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Abstract

The Brownian separable permutons are a one-parameter family – indexed by p ∈ (0, 1) – of
universal limits of random constrained permutations. We show that for each p ∈ (0, 1), there
are explicit constants 1/2 < ³∗(p) f ´∗(p) < 1 such that the length of the longest increasing
subsequence in a random permutation of size n sampled from the Brownian separable permuton
is between nα∗(p)−o(1) and nβ∗(p)+o(1) with probability tending to 1 as n → ∞. In the symmetric
case p = 1/2, we have ³∗(p) ≈ 0.812 and ´∗(p) ≈ 0.975. We present numerical simulations which
suggest that the lower bound ³∗(p) is close to optimal in the whole range p ∈ (0, 1).

Our results work equally well for the closely related Brownian cographons. In this setting, we
show that for each p ∈ (0, 1), the size of the largest clique (resp. independent set) in a random
graph on n vertices sampled from the Brownian cographon is between nα∗(p)−o(1) and nβ∗(p)+o(1)

(resp. nα∗(1−p)−o(1) and nβ∗(1−p)+o(1)) with probability tending to 1 as n → ∞.
Our proofs are based on the analysis of a fragmentation process embedded in a Brownian

excursion introduced by Bertoin (2002). We expect that our techniques can be extended to prove
similar bounds for uniform separable permutations and uniform cographs.

Figure 1: Top: The diagram of three large permutations (in black) sampled from the Brownian separable permuton
with parameter p = 0.2, 0.5, 0.9 (from left to right). In red we highlighted one longest increasing subsequence. Bottom:

The adjacency matrix of three large graphs (ones are plotted in black) sampled from the Brownian cographon with
parameter p = 0.2, 0.5, 0.9 (from left to right). In red we highlighted one largest homogeneous set. In the first two
samples it is an independent set, while in the third case it is a clique.
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1 Introduction

The length of the longest increasing subsequence in a random permutation and the size of the largest
homogeneous set (i.e. a clique or an independent set) in a random graph are two of the classical
problems at the interface of combinatorics and probability theory, with connections to several other
areas of mathematics.

In this paper, we investigate these classical problems in the setting of universal Brownian-type
permutations and graphs, i.e. for the Brownian separable permutons [BBF+18,BBF+20] and the
Brownian cographons [BBF+22a,Stu21]. These objects are the universal limits of various random
permutations and graph families.
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In the following sections, we first discuss our results on permutations (Section 1.1) and then
on graphs (Section 1.2). In both sections, we briefly review the literature around the questions
addressed in this paper. We then present two conjectures and some potential extensions of our
work (Section 1.3). Here, we also discuss a few open problems and additional motivation for our
work coming from random geometry and the study of planar maps. Finally, we give an overview of
the techniques used to establish our main results, explaining how they can potentially be used to
answer similar questions in the continuum setting (Section 1.4).

1.1 Brownian separable permuton results

1.1.1 Permutons and the Brownian separable permutons

A Borel probability measure µ on the unit square [0, 1]2 is a permuton if both of its marginals are
uniform, that is, µ([a, b] × [0, 1]) = µ([0, 1] × [a, b]) = b− a for all 0 f a < b f 1. To a permutation
Ã, we can associate a permuton µÃ which is equal to n times the Lebesgue measure on the union of
the squares {[ i−1

n , i
n ] × [Ã(i)−1

n , Ã(i)
n ] : i ∈ [n]}. For a sequence of permutations {Ãn}n∈N, we say that

Ãn converges in the permuton sense to a limiting permuton µ if the permutons µÃn converge
weakly to µ. The set of permutons equipped with the topology of weak convergence of measures
is a compact metric space. The theory of permutons has seen many recent developments at the
interface between discrete mathematics, probability theory, and statistics, see for instance, [Grü22]
for a survey.

We now recall the construction, due to Maazoun [Maa20], of the Brownian separable permuton
with parameter p ∈ [0, 1] in terms of a Brownian excursion with i.i.d. coin flips. Under P, we call
signed excursion a pair (e, s, p) consisting of a Brownian (normalized) excursion e, together with
an independent sequence s of i.i.d. p-coins {·,¸}, i.e. P(·) = p = 1 − P(¸). One should think of
the sequence s as being indexed by the local minima of e.1

We define the following random relation ◁e,s,p on [0, 1]: conditional on e, if x, y ∈ [0, 1], with
x < y, and min[x,y] e is reached at a unique point which is a strict local minimum ℓx,y ∈ (x, y) then

{
x ◁e,s,p y, if s(ℓx,y) = ·,
y ◁e,s,p x, if s(ℓx,y) = ¸.

(1.1)

Standard properties of the Brownian excursion ensure the existence of a random subset Re ¢ [0, 1]
such that the complement has a.s. Hausdorff dimension 1/2 – i.e. P(dim([0, 1] \ Re) = 1/2) = 1,
where dim(·) denotes the Hausdorff dimension of a set – and for every x, y ∈ Re with x < y, min[x,y] e

is reached at a unique point which is a strict local minimum. In particular, the restriction of ◁e,s,p

to Re is a total order (see Lemma 2.1 below). Setting

Èe,s,p(t) := Leb
({
x ∈ [0, 1]|x ◁e,s,p t

})
, ∀t ∈ [0, 1], (1.2)

then the (biased) Brownian separable permuton is the push-forward of the Lebesgue measure
on [0, 1] via the mapping (I, Èe,s,p), where I denotes the identity. That is,

µp(·) := (I, Èe,s,p)∗ Leb(·) = Leb({t ∈ [0, 1]|(t, Èe,s,p(t)) ∈ · }). (1.3)

Heuristically, Èe,s,p is the continuum permutation of the elements in the interval [0, 1] induced by
the order ◁e,s,p and µp is the diagram of Èe,s,p. We stress that µp is a random permuton.

1For the technicalities involved in indexing an i.i.d. sequence by this random countable set, see [Maa20, Section
2.2].
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The Brownian separable permutons were first introduced while studying random separable
permutations [BBF+18], i.e. permutations avoiding the patterns 2413 and 3142 (see the Wikipedia
page on separable permutations for further details and many properties of these permutations).
The authors of the latter paper showed that uniform random separable permutations converge
in distribution to µ1/2 when the size of the permutations tends to infinity. Later, it has been
proved that this convergence result is in some sense universal: uniform permutations in proper
substitution-closed classes [BBF+20,BBFS20] or classes having a finite combinatorial specification
for the substitution decomposition [BBF+22b] converge in distribution (under some technical
assumptions) to µp, where the parameter p depends on the chosen class. These papers initiated a
line of research around random Brownian fractal-type permutons, see for instance [Bor23,BGS22].

1.1.2 The length of the longest increasing subsequence

There is a vast literature devoted to the asymptotic behavior of the length of the longest increasing
subsequence LIS(Ãn) for various types of large random permutations Ãn. For uniform random
permutations Ãn, the study of LIS(Ãn) was initiated in the 1960s by Ulam [Ula61]. In this case, one
has LIS(Ãn) ∼ 2

√
n [Ham72,VK77,LS77,AD95]. The strongest known result is due to Dauvergne

and Virág [DV21], who showed that the scaling limit of the longest increasing subsequence in a
uniform permutation is the directed geodesic of the directed landscape. The study of LIS(Ãn) is
connected with many other problems in combinatorics and probability theory, such as last passage
percolation and random matrix theory; see the book of Romik [Rom15] for an overview. In recent
years, many extensions beyond uniform permutations have been considered, for instance:

• when Ãn is a uniform pattern-avoiding permutation [DHW03,MY17,MY20,BBD+22];

• when Ãn follows the Mallows distribution, or is a product of such random permutations
[MS13,BP15,BB17,Zho23];

• when Ãn is conjugacy-invariant with few cycles, in particular Ewens-distributed [SK18];

• when Ãn is sampled2 from a probability measure of the unit square [0, 1]2 having a density
which satisfies certain regularity/divergence conditions [DZ95,DZ99,Dub23].

• when Ãn is sampled from a random Brownian-type permuton, such as the Brownian separable
permutons [BBD+22] or the skew Brownian permutons [BGS22].

To the best of our knowledge, the only papers proving non-trivial power-law bounds for the
length of the longest increasing subsequence are the recent work of Dubach [Dub23] and the works
on the Mallows model of Bhatnagar and Peled, and Zhong [BP15,Zho23]. Dubach [Dub23] built a
family of permutons µ³ for 1/2 < ³ < 1, with a density satisfying certain types of divergence, and
which have the interesting property that a sequence of random permutations sampled from µ³ has
a longest increasing subsequence with growth rate equivalent to n³. On the other hand, the authors
of [BP15,Zho23] looked at random permutations Ãn distributed according to the Mallows distribution
with respect to various distances. They showed that rescaling the so-called scale parameter ´ with
n in a specific way (made explicit in the papers), one obtains that LIS(Ãn) is of order n³ for some
1/2 < ³ < 1 (and in some cases they prove exact limit theorems).

2A precise definition of what it means to sample a permutation from a measure is given in Section 1.1.3.
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1.1.3 Main results

Given a permuton µ, sample n independent points Z1, . . . , Zn in the unit square [0, 1]2 according to
µ. These n points induce a random permutation Ã: for any i, j ∈ [n] := {1, . . . , n}, let Ã(i) = j if
the point with i-th lowest x-coordinate has j-th lowest y-coordinate (this is well-defined since the
marginals of a permutons are uniform and so almost surely there are no points with the same x- or
y-coordinates). We denote this permutation by Perm(µ, n) and call it the random permutation

induced by the permuton µ of size n.
This definition can be naturally extended to the case of random permutons. For more details,

see e.g. [Bor21, Section 2.1]. It is important to note that Perm(µ, n) converges in distribution in
the permuton sense to µ when n tends to infinity, as shown in [BBF+20, Lemma 2.3].

Recall that LIS(·) denotes the length of the longest increasing subsequence in a permutation. Let
p ∈ (0, 1) and recall that µp is the Brownian separable permuton of parameter p. We restrict our
analysis to the case p ∈ (0, 1), since the cases when p = 0 and p = 1 are degenerate: the Brownian
separable permutons µ0 (resp. µ1) is the Lebesgue measure on the decreasing (resp. increasing)
diagonal of the unit square.

We are interested in studying LIS(Perm(µp, n)). See Figure 1 for some simulations. The results
of [BBD+22] show that the following convergence holds in probability for all p ∈ (0, 1),

LIS(Perm(µp, n))

n
→ 0.

It is simple to show that LIS(Perm(µp, n)) is bounded below by
√
n with high probability (see the

discussion below Theorem 1.7 in [BBD+22]). Our first main result shows that LIS(Perm(µp, n))
has an asymptotic behavior that is strictly different from the two bounds above.

Theorem 1.1. There exist two explicit functions ³∗ : (0, 1) → (1/2, 1) and ´∗ : (0, 1) → (1/2, 1)
such that for all p ∈ (0, 1),

• 1/2 < ³∗(p) f ´∗(p) < 1;

• for each ³ < ³∗(p) and each ´ > ´∗(p), it holds with probability tending to one as n → ∞ that

n³ f LIS(Perm(µp, n)) f n´.

See Figure 2 for a plot of the graphs of the two functions ³∗(p) and ´∗(p) from Theorem 1.1 and
a table of some of their values. See also Remark 1.2 at the end of this section for explicit formulas
for these two functions.

We expect that LIS(Perm(µp, n)) = nd(p)+o(1) with probability tending to 1 as n → ∞, for some
exponent d(p) ∈ [³∗(p), ´∗(p)]. Numerical simulations suggest that d(p) should be very close to
³∗(p) for all p ∈ (0, 1). See Conjecture 1.5 below for a more precise statement and Appendix A for
more details on the numerical simulations.

We also expect that it is possible to transfer the bounds of Theorem 1.1 to uniform separable
permutations, see the text just before Conjecture 1.6 for further discussion.

Theorem 1.1 shows that the exponent d(p) is strictly bigger than 1/2 and strictly smaller than 1
for all p ∈ (0, 1). Note that the results (and techniques) in [BBD+22] are insufficient to establish
either of the two bounds. Indeed, their results show that LIS(Perm(µp, n)) is sublinear in n but,
for instance, they do not exclude a potential behavior such as n/ log(n).

Note also that our results give the first proof that the growth rate of LIS(Perm(µp, n)) depends
on p, at least to some extent. This is because ³∗(p) > ´∗(p̃) when p is close to 1 and p̃ is close to
zero.

We conclude this section by giving the explicit description of the functions ³∗(p) and ´∗(p).
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Numerical values for ³∗(p) and ´∗(p)

p ³∗(p) ´∗(p)

0.1 0.584 0.959
0.2 0.653 0.963
0.3 0.712 0.967
0.4 0.765 0.971
0.5 0.812 0.975
0.6 0.855 0.980
0.7 0.895 0.985
0.8 0.932 0.991
0.9 0.967 0.996

Figure 2: Left: The plot of our bounds from Theorem 1.1 as functions of p ∈ (0, 1): ³∗(p) is in
blue and ´∗(p) is in red. Right: Some numerical values of the bounds ³∗(p) and ´∗(p).

Remark 1.2. For all p ∈ (0, 1),
³∗(p) = 1 − ¼∗(p),

where ¼∗(p) is the only positive solution (see Remark 3.2 for further explanations) to the equation

ΦS(−¼∗(p)) = −2(1 − p)
√

2
Ã , with

ΦS(q) =

∫ ∞

0
(1 − e−qx)(1x∈(0,log 2] + p1x∈(log 2,+∞))

2 exdx√
2Ã(ex − 1)3

.

Note that ³∗(0+) = 1/2 and ³∗(1−) = 1, and ³∗(p) is strictly increasing in p ∈ (0, 1). In the
symmetric case (p = 1/2), we get ³∗(1/2) ≈ 0.812. On the other hand, for all p ∈ (0, 1),

´∗(p) = 1 − ¼∗(p),

where ¼∗(p) = sup´∈(0,log(2)),¶>0 min
{
´¶ , supµ<0{µ¶ + »∗

µ,e−β (p)}
}

and »∗
µ,r(p) is the only positive

solution (see the discussion below (5.5) for further explanations) to the equation

Φ(−»∗
µ,r(p)) − 2(1 − p)(1 − eµ)

√
2

Ã

r−1 − 2√
r−1 − 1

= 0, (1.4)

where Φ(q) = 2
√

2Γ(q+1/2)
Γ(q) . See Section 1.4 for some explanations on the origin of the latter

expressions.

1.2 Brownian cographon results

1.2.1 Graphons and the Brownian cographons

A graphon is an equivalence class of measurable functions W : [0, 1]2 → {0, 1} which are symmetric
(i.e. W (x, y) = W (y, x) for all x, y ∈ [0, 1]), under the equivalence relation ∼, where W ∼ U if there
exists an invertible, measurable, Lebesgue measure preserving function ϕ : [0, 1] → [0, 1] such that
W (ϕ(x), ϕ(y)) = U(x, y) for almost every x, y ∈ [0, 1].

