transformations simultaneously.) In the following two lemmas, we show that the transformation rule (2.17)
holds almost surely for a certain subset of random conformal maps from C to itself. These are random
translations (Lemma 2.10) and random scalings where the scaling factor is almost surely determined by the
circle average part of the field (Lemma 2.11). These correspond exactly to the random transformations that
determine a canonical embedding, which appears in the continuum mating-of-trees theory, which we present
in the next section.

Lemma 2.10. Suppose h is a whole-plane GFF plus a continuous function and z € C is any random point
(not necessarily independent from h). If h(-+2) has the law of a whole-plane GFF plus a continuous function,
then, almost surely,

Dp(42)(u,v) = Dp(u+ 2,0+ 2)  for all u,v € C. (2.18)

Proof. Denote h := h(- + z). Let € > 0 and suppose P : [0,1] — R is a piecewise continuously differentiable
path. Letting P(t) := P(t) + z, almost surely,

1 1 - .
/ 2 (PW) | P (1)) it = / 2P| P (1) dit (2.19)
0 0

for all such paths P. From the definition (1.4) of the e-LFPP metric, almost surely, D5 (u,v) = Dj (u+2z,v+%)
for all u,v € C. Since the rescaled e-LFPP metric aZ! D5 converges in probability with respect to the local

3We say that a random distribution h on an open subset U C C is a GFF plus a continuous function if it can be coupled
with a random continuous function f : U — C such that h — f has the law of a zero-boundary GFF on U (or a whole-plane
GFF if U = C). Note the definition of the whole-plane GFF plus a continuous function above Theorem 1.1.
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uniform topology on C x C to Dp, [GM21c, Theorem 1.1}, so does u;lDZ. If his a whole-plane GFF plus a
continuous function, then the LQG metric Dj, is the limit. O

We remark that we can use (2.18) to define Dj,(.,.) even when h(-+2) does not have the law of a whole-plane
GFF plus a continuous function.

As for random scaling, we only consider the case for which the scaling factor r is measurable with respect
to the circle average part of the field (recall the discussion just above Lemma 2.6).

Lemma 2.11. Let h be a whole-plane GFF plus a continuous function whose circle average and lateral parts
are independent (by Lemma 2.6; this is the case for the whole-plane GFF). If r > 0 is a random scaling
factor which is almost surely determined by the circle average part of h, then almost surely

Dy (ru,7v) = Dpyry4Qlogr(u,v)  Vu,v € C. (2.20)

Proof. Let us denote the circle average part and the lateral part of h as h*® and h'?*, respectively. Let heir be
an independent and identically distributed copy of h®™, which is also independent of h'2t. Let h := heirey plat,
which is a whole-plane GFF plus a continuous function independent of A", Let f = h — h = heire — peire,
From Lemma 2.5, t ~— h,—+(0) and ¢ — h.—(0) are independent random continuous functions on R. Hence,
f is almost surely a continuous function on C \ {0}.

We claim that the Weyl scaling axiom holds for f even though it may be discontinuous at 0. That is, almost

surely,
Dy =¢ - D; (2.21)

as random continuous metrics on C. To make sense of the right-hand side, we first define €%/ - D; between
points in C\ {0} as in (2.13) except that we take the infimum over all curves that stay in C\ {0}. We then
extend e&f - D; to a continuous metric on all of C if possible; this is how the LQG metric is defined for a
field with logarithmic singularities in the discussion preceding [DFG'20, Theorem 1.10]. Since Dy, is a.s. a
continuous length metric on C, it suffices to check that, almost surely, the Dj-lengths and the &/ -Dj-lengths
agree for all curves in C\ {0}. For ¢ > 0, let fs5 be a random function which is almost surely continuous on C
and agrees with f on C\ B;(0). By the locality axiom, almost surely, the Dp-lengths and the Dj, 7,-lengths
agree for all curves in C\ B;(0). By the Weyl scaling axiom, Dj, 5= ests . D;, almost surely. Letting § — 0
proves the claim.

By the same reasoning, Dy (r)1Qlogr = eSf ). D}_z(r-)+Q log almost surely. Since r > 0 is independent of i~L,

by the coordinate change axiom (2.14) for deterministic scaling, we almost surely have
Dy, (ru,mv) = Dy () 4 0 10g (0, 0)  Vu,v € C. (2.22)
The lemma now follows by combining (2.21) and (2.22). O

It is straightforward to check that Lemmas 2.10 and 2.11 are also valid when h is equal to a whole-plane
GFF plus a continuous function plus a finite number of logarithmic singularities of the form —«alog| - —z]
for z € C and o < Q. In particular, they can be applied to a y-quantum cone.

2.5 Mating-of-trees theory

The continuum mating-of-trees theorem is the central tool we utilize in this paper. We first review the setup
for the theorem, in particular the definitions and properties of the y-quantum cone and the whole-plane
space-filling SLE,, curve. We state the mating-of-trees theorem afterward.
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2.5.1 Quantum cone

In the previous section, we discussed that for some quantum surfaces, we must use information about the field
to define a canonical embedding of the surface. In this paper, we consider doubly-marked quantum surfaces
parameterized by the Riemann sphere: i.e., those with embeddings of the form (C, h,0,00). Fixing the two
marked points at 0 and co gives an embedding of the quantum surface that is unique only up to scaling.
One choice of canonical embedding for such a quantum surface is called the circle average embedding.

Definition 2.12. We say that an embedding (C,h,0,00) of a doubly-marked v-LQG surface is a circle
average embedding if
sup{r > 0: h,(0) + Qlogr =0} =1 (2.23)

where h,(0) is the circle average of h on 0B,(0).

That is, given an embedding (C, h, z,00) of a 7-LQG surface where one marked point is at z € C and the
other marked point is at oo, the circle average embedding of this LQG surface is (C, h(R-—z)+Qlog R, 0, 00)
where

R :=sup{r > 0: h.(z) + Qlogr = 0}. (2.24)

From the perspective of circle average embedding, the quantum surface induced by a whole-plane GFF is
unnatural in that it does not satisfy scale invariance. That is, if h is a whole-plane GFF and C is a nonzero
constant, the circle average embeddings of (C, h,0,00) and (C, h+ C,0,00) do not agree in law. The natural
scale-invariant analog of such a surface is called the quantum cone.

Definition 2.13. Let {A;}+cr be a real-valued stochastic process with the following distribution.

e Fort <0, A, = E,t + ~t where {Es}szo is a standard Brownian motion with f?o = 0 conditioned so
that Bs + (Q —)s > 0 for every s > 0.

e For t > 0, A, = By +~t where {B;}>0 is a standard Brownian motion with By = 0 that is sampled
independently of {Bs}s>0.

A v-quantum cone is a doubly-marked quantum surface whose circle average embedding (C, h7,0,00) has
the following law.

e The circle average process t — hz,t(()) has the same law as the process A.
e The lateral part h? — hrI(O) of b7 agrees in law with the lateral part of a whole-plane GFF.

e The circle average and the lateral parts of A" are independent.

A ~-quantum cone has the following scale invariance property.

Proposition 2.14 ([DMS21, Proposition 4.13(i)]). Let (C,h7,0,00) be the circle average embedding of a
~v-quantum cone. Let C be a real constant. Then the quantum surfaces represented by (C,h7,0,00) and
(C,hY + C,0,00) agree in law. That is, let

Re :=sup{r: h)(0) + Qlogr + C =0} (2.25)

so that (C,h"(Rc+) + Qlog R + C,0,00) is the circle average embedding of the v-LQG surface represented
by (C,hY + C,0,00). Then b % hY(Rc+) + Qlog Re + C.

Since jipv4c = €€ pup~, this property means that the law of a y-quantum cone is invariant under scaling its
LQG measure by a positive constant. Similarly, the fact that Dy~ 0/, = €4¢ Dy~ implies that the law of a
quantum cone is invariant under scaling its LQG metric by a constant. Note that the spatial scaling factor
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(2.25) is a random variable that depends on the circle averages of hY. Hence, it is only due to Lemma 2.11
that the scale invariance of the quantum cone extends to the LQG metric.

Another reason to consider the «-quantum cone is that it is the v-LQG surface one obtains by starting with
a generic 7-LQG surface, choosing a marked point on it from the 7-LQG measure, and then “zooming in”
near the marked point. More precisely, we have the following lemma, which is helpful for transferring results
about a whole-plane GFF to a «-quantum cone and is used in Section 4.1.

Lemma 2.15. Let dh denote the law of a whole-plane GFF with hy(0) = 0. Let let (z,h) be a pair sampled
from the probability measure Z 11p(2)un(dz)dh where Z = E[uy(D)] is the normalization constant. Then,
the field under the circle average embedding of the quantum surface (C,h + C,z,00) — i.e., h(R¢-) +
Qlog Rc + C where R is defined as in (2.25) — converges locally in total variation distance as C — oo to
hY, the field of the ~v-quantum cone under circle average embedding.

Proof. By [DMS21, Lemma A.10], we can sample (z, h) from Z~'1p(2)up,(dz)dh by first sampling (2, h) from
Z1p(z)dzdh, then letting h = h—~ylog |- —z|+~log max(|-|,1). Conditioned on z € D, the field under the
circle average embedding of (C, h+C,z, 00) converges locally in total variation distance to hY as C' — oo as
in [DMS21, Proposition 4.13(ii)]. It follows that the desired convergence also holds without conditioning on
z. O

2.5.2 Space-filling SLE

The whole-plane space-filling SLE,s curve from oo to oo, defined for ' > 4, is a random space-filling
continuous curve which intersects itself but does not cross itself. Such a curve was initially constructed for
the chordal version (0 to co in H) in [MS17, Theorem 1.16], and extended to the whole-plane version from oo
to oo in [DMS21, Footnote 4]. We refer to these sources and [GHS, Section 3.6] for more detailed descriptions
of the curve. Here, we summarize the construction and structure of the space-filling SLE curve as given in
these references.

The space-filling SLE,/ curve is defined in terms of flow lines, which are SLE;¢,,/-type curves coupled with
a GFF introduced in the context of imaginary geometry [MS16, MS17]. In particular, the whole-plane
space-filling SLE,/ curve is the Peano curve tracing between dual space-filling trees formed by flow lines.

Here is the detailed construction. Let x = 16/k’. Starting from a whole-plane GFF h, for each z € C
and € € R, we can define the flow line starting from z with angle 6 as a random curve a.s. determined by
h with the law of a whole-plane SLE, (2 — k) curve from z to oo [MS17, Theorems 1.4]. We consider the
angles £75; denote the flow line starting from z with angle £5 as n¥, and orient the flow line from z to
0o. For every z,w € C, almost surely, n} and 1} merge and so do 7, and 7,,. Moreover, for each z € C,
nt and 5, almost surely do not cross each other [MS17, Theorem 1.7]. Thus, given a dense countable
subset {z;};en of C, the unions of flow lines {njj }jen and {n; };en form dual trees rooted at co with leaves
{#;}jen [MS17, Theorem 1.10]. To define concretely the Peano curve between these dual trees, define a total
order on {z;}jen by saying that z; comes before zj if 2 lies in the connected component of C \ (nj; U 17;])
whose boundary consists of the left side of n, and the right side of njj (when orienting these flow lines
from z; to co). There almost surely exists a unique space-filling curve n which traces the points {z;},en in
this order, which is visualized in Figure 1. The curve 7 is continuous when parameterized by the Lebesgue
measure on C. Moreover, 7 almost surely does not depend on the choice of the dense countable set {z;};en;
it is a measurable function of the GFF which generates the flow lines [MS17, Theorem 1.16]. This 7 is the
whole-plane space-filling SLE,/ curve from oo to co. Here are a few basic properties of this curve following
from the definition, which were collected in [GHS, Section 3.6.4].

e For each fixed z € C, almost surely, n visits z only once. If z = n(t), then dn(—oo,t] = Inft,o0) =
+ —_
n; Un, .

e Let n be parameterized by Lebesgue measure with 7(0) = 0. Then % : ¢ +— n(—t) has the same law as
1. This property is referred to as reversibility.
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Figure 1: Definition of whole-plane space-filling SLE. Almost surely, the flow lines {772; }jen and {n_ }jen
each merge to form two trees. The flow lines in this illustration determine the ordering z; < z3 < z3, the
order in which the space-filling SLE curve 7 visits these three points. In particular, 7 fills the four colored
regions in the order (a)—(b)—(c)—(d).

e Let ¢ be a deterministic conformal transformation of the Riemann sphere C U {oo} which fixes occ.
That is, ¢ is a composition of scaling, rotation, and translation. Then ¢ o 7 has the same law as 1 up
to reparameterization.

e For k' > 8, (—00,0] and 71[0,c) are both homeomorphic to the closed half-plane H. Note that
ny Ung = n(—o00,0] N n[0,00). Conditioned on n; Ung, the conditional law of 1| ) is that of a
chordal SLE, curve from 0 to oo in 7[0,00), and the conditional law of the time reversal of 7|(_. 0
is that of a chordal SLE, curve from 0 to co in n(—oc, 0]. Moreover, the two curves are conditionally
independent given 1, Ung . See also [DMS21, Footnote 4].

e For k' € (4,8), the interiors of 1(—o0, 0] and 1[0, o) are both infinite chains of Jordan domains. Again
1 Ung = n(—00,0]Nn[0, 00). Conditioned on ng Ung, the curve ][ ) and the time reversal of n|(_ ]
are conditionally independent concatenations of chordal SLE, curves in the connected components of
1[0, 00) and 7(—00, 0], respectively. The two curves are conditionally independent given n; Ung. See
also [DMS21, Footnote 4].

The following proposition states that every segment of a whole-plane space-filling SLE,: curve contains a
Euclidean ball of comparable size with high probability. In [GHM20], this estimate was used to show that n
parameterized according to the Lebesgue measure is locally Hélder continuous with any exponent less than
1/2 and is not locally Hélder continuous with any exponent greater than 1/2 with respect to the Euclidean
metric (cf. Theorem 1.4). This is a key estimate in the proof of Theorem 1.1.

Proposition 2.16 ([GHM?20, Proposition 3.4 and Remark 3.9]). Fiz k" > 4 and let 1) be a whole-plane space-
filling SLE,; curve from oo to co. For eachr € (0,1) and R > 0, the following happens with superpolynomially
high probability ase — 0: for each & € (0,¢] and every a < b such that nla,b] C Br(0) and diamn[a,b] > §17",
the set nla,b] contains a Euclidean ball of radius at least §.

2.5.3 Translation and scale invariance of quantum cone decorated with space-filling SLE

Let v € (0,2) and &’ € (4,00). Let (C,h7,0,00,m) be the circle average embedding of a y-quantum cone
decorated by an independent whole-plane space-filling SLE, curve n from co to co. Reparameterize n by
the 7-LQG measure pj-. That is, 7(0) = 0 and pp+([s,t]) = t — s for all s < t.* This is the default
parameterization of 7 that we consider in the rest of this paper.

4The a.s. continuity of the reparameterized curve follows from Proposition 2.16 combined with the fact that every bounded
open subset of C a.s. has positive pp~-mass.
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We already saw in Proposition 2.14 that the circle average embedding of a y-quantum cone is invariant
under adding a deterministic constant to the field. This operation also preserves the law of the independent
space-filling SLE,/ curve n decorating the quantum cone.

Lemma 2.17. For each fized constant C € R, the circle average embedding of (C,hY + C/~,0,00,1n(e“"))
agrees in law with (C,h7,0,00,7).

Proof. Let R¢ be as in (2.25), so that for h = h'(Rec+) + Qlog Re + C/7, the circle average embedding
of (C,hY + C/~,0,00,7) is ((C,iz,O,oo,Raln). Recall from proposition 2.14 that & 2 B7. Since 7 modulo
reparameterization is independent from A7, it is also independent from Ro. By the scale invariance of
whole-plane space-filling SLE,/ (see previous section), Raln modulo reparameterization agrees in law with n
modulo reparameterization and is independent of i. Therefore, the joint law of (/~1, Raln) agrees with that of
(hY,n) with the curves viewed modulo reparameterization. Since p;, = eC lup~ (Re+), the pj,-parameterization
of R;'n is given by Rz'n(e“"). O

Another important property of (C,h”,0,00,7n) is that for each fixed ¢t € R, the law of the circle average
embedding is invariant under re-centering this quantum surface at n(t) (i.e., translating by —n(t)).

Lemma 2.18 ([DMS21, Lemma 8.3]). The law of (C,h7,0,00,7n) as a path-decorated quantum surface is
invariant under shifting a fized amount of v-LQG area. That is, for each t € R, the circle average embedding
of (C,hY,n(t),00,n(-+1t)) agrees in law with (C,h7,0,00,7).

We emphasize that Lemmas 2.17 and 2.18 hold for any v € (0,2) and ' > 4, including when &’ # 16/~2.
The key fact behind both the proof of Lemma 2.17 presented above and the proof of Lemma 2.18 in [DMS21]
is Lemma 2.15, which implies that we get a y-quantum cone if we zoom in at a point sampled according to
the v-LQG measure on a space-filling SLE/. curve 7. The only property of n used here is that it is almost
surely a continuous space-filling curve. With the additional property that the law of 7 is scale-invariant, we
have that the law of 7 is preserved when zooming in according to an independent field. Both properties are
true regardless of the value of k¥ > 4. (The condition k" = 16/4? is necessary to identify the law of 7(—oo, t]
and n[t,c0) as independent quantum surfaces for each t € R; see Proposition 2.22.)

Notice that both lemmas state the invariance in law of the circle average embedding of a path-decorated
quantum surface (either after adding a constant to the field or re-centering the quantum cone). In our
applications of these results, we consider the laws of random variables defined almost surely in terms of
the pointed curve-decorated metric measure space structure of these quantum surfaces: e.g., Ne(n[s, t]; Dp~)
where s < t are fixed numbers. The scaling and stationarity properties of such random variables do not
follow trivially from Lemmas 2.17 and 2.18 because mapping one embedding of a quantum surface to its
circle average embedding involves a random scaling factor that is determined by the circle average part of
the field. Nevertheless, we can use Lemmas 2.10 and 2.11 to translate Lemmas 2.17 and 2.18 in terms of the
laws of pointed curve-decorated metric measure spaces.

Remark 2.19. Consider the equivalence relation on pointed curve-decorated metric measure spaces where
(X, z,d,pu,m) ~ (X', 2',d', i, n') if there exists an isometry f : X — X’ such that f(x) =2/, fap = 1, and
fon=r1". We identify a pointed curve-decorated metric measure space with the equivalence class that it
belongs to. The pointed Gromov-Hausdorff-Prokhorov—uniform (GHPU) metric introduced in [GM17] is a
natural choice of metric on the space of above equivalence classes of noncompact pointed curve-decorated
metric measure spaces. The precise definition of this metric is not essential for our purposes; instead, we
will only need the corresponding Borel o-algebra.

Let h and h be two instances of whole-plane GFF plus a continuous function, and let n and 7 be random

continuous space-filling curves. Suppose (h,n) 4 (ﬁ, 7)) with respect to the product of the following two
topologies: the weak-* topology for distributions on C with respect to smooth and compactly supported test
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functions®, and the local uniform topology on functions C — C. Note that py, is almost surely determined
by h [DS11, RV14] and Dy, is a.s. determined by h [GM21c]; analogous statements hold for h, p;,, and Dj,.
Hence, if 7 (resp. 7) is parameterized by pp, (resp. p;) and 7(0) = 7(0) a.s., then (Dp, pn,n) 4 (Ds, p7,, 1)
with respect to the product of the local uniform topology on functions C x C — R, the weak-* topology on
signed Borel measures on C, and the local uniform topology on functions R — C. It is straightforward to
check from the definition of the local GHPU metric that the following map is continuous: the map from the
tuple (d, 1, n) of a continuous metric, a signed Borel measure, and a continuous curve whose space is assigned
the above product topology, to the pointed curve-decorated metric measure space (C,0,d, u, ) whose space

is assigned the local GHPU topology. Therefore, (C,0, Dy, pn, 1) £ (C,0, Dj, pj,, 1) w.r.t. the local GHPU
topology. This conclusion continues to hold when h has finitely many singularities of the form —alog|- —z|
with @ < @ since Dy, is almost surely a continuous metric determined by i [DFG™20, Theorem 1.10]. (For
a > @, almost surely, Dy, (z,w) = oo for every w € C\ {z}.)

Proposition 2.20. Let (C,h7,0,00,n) be a y-quantum cone in the circle average embedding that is decorated
with an independent whole-plane space-filling SLE,, curve, which is then parameterized so that n(0) = 0 and
wnv(nla, b)) = b—a for every a < b. The following statements hold w.r.t the local GHPU topology on pointed
curve-decorated metric measure spaces.

(i) For each fized s > 0,
d
(Ca 07 Sl/d’y D}L'V y SHAY 77(5)) = (Ca 07 Dh"f y Bhs 77) (226)

(i) For each fized t € R,
((Cv n(t)a Dy, Koy 77( + t)) i ((Ca 0, Dp~ y Ry 77) (227)

Proof. Given a conformal map ¢ : C' — C and an embedding (C, h,z, 00,n) of a path-decorated quantum
surface, denote

¢uhi=ho¢ "+ Qlog|(¢~")| (2.28)
and
¢*(C,h7$a00a77) = (C7¢*h7¢(x)?ooa¢on) (229)

That is, ¢.(C,0,00,h,n) is the pushforward of the embedding (C,0, 00, h,n) under ¢ using (2.15). For a
continuous metric d on C and a Borel measure p on C, denote their pushforwards under ¢ as ¢.d and ¢, pu,
respectively.

(i) Let s > 0 be fixed and denote h := kY + (log s)/7. Let r := Riogs be defined as in (2.25) and define
¢ : C — C by ¢(2) = r71z so that ¢.(C,h,0,00,71(s")) is the circle average embedding. Setting

C =logs in Lemma 2.17 gives (C, $.h, 0,0, pon(s)) 4 (C,h7,0,00,m). As discussed in Remark 2.19,
this implies
d
((C’ 0’ Dtb*l:u’ /j‘tb*ﬁ? ¢ © 77(8)) = ((Cv 07 Dh“’ y Y 77) (230)
w.r.t. the local GHPU topology.

Since r is a.s. determined by the circle average part of l~1, Lemma 2.11 implies D buh = ¢.D; almost
surely. By Theorem 2.9, u buh = ¢+ (p7,) almost surely. Hence,

((C, 0, D¢*;L, M(b*il’ q5 o 77(8)) = ((C7 07 ¢*Dﬁ7 ¢*Mﬁ7 ¢ o n(S))
= (C,0, Dy,, uz,, m(s)) (2.31)
= (C,0,8"% Dy, spune,m(s+))

almost surely as pointed curve-decorated metric measure spaces. We obtain (2.26) by combining (2.30)
and (2.31).

5This is equivalent to the topology corresponding to considering the whole-plane GFF as a stochastic process indexed by
signed Borel measures M (recall Section 2.2) by Itd’s isometry for the GFF [BP, Section 1.7].
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(ii) The proof is similar to part (i). Let ¢ € R be fixed. Let 7 > 0 be the random constant such that
the circle average embedding of (C, k", n(t), 0o, n(- +t)) is its pushforward under ¢(z) := r(z — n(t)).

Lemma 2.18 gives (C, ¢.h",0,00,p0on(- + 1)) 4 (C,h7,0,00,7), which implies

(Ca 07D¢*h'ya ,utb*h'“gzs © 7]( + t)) i ((Ca Oa Dh’Y7/~‘Lh’Y7n) (232)

w.r.t. the local GHPU topology.

Since r is a.s. determined by the circle average part of h7(- 4+ n(t)), Lemmas 2.10 and 2.11 imply
Dy pv = ¢« Dy~ almost surely. (It follows from the proof of Lemma 2.18 in [DMS21] that A7 (- + n(t))
is a whole-plane GFF plus a continuous function plus —vlog|-|.) By Theorem 2.9, pig.nv = Gupin
almost surely. Hence,

(C,0,Dg s prg.nrs@on(-+1) = (C,0,0.Dpr, dupin, ¢ on(- + 1))

(2.33)
= (C,n(t), Dy, v, m(- + 1))

almost surely as pointed curve-decorated metric measure spaces. We obtain (2.27) by combining (2.32)
and (2.33). O

From Proposition 2.20, we immediately obtain the following stationarity and scaling result for the number
of LQG metric balls needed to cover a space-filling SLE, segment.

Corollary 2.21. Let (C,h7,0,00,7) be as in Proposition 2.20. For any s > 0,t € R, and e > 0,

d d
No(nt,t + s]; Dpv) = Ne(n[0, s]; Dy ) = N_g-1/a, (9]0, 1]; Dp~). (2.34)

2.5.4 Mating-of-trees theorem

The above results are valid for any choices of vy € (0,2) and &’ > 4. In contrast, the following independence
property requires an exact relation between v and «’. As in Proposition 2.20, let (C, h",0, 00, n) be the circle
average embedding of a y-quantum cone decorated with an independent whole-plane space-filling SLE,;
curve, which is then parameterized so that 1(0) = 0 and up~(nfa,b]) = b — a for every a < b.

Proposition 2.22 ([DMS21, Theorem 1.9]). Suppose v’ = 16/+4%. Denote the interiors of 1n(—oo,0]
and n[0,00) as U_- and U, respectively. Then the v-LQG surfaces represented by (U—_, h7|y_,0,00) and
(U4, W7\, ,0,00) are independent and identically distributed quantum surfaces called 3T'Y-quantwn wedges

(also known as quantum wedges with weight 2 — 'Y;)

As in Lemmas 2.17 and 2.18, what Proposition 2.22 means is that the fields under the canonical embeddings
of (U_,h"|y_,0,00) and (U, h7|y, ,0,00) as described in [DMS21, Sections 4.2 and 4.4] are independent and
identically distributed. Likewise, we can rephrase this statement in terms of curve-decorated metric measure
spaces, stated precisely in Proposition 2.23. The key idea is that canonical embedding of a 3%—quauntum
wedge is defined in terms of the field average, similarly to the circle average embedding of a quantum cone.
The subtlety lies in choosing the correct topology for the %—quantum wedge considered as a metric measure
space. Once this is done, we can extend Lemma 2.11 to show that the LQG metric is preserved when we
reparameterize the quantum wedge to its canonical embedding.

Below, we introduce the precise definition of the 3%—quantum wedge and its canonical embedding as well
as the topology on the metric measure space necessary to establish Proposition 2.23, but we only need the
proposition itself for the proofs of our main results. Upon first reading, we suggest that the reader skip to

the statement of Proposition 2.23.

Recall from Section 2.5.2 the two regimes for the topology of U depending on the value of y. For v € (0,v/2],
the two domains Ui are each almost surely homeomorphic to the upper half plane H. The canonical
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embedding of the 2Y-quantum wedge in this case is (I, h,0, 00) where sup{r > 0: h,(0) + Qlogr = 0} = 1,
similar to Definition 2.12 of the circle average embedding of a quantum cone. Under this embedding, the
Gaussian field h for the 37”’—quahntum cone has the following law defined in terms of the semicircle averages
and the lateral part (recall Remark 2.7).

e The semicircle average process t — h,—:(0) has the same law as the following process A.

— Fort <0, Ay = §_2t+3§t where {§3}320 is a standard Brownian motion with §0 = 0 conditioned
so that By, + (Q — 31)s > 0 for every s > 0.

— Fort > 0, A, = By + B%t where {B;}s>0 is a standard Brownian motion with By = 0 that is
sampled independently of {gs}szo.

e The lateral part h — hy.|(0) of h agrees in law with the lateral part of a free-boundary GFF on H.

e The semicircle average and the lateral parts of h are independent.

When v € (v/2,2), a 37’*—quantum wedge is a concatenation of countably many connected components, each of
which is a quantum disk (i.e., a simply connected quantum surface) with two marked points on its boundary.
They are attached to other components via their marked points. We call each component of this quantum
wedge a bead, and a quantum surface with the same topology as the quantum wedge a beaded quantum
surface. In the setup of Proposition 2.22; the space-filling SLE,, curve n fills up one component of the
domain UL at a time, inducing a chronological order on them. We define the canonical embedding of the
3T'Y—quauntum cone in this regime by specifying the embedding of each component. We embed each bead to
(H, h,0,00) so that h,.(0) 4+ Qlog r achieves its maximum at r = 1.° Under this embedding, the %—quantum
wedge has the following law.

1. Sample a Poisson point process A with intensity measure du ® dh, where du is the Lebesgue measure
on (0,00) and dh is an infinite measure on distributions on H with the following description.

o Let de be the probability measure on the space of distributions on H corresponding to the Gaussian
field h sampled in the following way.
— The semicircle average process t — ile—t(()) has the same law as the following process A.
x Fort <0, A; = E,gt + %”t where {Es}szo is a standard Brownian motion with ﬁo =0
conditioned so that By + (Q — 21)s > 0 for every s > 0.
x Fort > 0, Ay = Bo; + S%t where {B;}s>0 is a standard Brownian motion with By = 0
that is sampled independently of {gs}szO-
— The lateral part h — }~L|,|(0) of h agrees in law with the lateral part of a free-boundary GFF
on H.
— The semicircle average and the lateral parts of h are independent.

e Sample (m,h) from the infinite law m=47dm ® dh, where dm is the Lebesgue measure on
QO, 00). Then, dh agrees with the infinite law of the distribution h = h+(2/7) log m. Here, the sum
h+(2/7) log m refers to the distribution on H obtained by adding the constant function (2/v) log m
to the distribution h. The number (2/)logm corresponds to the value of the semicircle average
h1(0) under the canonical embedding described above.

2. To each point (u, h) in the p.p.p. A, correspond to it the quantum surface (H, h, 0, 00). We concatenate

these components according to the first coordinate w in increasing order to sample the %—quantum
wedge. They are concatenated at the marked points 0 and oo so that removing the point corresponding
to 0 (resp. co) of the component (u, h) € A disconnects it from all components (u',h') € A with v’ < u

(resp. u < u’).

6We cannot use the circle average embedding because hr(0) + Qlogr — —oo almost surely as r — 0 and as 7 — co. The
canonical embedding in [DMS21, Section 4.4] is given on the strip R + [0, i7]; to avoid introducing additional notations, we give
an equivalent description under the LQG coordinate change rule corresponding to the conformal map z — e*.
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We deduce from these definitions that reparameterizing the 37”—c1uantu1fn wedge appearing in Proposition 2.22

by its canonical embedding preserves the LQG metric. First, we map the quantum wedge (or its bead)
conformally to H, sending the two marked points to 0 and co. We can choose this conformal map only using
the flow lines that cut out the quantum wedge, which then preserves the LQG metric a.s. because these flow
lines are independent of the quantum wedge (recall (2.17)). Now, we merely need to scale each component by
a random factor that is almost surely determined by the semicircle averages of the field. Since the semicircle
average part of the quantum wedge is a continuous function that is independent of the lateral part, we can
apply the Weyl scaling axiom as in the proof of Lemma 2.11 to conclude that the LQG metric is preserved
under this scaling.

Therefore, we can restate Proposition 2.22 in the language of random curve-decorated measure metric spaces
as below. We omit a detailed proof, which is analogous to that of Proposition 2.20 except for the additional
consideration that conditioned on n(—o00,0] N[0, 00) = ng Ung , the curve 1y o) and the time reversal of
7|(~0,0] are conditionally independent and identically distributed (as discussed in Section 2.5.2). Recall that
DY denotes the internal metric on U, which was defined in (2.12).

Proposition 2.23. Let v’ = 16/7? and Uy be as in Proposition 2.22. Then the random curve-decorated
metric measure spaces represented by (U_,D}[LJJ,uhﬂUf,n\(,oo,o}) and (U+,ng,uhw\U+,n|[0,oo)) are inde-
pendent and identically distributed.