Intuitively, a graphon is a continuous analog of the adjacency matrix of a graph, viewed up to
relabeling its continuous vertex set. To every graph G with n labeled vertices, one can naturally
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associate a corresponding graphon:

WG :[0, 1]2 → {0, 1},
(x, y) 7→ A+nx,,+ny,,

where A is the adjacency matrix of the graph G. Note that any relabeling of the vertices of G gives
the same graphon WG, and so the definition extends to unlabeled graphs. It is possible to define
the so-called cut metric, first on functions and then on graphons. The cut metric induces a notion
of convergence for graphons (and so for graphs). Roughly speaking, the graphon convergence is the
convergence of the rescaled adjacency matrix with respect to the cut metric. Graphon convergence
has been first studied in [BCL+08] and developed into a vast topic in graph combinatorics, see [Lov12]
for an overview of this field of research.

Given the signed excursion (e, s, p) introduced in Section 1.1.1, the Brownian cographon Wp

of parameter p ∈ [0, 1] is defined (following [BBF+22a]) as the equivalence class of random functions

Wp :[0, 1]2 → {0, 1}, (1.5)

(x, y) 7→ 1
s(ℓx,y)=·,

where, as in Section 1.1.1, if (x, y) ∈ R2
e

and x < y, we denote by ℓx,y ∈ [x, y] the unique strict local
minimum min[x,y] e. If x or y is not in Re then we arbitrarily set s(ℓx,y) = ·. This choice does not
change the law of Wp because a.s. Leb([0, 1]2 \ R2

e
) = 0. We stress the fact that Wp is a random

graphon.

A cograph is a graph avoiding the path with four vertices as induced subgraph (see the
Wikipedia page for several other equivalent characterizations of cographs and their computational
properties). The Brownian cographon W1/2 has been proven to be the limit in the graphon sense of
uniform random cographs when the number of vertices tends to infinity [BBF+22a,Stu21]. Some
first universality results for the Brownian cographons have been recently established in [Len23], but
we expect more to come.

1.2.2 The size of the largest homogeneous set

An independent set of a graph G is a subset of its vertices such that every two distinct vertices
in the subset are not adjacent, while a clique of a graph G is a subset of its vertices such that
every two distinct vertices in the subset are adjacent. For a graph G, a subset of its vertices is
called homogeneous if it is either an independent set or a clique. The Erdős–Hajnal conjecture
[EH77,EH89] states that every H-free graph of size n (i.e. a graph avoiding a given subgraph H
as induced subgraph) has a homogeneous set of polynomial size3. in n, i.e. of size c · n³(H) for
some ³(H) ∈ (0, 1]. This conjecture is still open, see [Chu14] for a survey and [BNSS23] for the
best-known bound.

We emphasize that cographs play a key role in this conjecture. Indeed, since a homogeneous
set in a graph induces a cograph, and all cographs of size n have a homogeneous set of size at
least

√
n [EH89], then the Erdős–Hajnal conjecture takes the following equivalent form: Every

H-free graph of size n contains a cograph of polynomial size as an induced subgraph. In fact, this
reformulation is one of the most classical ways to attack the conjecture, see for instance [EH89].

3We recall that every graph of size n has a homogeneous set of size log(n), and this is optimal up to a constant.
Determining the optimal constant C such that every graph of size n has a homogeneous set of size at least C log(n) is
equivalent to the computation of diagonal Ramsey numbers, see [CGMS23] for the best-known bounds

7



Our motivations for studying homogeneous sets in the Brownian cographons are multiple.
Specifically, they come from the above reformulation of the Erdős–Hajnal conjecture, from its
probabilistic version [LRS+10, KMRS14] discussed below, from the recent graphon convergence
results towards the Brownian cographons mentioned earlier, and from the recent developments
in [BBD+22], also explained below.

The authors of [LRS+10,KMRS14] established that for a large family of graphs H, a uniformly
random H-free graph with n vertices has with high probability a homogeneous set of linear size.
We highlight that here the homogeneous set has linear size and not only polynomial size as in
the original version of Erdős–Hajnal conjecture (i.e. ³(H)=1). When this holds, the graph H
is said to have the asymptotic linear Erdős-Hajnal property (see [KMRS14] for a precise
definition). [KMRS14, Section 5] asked whether a uniform random cograph with n vertices has the
asymptotic linear Erdős-Hajnal property.4 This question was answered negatively in [BBD+22,
Theorem 1.2], where it was shown that the maximal size of a homogeneous set LHS(Gn) in a uniform
random cograph Gn with n vertices converges to zero in probability when divided by n. The authors
left open the question of finding the exact order of magnitude of LHS(Gn) (see [BBD+22, Remark
1.5]), pointing out that

√
n is a trivial lower bound. Also in this setting, the results of [BBD+22] do

not exclude a potential behavior such as n/ log(n). The latter behavior is not entirely unexpected.
Indeed, as pointed out in [KMRS14, Section 1.2], n/ log(n) is the asymptotic behavior for LHS(G̃n)
when G̃n is a uniform graphs avoiding the path P3 with three vertices (recall that cographs are
graph avoiding the path P4 with four vertices), and for instance graphs avoiding P3 and P4 have
the same (exceptional) coloring number5 2; see [LRS+10, Section 1, p. 4] for further details.

Our results in the next section imply explicit power-law bounds for the analog of ³(H) for
graphs sampled from the Brownian cographons (Theorem 1.3 and Corollary 1.4), and we expect
that the same bounds can be proven for uniform cographs (Section 1.3). The latter result would
distinguish the behavior of LHS(·) on uniform cographs and uniform graphs avoiding P3.

1.2.3 Main results

Given a graphon W , we can consider the random graph induced by W of size n, denoted by
Graph(W,n) and defined as follows: consider n vertices {v1, v2, . . . , vn} and, let (U1, . . . , Un) be n
i.i.d. uniform random variables in [0, 1]. We connect the vertices vi and vj with an edge if and
only if W (Ui, Uj) = 1. This definition can be naturally extended to the case of random graphons
(see [BBF+22a, Section 3.2] for further details). Note that Graph(W,n) converges in distribution to
W when n tends to infinity, as shown in [BBF+22a, Lemma 3.9].

Recall that LHS(·) denotes the size of the largest homogeneous set in a graph. We also denote by
LIN(·) the size of the largest independent set in a graph and by LCL(·) the size of the largest clique
in a graph (the latter two quantities are usually denoted by ³(·) and É(·) in the literature, but we
preferred to adopt a different notation since it is more consistent with the one used in Section 1.1 for
permutations). See Figure 1 for some simulations of the largest homogeneous set in Graph(Wp, n).

Theorem 1.3. Let p ∈ (0, 1) and Wp be the Brownian cographon of parameter p. Let ³∗(p) and
´∗(p) be as in Theorem 1.1. Then

• for each ³ < ³∗(p) and each ´ > ´∗(p) it holds with probability tending to one as n → ∞ that

n³ f LCL(Graph(Wp, n)) f n´;

4Indeed, cographs do not fit into the results of [LRS+10,KMRS14].
5The coloring number of a graph (see [LRS+10, Definition 2]) should not be confused with its chromatic number.
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• for each ³ < ³∗(1 − p) and each ´ > ´∗(1 − p) it holds with probability tending to one as
n → ∞ that

n³ f LIN(Graph(Wp, n)) f n´.

In this paper, we will prove Theorem 1.1 and derive Theorem 1.3 from it (see Section 2.2 for
further explanations). We point out that one can equivalently directly prove Theorem 1.3 and then
derive Theorem 1.1, i.e. the two theorems are equivalent. We opted for the first strategy since we
found slightly simpler to phrase some combinatorial constructions in term of permutations rather
than graphs.

As in the case of Theorem 1.1, we expect that it is possible to transfer the bounds in Theorem 1.3
to uniform cographons. See the text just before Conjecture 1.6 for further discussion.

We have the following immediate consequence of Theorem 1.3.

Corollary 1.4. Let p ∈ (0, 1) and Wp be the Brownian cographon of parameter p. Let ³∗(p) and

´∗(p) be as in Theorem 1.1, then for each ³̃ < ³∗(p̃) and each ˜́ > ´∗(p̃) with p̃ = max{p, 1 − p}, it
holds with probability tending to one as n → ∞ that

n³̃ f LHS(Graph(Wp, n)) f n
˜́
.

Note that our results in Theorem 1.3 also complement the results of McKinley [McK19], where the
author constructed certain graphons W³ such that the size of the largest clique LCL(Graph(W³, n))
behaves like n³ for all ³ ∈ (0, 1).

1.3 Conjectures and potential extensions

The results in Theorems 1.1 and 1.3 establish upper and lower bounds for the polynomial growth of
the longest increasing subsequence in permutations sampled from the Brownian separable permutons
and for the largest clique and independent set in graphs sampled from the Brownian cographons.
We expect the existence of a deterministic critical exponent for these quantities (c.f. Lemma 2.2).

Conjecture 1.5. For all p ∈ (0, 1) there exists d(p) ∈ [³∗(p), ´∗(p)] such that with probability
tending to 1 as n → ∞

LIS(Perm(µp, n)) = nd(p)+o(1),

LCL(Graph(Wp, n)) = nd(p)+o(1) and LIN(Graph(Wp, n)) = nd(1−p)+o(1).

As already mentioned, numerical simulations suggest that d(p) should be very close to ³∗(p)
for all p ∈ (0, 1). See Appendix A for more details. Various heuristic arguments indicate that our
lower bound ³∗(p) should not be sharp for all p ∈ (0, 1), i.e. it should hold that ³∗(p) < d(p) for all
p ∈ (0, 1).

We expect that our estimates for longest increasing subsequences and largest homogeneous
sets from Theorems 1.1 and 1.3 in the case when p = 1/2 can be transferred to the setting of
uniform separable permutations and uniform cographs, respectively. To explain how this might be
accomplished, we recall that both uniform separable permutations and uniform cographs can be
encoded by random walk excursions with i.i.d. steps and some collections of random signs ·/¸, in
a similar way as the Brownian separable permutons and the Brownian cographons can be encoded
by a signed Brownian excursion.

The KMT coupling theorem [KMT75,Zai98] states that one can construct a random walk with
i.i.d. steps and a standard Brownian motion on the same probability space in such a way that with
high probability, the difference of their values at each time n is O(logn). To transfer our bounds to
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the setting of uniform separable permutons and uniform graphons, a natural approach would be to
couple the encoding walks for (the infinite-volume version of) the discrete models with the encoding
Brownian motion for (the infinite-volume version of) the Brownian models via KMT. One could
then use the coupling to transfer estimates for Brownian motion to estimates for random walk, and
finally use local absolute continuity arguments to transfer from an unconditioned walk to a random
walk excursion. We point out that a similar approach has been used to prove estimates for random
planar maps in [GHS20]. However, we expect the above KMT coupling argument to require a fair
amount of technical work, so we do not carry it out in this paper.

It would also be interesting to deal with the discrete models themselves to come up with
power-law bounds (or, even better, with the exact exponents) for the length of the longest increasing
sequence in uniform separable permutations and the size of the largest homogeneous set in uniform
cographs.

In fact, we expect an even stronger relationship between discrete and continuum models.

Conjecture 1.6. Let d(1/2) ∈ [³∗(1/2), ´∗(1/2)] be as in Conjecture 1.5. Let Ãn and Gn be a
uniform separable permutation and a uniform separable cograph of size n, respectively. Then the
following holds with probability tending to 1 as n → ∞:

LIS(Ãn) = nd(1/2)+o(1) and LHS(Gn) = nd(1/2)+o(1).

It also seems possible that our methods could be extended to some models of uniform permutations
in substitution-closed classes which are well-behaved with respect to the substitution decomposition
[BBF+20, BBFS20] and to uniform graphs in some classes of graphs which are closed under the
substitution operation at the core of the modular decomposition [BBF+22a].

1.3.1 Skew Brownian permuton and random planar maps

We now explain certain connections with other models of random permutations, with random
geometry, and with the study of planar maps.

Recently, the first author of this paper constructed in [Bor23] a two-parameter family of universal
random permutons µÄ,q – indexed by (Ä, q) ∈ (−1, 1] × [0, 1] and called skew Brownian permutons
– and showed that they are the limits of various models of random permutations [BM22, Bor22].
Additionally, skew Brownian permutons are connected with multiple models of decorated planar
maps and SLE-decorated Liouville quantum gravity spheres (see [Bor23, Section 1.5]).

As shown in [Bor23, Theorem 1.12], the Brownian separable permutons µp studied in this paper
coincide with the skew Brownian permutons µ1,1−p. The skew Brownian permuton µ−1/2,1/2 is the
Baxter permuton [BM22], i.e. the permuton limit of uniform Baxter permutations. Additionally,
in [Bor23, Section 1.6, Item 6] it is conjectured that µ−1,q := limÄ→−1 µÄ,q are the Mallows permutons
[Sta09, SW18], i.e. the permuton limits of Mallows permutations. In particular, limÄ→−1 µÄ,1/2

should be the uniform Lebesgue measure on [0, 1]2, i.e. the permuton limit of uniformly random
permutations.6 See Figure 3 for a schematic summary.

Combining the results of this paper with the fact that it is known that the length of the longest
increasing subsequence in Mallows permutations behaves7, which is the regime of interest to us. like√
n [MS13], we propose the following conjecture. Recall the exponent d(p) from Conjecture 1.5.
6Recall from [Sta09] that the Mallows permutons (ν(β))β∈R describe the permuton limit of q-Mallows distributed

permutations of size n when q scales as 1 −

β
n

. To the best of our knowledge, there are no available conjectures for
the exact relation between the β-parameter for the Mallows permutons ν(β) and the q-parameter for the permutons
µ−1,q := limρ→−1 µρ,q, apart from the specific case µ−1,1/2 = ν(0), where we recall that ν(0) coincides with the
uniform Lebesgue measure on [0, 1]2.

7Note that this result is true in the regime when Mallows permutations exhibit a nontrivial permuton limit (i.e.

when q scales as 1 −

β
n

)
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Conjecture 1.7. For all (Ä, q) ∈ [−1, 1] × (0, 1), let µÄ,q be the skew Brownian permuton. There
exists a function ℓ(Ä, q) : [−1, 1] × (0, 1) → [1/2, 1) such that with probability tending to 1 as n → ∞,

LIS(Perm(µÄ,q, n)) = nℓ(Ä,q)+o(1).

Moreover, ℓ(−1, q) = 1/2 for all q ∈ (0, 1), ℓ(1, q) = d(1− q) ∈ [³∗(1− q), ´∗(1− q)] for all q ∈ (0, 1),
and ℓ(Ä, q) is continuous, non-increasing in q and non-decreasing in Ä.