Remark 2.24. When v € (0,v/2], the 3T'Y—quauntum wedge decorated with an independent space-filling
SLE curve is simply connected. Hence, it is measurable with respect to the Borel o-algebra generated
by the pointed Gromov—Hausdorff-Prokhorov—uniform topology pointed at 0. (The LQG metric extends
continuously to the boundary of the quantum wedge [HM22, Proposition 1.6].) We use this o-algebra in the
above proposition as we did for the quantum cone in Proposition 2.20.

We require an alternative o-algebra for v € (\/5, 2), since the 3T'Y—quauntum wedge is a beaded surface in this
regime. The different beads lie at an infinite distance from each other by the definition of the internal metric.
We use the Borel o-algebra with respect to the following metric topology on the space of equivalence classes
of curve-decorated beaded metric measure spaces (with the property that the curve enters the beads in
chronological order and does not re-enter any bead after entering a subsequent bead) modulo measure-and-
curve-preserving isometries. It is given by an extension of the Prokhorov—uniform metric on curve-decorated
beaded domains defined in [GM21a, Section 2.2.5], where we use the GHPU metric instead.

1. Let MSHPU he the space of equivalence classes of compact metric measure spaces decorated with a
continuous curve modulo measure-preserving, curve-preserving isometries. Let dSHPY be the GHPU
metric on MYHPV defined in [GM17, Section 1.3].

2. Given a curve-decorated beaded metric measure space S, for t > 0, let K; € MSHPU be the bead of S
with the property that the sum of the measures of the previous beads (not including the bead itself) is
at least ¢, equipped with the curve restricted to this bead. We view K as a function [0, c0) — MS@HPU
defined for almost every ¢. to it a function K : [0,00) — MSHPU defined as

3. Let MGHEU be the set of all Borel measurable functions K : [0, 00) — MSHEU which are defined almost

everywhere. Define a metric on MGHEU by

dSHPU (K K) = / et (1 A dCHPY (I, /Et)) dt. (2.35)
0
Observe that the total contribution to dgggU of beads of LQG measure less than ¢ is bounded and tends to
zero as € — 0.

When 72 = k = 16/x’, define the process {L;}ter (resp. {R;}ier) to be the change in the left (resp. right)
quantum boundary length of n(—oo,t] with respect to 0. Here is the precise construction of this process.
Recall the countable dense set of points {zx }ren that we used to define the whole-plane space-filling SLE,;
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L; = vp~(brown) —

R = vpy (purple) — vy~ (green)

Figure 2: Tllustration of the quantum boundary length process (L, R) when ' > 8 (left) and <’ € (4,8)
(right). Suppose z;, = 7(t), where t > 0. The left (resp. right) boundary of 7(—o0,0], i.e., the flow line 7
(resp. 1 ), is the union of red and orange (resp. green and blue) curves. The left (resp. right) boundary of
n(—o0,t], i.e., the flow line nf (resp. 7 ), is the union of red and brown (resp. purple and blue) curves.

curve 1. If zj, = 1(t), then the left (resp. right) boundary of (—oo, t] is nf, (resp. n;, ), which is an SLE,-type
curve. Given a GFF-type field A and an independent SLE,-type curve 7, we can define the v-LQG length
measure vy, on 7 [DS11, Shel6, Benl8]. The quantum length of the entire flow line njk is infinite, but it a.s.
merges with 77, so it makes sense to define the difference L; between the quantum boundary lengths of 77;‘;
and n(}L as illustrated in Figure 2. R, is defined analogously using 7., and 7, . A priori, this defines the
processes L and R on a countable dense subset of (random) times ¢.

The following main theorem of mating-of-trees theory states that, almost surely, the processes L and R can
be continuously extended to all real times and that they together give a complete description of the quantum
surface (C,h7,0,00,7). The term mating-of-trees comes from the observation that the collections of flow
lines {n}.cc and {n] }.cc are trees that we can “mate” to obtain the curve-decorated quantum surface

(7, m).

Theorem 2.25 ([DMS21, Theorems 1.9 and 1.11), [GHMS17]). Let (C,h7,0,00,n) be the circle average
embedding of a vy-quantum cone decorated by an independent space-filling SLE. curve, which is then re-
paremeterized according to the v-LQG measure pp~. Let Ly (resp. Ri) denote the v-LQG length vy~ of
the left (resp. right) boundary of n(—oo,t] minus that of n(—o0,0]. Then (L,R) evolves as a correlated
two-dimensional Brownian motion. In particular, there is a non-random constant a > 0 such that

4
Var(L;) = alt|, Var(R;) =alt|, and Cov(Ly, Ry) = —acos </§) [t| for teR. (2.36)

Moreover, the pair (L, R) almost surely determines both hY and n up to a rigid rotation of C about the origin.

2.6 Proof strategy

For the proof of Theorem 1.1, we consider the configuration (C,h7,0,00,7) of a y-quantum cone decorated
with an independent whole-plane space-filling SLE,, where s’ = 16/92. The proof follows the following
outline.

1. In Section 3, we prove that {b7 "N (n[s, t}; Duv)}ec(o,1) s tight for each s < t using estimates for the

space-filling SLE and the LQG metric. Hence, the infinite-dimensional random vector (b ' N, (n[s, t]; Dy~ ) :
s,t € Q,s < t) has a weak subsequential limit. Denote it as (X4 : s <1).
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2. In Section 4.1, we show that X[, ; is additive: i.e., X, = X[, 4+ X5, a.s. for every rational r < s < .
Hence, we can define a “Minkowski content process” {Y; }seq where X, 4 = Y; —Y;. Roughly speaking,
this step holds because the Minkowski dimension of 9ns, t] is less than d.,.

3. In Section 4.2, we prove that {Y;}+cq can be extended a continuous process on R with independent and
stationary increments. We also show that X[, =Y; — Y5 > 0 a.s. for every s < ¢t. By Blumenthal’s
zero-one law, a strictly increasing Brownian motion cannot be random. Thus, ¢ — Y; must be a
deterministic linear function.

4. Our choice (1.8) of b. ensures that the slope of Y} is exactly 1. Any subsequence of b N.(n[s, t]; Dy~ )
has a further subsequence which converges weakly to t — s, so lim._,o bZ 1 N.(n[s,t]; Dpy) = t — s in
probability (Proposition 4.3).

5. In Section 5, we extend to general sets and other GFF-type fields.

We remark that our proof is similar in a superficial sense to Le Gall’s proof in [LG22] that the volume
measure on the Brownian sphere m,, is a Hausdorff measure. In his proof, Le Gall considers the natural
projection map p : [0, 1] — m,, and computes the Hausdorff measures of segments pls, ¢] of this space-filling
curve. However, the curve p is distinct from the space-filing SLE,, curve n appearing in our proof, and
correspondingly, the two proofs use a different set of tools (Brownian snake vs. mating-of-trees).

As for the possibility of constructing the v-LQG measure as a Hausdorff measure for general v € (0,2), a
key step in such a construction would be to identify the suitable gauge function. This comes down to finding
an up-to-constant estimate for the volume of LQG metric balls for general v € (0,2). In [LG22], Le Gall
proves the estimate Vol(B,(x)) = O(h(r)) as r — 0 for the Brownian sphere, where h(r) = rloglog(1/r);
from this estimate, h(r) is identified as the correct gauge function. On the other hand, for general v € (0, 2),
the best available estimate for the v-LQG volume of v-LQG metric balls is from [AFS20], which states
pn(Br(z:Dy)) = rto() as - — 0, (We have used this fact extensively in our paper.) Le Gall’s proof of the
up-to-constant metric ball volume estimate strongly relies on the Brownian snake encoding of the Brownian
sphere; currently, we do not have an alternative method to improve the estimate for general ~.

3 Tightness of Minkowski content approximations

Let (C,h",0,00) be the circle average embedding of a y-quantum cone and let 7 be an independent whole-
plane space-filling SLE,/ curve from oo to co. Let 1 be parameterized by up~. As discussed in Section 2.1,
we use

. d .
il_rg%s " N:(n[s, t]; D) (3.1)

as an ansatz for the Minkowski content of 7[s, t] with respect to the v-LQG metric Dp~. The first step is to
show that this limit exists along subsequences.

The goal of this section is to show that for each fixed s < ¢, the family of random variables

{e N (nls, t]; Dh2)}ee(0.1) (3.2)

is tight, so that a subsequential limit in distribution exists for ¢4 N_(n[s,t]; Dp~) as ¢ — 0. Moreover, the
tightness of (3.2) is also used to show b. < % (Corollary 4.2); this is why we first use %+ in (3.1) rather
than b, as in the statement of Theorem 1.1.

Remark. All results in this section hold for any fixed v € (0,2) and " € (4,00), even when v2 # 16/x’.
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3.1 Exit time of space-filling SLE from an LQG metric ball

The key estimate in showing the tightness of (3.2) is an upper bound for the probability that the Dj--
diameter of a space-filling SLE,, segment 7[s,t] is large (Proposition 3.12). More precisely, we prove an
equivalent estimate, which is an upper bound for the probability that the exit time

71 = inf{t > 0:n(t) ¢ B1(0; Dp~)} (3.3)
is small.
Proposition 3.1. The lower tail of the exit time T is superpolynomially small. That is, for each p > 0,

P{r <e}=o0(s?) ase—0". (3.4)

The key input for the proof of Proposition 3.1 is the following relation between the LQG distance and the
circle averages of GFF. Recall that £ = v/d,, is the y-dependent factor which appears in the definition (1.4)
of the LQG metric.

Lemma 3.2 ([DFG™20, Proposition 3.15]). Let h be a whole-plane GFF normalized so that h1(0) = 0. Then,
with superpoynomially high probability as C — oo, at a rate which is uniform in the choice of z € C\ {0},

oo

D105 1(0, 2; By (0)) < C’/ .

(eghefta))fs(czfv)t i esh,t<z>fsczt) dt. (3.5)
—log 5+

Let us first give a heuristic argument for Proposition 3.1. To begin, B (0; Dy~) is macroscopic with high
probability (i.e., it has constant-order Euclidean diameter). Since Dy~ (0,7(71)) = 1, there has to be some not
too small 7 > 0 such that either h,.(0) or h,.(n(71)) is large, along the lines of Lemma 3.2. By Proposition 2.16,
1[0, 7] N B,-(0) and 7n[0, 7] N B,.(n(r1)) each contain a macroscopic Euclidean ball. By comparing the
LQG volumes of these Euclidean balls with €779 and e (1(7))we conclude that with high probability,
71 = ppy (N[0, 71]) cannot be too small.

There are three main points in making this heuristic rigorous. First, the laws of kY and h — vlog]| - | agree
only when restricted to the unit disk D). To this end, we analyze

Te :=inf{t > 0: n(t) € B(0; Dp~)} (3.6)

instead of 7y, because B.(0; Dy~) C D with increasingly high probability as e — 0. Observe from Proposi-
tion 2.20 that for each £ > 0,

e, (3.7)

Second, the point z in Lemma 3.2 has to be deterministic, whereas the point 7(7;) is random. The idea to
get around this issue is to take a union bound over z € DNe*Z? for a large constant s and show that there is
some point in DN e*Z? which is close to n(7.) in both Euclidean and LQG distances. Third, we can compare
vy (Br(w)) and h,(w) only for fixed w and r. We again need to take a union bound over Euclidean balls
B, (w), polynomially many in ¢, that are possibly contained in 5[0, 71].

Proof of Proposition 3.1. If we show that 7. = pup~ (1[0, 7.]) > %! with superpolynomially high probability
as € — 0, then the proposition follows by (3.7).

Below, we describe an event consisting of six steps on which pp~ (1[0, 7.]) > % 1. These events are stated
using constants 0 < a < b <s, 0 < N <s—1b, ¢ €(0,1), and g > 2. Eventually, these constants will be
chosen in terms of a single constant p > 0, which we will eventually allow to be arbitrarily large. We shall
then verify that the stated event holds with probability 1 — O(E”/ 3) as e — 0 using the lemmas stated and
proven just after the main body of the proof.

Throughout, h refers to the field Y + ylog| - |, whose restriction to the unit disk agrees in law with the
corresponding restriction of a whole-plane GFF.
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“ 1[0, 7] ’

Figure 3: Proof of Proposition 3.1. Let h = h" ++log|-| and p > 0. The constants a, b, s, N, ¢, ¢ are defined
in (3.14) and (3.15) in terms of p. (a) Step 1: With probability 1 — O(eP/3), the boundary of B.(0; Dy~) is
contained within the Euclidean annulus Be.(0)\ B.+(0). In particular, e < |n(.)| < €. (b) Step 2: With
probability 1 — O(eP~9/¢), there exists z € e°Z? for which |n(7.) — z| < €% and Dp~(n(7.), 2) < €/2. Let
ko = |—1log(]z|/2)] and ki = ko + Nloge~!. Conditioned on the previous events, with superpolynomially
high probability, at least one of the following two cases holds. (c) Steps 3 and 4, Case 1: There exists
an integer k € [ko, k1] such that yh.—«(0) > 4(Q — )k + (dy + 5)loge. For this k, there exists a Euclidean
ball B,-«a+o (w) contained in the intersection of 7[0,7.] and B,—x(0) \ B.-x-1(0) with w € e *(1+072,
(d) Steps 3 and 4, Case 2: There exists an integer k € [ko, k1] such that vh,—x(2) > vQk + (d, + %) loge.
For this k, there exists a Euclidean ball B, xa+¢) (w) contained in the intersection of [0, 7.] and B.-«(2) \
B,-x-1(z) with w € e *(1+9)7Z2, Steps 5 and 6 (not visualized): We obtain a lower bound of i~ (B,.(w))
in terms of h,.(w), which we compare with either h,-»(0) (Case 1) or h.-x(z) (Case 2). For sufficiently large
p, on the event that all of the previous conditions hold, 7. > pp~ (B,(w)) > %1 By (3.7), this implies
P{r > e} =1— O(eP) for any given p > 0.
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1. The points which lie at Dp~-distance € from the origin — i.e., OB:(0; Dpv) — are within the Euclidean
annulus Bea(0)\ B.(0). In particular, e < |n(t.)| < e®. (Figure 3(a))

2. For & < |n(7.)| < €%, there exists a point z € €572 satisfying € < |z| < & which is close to n(t.)
in both Euclidean and LQG distances: |n(7e) — z| < &° and Dp~(n(7e),2) < /2 precisely. The latter
condition implies Dy~ (0, 2) > /2 since Dp~(0,n(7:)) = €. (Figure 3(b))

3. Given the point z found in the previous step, let ko = |—log(|z|/2)|. There exists an integer k €
[ko, ko + N loge™1] such that at least one of the circle averages ho—«(0) or ho—«(z) is bounded below in
terms of the logarithm of the LQG distance Dp~(0,2). Specifically, at least one of the following two
cases s true.

e Case 1: There exists k € [ko, ko + N loge™1] such that
ek > 95 Q=R (D, (0, 2)) (3.8)
e Case 2: There exists k € [ko, ko + N loge™1] such that
eMher (@) > 9 g3 1Rk (Dy, (0,2)) " (3.9)
Since Dp~(0,2) > /2 by our choice of z, we have
eYhe—+(0) > eV QVkedy 5 n Cuse 1, eYhe—r(2) > e1@kcdyts  n Cuse 2.
4. Given the integer k found in the previous step, let r = e ¥4 There exists a point w € rZ? such
that:

o In Case 1, Br(w) C n[0,7:] N (Be-+(0) \ Be—r-1(0)). (Figure 3(c))
e In Case 2, B.(w) Cn[0,7.] N (Be-x(2) \ Be—+-1(2)). (Figure 3(d))

5. For z, k, and w as in the previous three steps, we have the following comparison of circle averages.

e Case 1: |h.(w) — ho—«(0)| < kqC. Therefore, (@) > ¢1(Q=7=aC)gdy+3
o Case 2: |hy(w) — he—r(2)| < kqC. Therefore, ehr(®) > e¥(Q=aC) pedrts

6. The LQG measure of the Euclidean ball B,.(w) is bounded below by

pin (B (w)) > e371Qerhr(w), (3.10)

These are the six steps comprising the event on which 7. > e%+! with the choice of constants stated below
((3.14) and (3.15)). Let us first verify that on the stated event, we have the correct lower bound on 7.
as claimed. We begin by substituting the lower bound for h,(w) claimed in Step 5 into (3.10). Recall
r=e 140 and hY = h — ylog| - |.

e Case 1: Since B, (w) C B,—«(0), we have pp~ (B, (w)) > €y, (B, (w)). Hence,
pn (Bp(w)) > € Fpup (B (w)) > € Fed (e7H1+0)1Qe1(Q=ra¢) e+ (3.11)
e Case 2: Since B.(w) C D, we have pp~ (Br(w)) > pp(Br(w)). Hence,

fin (Br(w)) > pun(By(w)) > €5 (e FIHO )R (Q—aC) fedrts (3.12)
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Collecting exponents, we conclude in both cases that

7o > pin (Bp(w)) > ebrtie1(Qta)dk, (3.13)

We now set

1
a:%xpfl, b:ﬁxp, s<2+62272Q_2)bxp (3.14)

where < means equality up to y-dependent multiplicative constants when p is large. We also choose

6s _ _
N=41+;\/€pXP1/2, q=N"=p"? (=N1"xp (3.15)
Note that s —b > b = ﬁ > N for sufficiently large p. Since we only consider k < (b+ N)loge™! =
O(N?%loge™1!) in Step 3,
e~ @tk 5 LONTY) 5 (1/3 (3.16)

for all 0 < e < 1/2 given that p is sufficiently large. Hence, the lower bound for 7. from (3.13) satisfies

7. > e ti e QFaCk > dytl (3.17)

for all large p.

It remains to estimate the probability of the above event. We compute this probability step-by-step given
the constants in (3.14) and (3.15).

1. In Lemma 3.4, we show that for sufficiently large p, Step 1 occurs with probability 1 — O(eP/3) as
e —0.

2. In Lemma 3.5, we show that given our choices of a, b, and s, truncated on the event £* < |n(r.)| < &%,
the probability that Step 2 fails is bounded above by O(eP~%/¢) as ¢ — 0.

3. In Lemma 3.6, we show that for each fixed z € By,4(0) \ {0}, Step 3 occurs with superpolynomially
high probability as e — 0 at a rate uniform in the choice of z. A union bound over O(e~2%)-many
points of z € 372 with £ < |z| < €% gives a superpolynomially high probability for this step.

4. Consider € > 0 sufficiently small so that €* < isb"’N (this holds for all small enough ¢ since we chose
our parameters so that s > b+ N). If e® < |z| < & and n(7.) € Bes(2), then 1[0, 7.] N (B,-x(0) \
B,-1-1(0)) and n[0, 7.] N (Bg-r(2) \ Be-r-1(2)) are both nonempty and the Euclidean diameters of the
two intersections are at least e *~1. For the latter set, this is true because 1[0, 7.] is a connected set
and

7(0) =0 ¢ Byo—ro-1(2) and (1) € Bes(2) C Bo—ko+niog=—1(2),

where we used €° < Q%EHN < %{:‘N < e ko=1gN A similar argument works for the former set.

Hence, Proposition 2.16 implies that for each lattice point 2z € 572 N (B.a(0) \ B.(0)) and integer
k € [ko, ko + N loge~1], the following holds with superpolynomially high probability: on the event that
N(7e) € Bes(z), the sets n[0, 7] N (Be-#(0) \ Be-+-1(0)) and [0, 7] N (Be-#(2) \ Be-x-1(2)) each contain
a Euclidean ball of radius e~ *+D(+5) For sufficiently small & (hence sufficiently large ko), we can
always find within each of these Euclidean balls a smaller Euclidean ball B, (w) where 7 = ¢~ *(1+0)
and w € rZ?. Now take a union bound over all such pairs (z, k). The number of these pairs is at most
some negative power of €, so Step 4 holds with superpolynomially high probability in e.

5. In Lemma 3.7, we show that given an integer kg > 2, for each

z€e’ZN{zeC: |z € (26 F 71 2¢7 0]}, (3.18)
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the following event holds with probability 1 — O(e_(q2/ 2=2)¢ko): the comparisons in Step 5 hold for all
possible choices of k and w. There are O(s~2*¢?¥0)-many points z satisfying (3.18) for each positive
integer kq. Since |z| € [¢%,¢°] and ko = | —log(|z|/2)], we only need to consider kq satisfying aloge™! +
log(2/e) < ko < bloge™! + log?2. Taking a union bound over these kg and z, Step 5 holds with
probability

[bloge™1] R
1— O Z 572862k067(q2/272)ck0 —-1— O <€(((122)C2)a28) (319)
ko=|aloge—1]

provided that (% —2)¢ —2 > 0. The constants g and ¢ chosen in (3.15) satisfy this condition for all
sufficiently large p. Moreover, with the further choice of constants ¢ and s in (3.14), the error term
in (3.19) satisfies

1-0 (5“‘22)“)”8) >1-0 (5”74‘1*25) > 10?3, (3.20)

6. In Lemma 3.8, we show that for each possible choice of z, k, and w, Step 6 holds with superpolynomially
high probability as € — 0 with rate uniform over all such choices. Now take a union bound over these
z, k, and w, of which there are only polynomially many in €.

To summarize, the probabilities of the events we truncate on each step are:
e Steps 1 and 5: 1 — O(eP/3);
e Step 2: 1 — O(eP~@/¢);
e Steps 3, 4, and 6: superpolynomially high in €.

Since the choice of p > 0 was arbitrary, we conclude that 7. > e®*! holds with superpolynomially high
probability in € as e — 0. ]

We now state and prove the lemmas used in the proof of Proposition 3.1, which are all based on standard LQG
estimates. First, we record a property of whole-plane GFF that we will use repeatedly. It is a straightforward
consequence of Lemmas 2.5 and 2.6.

Lemma 3.3 ([DG21, Lemma 3.4]). Let h be a whole-plane GFF normalized so that hi(0) = 0. For each
deterministic r > 0, the field (h — h,(0))|p, 0y is independent from the circle average h.,.(0).

The following lemma calculates the probability of the event {e* < |n(7.)| < %} appearing in Step 1.

Lemma 3.4. Let B.(0; Dy~ ) be the LQG metric ball of radius € and B,.(0) be the Euclidean ball of radius r,
both centered at the origin.

(i) For each p > 0, there exists a constant C, > 0 depending only on p such that for every e,r € (0,1),
P {B.(0; Dy+) C B,(0)} > 1 — CpePr—(@-Ep=380", (3.21)
In particular, for each sufficiently large p, as € — 0,
P {B.(0; Dy+) C B.ijezp) (0)} > 1 — Cpe?/27 @71/ =1 — O(eP/3). (3.22)

(ii) There exists a constant C > 0 such that for every e € (0,1) and r € (0,3),

P{B,(0) C B.(0; Dy )} > 1 — Ce™ “e 97, (3.23)
In particular, for each sufficiently large p, as € — 0,
P{B_,/-2(0) C B-(0; Dp»)} > 1 — CeP/27Q@0/E =1 — O(P/3). (3.24)
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Proof. Let h refer to the field Y 4+ ylog| - |, whose restriction to D agrees in law with the corresponding
restriction of a whole-plane GFF.

(i) If B.(0; Dpv) ¢ B, (0), then Dy~ (0,0B,-(0)) < €. By the Markov inequality,
P{B.(0; Dy~) ¢ B(0)} <P{Dp~(0,0B,.(0)) < e} <ePE |(Dp~(0,0B,(0))) "] . (3.25)

By the Weyl scaling and locality properties of the LQG metric, e=¢"+() D, (0,0B,(0)) is a.s. de-
termined by (h — h,(0))|p, (o), which is independent of h,.(0) by Lemma 3.3. By this independence,
[DFG 20, Proposition 3.12], and the fact that h,(0) ~ N(0,log(1/r)), there exists a constant C},, > 0
such that

E [ (Di: (0,0B,(0))) ]

— ,0-Qér g [e—spmo)} E [(rﬁ(vQ)eﬁhr(O) Dy (0, 8Br(0))) ‘p} (3.26)
< Cpr(@Er—3%%

(ii) Let 0 < u < (% — 1)dy. If B.(0) ¢ B:(0;Dpv), then sup,ep, o) Pnr(0,w) > €, which implies
SUPye B, (0) for(o) (0,w) > e. (Recall the definition (2.12) of the internal metric.) From [DFG™20,

Proposition 3.17], there exists a constant éu > (0 depending only on u such that

weB,.(0)

E l((QT)ﬁQ)ﬁegh”(o) sup DBQT(O)(O,w)> 1 < C,. (3.27)

From the independence of hy.(0) and (h — ho.(0))|p,, o) (Lemma 3.3) and the fact that hg.(0) ~
N(0,log(1/(2r))), we have

u
IP’{ sup DB'”(O) (0,w) > 5} <e'E [( sup DBQT(O) (07w)> ]

w€B,-(0) w€ B, (0)
=c 'R {((27")((277)566}1%(0))“} E || (2r)0=@Ee=ch2r () gup DB”(O)(O, w) (329
we B (0)
S (2u6u)€_uT(Q_7)5u_%€2uz.
We obtain the lemma by choosing u = %(Q —5) = %(,;% —1)d,. O

The following lemma computes the probability of the event in Step 2, in which we find a point z on the
lattice £5Z2 which is close to n(7.) in both Euclidean and LQG distances. Again, recall the definition of the
internal metric in (2.12).

Lemma 3.5. Suppose 0 < a < b are given. For s > b, let E. s be the event that for all z € €572 with
eb < |z| < &%, we have

sup  DE2 (2 w) < £, (3.29)
wEB.s () 2
Then, as e — 0,
2
P(E. ) = 1—O(\F D52, (3.30)
Proof. Recall the notation h = hY + vlog| - |. Consider a fixed z € £°Z? with e* < |z| < &* for now. For
£ > 0 is small enough that |z| — 2% > & — 2¢% > £b/2, by the Weyl scaling axiom, we have
sup D2 (zw) < (2] = 22%)7 sup D (z,w)
wEB,s (z) wEBs (z)
s ) (3.31)
< () sup D, (2 (z,w).
2 wEB.s ()
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Let p € (0,4d,/ 7?). By Lemma 3.3 and the translation invariance of the law of the whole-plane GFF modulo
the additive constant as in (2.10), e~&h2=(2) SUPye B (2) kas(z)(z,w) is independent of hocs(z). By this

independence and the fact that hoes(z) ~ N(0,log(2e°)), we have

p Baes (2) £ Baes (2) e[\
sup D7 (z,w)>§ <P sup D, (z,w)>§ 5

wWEB.s (z) wEBs (z)

91+&y )p [( Bows (2) P
<|=——— ] E sup D,V z,w) ]
(5“5”’ weB.s(z) (zw)

Lieo P » (3.32)
2 K s s(z p s\ — — s(z Baes
= (€1+£7b) E [((25 )nggh% ( )) ]E[((?s ) £Qp—¢haes (2) sup D,” (Z)(z,w)> }
wWEB.s (z)
21+&y )p 102 2 B p
_ 98)EQp—1€%p EK 9e5)~€Qe—¢har () qup PP (5 4y > }
(EHW’ (2% (27 wEB.s (2) h (z,0)
By [DFG™20, Proposition 3.9], there exists a constant C, > 0 depending only on p and ~ such that
P
P
E l((%s)_é@e_fh"’fs(z) sup Df%é(z)(z,w)) < C). (3.33)
weBE(z)

By plugging this into the previous inequality, we get that there exists another constant 5,, > 0 depending
only on p and ~ such that

P sup DI (g ) > S < 0 ep(-1-ebHeQs—58%m), (3.34)
weBE(z) 2
The constant ép does not depend on the choice of z € B.a(0) \ B.»(0). Choose p=Q/§ = (2+ l;)i—g < 4,%”.

—23)

The lemma follows by taking a union bound over O(¢~2%)-many points z € £°Z2 such that e® < |z| <e*. O

The following lemma is used in Step 3. This is the key step in the proof of Proposition 3.1, in which we
combine Lemma 3.2 with Dp~(0,7.) = € to find an integer k such that either h.—x(0) or h.—x(z) is large.

Lemma 3.6. Let N > 0 be given. Let z € By,4(0)\{0} be a fized point and let ko be the positive integer such
that 2e %01 < |z| < 2e~*0. Denote ky = |ko+NlogC| and h = h” +~log|-|. Then, with superpolynomially
high probability as C — oo, at a rate uniform over the choice of z, there exists an integer k € [ko, k1] such
that either

eVhe=k ) > =11 @Q@=Nk(DP (0, 2))b or e+ () > 0711k (DD (0, 2)) b, (3.35)

Proof. From Lemma 3.2, it holds with superpolynomially high probability as C — oo, at a rate which is
uniform in the choice of z € By,4(0) \ {0}, that

DP,(0,2) < D10, 2) < C/ . (efhe%o)—f@—”t + ef’%*t@—fo) dt. (3.36)
— log %
The main idea of the proof is to bound the above integral by a Riemann sum approximation.

By Lemma 2.5, ¢t — h.-:(2) is a standard Brownian motion for ¢ > ko given the initial value h,-x,(z). For
each integer k € [ko, k1 — 1], by the reflection principle,

(log ©)2

e 262
P< sup  |he—t(2) — he—r(2)] > E 1 logC p =0 | —nur— 3.37
{tewﬂ]l (2) = he-r(2)] g } log O (3.37)

28



as C' — o0o. The constant here is uniform over z and k. On the complementary event,
efhe—t()=EQt < Clpthe—+(2)=EQk  for all ¢ € [k, k + 1]. (3.38)
Since Q — v = (2/7) — (v/2) > 0, the same lower bound applies to the probability that
She=t (O=8@Q=1t < Cethe—t (=8@Q=F  for all ¢ € [k, k +1]. (3.39)

On the intersection of the events (3.38) and (3.39),
k41
/ (efhﬁ—t(o)—E(Q—’Y)t n esh,_,ft(z>—sc2t) at<C (esh,kw)—s(@—v)k + esh,k(a—st) . (3.40)
k

We now deal with the integral from k; to infinity. Since s — h,—s—1; (2) — ho—#; (2) for s > 0 is a standard
Brownian motion,

/Oo bl oty () g (D@5 gy 4 2 7 (3.41)
0 & e

where Z, is a Gamma random variable of index v [Duf90, Yor92]. That is, for ¢ > 0,

v—1_—s

P{Z, > c} = /Oo % ds. (3.42)

In particular, there exists a number u > 0 depending only on v such that

e3¢} 2
P {/ ebhe—t(2)—€Qt 4 < Cebhe—r1 (z)—EQlﬂ} —1_P {22? > gc} —-1-0 (e—uC) (3.43)
k1 £

as C' — oo with the rate uniform on z. Similarly,

2
P {/Oo eEPe—t(0)=E8Q-Nt 34 < Cebhe—r1 (Z)—E(Q—'Y)lﬂ} —1—P {ngw > 50}
N &2

iy 2 (3.44)

=1-0 (e_“c)

as C' — oo with the rate uniform on z.