We point out that in [BGS22, Corollary 1.13] it was shown that LIS(Perm(µÄ,q, n)) is sublinear
for all (Ä, q) ∈ (−1, 1) × (0, 1). The exponents ℓ(Ä, q) of Conjecture 1.7 should also be related to
certain directed metrics on random planar maps, see [BGS22, Remark 1.15] for further details. In
Figure 3, we summarize various models of random permutations and random planar maps which
are connected with the skew Brownian permutons.

q

ρ

0 1
-1

1

-1/2

1

2

Brownian separable permutons

Mallows permutons

(Uniform permutations)

(Mallows permutations)

(Permutations in substitution-closed classes)

Baxter permuton
(Baxter permutations)

(Separable permutations)
[Series-parallel maps]

[Bipolar orientations]

[Uniform planar maps]

[Schnyder woods]

(semi-Baxter permutations)

(strong-Baxter permutations)

−
1+

√

5

4

≈ −0.22

≈ 0.3

[Planar maps with spanning tree]

−

√

2

2

√

2

1+
√

2

1/2

0

A

B

C

D

EF

G

A

B

C

D

E

F

G

Figure 3: The diagram shows the range of values (Ä, q) ∈ [−1, 1] × (0, 1) for the parameters of the
skew Brownian permutons. At the bottom, in green, we have the Mallows permutons. At the top,
in red, we have the Brownian separable permutons. In blue, close to the center, we have the Baxter
permuton. Various models of random permutations which are known to converge in the permuton
sense to the skew Brownian permutons are indicated between rounded parentheses. Finally, various
models of planar maps which are connected to the skew Brownian permutons are indicated between
squared parentheses.

1.4 Proof techniques and ordered subsets of the signed Brownian excursion

Recall that we will derive Theorem 1.3 from Theorem 1.1, so here we focus on the latter theorem.
Our results in Theorem 1.1 follow – after some non-trivial arguments in Sections 4 and 6 – from
some preliminary estimates on the probability of certain events (introduced in the next two sections)
related to the signed Brownian excursion (e, s, p).
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1.4.1 Strategy for the proof of the lower bound

We say that a subset O ¢ [0, 1] is ordered w.r.t. ◁e,s,p if the usual order on O coincides with ◁e,s,p

on O ∩ Re.
To obtain the lower bound in Theorem 1.1, we first define in (1.6) a selection rule S which

determines a large subset S ¢ [0, 1] ordered w.r.t. ◁e,s,p. Here, large refers to a good notion of size,
which we could, e.g., take to be Hausdorff dimension.

To define the selection rule S, we explore the signed excursion (e, s, p) by heights. We call
branching height a height which corresponds to a local minimum of e: a branching height is said
to be positive or negative according to the sign · or ¸ of the corresponding symbol in s. We
denote by B· and B¸ the set of positive and negative branching heights respectively, and we set
B = B· ∪ B¸. Each branching height b = e(tb) results in one sub-excursion of e over an interval
(a, c) ¢ [0, 1] splitting into two sub-excursions over the intervals (a, tb) and (tb, c) for some tb ∈ (a, c).
See the red excursions and red intervals in Figure 4.

b

U

0 1

Negative branching height

a tb c

h

Tagged fragment corresponding to U at height h

Figure 4: A sketch for the notation introduced in Section 1.4.1.

Note that the optimal selection rule to find the largest ordered subset of [0, 1] w.r.t. ◁e,s,p can
be informally read as follows. Whenever we hit a positive branching height, we keep both intervals
(a, tb) and (tb, c) and carry on the exploration in both components of e. On the other hand, when
reaching a negative branching height, one needs to discard one of the intervals (a, tb) and (tb, c)
(because in this case, by definition (1.1), y ◁e,s,p x for almost all x ∈ (a, tb) and y ∈ (tb, c)), keeping
only the one with the largest ordered subset.

The main issue with the previous considerations is the heavily non-Markovian nature of the
selection rule at negative branching heights: in order to pick one of (a, tb) or (tb, c) over the other,
one a priori needs to look into the whole future and see which one of them has the largest ordered
subset. Our approach is to replace this selection rule by a Markovian rule. More precisely, we
consider the following selection rule S:

“Whenever reaching a negative branching height, we discard the smaller (1.6)

(in terms of Lebesgue measure) interval between (a, tb) and (tb, c).”
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We then want to show that the selection rule S does not discard too many points, in a sense
made precise in the next two paragraphs.

One essential tool in our proof is the analysis of a natural fragmentation process [Ber06], or
more precisely of a self-similar interval fragmentation process, embedded in the Brownian excursion
e (see (2.1) below for a precise definition). A key player in the description of such processes is the
so-called tagged fragment, which in our case, consists in looking at the duration of the excursion
at height h g 0 straddling a uniform point U in (0, 1). See the green excursion and green interval
in Figure 4. [Ber02, Section 4] describes the law of the tagged fragment as a stochastic process
with time parameter h g 0: it is an explicit positive self-similar Markov process with index −1

2 , see
Proposition 2.3 for a precise statement.

Remark 1.8. The specific expressions for our bounds ³∗(p) and ´∗(p) in Remark 1.2 are related to
the expression of some Laplace exponents of the fragmentation process mentioned above, see for
instance (3.3) below.

In order to show that the selection rule S does not discard too many points, we proceed as
follows:

(a) we first estimate the probability that the tagged fragment corresponding to U survives long
enough, in the sense that it reaches some small value ε before it (possibly) gets discarded by
S. In Proposition 3.1, we show that the latter probability is asymptotically c ε¼∗(p), for some
positive constant c > 0 (recall from Remark 1.2 that ¼∗(p) = 1 − ³∗(p)).

(b) Then in Proposition 3.4, we extend this estimate to a so-called two-point function estimate: we
show that the probability that two tagged fragments corresponding to two independent uniform
points U and V in (0, 1) both survive until they get smaller than ε is asymptotically c′ ε2¼∗(p),
for some (other) positive constant c′ > 0.

The above two estimates turn out to be enough to then deduce the lower bound in Theorem 1.1, as
shown in Section 4.

Remark 1.9. One can also introduce the set of survival times

S := {t ∈ [0, 1], t is not in any sub-interval which is discarded by S}.

Plainly, S is a random set of fractal type and whose law depends on the parameter p ∈ (0, 1) of
the signs. Moreover, by construction, we have the following immediate result: Almost surely, S is
totally ordered w.r.t. ◁e,s,p.

We believe that the first moment estimate in Item (a) above, together with an upgraded version
of the two-point function estimate in Item (b) above and some energy method arguments (see for
instance [MP10, Theorem 4.27]), would be enough to prove the following result:

For all p ∈ (0, 1), almost surely, the Hausdorff dimension of S is

dim(S) = dim(S ∩ Re) = ³∗(p),

where ³∗(p) is as in Remark 1.2.
We expect the upgraded version of the two-point function estimate mentioned above to require

a fair amount of technical work, so we do not carry it out in this paper.
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1.4.2 Strategy for the proof of the upper-bound

Our strategy to prove the upper bound in Theorem 1.1 is in some sense to analyze the worst-case
scenario.

Recall the notation from the previous section. We pick (in a manner which is allowed to depend
on the signed excursion (e, s, p), plus possibly some additional independent information) an arbitrary
subset O ¢ [0, 1]2 which is ordered w.r.t. ◁e,s,p. For each branching height b ∈ B¸, let ¸b be the
discarding rule corresponding to the set O, that is, ¸b is equal to L (for left) if O intersects (tb, c)
and ¸b is equal to R (for right) if O intersects (a, tb) (we make an arbitrary choice if O intersects
neither of the two intervals). Our goal is to show that (¸b)b∈B¸

discards a large subset of [0, 1] so
that the complement is small. To do that, we upper-bound as ε → 0 the following probability

P
(
(¸b)b∈B¸

does not discard the fragment corresponding to U before it gets smaller than ε
)
,

where U is a uniform point in [0, 1] independent from everything else. In Proposition 5.1, we show
that the above probability is upper-bounded by c · ε¼∗(p) as ε → 0 (recall from Remark 1.2 that
¼∗(p) = 1 − ´∗(p)). This is done in two main steps:

• Fix r ∈ (1/2, 1). We say that a branching height b ∈ B¸ whose corresponding excursion
interval (a, c) contains U is balanced (at scale r) if max{tb − a, c− tb} f r(c− a), i.e. the sub-
excursions to the left and right of the local minimum time tb are of comparable time duration
(recall Figure 4). The first step, which is carried out in Proposition 5.4, is to upper-bound
the probability that (¸b)b∈B¸

does not discard U before reaching the m-th smallest balanced
branching height. In particular, we will show that this probability is upper-bounded by rm.

• The second step, which is carried out in Proposition 5.5, is to upper-bound the probability
that the fragment corresponding to U at the m-th balanced branching height has duration
smaller than ε.

We then optimize over the parameters r and m.
Finally, we transfer this estimate to the discrete setting in Section 6 (obtaining the upper

bound in Theorem 1.1), as follows. First, we sample a permutation Perm(µp, n) from the Brownian
separable permuton µp. Then, we consider the discarding rule (¸b)b∈B¸

corresponding to the points
of the longest increasing subsequence in Perm(µp, n) (if there are multiple ones, we choose one
arbitrarily). That is, at each branching height b ∈ B¸ we discard the interval not containing
points of the longest increasing subsequence (we make an arbitrary choice if the longest increasing
subsequence intersects neither of the two intervals). We then conclude using the estimates above.

Remark 1.10. As in Remark 1.9, we expect that one can extend the arguments discussed above to
obtain the following result:

Fix p ∈ (0, 1). Almost surely, every set O ¢ [0, 1] such that O ∩ Re is totally ordered w.r.t.
◁e,s,p satisfies

dim(O) f ´∗(p),

where ´∗(p) is as in Remark 1.2.
However, there are some technical arguments involved in transferring from an estimate for a

uniform time U ∈ [0, 1] to a bound for Hausdorff dimension, so for the sake of brevity we do not
prove the above statement in this paper.
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2 Preliminary results

In this section we gather some preliminary results that are used later in the paper. In Section 2.1
we discuss some classical properties of Brownian excursions. In Section 2.2 we explain an equivalent
way to sample permutations and graphs from the Brownian separable permutons and the Brownian
cographs and how to derive Theorem 1.3 from Theorem 1.1. Finally, in Section 2.3, we properly
introduce fragmentation processes and the tagged fragment in a Brownian excursion.

2.1 Brownian excursions

We collect some standard properties of a Brownian excursion e and the order ◁e,s,p introduced in
(1.1) that will be used frequently (and sometimes tacitly) in the paper.

Conditioning on e, we say that t ∈ [0, 1] is regular for e if it is not a one-sided local minimum
of e, that is, t ∈ [0, 1] is regular for e if

∀ε > 0, ∃ t1 ∈ (t− ε, t), t2 ∈ (t, t+ ε) such that e(t1) < e(t) and e(t2) < e(t).

We denote by Re the (random) set of regular points of e.

Lemma 2.1. Fix p ∈ (0, 1). Let e be a (normalized) Brownian excursion and ◁e,s,p be the relation
introduced in (1.1). Then, almost surely, the following assertions hold.

(a) All local minima of e are strict local minima (hence countable), they all have different heights,
and they are dense in [0, 1].

(b) Local minima never split the excursion into two sub-excursions with equal durations.

(c) For every x, y ∈ Re with x < y, it holds that min[x,y] e is reached at a unique point which is a
strict local minimum.

(d) The relation ◁e,s,p restricted to Re is a total order.

(e) dim([0, 1] \ Re) = 1/2, where dim(·) denotes the Hausdorff dimension of a set.

Proof. The first two items are classical properties of Brownian excursions (see for instance [RY13,
Chapter XII]). Then Item (c) follows from the previous properties and the definition of regular
points.

Item (d) is [Maa20, Lemma 2.5]. Note that the latter lemma states our claim only for a set of
Lebesgue measure one (instead of Re), but the proof of the lemma proves exactly our claim.

Finally, we prove Item (e). This result is classical in the probabilistic literature, and we include
a proof only for the sake of completeness. Let t be a time which is not regular for e. Then either
there is a rational q < t such that e attains a running minimum at time t when run forward started
from time q; or there exists a rational q > t such that e attains a running minimum at time t when
run backward started from time q. For each rational time q, the set of times at which e attains a
running minimum when run forward (resp. backward) from time q has a.s. Hausdorff dimension 1/2
(by local absolute continuity between the Brownian excursion and Brownian motion). Therefore the
result follows from the countable stability of Hausdorff dimension.
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2.2 Sampling permutations and graphs from the Brownian separable permutons

and the Brownian cographs

Recall from Section 1.1.3 that given the Brownian separable permuton µp, the permutation
Perm(µp, n) is obtained as follows: conditioning on µp, sample n independent points Z1, . . . , Zn

in the unit square [0, 1]2 with distribution µp. These n points induce a random permutation
Ãn = Perm(µp, n): for any i, j ∈ [n] := {1, . . . , n}, let Ãn(i) = j if the point with i-th lowest
x-coordinate has j-th lowest y-coordinate. It is simple to realize that the previous permutation can
be equivalently obtained as follows: sample n independent uniform points (Ui)ifn on [0, 1]. Then
Ãn is the permutation induced by the order of the points (Ui)ifn with respect to the order ◁e,s,p

introduced in (1.1). Equivalently, for i < j,

Ãn(i) < Ãn(j) if and only if s(ℓŪi,Ūj
) = ·,

where (Ūi)ifn is the re-arrangement of (Ui)ifn in increasing order and ℓŪi,Ūj
∈ [Ūi, Ūj ] is the unique

strict local minimum min[Ūi,Ūj ] e. Recall from Lemma 2.1 that almost surely, for every x, y ∈ Re

with x < y, the minimum min[x,y] e is reached at a unique point which is a strict local minimum and
Re has Lebesgue measure one, so the previous quantities are almost surely well-defined. Therefore,
when convenient, we will denote Ãn = Perm(µp, n) also by Ãn = Perm(e, s, (Ui)ifn).

Recall now that given the Brownian cographon Wp introduced in (1.5), we can consider the
random graph induced by Wp of size n, denoted by Graph(Wp, n) and defined as follows: consider
n vertices {v1, v2, . . . , vn}, and let (U1, . . . , Un) be n i.i.d. uniform random variables in [0, 1], in-
dependent of Wp. We connect the vertices vi and vj with an edge if and only if Wp(Ui, Uj) = 1.
Equivalently, from the definition in (1.5), we connect the vertices vi and vj with an edge if and only
if s(ℓUi,Uj

) = ·.
By comparing the above descriptions of Perm(µp, n) and Graph(Wp, n) and noting that µ1−p

has the same law as µp when we exchange all the · and ¸ signs in the collection of signs s, we
immediately obtain the following result.

Lemma 2.2. Fix p ∈ (0, 1). Let µp be the Brownian separable permuton of parameter p and let
Wp be the Brownian cographon of parameter p. Then

LCL(Graph(Wp, n))
d
= LIS(Perm(µp, n)) and LIN(Graph(Wp, n))

d
= LIS(Perm(µ1−p, n)).

As a consequence of Lemma 2.2, we see that Theorem 1.3 follows immediately from Theorem 1.1.
We also recall that Corollary 1.4 is an immediate consequence of Theorem 1.3. Hence, in the rest of
the paper we will focus on the proof of Theorem 1.1.