Let u > 0 be a constant to be determined later. Now take a union bound over the events (3.38) and (3.39)
for all integers k € [ko, ko + ulN log C') as well as the events in (3.43) and (3.44). Recalling (3.36) and (3.40),
we find that with superpolynomially high probability as C' — oo, at a rate uniform in z,

o0

DP.(0,2) < C/

—log%

(eeh,f«o%s(@fv)t + eshefxz)fgczt) dt

ko+uN log C (3.45)
<> Y (eshfmm—s@—w)k + eshefk(a—gczk) .
k=ko

Given (3.45), there must exist an integer k € [ko, ko + uN log C] satisfying either

DP.(0,2)\* DY, (0,2)\"
Yhe—k(0) > (=2dy Q- [ Zhr Y Vhe—k(2) > =2dy QK [ Zh1 L . 3.46
‘ - ¢ (NlogC’) or e - ‘ NlogC (3.46)
We now let u = 3d, and replace C'in (3.46) by C 1/ For sufficiently large C, since N > 0 is a fixed constant,
the right hand sides of (3.46) are bounded below by C~'e"(@=V%(DP (0, 2))% and C~1e7?*(DP,(0,2))%,
respectively. Hence, the probability that there exists an integer k € [ko, ko + N log C] satisfying (3.35) is
bounded below by 1 — C?/* as C' — oo for every p > 0 as claimed. O

29



The final two lemmas are standard estimates on the circle averages of GFF and the LQG measure. In Step 5,
we obtain a lower bound on the circle average h,.(w) on the boundary of the Euclidean ball B,.(w) found in
Step 4. This is done by comparing h,(w) with either h,-(0) (Case 1) or h.-x(z) (Case 2) using the following
lemma.

Lemma 3.7. Let h be a whole-plane GFF normalized so that h1(0) = 0. Let ¢ € (0,1) and g > 2 be given
constants. Let z € Bo,—2(0) and denote kg = | —log(|z|/2)]. For all C > Cy(q,(), the following event is true
with probability 1 — O(e_(q2/2_2)<"”‘0), where the rate is otherwise uniform over all choices of z. For every
integer k > ko, writing r = e~ F(1+<);

(i) For every w € rZ? such that B,.(w) C B,—x(0)\ B.—+-1(0), we have

[y (w) = hy-(0)] < kac. (3.47)

(ii) For every w € rZ? such that B, (w) C Be-x(2) \ Be—x-1(z), we have
|hy (w) = he-1(2)] < kqC. (3.48)
Proof. [AFS20, Lemma 4.5] proves that the event (i) holds for every k > ko with probability
1-0 (Z e“(?—qz/?)) =1— O(e (@/2-2)Ckoy, (3.49)
k=ko

The random variable |h,(w) — h.-x(2)| depends on h viewed modulo additive constant. By the translation
invariance (2.10) of the law of the GFF modulo additive constant, it follows that (ii) also holds with the
same probability computed in (3.49) regardless of the choice of z. O

In Step 6, we give a lower bound on the LQG measure pp,(B,(w)) in terms of the circle average h,(w).

Lemma 3.8. Let h be a whole-plane GFF normalized so that hi(0) = 0. For each fized w € C and r > 0,
it holds with superpolynomially high probability as C — oo, with the rate uniform over w and r, that

pn (B (w)) > C~1p7Qerhr(w), (3.50)

Proof. The case when w = 0 and = 1 is a standard estimate for the LQG measure. See, e.g., [DS11,
Lemma 4.6] or [RV14, Theorem 2.12]. The case of a general w € C and r > 0 follows from the case when

w =0 and r = 1 since 7~ 7%e= "), (B, (w)) < 1r(B1(0)) due to the scale and translation invariance of
the law of h, (2.10), and the LQG coordinate change formula (2.16). O

3.2 Proof of tightness

From Proposition 3.1, we can not only deduce that (3.2) is tight, but also that it is uniformly bounded in LP
for every p > 1. This stronger result is necessary later, specifically for Proposition 4.9. Recall the notation
N.(A) = N.(A; Dp~) for the number of Dj~-balls of radius € needed to cover the set A.

Proposition 3.9. For every p > 1, there exists a constant C, < oo such that for every s < t,

sup  E[(e™ No(n[s,]))7] < Cplt — sIP.

0<e<|t—s|t/dv
In particular, for each fized s < t, the random variables €% N.(n[s,t]) for e € (0,1) are tight.

Proposition 3.9 is a consequence of the following lemma together with a scaling argument.
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Lemma 3.10. For each p > 1, the number of LQG balls of radius 1 needed to cover n[0,1] satisfies
E[(N1(n[0,1]))?] < o0. (3.51)

Proof. Let K be a positive integer. For each integer 0 < k < K, define the event

kE k+1
Clearly,
K-1
() Brx € {N:1(n[0,1]) < K}. (3.53)
k=0
By Proposition 2.20,
P(Ex.x) =P(Eo k) =P{m >1/K} for every k. (3.54)
Then 1
P{N1(n[0,1]) > K} < ]P’(E,E,K) =K -P{r <1/K}. (3.55)
k=0

By Proposition 3.1, it follows that P{N7(n[0,1]) > K} decays faster than any negative power of K as K — cc.
Therefore,

E[(N1(n[0,1]))!] < Y (K +1)” — K?) - P{N1(n[0,1]) > K} < oc. (3.56)
K=1

O

Proof of Proposition 3.9. It suffices to find a constant C,, < oo such that supy...; E[(e% N (1[0, 1])?] < C,.
Indeed, by Corollary 2.21,

sup  E[( Na(nls ())7] 2 [t — P ( sup_ El(u N, (1, 1]>P]) | (3.57)

0<e<|t—s|t/dv O<u<1

We thus restrict our attention to uniform LP-bounds for {e® N.(n[0,1])}o<e<1-
For each ¢ € (0,1),

e~
Ne(n[0,1]) < LZJ N (nlke®, (k +1)e™]). (3.58)
k=0
By Corollary 2.21, for every integer k,
N1 (nf0, 1]) £ Ne(nlke®, (k + 1)), (3.59)
Hence, by Jensen’s inequality,
le=®]
BN ADPT S 4 + 17 5 (VLG -+ D)) (3.60)

< (7 + 1PE[(N1(n[0, 1]))7)-

By Lemma 3.10, E[(N1(n[0, 1]))?] is a finite constant depending only on p and . Multiplying both sides
of (3.60) by e®P, we obtain E[(e% N.(n[0, 1]))?] < 2E[(N1 (5[0, 1]))?] =: C,. O
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3.3 Further LQG metric estimates for space-filling SLE

We record two consequences of Proposition 3.1, which we do not use elsewhere in this paper but are of
independent interest. We first show that for each s < t, the Dj~-diameter of n[s,t], which we denote by
diam(n[s, t]; Dp~), has finite positive moments of all orders. The other result is the first half of Theorem 1.4,
that for every exponent less than 1/d., the space-filling SLE,s curve 7 parameterized by g~ is almost surely
locally Hélder continuous with respect to Dp~.

For completeness, we also prove that all negative moments of diam(nl[s, t]; Dy~) are finite and that 7 is almost
surely not locally Holder continuous for exponents greater than 1/d,. These complementary results follow
from the following extension of Theorem 2.1 to the y-quantum cone.

Lemma 3.11. Let h” be the field of a v-quantum cone under the circle average embedding. For ¢ € (0,1)
and k > 1, there exists a constant Cy ¢ such that for all r € (0,1),

E[(pn (D N B, (0; D )))F] < Oy e, (3.61)

Moreover, for any compact set K C DD and ( > 0, we almost surely have that

Mh (D M B7(Z, Dh,'v))

e < 0. (3.62)

sup sup
re(0,1) zeK

Proof. Recall that if h is a whole-plane GFF with h;(0) = 0, then (h — vylog| - |)|p agrees in law with h7|p.
Hence, (3.61) follows from the proofs of [AFS20, Lemmas 3.16 and 3.18]. The proof of (3.62) from (3.61) is
analogous to that of (2.2) in [AFS20]. O

We now show that the Dp~-diameter of n[s, ¢] has finite moments of all orders.

Proposition 3.12. Let s < t. For each p € R, there exists a constant C, > 0 only depending on p such that
E[(diam(n[s. t]; Dp-))"] < Cplt — s[P/%. (3.63)

Proof. By Proposition 2.20, for each s < t,
diam(n|[s, t]; Dy~ ) L diam(n[0,¢ — s]; Dp~) < (t — s)Y/ 4 diam(n[0, 1]; Dpn). (3.64)

Hence, it suffices to show that E[(diam(n[0, 1]; Dj~))P] < oo for all p.

Suppose p > 0. For r > 0, let 7. be as in (3.6). Note that for r > 0, if 7. > 1 then 5[0,1] C B,(0; Dy~) and
hence diam(n[0, 1]; Dp~) < 27. By (3.7),

B(dian(4[0,1: Dpo))?) = [ Pldian(0. 1) Dy) 2 47) d
(3.65)

o o0
S / P{T(ml/p)/Q S 1}d.’1} = / P{T] S 2—d7xd,y/p} dm
0 0

This integral is finite since by Proposition 3.1, P{r; < 2~ % xd /P } decays superpolynomially as  — 0.
Now suppose p < 0. If diam(n[0, 1]; Dp~) < r, then pp~(B,(0; Dpv)) > 1. Then, by Proposition 2.20,

E[((diam(n[0,1]; Dy~ ))?] = /0ij P{((diam(n[0, 1]; Dp~))? > z} dx
_ /0 ~ P{diam(y[0, 1]; Dnn ) < £V} do < /0 T Bl (Byasn (0 D)) > 1} da (3.66)

o0

< 1+/ P{ i~ (D By (0; Dy )) > 1}dx+/ P{B,1/»(0; Dy-) ¢ D} da.
1 1
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From (3.61) and Lemma 3.4 (with » = 1/2, say, ¢ = #'/?, and k in place of p), for each & > 1 and each
¢ > 0, there are constants Cy ¢, C, > 0 such that for all x > 1,

P{1in (D N Byso (0; Dy ) > 1} < O cx®=9/Pand - P{B,1/,(0; Dy ) ¢ D} < Cha®/P. (3.67)
We conclude that the right-hand side of (3.66) is finite by choosing a sufficiently large k. O

Proposition 3.12 gives a quick proof of Theorem 1.4, on the Holder continuity of the whole-plane space-filling
SLE,s curve n with respect to the LQG metric Dj,~.

Proof of Theorem 1.4. Let us first show that almost surely, 7 is locally Holder continuous for any exponent
less than 1/d,. We proved in Proposition 3.12 that for each p > 0, there exists a constant C), > 0 such that
for all s < t,

E[(Dy- (n(s), n(1)))"] < El(diam(n[s, 1]; Dy~))"] < Cplt — s/ . (3.68)

The claim now follows from the Kolmogorov continuity theorem as we let p — 00.”

On the other hand, for every ¢ € (0,d,), Lemma 3.11 (plus the fact that 7 is parameterized by p,~-mass)
implies that there a.s. exists a random ¢, > 0 such that diam(n[s, t]; Dy~ ) > c¢(t—s5)1/(@ =9 for all s < ¢ such
that n[s,t] C D. In particular, n is almost surely not Holder continuous with exponent greater than 1/d, in
any neighborhood of 0. By Proposition 2.20, n is almost surely not Holder continuous with any exponent
greater than 1/d, in any neighborhood of ¢ € Q, and therefore not in any bounded open interval. O

4 Minkowski content of space-filling SLE segments

Remark. We assume k' = 16/7? throughout this section, as the results in this section rely on Proposi-
tion 2.23. Recall the shorthand N.(n[s,t]) = N¢(n[s, t]; D~ ).

We have shown in Proposition 3.9 that for each s < t, the random variables % N, (n[s, t]) admit subsequential
limits in law as € — 0. We need to rule out further the possibility that the subsequential limit is zero, which
is the purpose of Proposition 4.1. Unlike in many results regarding fractal dimensions, where the lower
bound is more difficult to prove than the upper bound, this proposition has a much shorter proof than
Proposition 3.9. This is thanks to the independence of the metric measure space structure on disjoint
space-filling SLE segments, which comes from Proposition 2.23.

Proposition 4.1. There exists a deterministic constant ¢ = c¢(v) > 0 such that

lim P{e™ N.(5[0,1]) > ¢} = 1. (4.1)

Proof. For r > 0, let p, be the probability that [0, 1] contains a Dj~-ball of radius r. By Proposition 2.16,
1[0, 1] almost surely contains a Euclidean ball, which in turn contains a Dj-ball since Dy, is a continuous
metric. Hence, p, — 1 as r — 0.

Fix r > 0 such that p, > 0. For this r, define for each positive integer n and integer k € [1,n] the event

k-1 k
E, . = {77 {, n] contains a Dj~-ball of radius rn_l/d”} . (4.2)

’ n
By Proposition 2.20, P(E, ;) = p, for every n and k. Furthermore, E, 1,...,E,, are independent by
Proposition 2.23. To see this, for fixed ¢t € R, define U;_ and Uy to be the interiors of n(—o0, t] and n[t, 00),

respectively. Then, E, j is almost surely determined by (Ut_,Dgﬁ’,uhﬂUL,n|(,m’t]) if ¢t > % and by

"The Kolmogorov continuity theorem is usually stated for a stochastic process X; taking values on a fixed metric space
(S, d). However, the Holder continuity part of the theorem merely requires that the real-valued random variables d(Xs, X¢) are
measurable and have appropriate uniform moments.
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(Ui, D;{ﬁﬂum |Ut+ s Mt,00)) i T < % These two curve-decorated metric measure spaces are independent
by Proposition 2.23 combined with the translation invariance of Proposition 2.20. Choosing ¢ = k/n, we see
that the random vectors (1g, ,,...,1g,,) and (1g,,.,,...,1g, ) are independent. Since this is true for
every k, we conclude that 1g .,1g, , are i.i.d. Bernoulli random variables with success probability p;.

n,10 "

We now argue that for every n,

n
Nrnfl/d"f (n[07 1]) Z Z 1En,k N (4'3)
k=1

Indeed, if >, _;1g,, = m, then there are distinct points z1,...,%y, € 7[0,1] such that Dp(z;, 2x) >
2rn =14 for every j # k. Such zj and zp cannot be within a single Djy~-ball of radius rn~ Y% so
N, -1/4,(n[0,1]) > m. Hence, (4.3) holds. By the law of large numbers,

r

lim P{n"'N,, 1/a,(n[0,1]) > p,} = 1. (4.4)

n—oo

Let € € (0,1) and set n. := [e~%]. Since N,.(n[0,1]) increases as ¢ decreases to 0,

Nrngl/d“f (W[Oa 1])

(re)® Nye (1[0, 1]) = 7 (nee®) (4.5)
nE
Since d., is positive, we have n.e% — 1 as e — 0. By combining this with (4.4) and (4.5), we get
lim P{ (€)% N, (1[0, 1]) > r%p,} = 1.
e—0
Since r is a constant which depends only on v, this implies (4.1) with ¢ = r%p,.. O

Another possibility that we have yet to rule out is that different subsequential limits of % N (n[s, t]) may
take different values. To this end, we replace the rescaling coefficients from =% to

be :=E[N:(n[0,1])] (4.6)

as introduced in (1.8), so that any subsequential limit of b-1N.(n[0,1]) has mean 1. Indeed, {b.}.~0 is a
sequence of d.-dimensional rescaling coefficients (recall Definition 2.2).

Corollary 4.2. There exists a deterministic constant C' > 0 such that for every e € (0,1),

Cle™h < b, < Ce,

The upper bound follows immediately from Proposition 3.9 and the lower bound from Proposition 4.1. Note
that this corollary is the first part of Proposition 1.3.

The following proposition is the main result of this section.

Proposition 4.3. Let k' = 16/v2. Then, for each fized s < t,
lin%) b-'N.(n[s,t]) =t —s in probability. (4.7)
E—r

Here is an overview of the proof of Proposition 4.3. Let

Io ={[s,t] : 5,6 € Q,s < t} (4.8)

be the collection of all closed intervals with rational endpoints. Suppose we are given an arbitrary sequence
of e-values decreasing to 0.

1. By Proposition 3.9, we can find a subsequence ¢,, for which the sequence of R¥2-valued random variables

(b2'N., (n(I)) : I € Iy) converges in distribution with respect to the product topology on R*e. Denote
this subsequential weak limit by (X : I € Zg).
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. We show in Proposition 4.6 that X7 is finitely additive: i.e., for each rational r < s <t, X}, g+ X5, =
Xir,y) almost surely. We are thus able to construct the “Minkowski content process” {Y;}+cq where
Y; = X0, (resp. —X[q)) for t > 0 (resp. t < 0), so that X, = Y; — Y, for every [s,1] € Zg.

. We show in Proposition 4.9 that {Y; }+c@ can be extended to a continuous process on R with independent
and stationary increments: i.e., a Brownian motion with drift.

. From Proposition 4.1, almost surely, Y, < Y; for all rational s < t. Hence, Y; = at for some deterministic
constant a > 0. In fact, a = 1 because we chose b, so that E[bZ1N.(n[0,1])] = 1 for every ¢ > 0.

. In conclusion, we have the following convergence in distribution:

lim b_'N., (n[s,t]) =t—s forall [s,t] € Ig

n—oo "
Since t — s is a deterministic constant, the convergence holds in probability. We started with an
arbitrary sequence of € decreasing to 0, so (4.7) holds for every rational s < ¢t. This extends to all real
s < t by the following simple observation: if [s1,%1] C [s2,t2], then Ng(n[s1,t1]) < N:(n]s2,ts]) for all
e > 0.

4.1 Finite additivity

Given a closed and bounded set A C C, for € > 0, define

0.A:={z2€ A:Dp+(2,0A) < e} (4.9)

to be the the intersection of A with the e-neighborhood of 0A in the LQG metric. Denote

N°(A) := N.(A\ 8. A). (4.10)

Note that every ball counted in N2(A) is centered at a point in the interior of A. Also,

NZ(A) < Ne(A) < N2(A) + Ne(9:-A). (4.11)

The following lemma is the main technical input in the proof of finite additivity.

Lemma 4.4. For each fized s < t,

111% e N_(0.n[s,t]) =0  almost surely. (4.12)
e—

Consequently,

lim e N.(n[s,t]) — D N2(n[s,t])| = 0  almost surely. (4.13)

e—0

We first explain how Lemma 4.4 implies that the Minkowski content is additive over finitely many disjoint
space-filling SLE segments, and then prove the lemma in the rest of the subsection. We need the following
classic result on weak convergence in the proof of finite additivity.

Lemma 4.5 ([Bil99, Theorems 2.7 and 3.1]). Suppose (S, d) is a metric space and (Yn, Zy) is a sequence

of S x S-valued Borel-measurable random variables. If Y, Y and d(Yn, Zn) L0 asn — oo, then
(Yo, Zn) -5 (V,Y).

Proposition 4.6 (Finite additivity). Suppose that for some sequence {e, }nen of positive numbers decreasing
to zero, (bZ' N, (n(1)) : I € Ig) converges weakly to (X1 : I € Ig) as n — oo. Then, for every rational
r < s <t, we have X}, g+ X5 = X} 1) almost surely.
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Proof. Assume that Lemma 4.4 holds. Then, by Corollary 4.2, we have
lim 62 N, (n(I)) —bZ"N2 (n(I))] =0 almost surely for all I € Zg. (4.14)
Combining this with Lemma 4.5, we obtain
(6N, (D)), b2 N2, (n(D))) < 1 € Tg) — (X1, Xp) s T € Tg) asn — oo. (4.15)

Let r < s < t be any triple of rationals. Fix € > 0 for now. Note that every metric ball counted in N2 (n]r,t])
has its center in n[r,¢]. The idea is to classify these balls based on whether their centers are in n[r, s] or
N[s,t]. Let m = N2(n[r,t]) and let z1,..., 2, € n[r, s], Zk+1,---,2m € n[s,t] be any collection of points such
that (JJ2, Be(zj; Do) covers nlr,t] \ Oenlr,t]. If j < k, then Be(zj; Dy ) N (nfs,t] \ Oenls,t]) = . Hence,
U;”:,Hl B.(zj; Dpv) covers ns,t] \ 0enls, t] and N2 (n[s,t]) < m — k. Similarly, N2(n[r, s]) < k. Therefore,

NZ(nlr, s]) + N2 (nls, t]) < N2 (nlr,t]) < Ne(nlr,t]) < Ne(nlr, s]) + Ne(n[s, t]). (4.16)

Since this inequality holds for every € > 0, we have from (4.15) that X, = X[, 5 + X|5 4 almost surely. [

We now begin the proof of Lemma 4.4. The first step in the proof of (4.12) is to show that the Minkowski
dimension of 9nls, t] is strictly less than d,. In fact, we prove that it is at most d, /2.

Lemma 4.7. For each fized s <t and 6 > d-/2,

lin}) SN (9n[s,t]) =0 almost surely. (4.17)
e—

Proof. By Proposition 2.20, for each s < t and ¢ > 0,
d
N:(0n[s,t]) = N_(;_g-17a, (9]0, 1]). (4.18)

Hence, it suffices to prove the lemma for [s,t] = [0, 1] only. To prove the lemma in this case, we will first use
Theorem 2.25 and an elementary Brownian motion estimate to bound the number of ¢ =% -length space-filling
SLE segments needed to cover 9n[0, 1]. We will then conclude by combining this bound with Proposition 3.9.

Without loss of generality, we may re-scale the LQG boundary length measure by a y-dependent constant
factor so that for the boundary length process (L, R) appearing in Theorem 2.25, the variance parameter a
equals 1. Let O and 0% denote the left and right boundaries of 1[0, 1], respectively. Further decompose 9
and 0 into

o8 :==07Nn(—o00,0] and 97 :=07Nn[l,c0) where g€ {L,R}. (4.19)

That is, in Figure 2 with ¢t = 1, the orange boundary corresponds to 9¥, the green boundary to 9%, the
brown boundary to ¥, and the purple boundary to 9%.

Let us first show that lim._.q £5N6(80L) = 0 almost surely. Let K be a positive integer, which shall be

determined later. Denote I, = [%, ’“;1}. We start with the following trivial inequality:
K—1 K—1
N(0g) < Y N0 (L)) < Y- 1oy (L) # 2} - Ne(n(ln))- (4.20)
k=0 k=0

We now consider the following geometric encoding of n by (L, R) described in [GHS, Section 4.2.3]: the
times ¢ € [0,1] such that n(t) € 9¢ (resp. Oft) are precisely those at which L; (resp. R;) attains a running
minimum. Recall that L; is a standard Brownian motion. A well-known result of P. Lévy states that the
process L; — ming<s<; L is a reflected Brownian motion, whereas the set {t € [0,1] : n(t) € 9%} has the law
of the zero set of Brownian motion on [0,1] (e.g., see [MP10, Theorem 2.34]). Then, by the arcsine law for
the last time that a Brownian motion B; changes sign, for any nonnegative integer k regardless of K,

k
P{OF Nn(I}) # @} =P{B; =0 for some t € I} = P {Bt =0 for some t € {]Hl’ 1} }
(4.21)
2 2
=1— Zarcsiny/ —— =1 — = arctan Vk.
7T k+1 7r
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For p > 1, by Hélder’s inequality followed by Corollary 2.21 and (4.21),

K-1
_1 1
E[N(05)] < > P05 Nn(lx) #2)' "7 - E[(N(n(1x)))"]”
h=0 ) (4.22)
- 2 v K 1/d\d 2l
= 2 (1 - arctan \/E) : EE [((EK )N, ge—174, (00, 1])) } .
We now take
K =[e %], (4.23)
From Proposition 3.9, there exists a constant C}, > 0 such that
Py
sup E [(sKl/dv)dWNerl/dw (n[o, 1])) ] <c, (4.24)
0<e<1
Since 1 — 2 arctan Vk = O(1/Vk) as k — oo,
K 9 1—%
E[e°N.(9F)] < 2C,¢° Z (1 — —arctan \/%)
k=0 T (4.25)

=0 (E‘SKl*%(l*%)) =0 (567%(1+%))) as e — 0.

Since § > d /2, the right-hand side tends to 0 as ¢ — 0 for sufficiently large p. This proves the claim that
lim. 0 N.(9%) = 0 almost surely.

Replacing L; with R; gives lim._¢ s‘sNE(aé%) = 0 almost surely. By the reversibility of the whole-plane
space-filling SLE 1 and Proposition 2.20,

d
((CJ?(l),Dh%MmJ?(l - )) = ((C’ 07Dh'yhuh'yv77)' (426)

Consequently, N.(9}) < N (0F) and N.(0F) < N (0F). Since dn[0,1] = o U dF U OF U O, we therefore
obtain the lemma statement. O

Let us first sketch how to deduce (4.12) from Lemma 4.7. First, note that it suffices to show that for some
fixed ¢ € (0,d,/2), with probability tending to 1 as ¢ — 0, we have N.(0:n[s,t]) < e SN.(In[s,t]). The idea
is to sample a collection X. of [e~¢N.(dn[s,t])] i.i.d. points in O5./97]s,t] from the LQG measure -, and

show that (J,c . Be(x; Dpy) covers Oenls, t].

To this end, we sample another set of i.i.d. points Ws from ppv, conditionally independent of X given
hY and 7, such that d.n[s,t] C UwGWE Bej2(w; Dpv) C O2emls,t]. (Because the Minkowski dimension of
~v-LQG is finite, we only need polynomially many points in ¢ in VNVE [Gwy21, Theorem A.3].) For each
w € WE, the conditional probability given h?, n, and x € A. that B o(w; Dp~) C Be(x; Dp~) is given by
i (Bej2 (23 Do)/ piwn (92e1m]s, t]). Using Theorem 2.1 (the volume estimate for LQG metric balls), we show
that this number is no more than ¢7¢/|X.|. Since the points in X. are sampled conditionally i.i.d., the
conditional probability that B./2(w; Dy+) C U,ex. Be(w; Dy) is no less than 1 — (1 —e=¢/|X.|)1*¢], which
tends to 1 superpolynomially fast as € — 0. Since the cardinality of W, is polynomial in €, by taking a union
bound over points in this set, we conclude that 9.n[s,t] C U,y Bes2(w; Dav) C U, en, Be(a; Do) with
probability increasing to 1 as € — 0.

What we have above are essentially the statement and the proof of Lemma 4.8, except that they are for the
whole-plane GFF h instead of the y-quantum cone field A7. The reason that we prove (4.27) for h first is
that most results about the Minkowski dimension of v-LQG, such as Theorem 2.1, are stated in terms of h
instead of hY. After proving Lemma 4.8, we transfer this result to the setting of a y-quantum cone using

Lemma 2.15 to complete the proof of Lemma 4.4. Recall the notation B.(4; Dp) := U,¢ 4 B=(2; Dp).

37



Lemma 4.8. Let h be a whole-plane field whose law is absolutely continuous with that of the whole-plane
GFF normalized to have mean zero on 0D. Let K C C be a fized compact set. Let A C K be a random set,
not necessarily independent from h. Then, for each > 0,

N.(B.(A; Dy,); D) < e SN.(A; Dy) (4.27)
holds with probability tending to 1 as € — 0.

Proof. Let X. be a collection of |e~¢N.(A; Dy,)] points in Ba.(A; Dy,) sampled, given h and A, conditionally
iid. from pplp,,(4;p,) normalized to be a probability measure. We claim that |,y Be(x; Dp) covers
B.(A; Dy,) with probability increasing to 1 as € — 0.

To show that (J,c. Be(z; Di) covers Be(A; Dy), we consider an 5-cover of B:(A; Dy) and then check that
U.ex. Be(x; Dy) contains this §-cover. Let us first compute the conditional probability that an LQG metric
ball B /2(w; Dy,) appearing in the §-cover is contained in (U, y. Be(2; D). If Beja(w; Dy) N B:(A; Dp) # 2,
then w € Bs./2(A; D) and B, j2(w; Dp) C Bac(A; Dy,). Conditioned on h, A, and w € Bs./2(A; Dy,), each
r € X has

fin(Bz/2(w; Dp))

]P)(BE/Q(’w;Dh) CBE(:L‘;Dh) m

h,A,w) >P (ac € B j2(w; Dy)

h, A, w) = (4.28)

Since the points in X, are conditionally i.i.d. given h and A,

B ot Dy ) LN (A:D0)
h, A, w) >1— (1 _ "h(s/?(w"))) . (4.29)

’ (BE/ o) & ) Bl p(Bc(4; D)

TEX,

We now specify the §-cover of B.(A;Dy,). Let U := Bi(K) and W := By(K). Let W, be a collection of
| (£/2)~%~¢| points sampled conditionally i.i.d. from py|w normalized to be a probability measure, where
W, and X are conditionally independent given h. By [Gwy21, Lemma A.3], the event

Ey = {UC U BE/Q(w;Dh)} (4.30)

weWe

occurs with probability tending to 1 as ¢ — 0. Also, since Dy, is almost surely a continuous metric, the event
Ey :={Dyp(K,0U) > e} N {Dy(0U,0W) > &} (4.31)

occurs with probability tending to 1 as ¢ — 0. Truncating on the event Ej N Es, we have B.(A; D) C U
and hence .
B-(A;Dn) C | Beja(w;Dn) where W. = W. N B, ja(A; Dp). (4.32)
wef\/;
This is the $-cover we choose for B.(A; Dy), which holds on the event £y N Ey. By [AFS20, Theorem 1.1],
there exists a random ¢ > 0 which depends only on W and ¢ such that a.s. for every € € (0,1),

inf.ew pn(Be/2(2; Dn))

> ce¢/2, 4.33
Subocyy i (B (5 Dn)) — (4.33)
Note that
pn(B2e(A; Dy)) < No(A; D) ( sup M}L(BSa(z§Dh))> (4.34)
ZGBE(A§DHV)

since we can cover Bo.(A; Dy) by first choosing an e-cover of A and then blowing up the radius of every
metric ball in this cover to 3e. Combining (4.33) and (4.34), we almost surely have

o pn(Bej2(w; D)) S 1 infew pn(Bey2(2; D)) S ce¢/?
wEBy.y5(AsD) pn(B2e(A; Dp)) — Ne(A;Dy)  sup,cw pn(Bse(2;Dy)) — N:(A; Dy)

(4.35)
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truncated on the event Es so that Ba:(A4; Dj,) C W. Combining (4.29) with (4.35), for each w € W, we have

h7Aa E2>
—¢/2
>1-(1- &
€7SN(A; Dy)

Since e SN, (A; Dy,) > =€, the conditional probability in (4.36) becomes superpolynomially high as & — 0
at a rate uniform on h and A. Since there are e =% ~¢ points in W., an intersection of (4.36) over the
points w € W, implies that truncated on the event Es, we have |, o Bej2(w; D) C U, ¢ x. Be(x; D) with

superpolynomially high probability as ¢ — 0. Recalling our choice of the 5-cover of B.(A; D) in (4.32), we

conclude the proof of the lemma by observing that P {B:(4; Dy,) C U,cx. Be(z; Dp)} is bounded below by

P (Bs/Q(w;Dh) C U Bs(x§Dh> orw ¢ 836/2(A§Dh)
re X

4.36
e SN.(A;Dy) ( )

Pl EiNENS | BepwsDy)C | Bz Di) g | (4.37)
weWE rEX:

which tends to 1 as ¢ — 0. O
We are now ready to complete the proof of Lemma 4.4.

Proof of Lemma 4.4. Tt suffices to show lim. 0% N.(9.7[0,1]) = 0 almost surely, due to Proposition 2.20.
Let (2, h) be sampled from 1p(z)up(dz)dh normalized to be a probability measure as described in Lemma 2.15.
For each constant C, let ¢¢ be the random translation and scaling such that h¢ := (h+C) o ¢ + Qlog ||
is the field under the circle average embedding of (C,h + C, z,00). Given 8 > 0, choose a large constant
R > 0 such that the event

FE3 = {’I][O, 1] C BR(O) and Dy~ (8BR(0)7832R(0)) > 1} (438)

has probability at least 1 — /3/3. Then, choose a large constant C' > 0 such that the following two conditions
are satisfied.