2.3 Fragmentation processes and the tagged fragment in a Brownian excursion

As already mentioned in Section 1.4, our point of view bears close connections with Bertoin’s
fragmentation processes [Ber06], which in fact come in as one of the main tools for the derivation
of the exponent bounds ³∗(p) an ´∗(p). Such processes describe the behavior of a system of masses
which fall apart randomly over time in a Markovian way. In this paper we will be interested in one
particular example of so-called self-similar interval fragmentation F0 = (F0(h), h g 0) defined
from a normalized Brownian excursion e as

F0(h) := {s ∈ (0, 1), e(s) > h}, h g 0. (2.1)

See Figure 5 for an illustration. It is clear that F0 is a nested family of open sets in (0, 1). Moreover,
Brownian scaling implies that F0 also enjoys a self-similarity property: for all r > 0, the process
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(rF0(r−1/2h), h g 0) has the law of the process (2.1) defined from a Brownian excursion conditioned
to have duration r. We will denote by F the collection of lengths of intervals in F0. The process
F has been first introduced in [Ber02], where it was proved to a be essentially a variant of the
Aldous–Pitman fragmentation [AP98].

h

t0 1

I
t(h)

F
t(h)

Figure 5: A sketch for the notation introduced for the self-similar interval fragmentation F0 =
(F0(h), h g 0). In red we highlighted the intervals in F0(h) and the corresponding sub-excursions of
e above level h. The interval It(h) in F0(h) containing t has length F t(h) in F.

A key player in the description of such processes is the so-called tagged fragment, which in our
case consists in targeting the fragment straddling a uniform point in (0, 1). For t ∈ (0, 1), we denote
by It(h), h g 0, the interval in F0(h) which contains t, and we set It(h) = ∅ if t is not contained in
any interval of F0(h) (equivalently, e(t) f h). We further write F t(h) for the length of the interval
It(h), and ht = e(t) for its absorption time at 0, i.e. the first height h such that It(h) = ∅. The
tagged cell for the fragmentation, or simply tagged fragment, is then given by

FU = (FU (h), 0 f h < hU ), where U is uniform in (0, 1), independent from e. (2.2)

Then [Ber02, Section 4] gives the law of FU . Let us recall for completeness that if (X,Px) is a
positive Markov process which under Px starts at x > 0, we say that X is self-similar with index

³ if, for all r > 0, the process (rX(r³s), s g 0) under Px has the law Prx.

Proposition 2.3 ( [Ber02, Section 4]). The process FU is a positive self-similar Markov process
with index −1

2 . It can be further written in the Lamperti representation as

FU (h) = exp(−ÀÄ(h)), 0 f h < hU ,

where Ä(h) is the (Lamperti) time-change

Ä(h) := inf

{
u > 0,

∫ u

0
e− 1

2
Àr dr > h

}
, 0 f h < hU , (2.3)

and À is a subordinator with Laplace exponent

Φ(q) := − logE[e−qÀ1 ] =

∫ ∞

0
(1 − e−qx)

2ex

√
2Ã(ex − 1)3

dx, q > −1

2
. (2.4)

That is, À has no killing, no drift, and Lévy measure Λ(dx) := 2exdx√
2Ã(ex−1)3

on (0,+∞).
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Remark 2.4. One can calculate that Φ(q) = 2
√

2Γ(q+1/2)
Γ(q) (see [Ber02, Equation (12)]). Note also

that Φ(q) is increasing in q, Φ(0) = 0, limq→(−1/2)+ Φ(q) = −∞ and limq→+∞ Φ(q) = +∞. The fact

that Φ(q) = 2
√

2Γ(q+1/2)
Γ(q) , together with [KRŞ17, Section 2.3] for instance, implies that FU has the

law of the 1
2–stable (decreasing) subordinator conditioned to be absorbed continuously at 0.

The reason why FU plays a special part in the description of F is that it governs the behavior of
the size of a typical fragment in F.

We end this section with a technical lemma for subordinators which will be relevant in later
sections.

Lemma 2.5. Let ¸ be a subordinator with Laplace exponent Ψ(q) := − logE[e−q¸1 ], and a g 0.
Assume that that there exists a∗ > 0 such that Ψ extends (analytically) to a neighborhood to the left
of 0 containing −a∗, Ψ(−a∗) = −a and Ψ′(−a∗) < ∞. For x > 0, define the first passage time of ¸
across x,

Sx := inf{s > 0, ¸s > x}.
Then for all b g 0, there exists a constant c = c(a, b) ∈ (0, 1) such that,

E

[
e−aSx−b¸Sx

]
∼

x→∞
c e−(a∗+b)x. (2.5)

Moreover, for all b > −a∗, we have the upper-bound

E

[
e−aSx−b¸Sx

]
f e−(a∗+b)x, for all x > 0. (2.6)

Proof. The result is a consequence of exponential tilting. Since Ψ(−a∗) = −a, the process

Ma
s := ea∗¸s−as, s g 0,

is a martingale. Let P
a denote the tilted probability measure with respect to the martingale Ma.

This is the measure defined from Kolmogorov’s extension theorem by dPa = Ma
s · dP on Ã(¸r, r f s)

for all s g 0. Plainly, under P
a, ¸ is a Lévy process with Laplace exponent Ψa(q) = Ψ(q − a∗) + a.

We claim that by an optional stopping type argument, we have

E

[
e−aSx−b¸Sx

]
= E

a
[
e−(a∗+b)¸Sx

]
if b g 0, (2.7)

and
E

[
e−aSx−b¸Sx

]
f E

a
[
e−(a∗+b)¸Sx

]
if −a∗ < b < 0, (2.8)

where E
a denotes expectation with respect to P

a. Indeed, since subordinators are transient (see for
instance [Ber96, Chapter III]), Sx is a.s. finite, whence a.s.

lim
n→∞

e−(a∗+b)¸n'Sx = e−(a∗+b)¸Sx and lim
n→∞

e−a(n'Sx)−b ¸n'Sx = e−aSx−b ¸Sx .

Moreover, since a∗ + b g 0, by dominated convergence (the domination is straightforward once we
remark that under P

a, ¸ is still a subordinator, so that ¸n'Sx g 0),

E
a
[
e−(a∗+b)¸Sx

]
= lim

n→∞
E

a
[
e−(a∗+b)¸n'Sx

]
= lim

n→∞
E

[
e−a(n'Sx)−b ¸n'Sx

]
. (2.9)

For a g 0 and b g 0, another application of dominated convergence gives the claim in (2.7). For
a g 0 and −a∗ < b < 0, we note that by Fatou’s lemma

E

[
e−aSx−b¸Sx

]
= E

[
lim inf
n→∞

e−a(n'Sx)−b ¸n'Sx

]
f lim inf

n→∞
E

[
e−a(n'Sx)−b ¸n'Sx

]
(2.9)
= E

a
[
e−(a∗+b)¸Sx

]
,
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which is the claim in (2.8).
First of all, the inequality (2.6) is a trivial consequence of (2.7) and (2.8), together with the

observation that ¸Sx g x. We now prove the claim in (2.5). Since by assumption E
a[¸1] = (Ψa)′(0) =

Ψ′(−a∗) < ∞, by the renewal theorem [BVHS99, Theorem 1], ¸Sx − x converges in distribution
under P

a to a limiting non-degenerate random variable as x → ∞. Therefore

E
a
[
e−(a∗+b)¸Sx

]
∼

x→∞
c e−(a∗+b)x,

for some constant c ∈ (0, 1). The statement of the lemma then follows from (2.7).

Remark 2.6. The constant c can be made explicit from [BVHS99, Theorem 1].

3 Estimates for the lower bound

The main goal of this section is to provide first and second moment estimates involving our selection
rule S defined in (1.6), which will be later used in Section 4 to lower bound the length of the longest
increasing subsequence in permutations sampled from the Brownian separable permutons. More
precisely, we provide in Proposition 3.1 asymptotics as ε → 0 for the probability that the tagged
fragment (2.2) survives (in the sense of S) until getting smaller than ε, and similar estimates in
Proposition 3.4 for the two-point function.

3.1 Embedding the selection rule in the tagged cell

Recall from Section 1.4.1 the following setup. Every local minimum tb ∈ (0, 1) of the Brownian
excursion e corresponds to a so-called branching height b = e(tb) and comes with a · or ¸ sign
given by s. We denote by B· and B¸ the sets of branching heights respectively associated with ·
and ¸ signs. Each branching height b is splitting one interval (a, c) into the two sub-intervals (a, tb)
and (tb, c) (see Figure 4, p. 12). Our selection rule S is to discard at each negative branching height
the smaller of the two intervals (a, tb) and (tb, c) in terms of Lebesgue measure. In this paragraph
we embed this strategy in the fragmentation F and the tagged fragment FU introduced in (2.2).
For a right-continuous non-negative process X, we introduce the notation ∆X(t) := X(t) −X(t−)
for its possible jump at time t. Recall that the branching heights of e are encoded by jumps in the
fragmentation process F. One can therefore enforce the selection rule S in the tagged fragment FU

by killing it at the first negative branching height h in (e, s, p) where the size of the other fragment,
which is −∆FU (h), is larger than FU (h); c.f. Figure 6. Moreover, note that in the notation of
Proposition 2.3, whenever FU (h) < −∆FU (h), then after time-change we have that ∆ÀÄ(h) > log 2.
Based on this, we set

HU
S := inf{h ∈ B¸, −∆FU (h) > FU (h)}, (3.1)

and F
U

(h) := FU (h)1h<HU
S

, h g 0.

This also motivates the introduction of two new processes Ç and À describing the previous
construction at the level of the Lévy process À in Proposition 2.3. For any jump time s > 0 of À,
the variable Çs encodes the · or ¸ sign in s attached to the branching height Ä−1(s) of e. More
precisely, conditional on À, for each s > 0 such that ∆Às > 0, let Çs = 1 or Çs = 0 with probability
p and 1 − p respectively (for other times we send Çs := ♢ to a cemetery state). We take the random
variables {Çs : ∆Às > 0} to be conditionally independent given À.

One can then implement the strategy S on À, obtaining a new process À which is a killed version
of À. Informally À is constructed as follows: let s > 0 be a jump time for À. If Çs = 1, we do nothing.
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U(h−)
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U(h)

Negative branching height

−∆F
U(h)

Figure 6: A sketch explaining how we enforce the selection rule S in the tagged fragment FU : at
the first negative height when the fragment −∆FU (h) is larger than the tagged fragment FU (h),
we kill the process FU at zero, i.e. with the notation in (3.1), we are considering the process
F

U
(h) = FU (h)1h<HU

S

.

Otherwise Çs = 0: then we kill À (i.e. we set Às = ∞) if, and only if, ∆Às > log 2. More precisely,
let ÀS be a Lévy process with intensity measure on (0,+∞).

ΛS(dx) := Λ(dx)|x∈(0,log 2] + pΛ(dx)|x∈(log 2,+∞) = (1x∈(0,log 2] + p1x∈(log 2,+∞))
2 exdx√

2Ã(ex − 1)3
. (3.2)

We also set
ΦS(q) :=

∫ ∞

0
(1 − e−qx)ΛS(dx), q > −1

2
, (3.3)

for the Laplace exponent of ÀS. One may write À = ÀS + ÀK, where ÀK is an independent Lévy
process with Lévy measure supported on (log 2,+∞)

ΛK(dx) := (1 − p)Λ(dx)|x∈(log 2,+∞) =
2(1 − p) exdx√

2Ã(ex − 1)3
.

In this description, as a result of the thinning operation (see8 e.g. [BBK20, Section 2.2.2]), À has the
law of ÀS killed at the first time T when ÀK has a jump. Note also that, in light of Proposition 2.3,
one has that FU

(h) = exp(−ÀÄ(h)) for all h g 0. Additionally, ΛK has finite total mass, so that T is
an exponential random variable with parameter

¼(p) =

∫ ∞

log 2
ΛK(dx) = 2(1 − p)

√
2

Ã
. (3.4)

There is a natural correspondence between T and HU
S

, which is just given by a Lamperti time-change
(recall (2.3)).

8Informally, the thinning operation is the operation which allows one to select some points in a Poisson point

process according to some random rule, obtaining a new Poisson point process with some “thinned” intensity measure.
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3.2 First moment estimate

Our first estimate in this subsection concerns the probability that the fragment targeted at the
uniform point U survives long enough, in the sense that it reaches some small value before it gets
(possibly) discarded. Let ε > 0, and

HU
ε := inf{h > 0, FU (h) < ε}. (3.5)

Recalling the height HU
S

from (3.1), we also introduce the event

EU
ε :=

{
HU

ε < HU
S

}
, (3.6)

i.e., the event that the fragment targeted at the uniform point U gets smaller than ε before it gets
(possibly) discarded.

We fix p ∈ (0, 1) for the rest of the section. All the constants appearing in the next propositions
depend on p, even if not explicitly stated.

Proposition 3.1. Let ¼∗(p) be the only positive solution to the equation ΦS(−¼∗(p)) = −¼(p), with
ΦS as in (3.3) and ¼(p) as in (3.4). The probability of EU

ε satisfies

P(EU
ε ) f ε¼∗(p), for all ε > 0. (3.7)

Moreover, there exists a constant c > 0 such that

P
(EU

ε

) ∼
ε→0

c ε¼∗(p). (3.8)

Remark 3.2. We emphasize that the exponent ¼∗(p) is the same as the one appearing in Remark 1.2
(see also that remark for some particular values of ¼∗(p)). Since ΦS is continuous on (−1/2,+∞)
with ΦS(0) = 0 and ΦS(q) → −∞ as q → (−1/2)+, it is plain that ¼∗(p) ∈ (0, 1

2). See the left-hand

side of Figure 2 for the graph of ³∗(p)
(1.2)
= 1 − ¼∗(p) for p ∈ (0, 1), obtained by solving numerically

the equation ΦS(−¼∗(p)) = −¼(p).

Proof of Proposition 3.1. The Lamperti representation provides a natural point of view to address
this question (see for instance [CM18, Section 2.3] where a similar approach was used in a different
context). Recall the subordinators ÀS and ÀK and the time T introduced just above (3.4). Note that

P
(EU

ε

)
= P

(
HU

ε < HU
S

)
= P

(
T− log ε < T

)
, (3.9)

where Tx := inf{s > 0, ÀS
s > x} is the first passage time of ÀS above x > 0. Now since T is an

exponential random variable with parameter ¼(p) (see (3.4)), by the independence of ÀS and ÀK

(and so of T− log ε and T ),

P
(
T− log ε < T

)
= E

[
e−¼(p)T− log ε

]
. (3.10)

Proposition 3.1 is then a consequence of Lemma 2.5. First, note that for all q < 1/2, (ΦS)′(−q) < ∞
as is easily seen from (3.2) and (3.3). Applying the aforementioned lemma for a = ¼(p) > 0 and
b = 0, we obtain from (3.9) and (3.10) that

P(EU
ε ) f ε¼∗(p),

for all ε > 0, and
P

(EU
ε

) ∼
ε→0

c ε¼∗(p),

for some constant c > 0, where ¼∗(p) is the positive solution to the equation ΦS(−¼∗(p)) = −¼(p).
This proves (3.7) and (3.8).
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We conclude this section with the following moment estimate.

Proposition 3.3. Let · g 0. There exists a constant c = c(·) > 0 such that

E

[
FU (HU

ε )· · 1EU
ε

]
∼

ε→0
c ε·+¼∗(p), (3.11)

where ¼∗(p) is the positive solution to ΦS(−¼∗(p)) = −¼(p). Moreover, if · > −¼∗(p),

E

[
FU (HU

ε )· · 1EU
ε

]
f ε·+¼∗(p), for all ε > 0.

Proof. Using the description in Proposition 2.3, together with the notation at the beginning of this
subsection, we have that

E

[
FU (HU

ε )· · 1EU
ε

]
= E

[
e

−·ÀS

T− log ε · 1T− log ε<T

]
,

where we recall that Tx = inf{s > 0, ÀS
s > x} and T is the exponential random variable with

parameter ¼(p) = 2(1 − p)
√

2
Ã introduced in (3.4). Moreover, T is independent of ÀS, so that

E

[
FU (HU

ε )· · 1EU
ε

]
= E

[
e

−·ÀS

T− log ε
−¼(p)T− log ε

]
.

An application of Lemma 2.5 (with a = ¼(p) > 0 and b = · > −¼∗(p)) yields the desired
estimates.

3.3 Two-point function estimate

We now consider two independent uniform points U and V in (0, 1) also independent from all the
other random quantities. Recall from (3.6) the notation EU

ε and EV
ε respectively for the events

that the fragments containing U and V survive in the strategy S (defined in (1.6)) until getting
smaller than ε > 0. We are interested in the correlation between the two events EU

ε and EV
ε . The

aim of this section is to prove the following second moment estimate, which should be compared to
Proposition 3.1.

Proposition 3.4. There exists a constant c > 0 such that

P

(
EU

ε ∩ EV
ε

)
∼

ε→0
c ε2¼∗(p),

where ¼∗(p) is the only positive solution to the equation ΦS(−¼∗(p)) = −¼(p), with ΦS as in (3.3).

Proof. Introduce, for ε > 0, the event that U and V split before reaching ε, namely

GU,V
ε :=

{
IU (HU

ε ) ̸= IV (HV
ε )

}
.

Let ε > 0. We split the event EU
ε ∩ EV

ε according to GU,V
ε and its complement.

We first deal with the two-point function on the event (GU,V
ε )c. In this case, we condition on

(e, s, U) to obtain

P

(
EU

ε ∩ EV
ε ∩ (GU,V

ε )c
)

= P

(
EU

ε ∩ {V ∈ IU (HU
ε )}

)
= E

[
1EU

ε
· P

(
V ∈ IU (HU

ε )|(e, s, U)
)]
. (3.12)

22



We now argue conditionally on (e, s, U). Since HU
ε is a stopping time for the filtration Ã(IU (h′), h′ f

h), defined for all h > 0, and V is independent of (e, s, U), we a.s. have P

(
V ∈ IU (HU

ε )|(e, s, U)
)

=

FU (HU
ε ). Plugging this identity into (3.12), we infer that

P

(
EU

ε ∩ EV
ε ∩ (GU,V

ε )c
)

= E

[
1EU

ε
· FU (HU

ε )
]
.

Using Proposition 3.3, we therefore conclude that there exists a constant c1 > 0 such that

P

(
EU

ε ∩ EV
ε ∩ (GU,V

ε )c
)

∼
ε→0

c1ε
1+¼∗(p). (3.13)

We next deal with the two-point function on the event GU,V
ε . Remark that this event can be

rephrased as the existence of a branching height a f HU
ε 'HV

ε separating U and V . We note that
a is a stopping time with respect to the filtration Ã(IU (h′), IV (h′) , h′ f h), defined for all h > 0.
Moreover, given IU (a), the law of U is uniform in IU (a) (and the same applies to V ). Therefore, by
conditioning at height a and using the branching property of excursions above a,

P

(
EU

ε ∩ EV
ε ∩ GU,V

ε

)
= E

[
1{a<HU

S
'HV

S
'HU

ε 'HV
ε } · PF U (a)

(E Ũ
ε

) · PF V (a)

(E Ṽ
ε

)]
, (3.14)

where Pℓ describes the law of a Brownian excursion with duration ℓ > 0, and conditionally on
FU (a) and F V (a), Ũ , Ṽ are independent and uniform in (0, FU (a)) and (0, F V (a)) respectively. By
Brownian scaling, for ℓ > 0 we have

Pℓ

(E Ũ
ε

)
= P

(EU ′

ε/ℓ

)
and Pℓ

(E Ṽ
ε

)
= P

(EV ′

ε/ℓ

)
,

with U ′, V ′ uniform in (0, 1). Equation (3.14) now boils down to

P

(
EU

ε ∩ EV
ε ∩ GU,V

ε

)
= E

[
1{a<HU

S
'HV

S
'HU

ε 'HV
ε } · P

(
EU ′

ε/F U (a)

∣∣∣FU (a)
)

· P
(
EV ′

ε/F V (a)

∣∣∣F V (a)
)]
. (3.15)

We now take ε → 0. We claim that for some constant c2 > 0,

P

(
EU

ε ∩ EV
ε ∩ GU,V

ε

)
∼

ε→0
c2 ε

2¼∗(p) · E
[
1{a<HU

S
'HV

S
}F

U (a)−¼∗(p)F V (a)−¼∗(p)
]
. (3.16)

Indeed, from (3.8) in Proposition 3.1, we know that there exists a constant c > 0 such that
P

(EU ′

ε/F U (a)

∣∣FU (a)
) ∼

ε→0
c · (ε/FU (a))¼∗(p) and likewise P

(EV ′

ε/F V (a)

∣∣F V (a)
) ∼

ε→0
c · (ε/F V (a))¼∗(p). The

result then follows from (3.15) provided we can apply dominated convergence. We now justify that
we can apply it.

First of all, recall from (3.7) that we have, for all ε > 0, the upper-bounds

P
(EU ′

ε/F U (a)

∣∣FU (a)
) f (ε/FU (a))¼∗(p) and P

(EV ′

ε/F V (a)

∣∣F V (a)
) f (ε/F V (a))¼∗(p).

The domination will therefore follow if we prove that

E

[
1{a<HU

S
'HV

S
}F

U (a)−¼∗(p)F V (a)−¼∗(p)
]
< ∞. (3.17)

To do so, we argue conditionally on FU , by first noting that one can construct F V (a) from FU

as follows. Recall that a corresponds to the branching height separating U and V , hence F V (a)
is equal to the length of the interval not containing U split by the jump of FU at height a, that
is F V (a) = −∆FU (a) (recall Figure 6, p. 20). Now observe that given some fixed jump time h of
FU , the probability that the branching height a is equal to h is given by the probability that V
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belongs to the interval corresponding to the fragment −∆FU (h). In other words, conditionally on
FU , using the independence of V and U , one can build F V (a) by selecting the jump −∆FU (h) of
FU at time h with probability −∆FU (h). By removing the indicator and conditioning (3.17) on
FU , one therefore gets

E

[
1a<HU

S
'HV

S

(FU (a)F V (a))−¼∗(p)
]

f E




∑

0<h<hU

(FU (h))−¼∗(p)(−∆FU (h))1−¼∗(p)


.

Using the Lamperti representation from Proposition 2.3, and noting that −∆FU (h) = e−À
b− (1 −

e−∆Àb) with b = Ä(h), this becomes

E

[
1a<HU

S
'HV

S

(FU (a)F V (a))−¼∗(p)
]

f E




∑

b>0

e¼∗(p)Àbe−(1−¼∗(p))À
b− (1 − e−∆Àb)1−¼∗(p)




= E




∑

b>0

e−(1−2¼∗(p))À
b− e¼∗(p)∆Àb(1 − e−∆Àb)1−¼∗(p)


.

Then an application of the compensation formula for À (see e.g. [Kyp14, Theorem 4.4]) provides

E

[
1a<HU

S
'HV

S

(FU (a)F V (a))−¼∗(p)
]

f E

[∫ ∞

0
e−(1−2¼∗(p))Àbdb

]
·
∫ ∞

0
Λ(dx)e¼∗(p)x(1 − e−x)1−¼∗(p).

On the one hand, since ¼∗(p) < 1/2, it is clear from the expression of Λ in Proposition 2.3 that the
second integral is finite. On the other hand, the first expectation is simply

E

[∫ ∞

0
e−(1−2¼∗(p))Àbdb

]
=

∫ ∞

0
e−bΦ(1−2¼∗(p))db.

As ¼∗(p) < 1/2, the observation that Φ(1 − 2¼∗(p)) > 0 concludes the proof of (3.17). The
domination is thus established, which proves (3.16).

Proposition 3.4 finally follows from the two asymptotics (3.13) and (3.16).

4 Lower bound for sequences sampled from the Brownian separable

permutons

The main goal of this section is to prove the lower bound in Theorem 1.1. As already pointed out
in Remark 1.2, ³∗(p) > 1/2 for all p ∈ (0, 1) (indeed, ³∗(0+) = 1/2 and ³∗(1−) = 1, and ³∗(p) is
strictly increasing in p ∈ (0, 1)). Hence, it is enough to prove the lower bound in the second item in
the theorem statement. This is done in the following proposition.

Proposition 4.1. Fix p ∈ (0, 1) and let ³∗(p) = 1 − ¼∗(p) be as in Remark 1.2. Let Ãn be a
random permutation of size n ∈ N sampled from the Brownian separable permuton µp. Then for all
³ < ³∗(p), the following convergence in probability holds

LIS(Ãn)

n³
→ ∞. (4.1)

Proof. Fix n ∈ N and set ε = 1/n. Let (Ui)ifn be a sequence of i.i.d. uniform random variables
in (0, 1), independent of all the other random quantities, and recall from Section 2.2 that Ãn =
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Perm(e, s, (Ui)ifn). Recall also the event EU
ε from (3.6), and introduce Sn :=

∑n
i=1 1E

Ui
ε

. Thanks to
Proposition 3.1, there exist two constants c, C > 0 such that, for n large enough,

E[Sn] =
n∑

i=1

P(EUi
ε ) ∈ (c · n³∗(p), C · n³∗(p)), (4.2)

where we used that ε = 1/n and ³∗(p) = 1 − ¼∗(p). Moreover, from Proposition 3.4, if U and V are
independent uniform random variables in (0, 1) also independent of all the other random quantities,
there exists another constant c > 0 such that, for ε = 1/n small enough,

P

(
EU

ε ∩ EV
ε

)
f c · ε2¼∗(p) = c · n2³∗(p)−2. (4.3)

Using (4.2) and (4.3) we deduce that for n large enough,

E[S2
n] =

n∑

i,j=1

P(EUi
ε ∩ EUj

ε ) f c · n2³∗(p), (4.4)

for some (other) constant c > 0. The Paley–Zygmund inequality with the bounds in (4.2) and (4.4)
implies that there exist two (other) constants c, q > 0 such that for n large enough,

P(Sn g c · n³∗(p)) g q. (4.5)

Now, recalling that Sn =
∑n

i=1 1E
Ui
ε

, denote by {U∗
ℓ , ℓ ∈ [Sn]} the Sn random variables among

{Ui, i f n} such that EU∗
ℓ

ε occurs. We now want to extract a large subset {U∗
ℓ , ℓ ∈ Λ} of {U∗

ℓ , ℓ ∈ [Sn]}
such that the corresponding intervals {IU∗

ℓ
ε , ℓ ∈ Λ} are disjoint (recall that It

ε := It(Ht
ε) denotes the

largest interval containing t of size smaller than ε in the fragmentation process). The reason to be
interested in such a large subset resides in the following result.

Lemma 4.2. Almost surely, if {IU∗
ℓ

ε , ℓ ∈ Λ} are disjoint, then the permutation Perm(e, s, (U∗
ℓ )ℓ∈Λ)

is increasing.

Proof of Lemma 4.2. Assume that {IU∗
ℓ

ε , ℓ ∈ Λ} are disjoint and recall that for all ℓ, the variable

U∗
ℓ is chosen so that EU∗

ℓ
ε occurs. By definition of EU

ε in (3.6), if EU
ε occurs then the interval IU

ε

containing U is not discarded by the selection rule S. Now suppose for a contradiction that there
exist two variables U∗

ℓ1
and U∗

ℓ2
, with U∗

ℓ1
< U∗

ℓ2
and ℓ1, ℓ2 ∈ Λ, such that the two corresponding

values in Perm(e, s, (U∗
ℓ )ℓ∈Λ) form an inversion. Since I

U∗
ℓ1

ε and I
U∗

ℓ2
ε are disjoint, there must exist (by

Lemma 2.1) a local minimum of e at some height h = e(t) which separates U∗
ℓ1

and U∗
ℓ2

, in particular

t /∈ I
U∗

ℓ1
ε ∪ I

U∗
ℓ2

ε , FU∗
ℓ1 (h−) g ε and F

U∗
ℓ2 (h−) g ε. See Figure 7. Moreover, the sign corresponding

to such a local minimum must be a ¸ (since we assumed that the two elements corresponding to
U∗

ℓ1
and U∗

ℓ2
in Perm(e, s, (U∗

ℓ )ℓ∈Λ) form an inversion). We deduce that either U∗
ℓ1

or U∗
ℓ2

must be

discarded by S at height h. Since FU∗
ℓ1 (h−) g ε and F

U∗
ℓ2 (h−) g ε, this contradicts the fact that

E
U∗

ℓ1
ε and E

U∗
ℓ2

ε occur.

In order to guarantee that the size of Λ (and hence the size of the increasing permutation
Perm(e, s, (U∗

ℓ )ℓ∈Λ)) is large, we also need the following estimate.
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Figure 7: An illustration explaining the proof of Lemma 4.2.

Lemma 4.3. Let ε = 1/n and fix · > 0. There exist two constants c1, c2 > 0 (which may depend
on · but not on n) such that

P

(
∀i ∈ [n], #{j ∈ [n], Uj ∈ IUi

ε } < n·
)

g 1 − c1n · exp(−c2n
·), for all n g 1.

Proof of Lemma 4.3. This is a standard binomial concentration argument. Let ε = 1/n and fix
· > 0. We recall that the number of uniform variables among (Ui)ifn which fall in some prescribed
interval A follows a binomial distribution Bin(n, |A|) with success probability |A|. Note that for all
n g 1,

P

(
∀i ∈ [n], #{j ∈ [n], Uj ∈ IUi

ε } < n·
)

g 1 −
n∑

i=1

P
(
#{j ∈ [n] \ {i}, Uj ∈ IUi

ε } g n· − 1
)

g 1 −
n∑

i=1

P(Bin(n− 1, ε) g n· − 1),

where in the last inequality we used that by definition |IUi
ε | = FUi(HUi

ε ) f ε. Now recalling that
ε = 1/n, we get by Chernov’s bound that

P

(
∀i ∈ [n], #{j ∈ [n], Uj ∈ IUi

ε } < n·
)

g 1 − c1n · min
µ>0

{exp(−µn·)E[exp(µBin(n− 1, 1/n))]}

= 1 − c1n · min
µ>0

{exp(−µn·)(1 − 1/n+ exp(µ)/n)n−1}

g 1 − c1n · exp(−c2n
·), (4.6)

where c1, c2 > 0 are two constants.