(i) The total variation distance between the laws of the fields h” and h¢ restricted to Bag(0) is at most

53,
(ii) The event Ey := {¢pc(Br(0)) C B2(0)} has probability at least 1 — 3/3.

For sufficiently large C, the first item holds by Lemma 2.15 and the second item holds by the conditional
law of h(- — z) as described in [DMS21, Lemma A.10].

Fix ¢ € (0,d,/2). Couple h® and hY so that their restrictions to Bag(0) agree on an event of probability
1 — /3, which we call E5. Substitute A = ¢¢(9n[0,1]) and K = B3(0) in Lemma 4.8. Then, truncated on
EsN E4N Es, the event

N.ce(Boce(¢c(0n[0,1]); Dy); Dp) < (C%) ™ N.ce(dc(0n[0,1]); Dp) (4.39)

occurs with probability increasing to the full probability of F5 N E4 N E5 as ¢ — 0. By Lemmas 2.10 and
2.11, we almost surely have

N.ce(Begs (9o (0n[0,1]); Dr); Di) = N=(B:(¢c(9n[0,1]); Dhic); Dhtc)

(4.40)
= N.(B:(9n[0,1]; Dpc ); Dye)
on the left-hand side of (4.39) and

(€C%)*Nece(éc(9n[0, 1)); Dy) = (eC%)~*Ne(éc(9n[0, 1)); Dac)

— (eC)S N (90, 1]); Dye) (440
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on the right-hand side. On the event E5 N E5, since Dyc(9n[0,1],0B2r(0)) > 1, both N, (910, 1]; Dyc) and
N:(B:(0n[0,1]; Dye); Dye) for € € (0,1/2) are almost surely determined by hC|B2R(0). Hence, (4.39) implies

e N.(9.1[0,1]; Dpv) < C~5eB =S N, (1[0,1]; Dy ). (4.42)

Since dy — ¢ > d/2, we deduce from Lemma 4.7 that, truncated on E3 N E4 N E5, the right-hand side of
(4.42) tends to 0 almost surely as ¢ — 0. This proves the lemma since E3 N E4 N E5 occurs with probability
at least 1 — (8, and our choice of 8 was arbitrary. O

4.2 Identifying the Minkowski content process

For the remainder of this section, let (X7 : I € Zg) be a weak limit of (b_'N., (n(I)) : I € Ig) for some
sequence &, that tends to 0. As described in the proof overview for Proposition 4.3, we define the “Minkowski
content process” {Y;}ieq by

X[O,t] t >0,
Y, =<0 t=20, (4.43)
_X[t,O] t<0.

By Proposition 4.6, X[, 4 = Y; — Y a.s. for all [s, ] € Zg. The next step is to show that {Y;}:cq extends to
a two-sided Brownian motion with drift.

Proposition 4.9. The process {Y; }ieq defined in (4.43) extends to a Lévy process with almost surely con-
tinuous paths: i.e., a two-sided Brownian motion with drift.

Proof. We first show that {Y;},cq extends to a continuous process defined on R. Let p > 1. For every
rational s < ¢, by Fatou’s lemma, Corollary 4.2, and Proposition 3.9,

E[JY; — Y.J7] = B[ X[, ") < lim inf E[=1 V., (nls, )"
nee (4.44)
<y linl}infEHafﬁNgn (n]s, thHIP] < Calt — sf?

for constants C7,Cy > 0 depending only on 7. We deduce from the Kolmogorov continuity criterion that
{Y}}1eq can be extended to a process {Y;}.cr whose paths are almost surely continuous.

It now suffices to check that {Y;};cq has stationary and independent increments since these properties extend
to {Y; }ter by continuity.

o Stationary increments. We found in Corollary 2.21 that N.(n[s,t]) 4 N:(n[0,t — s]) for every fixed
s <tand e > 0. Hence, Y; — Yy = X[, and Y;_s = X|p;—4 agree in law for every rational s <.

o Independent increments. For each s € R, denote by Us_ and U,y the interiors of n(—o0c, s] and
n[s, 00), respectively. We claim that for any € > 0 and any fixed interval I € Zg, if I C (—o0, s] (resp.
I C [s,00)), then the quantity N2 (n(I)) is almost surely determined by the curve-decorated metric
s— Udy
measure space (UsfaDh y lh U57777|(7oo,s]) (resp' (U5+aDh s Mh Us+7n|[s,oo)]))'

Let us prove the claim. Without loss of generality, assume I C (—o0, s]. Recall the definition

NZ(n(I)) = Ne(n(I) \ 9=n(I); Dn~) (4.45)

where n(I) \ 9:n(I) := {z € n(I) : Dp~v(2,0n(I)) > €}. Suppose B.(w;Dy~) is a ball counted in
N2(n(I)). Then B.(w;Dp~) has a nonempty intersection with n(I) \ d.n(I), so w must be in the
interior of n(I). Now suppose z is any point within the intersection of B.(w; Dp~) and n(I) \ d:n(I).
Then, the Dpy-geodesic from z to w must be contained in the interior of n(I), or otherwise its Dj~-
length would be at least

Dy (2,0n(I)) + Dy (w, dn(I)) > €. (4.46)
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Since int(n(I)) C Us—, we have Dp+(z,w) = ng’ (z,w). Since this holds for any z in the intersection
of B.(w; Dyp~) and n(I) \ 0-n(I), we have

B-(w; D})5™) N (n(1) \ 9n(I)) = B(w; Dy ) N (1(1) \ Den(1)). (4.47)
Since (4.47) holds for any w in the interior of 7(I), we obtain
N2 (1)) = Ne(n(D)\ den(D); Dyi”)- (4.48)
Observe that
n(I)\ dn(I) = {z € n(I) : B(= D57 C n(I)}. (4.49)
Hence, the right-hand side of (4.48) is a.s. determined by (U,_, D,llj‘“‘,ph\Usf,n|(_oo,S]).

Let us now deduce from the claim that {Y;},cq has independent increments. Let tg < t; < --- < t,,, be
a fixed collection of finitely many rational times. Setting s = t;, we see from the claim that for each ¢,,,
the random vector (b7 ' N2 (n[t;—1,t;]) : 1 < j < k) is a.s. determined by (U,_, Dgs‘,uhwk,n\(_w,s]),
and (b7 N2 (ntj—1,t;]) : k+1 < j < m)is as. determined by (Ugs, D}I{Sﬂuh
random vectors are thus independent by Proposition 2.23 combined with the translation invariance of
Proposition 2.20. Recalling (4.15), we conclude that (X, | ,1:1<j<k)and (Xp,_, ) k+1<5 <
m) are independent. This works for any 1 < k < m, so the random variables Xy, ¢,1,- -+ Xjt,, 1 0]
are independent. O

Usy 77| [s,oo)). These two

We conclude the proof of Proposition 4.3 by checking that the Minkowski content process has almost surely
positive increments.

Proposition 4.10 (Positive increments). Almost surely, Xs > 0 for every rational s <t.

Proof. By Proposition 4.1, we can find a deterministic constant ¢ > 0 such that with probability tending to
1 as € — 0, we have N.(1[0,1]) > ce~%. By Corollary 2.21, for any fixed rational times s < t, it also holds
with probability tending to 1 as ¢ — 0 that N.(n[s,t]) > ce~% (t — s). Combining this with Corollary 4.2,
we deduce that X, > 0 almost surely for every rational s < ¢. O

Proof of Proposition 4.3. We proved that {adﬁ\fg(n[s,1f])}0<€<(t_5)1/dW is tight for any s < t in Proposi-
tion 3.9. By Corollary 4.2, {b;lNg(n[s,t])}0<€<(t75)1/dw is also tight. Therefore, given any sequence of &
decreasing to 0, we can find a subsequence &, for which the corresponding sequence of R¥¢-valued random
variables (bZ' N, (n(I)) : I € Iy) converges in distribution w.r.t. the product topology on R,

Now suppose &, is any sequence decreasing to 0 such that (bZ'N., (n(I)) : I € Ig) has a weak limit
(X1 : I € Ig). Define the process {Y; }1eq as in (4.43). By Proposition 4.9, {Y;}icq extends to a Brownian
motion with drift. Since {Y;}icq has positive increments (Proposition 4.10), the variance of the Brownian
motion must be zero. That is, there exists a deterministic constant a > 0 such that almost surely, Y; = at
for all ¢. In other words, for every rational s < ¢, the subsequence b_' N, (n[s,t]) converges in distribution
to a(t —s) as n — oo. Since a(t — s) is a deterministic constant, the convergence is in probability. In fact, for
every p > 1, the convergence is also in L since supy_.j;_s1/d, E[bZ1N.(n[s, t])|P] < co (Proposition 3.9).
By the definition (1.8) of b., we have E[bZ'N.(n[0,1])] = 1 for all € > 0. Hence, a = 1 regardless of the
choice of the subsequence ¢,,.

In summary, we have that given any sequence of € decreasing to 0, there exists a subsequence ¢,, such that
limy, o0 b2 Ne, (9s,t]) = t — s in probability for all rational s < t. This proves (4.7) for rational s < t.
Now suppose s < t are any fixed real numbers. If s; < sp < ty < t; are rational numbers such that
[s0,t0] C [s,t] C [s1,t1], then

Ne(nlso, to]) < Ne(nls, t]) < Ne(nls1, t1]). (4.50)

By taking s1, so close to s and tg, t1 close to ¢, we conclude that lim,, b7 N.(n[s,t]) = ¢t — s in probability.
O
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5 Generalization to other sets and fields

In this section, we show that the LQG measure u; can be recovered from Dy, in terms of Minkowski content
with respect to b, not only for the y-quantum cone but also for other variants of the whole-plane GFF.

In general, Minkowski content is not a measure. Accordingly, we do not expect that the Minkowski content
of an arbitrary bounded Borel set A C C is equal to its LQG measure uj(A). The sufficient condition we
impose is that A is a random bounded Borel set such that

un(0A) =0 as. (5.1)
Since A is closed, this condition is equivalent to
lim pp(Bs(0A)) =0 a.s. (5.2)
§—0
Since the LQG metric induces the Euclidean topology, another equivalent condition is
lim pp (Bs(0A; Dp)) =0 aus. (5.3)
§—0

Remark 5.1. One sufficient condition for (5.1) is that the LQG Minkowski dimension of A is bounded
above by d, — ¢ for some deterministic constant ¢ > 0. That is, lim._o e =CN_(0A; Dy,) = 0 almost surely.
Note that this condition does not reference the LQG measure up. Indeed, suppose that h is a whole-plane
GFF with h1(0) = 0. Theorem 2.1 states that

fin(Be (23 D))

sup  sup ——————> <00 a.s. (5.4)
£€(0,1) z€B,.(0) =3
Then, on the event A C B,.(0),
pr(0A) < limsup (NE(Z?A; Dy) - sup uh(BE(z;Dh))> =0 as. (5.5)
e—0 z€B,(0)

Letting r — oo, we obtain (5.1) since A is almost surely bounded. This implication holds even when
we replace h with a whole-plane GFF plus continuous function because ppy ¢ is almost surely absolutely
continuous with respect to uj for any random continuous function f: C — R.

Remark 5.2. Let A C C be a deterministic bounded Borel set whose boundary has zero Lebesgue measure,
and let A be a whole-plane GFF plus continuous function. We claim that A satisfies (5.1). Indeed, let
r > 0 such that A C B,.(0). Let h° be a zero-boundary GFF on B,.(0). From [DS11, Proposition 1.2], we
have E[upo (0A)] = [, , crad(z; BT(O))"’?/2 d?z where crad(z; B,-(0)) is the conformal radius of B,.(0) viewed
from z. Since the Lebesgue measure of 9A is zero, we get E[uno(0A4)] = 0 and ppo(0A) = 0 almost surely.
By the Markov property of the whole-plane GFF [MS17, Proposition 2.8], we can couple h® and h so that
(h — h9)| B,.(0) is a continuous function. Since adding a continuous function to the field results in weighting
the Liouville measure by a continuous function, we also get the desired statement for h.

5.1 General sets on the quantum cone

In Proposition 4.3, we found that whenever s < t are fixed real numbers, b-1 N (n[s, t]; Dy~) converges in
probability to t — s = upv(n[s,t]). The goal of this subsection is to replace 7[s,t] with more general subsets
of C; in particular, we consider bounded Borel sets satisfying (5.1). We can also consider random subsets of
C coupled with the field 2. The idea is to bound such a set from inside and outside by unions of finitely
many SLE cells — i.e., ;-7 n(I) where T C Zg := {[s,1] : 5,1 € Q,s < t} is a random collection of finitely
many closed intervals with dyadic rational endpoints.
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Proposition 5.3. Let hY be the field of a y-quantum cone in the circle average embedding. Let A C C be
either a deterministic bounded Borel set or a random compact set coupled with hY and n (as in Theorem 1.1)
such that pp~ (0A) = 0 almost surely. Then,

lim 6o N.(A; D) = pns (A) (5.6)
in probability.

Proof. As introduced in the above proof idea, we first consider the case A = (J;.; (/) where Z is a random
collection of finitely many closed bounded intervals with dyadic rational endpoints. Concretely, fix a positive
integer k and consider a random collection Z C {[j/2*, (j +1)/2*] : j € Z} coupled with h? and 7 which a.s.
has finitely many elements. We work in the same way we proved the finite additivity of Minkowski content
of SLE cells (Proposition 4.6). Recall that 9:n(I) = {z € n(I) : Dp~(2,0n(I)) < e}. For such Z, for each
€ > 0, we almost surely have

> 1renybZ [Ne(n(1); Dy+) — Ne(9en(I); Dy )]
I

(5.7)
< b 'N. (U 77(—7)%th> < Lgrerybs 'No(n(I); D)
I

1€l

where the two sums are over all intervals I of the form [j/2%, (j + 1)/2*]. Both sums converge in probability
as e = 0 to > ;crpny(n(I)) = pny(Uyez n(I)) since each term in these sums converges in probability to
117e7yn(I) as seen in Proposition 4.3 and Lemma 4.4. Therefore,

lim b_ ' NV, (U n(I); th> = fn <U 17([)) in probability. (5.8)

e—0
IeT IeT

Let A C C now be a deterministic bounded Borel set or a random compact set coupled with A and 1 such
that pp~(0A) = 0 almost surely. For each integer k, let

= {[j/25 G+ 1)/2] - j e 2,y ([j/2", (G + 1)/2]) € A} (5.9)
and
Te={[1/2%,G+1)/2"] :jeZ,n([j/2", (G +1)/2"])nA#2}. (5.10)

That is, U;ez, n(I) and ;e 7, (1) are approximations of A from inside and outside, respectively. For each
j and k, note that n([j/2%, (j + 1)/2¥]) is a random compact subset of C that is measurable w.r.t. the Borel
o-algebra generated by the Hausdorff distance on compact subsets of C; hence, Z; and J are measurable.
Almost surely, Zy, and Jj contain finitely many intervals since A is bounded and lim;_, 1, 7(¢) = co. Since

Ulezk n(I) C AC UIGJk n(I), we have
bZ1NV. ( U n(I);Dm> < BZIN.(A) <bIN. < U n(I);Dm> (5.11)
1€y, I1€Jx
almost surely for each £ > 0. As in (5.8), we have
Eh_r}r%) be_lNE (Ig U(I),Dh'y> = Uh~ (IU 77([)) (512)
€Lk

and

lim b ' N. ( U 77([)§th> = Hh~ ( U 77([)) (5.13)

I1€Jy 1Ty
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in probability for each k.

We claim

Jim ( U 77(1)> = o (A) = Jim pips ( U n(1)> (5.14)

1€y, I€Jx

almost surely, which, in combination with (5.12) and (5.13), completes the proof of the proposition. Note

that for each integer k,
o (U 77(I)> < e (A) < pipo ( U n(I)) . (5.15)

Because (J;c7, 1 increases and |J; 7 I decreases as k increases, it suffices to prove

Jim [Mm ( U 77(1)> — i ( U 77(1))] = lim g | |J 0 | =0 (5.16)

I€Jy I€eTy, I1€Ti\Zy,

almost surely. Note that
T \Te = {[3/2%, (G +1)/2"] - j € Z,n ([§/28, G+ 1)/2F]) N 0A # 2} . (5.17)

Since A is bounded and ¢ — 7(t) is continuous,

li i I1); Dpy) = 1
Jim Irrg%dlam(n( );Dpv) =0 (5.18)
with probability one. Hence,
lim e | | 0(D) | < lim g (Bs(0A; D). (5.19)
k— o0 6—0
1€ T \Lx

almost surely. As discussed in the beginning of this section, because Dy~ induces the Euclidean topology,
P{upv(0A) = 0} = 1 implies limgs_, pipy (Bs(OA; Dy )) = 0 almost surely and thus our claim. O
5.2 Generalization to other GFF variants

The final technical detail that allows us to replace h” in Proposition 5.3 with any whole-plane GFF plus a
continuous function is that b. is regularly varying with index —d,.

Proof of Proposition 1.3. We proved (1.9) in Corollary 4.2. It remains to show (1.10). Recall from Corol-
lary 2.21 that N.(n[0,7~%]; Dp~) 4 N,<(n[0,1]; Dyp~) for every e > 0. Hence, by Proposition 4.3,

o, _ lmeo b- ' Ne(n[0, 7= ]; Dpv) _ limeyo b2 " Nye ([0, 1]; Div) —
lime_,0 byet Nye (9]0, 1]; Dpv ) lime_,0 by Nye (9]0, 1]; Dy ) e—0 b

(5.20)

O

Proof of Theorem 1.1. The proof proceeds by standard arguments based on the fact that the Minkowski
content depends locally on h and behaves nicely under adding a constant to h. Specifically, if f is a
deterministic smooth function with compact support on C and h is a whole-plane GFF with circle average
normalization h,.(z) = 0 on a fixed circle B,.(z) disjoint from the support of f, then the laws of h+ f and h
are mutually absolutely continuous [MS17, Proposition 2.9]. Using this fact, we transfer our results from a
y-quantum cone to a whole-plane GFF in steps, introducing more generality in our choice of the field h and
the deterministic bounded Borel or random compact set A. In each stage, we assume pp(0A) = 0 almost
surely.
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1. The field h is a whole-plane GFF with h1(0) =0, and A C By ,4(1/2) almost surely.

Note that pn(A), pn(0A), and lime_o Ne(A; Dp) are a.s. determined by h|p, ,(1/2)- Since h —vlog| |
and A7 agree in law when restricted to D (Definition 2.13), the laws of A7 and h restricted to By /3(1/2)
are mutually absolutely continuous. We deduce from Proposition 5.3 that lim._.g b;lNE(A; Dy) =
un(A) in probability.

2. The field h is a whole-plane GFF with normalization hy,.(—2r) =0, and A C B,.(0) a.s. for some fized
7> 0.

Denote h := h(4r-—2r). By (2.10), h is a whole-plane GFF with &, (0) = 0. Since A C B,.(0), we have
(4r)7*A+1/2 C By4(1/2). We saw in Step 1 that if pj((4r) "' A+ 1/2) = 0 almost surely, then

lim b N((4r) P A+ 1/2; D) = iy ((4r) 1A +1/2) (5.21)

in probability. From the coordinate change axiom (2.14) for deterministic translation and scaling, we
almost surely have

Dp(4ru = 2r,4rv — 2r) = Dy, 5 10g(ar) (4, 0) = (4r)*°D; (u,v) Vu,v € C. (5.22)

Then, almost surely,
N.(rea(A;Dy) = No((4r) "' A+ 1/2;D;) Ve > 0. (5.23)

On the other hand, from the coordinate change rule (2.16) for the LQG measure, almost surely,
1(A) = 154 0 rog(ar (A7) 1A +2r)) = (4r) Qs ((4r) T A+ 1/2). (5.24)

One consequence of (5.24) is that uj,(0A) = 0 implies p; ((4r)~*(9A) + 1/2) = 0. Hence, we deduce
from (5.21) combined with (5.23) and (5.24) that

lim 67N, (4ry¢0 (43 Dn) = (4r) 77 pn(A) (5.25)
in probability. Since we have
b
lim —U0%2 (4@ (5.26)
e—0 b,

from Proposition 1.3, we conclude that lim._,o b-*N.(A; Dy,) = pux(A) in probability.

3. The field h is any whole-plane GFF plus a continuous function, but A C B,(0) for some fized r > 0.

We can write h = h + f where his a whole-plane GFF with normalization B4T(72r) =0and fisa
random continuous function (which is not necessarily independent from /). Again, the goal is to show
that for any Borel A C B,.(0) with p;,, (9A) = 0 almost surely,

lim b2 N (A; Dy ) = 4 (A) (5.27)
in probability. Since f is a.s. bounded on B,(0), we have p;(0A) = 0 almost surely. The idea is to

use that f is a.s. locally uniformly continuous. To this end, consider the collection of dyadic squares

Sy = {[2%’ m;’:1] + [2%, ”Q—tl]z C B,-(0) : m,n € Z} and define

A ={Se€S,:Sc A} and AF={SecS,:SNA+a} (5.28)

to be the subcollections whose unions approximate A from inside and outside, respectively. For each
dyadic square S = [, HL] 4 [2 ntl]i € S, denote its union with all adjacent dyadic squares by

PN 2k 9k
S =[mad, mi2] 4 (2ol 2 Denote
mg = mginf and Mg = mgax f. (5.29)
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In Step 2, we established (5.27) when f = 0. By Remark 5.2, u;(95) = 0 as. for all S € U5, Sk
Also note limg 0 b exp(—enmrg)/be = e"™s from (1.10). Given any sequence of £ decreasing to 0, we can
choose a subsequence ¢,, such that almost surely,

M3 (S) = lm 62! N, xp(—enre)(S; D;) forall S € [ Sy (5.30)

n— o0
k>1

For S = [2, 28] + [5, tl])i € Sp and j € N, denote

3

(5.31)

g 1 m+1 1 n 1 n+1 1 1.
I ok T o ok T ok ok T oR+ ok T 9k

We again have y;,(0S;) = 0 by Remark 5.2. Take a further subsequence of ¢, such that, almost surely,

€ (S5) = lm b1 N, ep(-enis) (S5 D) forall S € | Sk, jeN. (5.32)
k>1

By the Weyl scaling axiom (2.13), for each S € Sy and j € N, we almost surely have

Neexp 5ms)(S]7D ) < NE(Sj;Dh) S NE(S7 Dh) S NEeXp(—st)(S;Dil) (533)

for all sufficiently small ¢ > 0. (The threshold is random; it depends on h and f.) On one hand, from
(5.30) and (5.33), we almost surely have

S M) = Y Tim b2 ' Ne, oxp(—enrs) (S5 D) =Y lim b "N, (S; Dy)
k k k
SeA SeA SeA (5.34)
= lim b Z N.,(S;Dy) > limsupb_ 'N., (A; Dy,).
n—oo n—oo
SeAk

On the other hand, for each k and j, we almost surely have

> N(Sj;Dn) < Ne(A; Dy) (5.35)

SeA

for all sufficiently small e > 0, since infg 5.5, 5.5 Dy(S;,8;) > 0. Combining this with (5.32) and
(5.33), we almost surely have

S amep(s) = Y Lim b2 N, exp(-ems) (S5 D) <> lim b !N, (Sj5 Dn)
SeAg SeA SeAL (5 36)
_ T -1 ’
= lim b > N.,.(S;iDy) < liminf b_ ' N, (A; D).
SeAy

For each S € S, since p;(9S) = 0, we have lim;_, 115, (S;) = p;,(S) almost surely. Combining (5.34)
and (5.36) and letting j — oo, we almost surely have that

Z €78z (S) < liminf b_ 1N5,L(A Dy)

n—oQ
SeAL

(5.37)
<limsupb_ 1N€n A;Dy) < Z eVMS

Since A*\ Ay = {S € S, : SN OA # @}, it follows from the equivalence between (5.1) and (5.2) that
limy o0 2o ge am 4, #,(S) = 0. In addition,

M :=supmax Mg < sup f<oo and lim max(exp(yMgs) —exp(ymg)) =0 (5.38)
keN SESk By41(0) k—oo0 SES
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almost surely because f is and uniformly continuous on Bgr(0). Hence, the right-hand side of the

inequality
ST M ()= D emep(S) <™ N p(S)+ D0 (™M — ™) (S). (5.39)
SeAk SEeA SeAk\ Ay, SeA

converges almost surely to 0 as k — oco. By this together with (5.37), since ¢, is a subsequence of an
arbitrary sequence of € decreasing to 0,

. yms _ —1 . _ 1 YMs ,, . . ..
kli)ngo e’ (S) il_r)r(l) b- " N.(4; Dp) kll)n;o Z e’5u; (S)  in probability. (5.40)
SeAy SeAk
On the other hand, since pp(9S) = 0 and thus up = My 8 finitely additive for S € Sy,

SO u(8) < S ) < pA) £ 3 un(8) < DT Moy (S) (5.41)

SeAy ScAyg SeAk SeAk

almost surely. We found in (5.40) the leftmost and the rightmost terms of this inequality converge to
the same limit in probability as k — oo, which must be equal to pp(A) almost surely. Therefore, we
conclude that

pn(A) = lim bo ' N.(4; D) (5.42)

in probability.

4. The field h is any whole-plane GFF plus a continuous function and A C C is any random bounded
Borel set.

Let Ej, be the event {A C By (0)}. Given any sequence of e decreasing to 0, using a diagonal argument
we can find a subsequence e,, such that lim,_, bg:NEn (4; D) = pr(A) as. on Ey for all integer k.
Since P(Ucy Ex) = 1, we conclude that the limit lim,, o b1 N.(A; Dp,) = pun(A) holds in probability.

This completes the proof of (1.7) for general Gaussian field h and set A. O

We finally show that the pointed metric space (C,0, D) almost surely determines the marked quantum
surface (C, h,0).

Proof of Corollary 1.2. Let L (resp. M) be the space of isometry classes of complete, locally compact length
spaces with a marked point (resp. a marked point and a locally finite Borel measure), endowed with the
local Gromov—Hausdorff (resp. local Gromov—Hausdorff-Prokhorov) topology. We consider L (resp. M) as a
complete probability space endowed with the probability measure P} (resp. Pi!) corresponding to (C, 0, Dj,)
(resp. (C,0, Dy, up)). Let f: M — L be the natural projection. We claim that f is injective on a set E C M
with PY(E) = 1. If so, since M is a Polish space [ADH13], by the measurable selection theorem (see, e.g.,
[Bog07, Theorem 6.9.1]), there is a measurable function ¢ : . — M such that go f is the identity map on E.
This means that (C,0, Dy,) almost surely determines (C, 0, Dy, ).

To this end, consider a sequence A1, As, ... of measurable functions from continuous metrics on C to compact
subsets of C. Let II(D) := {A1(D), A2(D), ...} be the collection of these sets without ordering: i.e., IT is
a function from the set of continuous metrics on C to the power set of compact subsets of C. For now, we
prescribe the following set of properties that these functions should satisfy; we shall construct an explicit
sequence of such maps at the end of the proof.

e Almost surely, up(0A;(Dy)) = 0 for every j.
e Almost surely, II(Dy,) is a m-system which generates the Borel o-algebra on C.
e If D and D’ are continuous metrics on C such that ¢ : (C, D) — (C, D’) is an isometry preserving 0,

then ¢(II(D)) = II(D’).
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By Theorem 1.1 and a standard diagonalization argument, the first property implies that there is a sequence
€p, decreasing to 0 such that, almost surely,
lim b_'N., (4;(Dr); Dp) = pun(A;(Dy))  for every j. (5.43)
n—oo
Hence, there exists a Borel subset E of the product space of continuous metrics on C and Borel measures
on C with P{(Dp, pn) € E} = 1 on which the first two bulleted properties as well as (5.43) hold. By the

-\ theorem, if two Borel measures agree on a m-system, then they must be identical. Hence, the projection
(D, p) — D, where D is a continuous metric on C and p is a Borel measure on C, is injective on E.

Let E be the image of E under the “forget the embedding” map: i.e., (D, ) — (C,0, D, 1) where the latter
is a pointed metric measure space.® Let (D, u), (D', u') € E be any two elements which are mapped into the
same pointed metric space (C,0, D) = (C,0, D’) under the natural embedding (D, ) — (C,0, D). That is,
there is an isometry ¢ : (C, D) — (C, D) fixing 0. By the last bulleted property, II(D’) = ¢(II(D)) and

W (¢(A)) = lim b2 "N, (¢(A); D) = lim b7 N, (A; D) = pu(A) (5.44)
for every A € TI(D). Since II(D’) is a w-system, we conclude that ' = ¢.pu. That is, the pointed metric
measure spaces (C,0,D, p) and (C,0,D’, ') are identical. Therefore, the natural projection f : Ml — L,
(C,0,D, u) — (C,0,D) is injective on E.

It remains to show the existence of measurable maps Aj, Ao, ... with the bulleted properties. For each
continuous metric D on C, define

Z(D) = {z € C: there are exactly three distinct D-geodesics from 0 to z}. (5.45)
Let K(D) be the collection of all compact K C C that are of the following form:

1. Let 21, 22,. .., 2, be any finite subset of Z(D);
2. For k=1,...,n, let nx be any D-geodesic between z;_1 and z (where zg = z,);
3. Let n =11 Ung U...n, be the closed curve formed by concatenating the geodesics;

4. Let K be the union of  and all bounded components of C \ 7.

Finally, let II(D) consist of any finite intersections of sets in K(D). These sets are defined only using the
pointed metric structure (C,0, D) so that if ¢ : (C,D) — (C,D’) is an isometry fixing 0, then ¢(Z(D)) =
Z(D'), ¢(K(D)) = K(D'), and ¢(II(D)) = IL(D").

For the 4-LQG metric Dp,, almost surely, the set Z(D},) is countable and dense [Gwy21, Theorem 1.2], and
any two points in Z(Dy,) are joined by finitely many Dj-geodesics [Gwy21, Theorem 1.7]. Moreover, since
Dy, is a.s. a continuous metric, we can a.s. find for every z € Q% and r € Qsg a set K € K(D},) such
that K contains the Euclidean ball B, (z) and is contained in the Euclidean ball Bs,.(z). Hence, II(Dy) is
a.s. a countable w-system generating the Borel o-algebra on C. Using the measurable selecction theorem
inductively, we can find a sequence of measurable functions Ay, As, ... such that II(D) = {4,(D), A2(D), ...}
almost surely.

Finally, we claim that the quantum Minkowski dimension of 9A;(D},) is a.s. no more than 1 for every j.
Since Dy, is a continuous metric on C, the lengths of Dp-geodesics between all points in Z(D},) (which are
equal to the Djp-distances between these points) are finite. Because (C, Dy) is a length space, a curve g
with Dp-length L < oo satisfies N.(n; D) < L/e. This is since if 5 is parameterized by Dj-length, then
{B:(P(ek); Dp) : k=1,2,...,|L/e|} covers n. For every j, since 0A,(Dy) is a finite union of Dp-geodesics

81t is straightforward to check that the natural embedding (D,u) — (C,0, D, u) is a continuous map whose domain is a
Polish space, so E is an analytic set. Since PI}\:H is a complete probability measure, FE is ]P’%Al-measurable (see, e.g., [Kec95,
Theorem 21.10]).
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between points in Z(Dy,), its LQG Minkowski dimension is at most 1 as claimed. Therefore, by Remark 5.1,
we have that py,(0A4;(Dy)) = 0 a.s. for every j.

As these functions Aj, As, ... satisfy all three bulleted properties stated above, we conclude that (C,0, Dy,)
a.s. determines (C,0, Dy, pup). The rest of the corollary follows since the pointed metric measure space
(C,0,Dp, pup) a.s. determines the field h up to rotation and scaling of the complex plane centered at the

origin [AFS20, Theorem 1.3]. O
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