Note that on the event
{
Sn g c · n³∗(p)

}
∩

{
∀i ∈ [n], #{j ∈ [n], Uj ∈ IUi

ε } < n·
}

, we can extract

a subset {U∗
ℓ , ℓ ∈ Λ} of {U∗

ℓ , ℓ ∈ [Sn]} such that the corresponding intervals {IU∗
ℓ

ε , ℓ ∈ Λ} are disjoint
and the size of Λ is large, in the sense that #Λ g c · n³∗(p)−· . Hence, on this event, thanks to
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Lemma 4.2, we have that Perm(e, s, (U∗
ℓ )ℓ∈Λ) is an increasing subsequence in Ãn = Perm(e, s, (Ui)ifn)

of size at least c · n³∗(p)−· .
Using (4.5) and Lemma 4.3, we deduce that for all · > 0 there exist two (other) constants

c, q > 0 (which may depend on ·) such that,

P

(

LIS(Ãn) g c · n³∗(p)−·
)

g q, for all n g 1. (4.7)

Note that this estimate holds for all n g 1 since we are allowed to choose a (possibly smaller)
constant c > 0.

The rest of the proof is devoted to upgrading (4.7) by proving that for all · > 0 there exists
(another) constant c > 0 (which may depend on ·) such that

lim
n→∞

P

(

LIS(Ãn) g c · n³∗(p)−·
)

= 1. (4.8)

To do this, we use a zero-one law type argument. Recall the signed excursion (e, s, p) and the
definition of the tagged fragment from Proposition 2.3. Given a branching height h > 0, recall that
s(h) is the corresponding sign. For ¶ > 0, let

H = H(¶) := inf
{

h > 0
∣

∣

∣ s(h) = ·, min{FU (h−) − FU (h), FU (h)} g ¶, FU (h) > 1/2
}

, (4.9)

with the convention that inf ∅ = ∞. We claim the following.

Lemma 4.4. For every ε′ > 0, there exists ¶ > 0 such that P(H < ∞) g 1 − ε′.

Proof of Lemma 4.4. Fix ε′ > 0. It suffices to show that a.s. there exists a random ¶ > 0 such that
H(¶) < ∞. Indeed, by the continuity of the probability for increasing families of events, this implies
that there is some deterministic ¶ such that P(H(¶) < ∞) g 1 − ε′.

Recall that from Proposition 2.3 we have that F [U ](h) = exp(−Às) with s = Ä(h). Since À is
a subordinator with Levy measure Λ(0,∞) = ∞, then FU (h) does not immediately jump below
1/2 (by right-continuity of FU (h)), and it has infinitely many downward jumps in every non-trivial
interval of times (because Λ(0,∞) = ∞; see e.g. [Ber96, Section I.5]). Hence there are infinitely
many h > 0 such that min{FU (h−) − FU (h), FU (h)} > 0 and FU (h) > 1/2. Since the signs s at
different branching heights are i.i.d., a.s. there exists h > 0 satisfying the conditions of the previous
sentence such that s(h) = ·. We then take ¶ := min{FU (h−) − FU (h), FU (h)} for the latter choice
of h.

We now fix ε′ > 0 and take ¶ > 0 so that P(H < ∞) g 1 − ε′. When H < ∞, by the definition
of H in (4.9), the sign of the branching height H is s(H) = · and H splits IU (H) into the two
intervals L and R with min{|L|, |R|} = min{FU (H−) − FU (H), FU (H)} g ¶, and none of them is
discarded by the selection rule S (recall how the selection rule S works from (1.6)). When H = ∞,
we set L = R = ∅. With the convention that Perm(e, s, ∅) is the empty permutation, we set

ÃL
n := Perm(e, s, (Ui)ifn ∩ L) and ÃR

n := Perm(e, s, (Ui)ifn ∩R),

and observe that |ÃL
n | = #

(

(Ui)ifn ∩ L
)

and |ÃR
n | = #

(

(Ui)ifn ∩R
)

. We have the following bound
on the size of the two permutations.

Lemma 4.5. For all ¶ > 0, there exists two constants c1, c2 > 0 (which may depend on ¶ but not
on n) such that

P

(

min{|ÃL
n |, |ÃR

n |} g ¶n/3
∣

∣

∣H < ∞
)

g 1 − c1 exp(−c2n), for all n g 1.
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Proof of Lemma 4.5. The proof uses standard binomial concentration arguments. Fix ¶ > 0. We
have that

P

(

min{|ÃL
n |, |ÃR

n |} g ¶n/3
∣

∣

∣H < ∞
)

= 1 − P

(

min{|ÃL
n |, |ÃR

n |} < ¶n/3
∣

∣

∣H < ∞
)

g 1 − P

(

|ÃL
n | < ¶n/3

∣

∣

∣H < ∞
)

− P

(

|ÃR
n | < ¶n/3

∣

∣

∣H < ∞
)

g 1 − 2P(Bin(n, ¶) < ¶n/3),

where the first inequality is a union bound, and the last inequality comes from the fact that
min{|L|, |R|} g ¶ when H < ∞. Standard binomial concentration bounds (as in (4.6)) then provide
the existence of two constants c1, c2 > 0 such that

P

(

min{|ÃL
n |, |ÃR

n |} g ¶n/3
∣

∣

∣H < ∞
)

g 1 − c1 exp(−c2n), for all n g 1,

which is our claim.

We now conclude the proof of Proposition 4.1. By standard self-similarity properties of the
Brownian excursion e, under the conditional law given (|L|, |R|, |ÃL

n |, |ÃR
n |), the permutations ÃL

n

and ÃR
n have the same law as two independent copies of Perm(e, s, (Ui)ifn) but of size |ÃL

n | and |ÃR
n |

and defined in terms of two independent excursions of duration |L| and |R|, respectively. Taking
c > 0 as in (4.7), and setting

G := {H < ∞, min{|ÃL
n |, |ÃR

n |} g ¶n/3},

we get that

P

(

{LIS(ÃL
n ) g c(¶n/3)³∗(p)−·} ∪ {LIS(ÃR

n ) g c(¶n/3)³∗(p)−·}
)

(4.10)

= 1 − E

[

P

(

LIS(ÃL
n ) < c(¶n/3)³∗(p)−·

∣

∣

∣ |L|, |ÃL
n |
)

· P
(

LIS(ÃR
n ) < c(¶n/3)³∗(p)−·

∣

∣

∣ |R|, |ÃR
n |
)]

g 1 − E

[

P

(

LIS(ÃL
n ) < c|ÃL

n |³∗(p)−·
∣

∣

∣ |L|, |ÃL
n |
)

· P
(

LIS(ÃR
n ) < c|ÃR

n |³∗(p)−·
∣

∣

∣ |R|, |ÃR
n |
)

· 1G

]

− P(Gc),

where in the last inequality we used that on the event G we have that min{|ÃL
n |, |ÃR

n |} g ¶n/3. Now,
observe that by Brownian scaling,

(

ÃL
n

∣

∣

∣ |L|, |ÃL
n |
)

d
=
(

Perm
(

e, s, (U i)if|ÃL
n |

)
∣

∣

∣ |ÃL
n |
)

,

where (U i)i is a new sequence of i.i.d. uniform random variables in (0, 1), independent of all other
quantities. Recalling that Ãn = Perm(e, s, (Ui)ifn), we get that almost surely, for all n g 1,

P

(

LIS(ÃL
n ) < c · |ÃL

n |³∗(p)−·
∣

∣

∣ |L|, |ÃL
n |
)

· 1G = P

(

LIS(Ã|ÃL
n |) < c · |ÃL

n |³∗(p)−·
∣

∣

∣ |ÃL
n |
)

· 1G f 1 − q,

where the last inequality follows from the bound in (4.7) (recall that we chose the same constant
c > 0 as in (4.7)). Noting that the same argument holds with R instead of L, we conclude from
(4.10) that, for all n g 1,

P

(

{LIS(ÃL
n ) g c · (¶n/3)³∗(p)−·} ∪ {LIS(ÃR

n ) g c · (¶n/3)³∗(p)−·}
)

g 1 − (1 − q)2 − P(Gc).

Claims 4.4 and 4.5 imply that, for each large enough n,

P

(

{LIS(ÃL
n ) g c · (¶n/3)³∗(p)−·} ∪ {LIS(ÃR

n ) g c · (¶n/3)³∗(p)−·}
)

g 1 − (1 − q)2 − 2ε′.
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Since if LIS(ÃL
n ) g c(¶n/3)³∗(p)−· or LIS(ÃR

n ) g c(¶n/3)³∗(p)−· then LIS(Ãn) g c(¶n/3)³∗(p)−· , the
last estimate implies that for each large enough n,

P

(

LIS(Ãn) g c · (¶/3)³∗(p)−· · n³∗(p)−·
)

g 1 − (1 − q)2 − 2ε′,

where we recall that ε′ and ¶ were fixed right after the statement of Lemma 4.4. By possibly
choosing a smaller constant c, we deduce that for each ε′ > 0 there exists a constant c(ε′) > 0 such
that

P

(

LIS(Ãn) g c(ε′) · n³∗(p)−·
)

g 1 − (1 − q)2 − 2ε′, for all n g 1. (4.11)

Now, set

q∗ := sup
{

r ∈ [0, 1]
∣

∣

∣ there exists c(r) > 0 s.t. P(LIS(Ãn) g c(r) · n³∗(p)−·) g r for all n g 1
}

,

and note that q∗ > 0 thanks to (4.7). The two bounds in (4.7) and (4.11) and our definition of q∗

show that if q < q∗, then 1 − (1 − q)2 f q∗. Taking q → q∗, we get 1 − q∗ f (1 − q∗)2. Noting that
the only strictly positive solution of the latter inequality is q∗ = 1, we conclude the proof of (4.8).

Since (4.8) holds for any arbitrary · > 0, we deduce the convergence in (4.1).

5 Estimates for the upper bound

In this section we prove two fundamental estimates (see Propositions 5.4 and 5.5 below) that will
be later used in Section 6 to upper bound the length of the longest increasing subsequence in
permutations sampled from the Brownian separable permutons.

5.1 The two main estimates

Recall from Section 1.4.1 that B¸ and B· stand for the collections of negative and positive branching
heights in the signed excursion (e, s, p) respectively, i.e. the collection of heights corresponding to the
local minima of e decorated by a ¸–sign and a ·–sign respectively. Moreover B = B· ∪ B¸. Recall
also that It(h), h g 0, denotes the open interval which contains t in the interval fragmentation
F0(h) introduced in (2.1). We set It(h−) to be equal to the interior of

⋂

ℓ<h I
t(ℓ).

Of particular importance will be the case of negative branching heights B¸, for which we introduce
the following additional notation. Since e has almost surely distinct local minima (Lemma 2.1),
almost surely, for all b ∈ B¸, there is a unique time tb ∈ [0, 1] when e has a local minimum with
b = e(tb). We define

(ℓb, rb) := Itb(b−), Lb := (ℓb, tb), and Rb := (tb, rb), (5.1)

i.e. Lb and Rb are the two intervals in which the interval Itb(b−) is split at the branching height b.
Finally, given t ∈ [0, 1], we also denote by Bt

¸ the collection of negative branching heights b ∈ B¸

such that t ∈ (ℓb, rb). See Figure 8 for an illustration.
We now introduce a particular type of sequences; the motivation will be clarified right after

their definition. Fix p ∈ (0, 1), i.e. fix the parameter for the signs of the signed excursion (e, s, p).
Conditioning on (e, s), let D (for discarding rules, see explanations below) be the set of sequences
¸ = {¸b}b∈B¸

, with ¸b ∈ {Lb, Rb, ⋄}, such that ¸b = ⋄ if and only if there exists b′ ∈ B¸ with b′ < b
such that tb ∈ ¸b′ .

Note that given (e, s), we can think of ¸ = {¸b}b∈B¸
as a deterministic discarding rule, where

each ¸b determines which side of the interval (ℓb, rb) we are going to discard (the case ¸b = ⋄
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Figure 8: A sketch for the notation introduced in Section 5.1.

corresponds to the case when the interval (ℓb, rb) is contained in an interval that was already
discarded at some smaller negative branching height).

We introduce some notation. Given t ∈ [0, 1] and b ∈ Bt
¸, we say that ¸b does not discard t if

t /∈ ¸b. We want to estimate the probability of the following events defined for all t ∈ (0, 1) and
ε ∈ (0, 1),

Et
ε = Et

ε(¸) :=
{

¸b does not discard t for all b ∈ Bt
¸ such that F t(b) g ε

}

. (5.2)

More precisely, we are interested in the case when t is a uniform point U in (0, 1) independent of all
other random quantities. The ideas used in this section to estimate the probability of the above
event will then play a key role in Section 6.

Recall the subordinator À introduced in Proposition 2.3. In this section we use the decomposition
À = À· + À¸, where À· (resp. À¸) is the process determined by the jumps of À corresponding to the
local minima of e decorated by ·–signs (resp. ¸–signs). Then, arguing as in (3.2), the process À¸ is
a Lévy process with intensity measure on (0,+∞)

Λ¸(dx) := (1 − p)Λ(dx) =
2(1 − p) exdx
√

2Ã(ex − 1)3
. (5.3)

Now recall from Remark 1.2 the definition of ¼∗(p) = 1 − ´∗(p) as

¼∗(p) = sup
´∈(0,log(2)),¶>0

min

{

´¶ , sup
µ<0

{µ¶ + »∗
µ,e−´ (p)}

}

, (5.4)

and note that for all µ < 0 and all r ∈ (1/2, 1), by simple calculations, the equation (1.4) satisfied
by »∗

µ,r(p) can be rephrased more conveniently as

Φ(−»∗
µ,r(p)) = −(1 − eµ)Λ¸(− log(r),− log(1 − r)

)

, (5.5)

where we recall from Remark 2.4 that Φ(q) = 2
√

2Γ(q+1/2)
Γ(q) . Note that the above equation has

a unique positive solution because as explained in Remark 2.4, the function Φ(·) is increasing,
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Φ(0) = 0, limq→(−1/2)+ Φ(q) = −∞ and −(1 − eµ)Λ¸
(− log(r),− log(1 − r)

)

< 0 for all µ < 0 and
all r ∈ (1/2, 1).

We are going to prove (after stating and proving two additional complementary lemmas) the
following upper bound for the probability of the event EU

ε introduced in (5.2).

Proposition 5.1. Fix p ∈ (0, 1). Let ¸ ∈ D be a discarding rule chosen in a (e, s)–measurable
manner. Then,

P(EU
ε ) f 2 ε¼∗(p), for all ε ∈ (0, 1).

The following two results complement the bound obtained in the above proposition.

Lemma 5.2. For all p ∈ (0, 1), we have that ¼∗(p) > 0.

Proof of Lemma 5.2. Fix p ∈ (0, 1). Recall the definition of ¼∗(p) from (5.4). We show that there
exist ´ ∈ (0, log(2)) and ¶ > 0 such that supµ<0{µ¶+ »∗

µ,e−´ (p)} > 0, then the desired result follows.
Fix any µ0 < 0 and ´0 ∈ (0, log(2)). Note that since »∗

µ,e−´ (p) is defined as the only positive solution

to (5.5) with r = e−´, we have that »∗
µ0,e−´0

(p) > 0. Therefore there always exists ¶ > 0 small
enough such that µ0¶ + »∗

µ0,e−´0
(p) > 0. This concludes the proof.

Lemma 5.3. The supremum in (5.4) is attained, i.e. there exist ´ = ´(p) ∈ (0, log(2)) and
¶ = ¶(p) > 0 such that

¼∗(p) = min

{

´¶ , sup
µ<0

{µ¶ + »∗
µ,e−´ (p)}

}

.

Proof. To see this, let

µ(¶, ´) := min

{

´¶ , sup
µ<0

{µ¶ + »∗
µ,e−´ (p)}

}

, ¶ > 0, ´ ∈ (0, log(2)),

and ¶n > 0, ´n ∈ (0, log 2) define two sequences such that µ(¶n, ´n) → ¼∗(p) as n → ∞. Our
argument is to show that we can extract from (¶n, n ∈ N) and (´n, n ∈ N) converging subsequences
with limits in (0,∞) and (0, log(2)) respectively (note that the extremities of the intervals are
excluded).

First of all, µ(¶n, ´n) f ´n¶n f ¶n log(2), and since µ(¶n, ´n) → ¼∗(p) > 0 (see Lemma 5.2),
it must be the case that (¶n, n ∈ N) is bounded away from 0. Secondly, it is fairly easy to see
that (´n, n ∈ N) is bounded away from log(2). In fact, for all n ∈ N, µ(¶n, ´n) f supµ<0{µ¶n +
»∗

µ,e−´n
(p)} f supµ<0 »

∗
µ,e−´n

(p). But note that for all r ∈ (1/2, 1), supµ<0 »
∗
µ,r(p) = »∗

∞,r(p), where
»∗

∞,r(p) is the unique positive solution to

Φ(−»∗
∞,r(p)) = −Λ¸(− log(r),− log(1 − r)

)

.

It is clear that »∗
∞,r(p) → 0 as r → 1/2. Therefore, ´n → log(2) (up to extraction) would imply

µ(¶n, ´n) f »∗
∞,e−´n

(p) → 0 as n → ∞. This contradicts ¼∗(p) > 0.
Next, we claim that (´n, n ∈ N) is bounded away from 0. Suppose that this is not the case;

without loss of generality we can assume that ´n → 0. Take n large enough so that µ(¶n, ´n) g ¼∗(p)
2 .

The bound ¼∗(p)
2 f µ(¶n, ´n) f ´n¶n shows that ¶n → ∞. Then, for all n, we pick µn < 0 such that,

µn¶n + »∗
µn,e−´n (p) g 1

2
sup
µ<0

{µ¶n + »∗
µ,e−´n (p)}. (5.6)
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This is possible since supµ<0{µ¶n + »∗
µ,e−´n

(p)} g µ(¶n, ´n) g ¼∗(p)
2 > 0. We first remark that, since

»∗
µn,e−´n

(p) f 1
2 (recall that limq→(−1/2)+ Φ(q) = −∞),

µn¶n

(5.6)

g 1

2

(

sup
µ<0

{µ¶n + »∗
µn,e−´n (p)} − 1

)

g 1

2

(¼∗(p)

2
− 1

)

, (5.7)

and hence µn → 0 because µn < 0, ¶n → ∞ and 1
2

(

¼∗(p)
2 −1

)

g −1
2 . Now by definition of »∗

µn,e−´n
(p),

Φ(−»∗
µn,e−´n (p)) = −(1 − eµn)Λ¸(´n,− log(1 − e−´n)

)

.

A simple integral estimate shows that, as n → ∞, Λ¸
(

´n,− log(1 − e−´n)
) ∼ c/

√
´n for some

positive constant c, whence Φ(−»∗
µn,e−´n

(p)) ∼ cµn/
√
´n as n → ∞. Note that by the inequality

¼∗(p)
2 f µ(¶n, ´n) f ´n¶n and the fact that µn < 0,

µn√
´n

g
√

2

¼∗(p)
· µn

√

¶n

(5.7)

g 1

2

√

2

¼∗(p)
·

¼∗(p)
2 − 1√
¶n

.

Since µn < 0, this entails µn/
√
´n → 0 and hence Φ(−»∗

µn,e−´n
(p)) → 0. Therefore »∗

µn,e−´n
(p) → 0.

But this is a contradiction: indeed,

¼∗(p)

2
f µ(¶n, ´n) f sup

µ<0
{µ¶n + »∗

µn,e−´n (p)}
(5.6)

f 2µn¶n + 2»∗
µn,e−´n (p) f 2»∗

µn,e−´n (p), (5.8)

so that we would have ¼∗(p) = 0.
Finally, we prove that (¶n, n ∈ N) is upper bounded using a similar argument. We argue by

contradiction, assuming that ¶n → ∞ (this is possible up to extraction). We first use the inequality
µ(¶n, ´n) f supµ<0{µ¶n + »∗

µ,e−´n
(p)} for all n ∈ N, and we consider µn < 0 as in (5.6). Now the

same argument as in (5.7) shows that µn → 0. Since we know from the previous paragraph that
(´n, n ∈ N) is bounded away from 0, we deduce that, as n → ∞,

Φ(−»∗
µn,e−´n (p)) = −(1 − eµn)Λ¸(´n,− log(1 − e−´n)

) −→ 0.

Therefore »∗
µn,e−´n

→ 0 and we conclude as in (5.8) that this is impossible.
We have proved that (¶n, n ∈ N) is upper bounded and bounded away from 0, and that (´n, n ∈ N)

is bounded away both from log(2) and 0. We may now conclude the proof. Up to extraction, we can
assume that (¶n, n ∈ N) and (´n, n ∈ N) converge to ¶∞ ∈ (0,∞) and ´∞ ∈ (0, log(2)) respectively.
Taking a limit, we finally get ¼∗(p) = lim

n→∞
µ(¶n, ´n) = µ(¶∞, ´∞), which proves our statement.

We now turn to the proof of Proposition 5.1. We highlight that the two main estimates used in
this proof will be also used in Section 6.

Proof of Proposition 5.1. For a constant r ∈ (1/2, 1), we consider the sequence of branching heights
defined for all m > 0 by

ÄU
m = ÄU

m(r) := m-th smallest b ∈ BU
¸ such that

max{|Lb|, |Rb|}
|Lb| + |Rb|

f r. (5.9)

The random variables ÄU
m are a.s. well defined for all m ∈ N, because we claim that there are

infinitely many branching heights b ∈ BU
¸ such that max{|Lb|, |Rb|} f r(|Lb| + |Rb|). Indeed, we first
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note that max{|Lb|, |Rb|} f r(|Lb| + |Rb|) if and only if max{e
−À¸

s− − e−À¸
s , e−À¸

s } f r · e
−À¸

s− , where
s = Ä(b), and that this is equivalent to ∆À¸

s ∈ (− log(r),− log(1 − r)). Since the number of jumps
of the process À¸ by time t and with sizes in (− log(r),− log(1 − r)) forms a Poisson process with
mean Λ¸(− log(r),− log(1 − r)) · t (see e.g. [Ber96, Section I.5]), letting t → ∞ we get the claim.

We also set for all m > 0

AU
m = AU

m(r) := {¸b does not discard U for all b ∈ BU
¸ such that b f ÄU

m}, (5.10)

and we claim that for all r ∈ (1/2, 1), m > 0 and ε ∈ (0, 1),

EU
ε ¦

(

AU
m ∩

{

FU (ÄU
m) g ε

})

∪
{

FU (ÄU
m) < ε

}

. (5.11)

Indeed, if EU
ε occurs – i.e. ¸b does not discard U for all b ∈ BU

¸ such that FU (b) g ε – and
FU (ÄU

m) g ε, then FU (b) g ε for all b ∈ BU
¸ such that b f ÄU

m. Hence ¸b must not discard U for all
for all b ∈ BU

¸ such that b f ÄU
m, which is the event AU

m.
As a consequence, for all r ∈ (1/2, 1), m > 0 and ε ∈ (0, 1),

P

(

EU
ε

)

f P

(

AU
m

)

+ P

(

FU(ÄU
m

)

< ε
)

. (5.12)

In the next two crucial propositions (whose proofs are postponed to Section 5.2), we upper-bound
the two terms on the right-hand side of the last equation. Later, we will choose some specific values
for the constants r ∈ (1/2, 1) and m > 0 which will optimize our upper-bound.

Proposition 5.4. For all r ∈ (1/2, 1), m > 0,

P

(

AU
m

)

f rm.

Proposition 5.5. For all r ∈ (1/2, 1), m > 0 and ε ∈ (0, 1),

P

(

FU(ÄU
m

)

< ε
)

f inf
µ<0

{

e−µm · ε»∗
µ,r(p)

}

,

where »∗
µ,r(p) was defined in (5.5).

We now conclude the proof of Proposition 5.1. Combining the estimates in the last two
propositions with (5.12), we get that for all r ∈ (1/2, 1), m > 0 and ε ∈ (0, 1),

P

(

EU
ε

)

f rm + inf
µ<0

{

e−µm · ε»∗
µ,r(p)

}

.

Setting r = e−´ with ´ ∈ (0, log(2)) and m = ¶ log(1/ε) with ¶ > 0, we deduce that for all ε ∈ (0, 1)

P

(

EU
ε

)

f ε´¶ + inf
µ<0

{

ε
µ¶+»∗

µ,e−´
(p)
}

f 2 ε
min{´¶ , supµ<0{µ¶+»∗

µ,e−´
(p)}}

.

In particular, for all ε ∈ (0, 1),
P

(

EU
ε

)

f 2 ε¼∗(p),

where we recall from (5.4) that

¼∗(p) = sup
´∈(0,log(2)),¶>0

min

{

´¶ , sup
µ<0

{µ¶ + »∗
µ,e−´ (p)}

}

.

This concludes the proof of Proposition 5.1.
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An immediate consequence of the last proof and Lemmas 5.2 and 5.3 is the following result,
which contains the key estimates for the results in Section 6.

Corollary 5.6. Fix p ∈ (0, 1). Let ¸ ∈ D be a discarding rule chosen in a (e, s)–measurable manner
and U be a uniform random variable in (0, 1) independent of all other random quantities. Recall the
definitions of ÄU

m and AU
m from (5.9) and (5.10).

There exist a choice of r = r(p) ∈ (1/2, 1) and ¶ = ¶(p) > 0 such that for all ε ∈ (0, 1), setting
m = ¶ log(1/ε), we have that

P

(

AU
m

)

f 2 ε¼∗(p),

and that
P

(

FU(ÄU
m

)

< ε
)

f 2 ε¼∗(p),

where ¼∗(p) > 0 is defined as in Equation (5.4).

5.2 Proofs of the two main estimates

In this section we prove the two propositions that we left behind in the previous section, i.e.
Propositions 5.4 and 5.5. For convenience, we recall at the beginning of each proof what is the
statement that we need to prove.

Proof of Proposition 5.4. Recall that ¸ ∈ D is a discarding rule chosen in a (e, s)–measurable manner.
Also recall from (5.10) that for all m > 0,

AU
m = AU

m(r) := {¸b does not discard U for all b ∈ BU
¸ such that b f ÄU

m}, (5.13)

where ÄU
m = ÄU

m(r) was defined in (5.9). We want to prove that for all r ∈ (1/2, 1), m > 0,

P

(

AU
m

)

f rm. (5.14)

Setting
BU

m = BU
m(r) := {¸b does not discard U for all b ∈ BU

¸ such that b < ÄU
m},

(note that the inequality is strict here), we have that

AU
m = BU

m ∩
{

¸ÄU
m

does not discard U
}

. (5.15)

We consider the following filtration, defined for all m > 0 by

Fm := Ã
(

e, s, (IU (h))h<ÄU
m+1

, (ÄU
s )sfm+1

)

.

We emphasize that, importantly, the interval IU (h) at level h = ÄU
m+1 is not included in the definition

of Fm. Fix m > 0. Note that:

• BU
m is Fm−1–measurable.

• IU ((ÄU
m)−) is Fm−1–measurable because by definition it is equal to the interior of the decreasing

intersection
⋂

h<ÄU
m
IU (h).

• LÄU
m

and RÄU
m

are Fm−1–measurable because ÄU
m is Fm−1–measurable and LÄU

m
and RÄU

m
are a

deterministic function of ÄU
m and e.

• |IU ((ÄU
m)−)| = |LÄU

m
| + |RÄU

m
|.
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• Conditioning on Fm−1, U is uniform in IU ((ÄU
m)−) because IU (h) at level h = ÄU

m is not
included in the definition of Fm−1.

• Conditioning on Fm−1, the probability that U falls in LÄU
m

(resp. RÄU
m

) is therefore
|L

ÄU
m

|

|L
ÄU

m
|+|R

ÄU
m

|

(resp.
|R

ÄU
m

|

|L
ÄU

m
|+|R

ÄU
m

|).

The above observations entail that, almost surely, for all m > 0,

1BU
m
E

[

1{¸
ÄU

m
does not discard U}

∣

∣

∣

∣

Fm−1

]

= 1BU
m
P

(

U is not in the interval discarded by ¸ÄU
m

∣

∣

∣Fm−1

)

= 1BU
m

(

|LÄU
m

|
|LÄU

m
| + |RÄU

m
|¶{¸

ÄU
m

=R
ÄU

m
} +

|RÄU
m

|
|LÄU

m
| + |RÄU

m
|¶{¸

ÄU
m

=L
ÄU

m
}

)

f 1BU
m

max{|LÄU
m

|, |RÄU
m

}|
|LÄU

m
| + |RÄU

m
| f 1BU

m
r, (5.16)

where the last inequality follows by definition of ÄU
m. Note also that in the second equality of the

above equation we used that if ¸b does not discard U for all b ∈ BU
¸ such that b < ÄU

m (which is the
event BU

m) then ¸ÄU
m

̸= ⋄ by the definition of discarding rule. Therefore, we get that for all m > 0,

P(AU
m)

(5.15)
= E

[

1BU
m
1{¸

ÄU
m

does not discard U}

]

= E

[

1BU
m
E

(

1{¸
ÄU

m
does not discard U}

∣

∣

∣Fm−1

)

]

(5.16)

f r · E
[

1BU
m

]

f r · E

[

1BU
m−1

1{¸
ÄU

m−1

does not discard U}

]

(5.15)
= r · P(AU

m−1),

where in the second equality we used that 1Bm is Fm−1–measurable. Iterating the same argument,
we retrieve (5.14).

Proof of Proposition 5.5. We want to prove that for all r ∈ (1/2, 1), m > 0 and ε ∈ (0, 1),

P

(

FU(ÄU
m

)

< ε
)

f inf
µ<0

{

e−µm · ε»∗
µ,r(p)

}

,

where »∗
µ,r(p) was defined in (5.5). We fix r ∈ (1/2, 1), m > 0 and ε ∈ (0, 1). Let

J U
ε,r =

{

b ∈ BU
¸

∣

∣

∣

∣

FU (b−) g ε and
max{|Lb|, |Rb|}

|Lb| + |Rb|
f r

}

.

We start by noticing that {FU (ÄU
m) < ε} ¦ {#J U

ε,r f m}. By Chernoff bound, for all µ < 0, we have

P

(

FU(ÄU
m

)

< ε
)

f P

(

#J U
ε,r f m

)

f e−µm
E

[

eµ#J U
ε,r

]

. (5.17)

Fix µ < 0. Recall the notation ∆À¸
s = À¸

s − À¸
s− , where the process À¸

s was introduced above (5.3).
We claim that

#J U
ε,r =

∑

s>0

1À
s− flog(1/ε)1∆À¸

s ∈(r0,r1), (5.18)

where r0 = − log(r) and r1 = − log(1 − r). Indeed, note that for all b ∈ BU
¸, FU (b−) g ε if and

only if Às− f log(1/ε), with s = Ä(b). Moreover, we have that max{|Lb|, |Rb|} f r(|Lb| + |Rb|) if
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and only if ∆À¸
s ∈ (− log(r),− log(1 − r)), as already explained below (5.9). Hence we proved the

equality (5.18). The latter implies that

E

[

eµ#J U
ε,r

]

= E

[

exp

{

µ
∑

s>0

1À
s− flog(1/ε)1∆À¸

s ∈(r0,r1)

}]

. (5.19)

By definition of À¸, the law of À¸ is obtained from the law of À by keeping the jumps of À according
to i.i.d. coin tosses with success probability 1 − p. More precisely, if (Çs, s > 0) denotes a collection
of i.i.d. coin flips, with P(Ç = 1) = 1 − p = 1 − P(Ç = 0), and that is further independent of À, we
have the identity in law

∑

s>0

1À
s− flog(1/ε)1∆À¸

s ∈(r0,r1)
d
=
∑

s>0

Çs1À
s− flog(1/ε)1∆Às∈(r0,r1). (5.20)

We combine equations (5.19) and (5.20) into

E

[

eµ#J U
ε,r

]

= E

[

exp

{

µ
∑

s>0

Çs1À
s− flog(1/ε)1∆Às∈(r0,r1)

}]

.

Using the independence of Ç and À, and the fact that Ç is a collection of i.i.d. Bernoulli variables,
we obtain

E

[

eµ#J U
ε,r

]

= E

[

∏

s>0

(

p+ (1 − p) exp
{

µ1À
s− flog(1/ε)1∆Às∈(r0,r1)

})

]

= E

[

exp

{

∑

s>0

log
(

p+ (1 − p) exp
{

µ1À
s− flog(1/ε)1∆Às∈(r0,r1)

})

}]

.

Using the exponential formula for À (see for instance [RY13, Proposition XII.1.12]), the previous
display reduces to

E

[

eµ#J U
ε,r

]

= E

[

exp

{

−
∫ ∞

0
ds

∫ ∞

0
Λ(dx)

(

1 −
(

p+ (1 − p) exp
{

µ1À
s− flog(1/ε)1x∈(r0,r1)

}))

}]

= E

[

exp

{

−Tlog(1/ε)

∫ ∞

0
Λ(dx)

(

1 − p− (1 − p) exp
{

µ1x∈(r0,r1)

})

}]

= E

[

exp
{

−Tlog(1/ε)(1 − eµ)Λ¸(r0, r1)
}]

,

where in the last equality we used that for an indicator 1A, 1 − p− (1 − p)eµ1A = (1 − p)(1 − eµ)1A

and that Λ¸(dx) = (1 − p)Λ(dx) from (5.3). Now let »∗
µ,r(p) be defined as in (5.5), i.e. as the only

positive solution to the equation Φ(−»∗
µ,r(p)) = −(1 − eµ)Λ¸(r0, r1). Using the second claim (2.6) in

Lemma 2.5 with a = (1 − eµ)Λ¸(r0, r1) and b = 0, we deduce the upper bound E

[

eµ#J U
ε,r

]

f ε»∗
µ,r(p).

Going back to our Chernoff estimate in (5.17), we deduce that P

(

FU
(

ÄU
m

)

< ε
)

f e−µmε»∗
µ,r(p,q).

Optimizing over µ < 0 yields the desired claim.

Remark 5.7. Our estimate in Proposition 5.5 can be slightly improved by dealing directly with
the left-hand side of (5.17). The idea is to use the Lamperti representation (Proposition 2.3) to
rephrase the event {FU (ÄU

m) < ε} in terms of the underlying Lévy process, and then use a thinning
argument to select the special jumps corresponding to the times ÄU

i . This would lead to a slightly
better (but uglier) upper bound for the exponent for LIS(Perm(µp, n)).

We did not follow this other route, since we found the current argument slightly cleaner and
in any case, both arguments provide bounds which are quite far from the actual behavior of
LIS(Perm(µp, n)).
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6 Upper bound for sequences sampled from the Brownian separa-

ble permutons

The main goal of this section is to prove the upper bound in Theorem 1.1, completing the proof of
the theorem. Note that in Lemma 5.2 we proved that ¼∗(p) > 0, and so that ´∗(p) = 1 − ¼∗(p) < 1
for all p ∈ (0, 1). Hence, in order to complete the proof of Theorem 1.1 it remains to prove the
upper bound in the second item in the theorem statement. This is done in the next proposition.

Proposition 6.1. Fix p ∈ (0, 1) and let ´∗(p) = 1 − ¼∗(p) be as in Remark 1.2. Let Ãn be a
random permutation of size n ∈ N sampled from the Brownian separable permuton µp. Then for all
´ > ´∗(p), the following convergence in probability holds

LIS(Ãn)

n´
→ 0.

Proof. We split the proof in six steps. In what follows, w.h.p. means with probability tending to one
when n → ∞.

Step 0: Fixing the notation and setting our goal.

(a) Fix n ∈ N. Let (Uj)jfn be a sequence of i.i.d. uniform random variables on (0, 1) and recall
from Section 2.2 that Ãn = Perm(e, s, (Uj)jfn);

(b) Fix · > 0 (small), and set ε = n−1+· ;

(c) Let r = r(p) ∈ (1/2, 1) and ¶ = ¶(p) > 0 be as in Corollary 5.6;

(d) Finally, with the above choice of ε and ¶, set m = ¶ log(1/ε).

We will show that w.h.p. LIS(Ãn) is at most 4n1−¼∗(p)+3· . Note that this would be enough to
conclude the proof.

Step 1: Introducing the discarding rule ¸.

Recall the definition of the set of possible discarding rules D from the beginning of Section 5.1
and the notation in Figure 8. Let {U∗

ℓ } be the set of points in (Uj)jfn corresponding to the longest
increasing subsequence in Ãn (if there are multiple ones, we choose one arbitrarily). Let ¸ = {¸b}b∈B¸

be the selection rule corresponding to this longest increasing subsequence. More precisely, let us
choose ¸ ∈ D in the following way for all b ∈ B¸:

• if {U∗
ℓ } ∩ Lb ̸= ∅ then set ¸b = Rb;

• if {U∗
ℓ } ∩Rb ̸= ∅ then set ¸b = Lb;

• if {U∗
ℓ } ∩ Lb = ∅ and {U∗

ℓ } ∩ Rb = ∅ and there exists b′ ∈ B¸ with b′ f b such that b ∈ ¸b′

then set ¸b = ⋄, otherwise set ¸b = Lb (note that this is an arbitrary choice).

Here we emphasize that {U∗
ℓ }∩Lb and {U∗

ℓ }∩Rb cannot both be non-empty, since {U∗
ℓ } is increasing

and b ∈ B¸. Note also that ¸ is chosen in a (e, s, (Uj)jfn)–measurable manner.
Recall now the definition of ÄU

m = ÄU
m(r) from (5.9) and recall that IU (ÄU

m) denotes the interval
containing U at height ÄU

m in the interval fragmentation introduce in (2.1). For ease of notation, we
introduce the more compact notation Ij

m := IUj (Ä
Uj
m ) for intervals and F j

m := FUj (Ä
Uj
m ) for their

lengths.

37



Step 2: W.h.p., at most n1−¼∗(p)+· of the intervals in
{

Ij
m, j ∈ [n]

}

have length smaller than ε.

From Corollary 5.6 and our choice of the constants in Step 0, we have that for all j f n,

P

(

F j
m < ε

)

f 2 ε¼∗(p). (6.1)

Now set Sn :=
∑n

j=1 1F j
m<ε

, i.e. Sn counts the number of intervals in
{

Ij
m, j ∈ [n]

}

having length
smaller than ε. By Markov’s inequality,

P

(

Sn > n1−¼∗(p)+·
)

f
E[Sn]

n1−¼∗(p)+·

(6.1)

f
n · 2 ε¼∗(p)

n1−¼∗(p)+·
= 2n−·(1−¼∗(p)), (6.2)

where in the last equality we used that ε = n−1+· .

Step 3: W.h.p., the total length of the non-discarded intervals in
{

Ij
m, j ∈ [n]

}

is at most ε¼∗(p)−· .

Let J be the set of indexes

J :=
{

j ∈ [n]
∣

∣

∣ ¸b does not discard Uj for all b ∈ B
Uj

¸ such that b f Ä
Uj
m

}

,

and J be a subset of J such that
{

Ij
m, j ∈ J

}

=
{

Ij
m, j ∈ J

}

,

and all the intervals in
{

Ij
m, j ∈ J

}

are pairwise disjoint (note that by definition if Ui ∈ Ij
m then

Ii
m = Ij

m). Note also that by definition, LIS(Ãn) is upper bounded by the cardinality of J .
Let now V be an additional uniform random variables on (0, 1) sampled independently from all

other random quantities. Note that if V is contained in Ij
m for some j ∈ J , then the event

AV
m = {¸b does not discard V for all b ∈ BV

¸ such that b f ÄV
m},

occurs. Hence, since V is uniform and independent of everything else, setting Lm =
∑

j∈J F j
m, i.e.

Lm is the total length of the non-discarded intervals among
{

Ij
m, j ∈ [n]

}

, we get

E[Lm] = P

(

V ∈
⋃

j∈J

Ij
m

)

f P(AV
m).

Recall that the discarding rule ¸ from Step 1 depends only on (e, s) and (Uj)jfn, and V is uniform
and independent from everything else. By Corollary 5.6 (applied under the conditional law given
(Uj)jfn) and our choice of the constants in Step 0,

E[Lm] f P(AV
m) = E

[

P

(

AV
m

∣

∣

∣ (Uj)jfn

)]

f 2 ε¼∗(p).

Hence, using Markov’s inequality, we get that

P(Lm > ε¼∗(p)−·) f
E[Lm]

ε¼∗(p)−·
f 2 ε· .

Step 4: W.h.p., the cardinality of J is at most 2n1−¼∗(p)+· . Moreover, w.h.p. the union of the

intervals in
{

Ij
m, j ∈ J

}

can be covered by at most 4n1−¼∗(p)+· intervals of length ε with endpoints
in εZ.
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By Step 2, w.h.p., at most n1−¼∗(p)+· of the intervals in
{

Ij
m, j ∈ J

}

have length smaller than ε.
And so, the union of all these intervals can be covered by at most 2n1−¼∗(p)+· intervals of length ε
with endpoints in εZ.

By Step 3, w.h.p., the total size Lm =
∑

j∈J F j
m of the non-discarded intervals in

{

Ij
m, j ∈ J

}

is at most ε¼∗(p)−· . Hence, recalling that ε = n−1+· , there are at most ε−1+¼∗(p)−· f n1−¼∗(p)+·

intervals in
{

Ij
m, j ∈ J

}

having length bigger than ε and the union of all these intervals can be
covered by at most 2n1−¼∗(p)+· intervals of length ε with endpoints in εZ.

Step 5: W.h.p., the cardinality of J (which is an upper bound for LIS(Ãn)) is at most 4 ·n1−¼∗(p)+3 · .

It remains to deal with the possible discrepancy between the cardinality of J and J . Let Iε be a
deterministic interval of size ε and with endpoints in εZ. Note that the number of uniform variables
among (Uj)j∈[n] which fall in Iε follows a binomial distribution Bin(n, ε). Therefore, for all n g 1,

P

(

#{j ∈ [n], Uj ∈ Iε} < n2·
)

= 1 − P
(

#{j ∈ [n], Uj ∈ Iε} g n2·)

= 1 − P(Bin(n, ε) g n2·).

Now recalling that ε = n−1+· , we get by Chernov’s bound that

P

(

#{j ∈ [n], Uj ∈ Iε} < n2·
)

g 1 − min
µ>0

{exp(−µn2·)E[exp(µBin(n, n−1+·))]}

= 1 − min
µ>0

{exp(−µn2·)(1 − n−1+· + exp(µ)n−1+·)n}

g 1 − c1 · exp(−c2n
·), (6.3)

where c1, c2 > 0 are two constants. Letting (Ii
ε)i∈[ε−1] denote the collection of +ε−1, intervals of size

ε with endpoints in εZ covering (0, 1), we get that

P

(

∀i ∈ [ε−1],#{j ∈ [n], Uj ∈ Ii
ε} < n2·

)

g 1 − +ε−1,P
(

#{j ∈ [n], Uj ∈ Iε} g n2·
)

(6.3)

g 1 − c1n
1−· · exp(−c2n

·),

where in the last inequality we also used that ε = n−1+· .
By this estimate and the estimate in Step 4, combined with a union bound, we get that

w.h.p. the total number of points (Uj)jfn in the union of the intervals {Ij
m : j ∈ J } is at most

n2· · 4n1−¼∗(p)+· . In particular, w.h.p., the cardinality of J (which is an upper bound for LIS(Ãn))
is at most 4n1−¼∗(p)+3· .

A Numerical simulations

A natural question in light of our results in Theorem 1.1 and Theorem 1.3 is to determine the
exact exponent for the polynomial growth of LIS(Perm(µp, n)) and LHS(Graph(Wp, n)). Since
the answers to these questions are the same (recall Lemma 2.2), in this section, we focus on
LIS(Perm(µp, n)) for p ∈ (0, 1).

In Conjecture 1.5, we conjectured that with probability tending to 1 as n → ∞,

LIS(Perm(µp, n)) = nd(p)+o(1).

We did several numerical simulations to estimate the exact values of d(p). Our simulations were
done in the following way. For p ∈ (0, 1) fixed, we sampled one million independent permutations
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Perm(µp, 2
k) of size 2k and we computed LIS(Perm(µp, 2

k)), for all k = 10, . . . , 18. Then for
each fixed k, we computed the average of LIS(Perm(µp, 2

k)), denoted by LISk(p), over the one

million samples. Finally, we performed a linear regression on the points
(

k log(2), log(LISk(p))
)

for

k = 10, . . . , 18, obtaining a linear function a(p) + d(p)x. It is quite straightforward to realize that
assuming Conjecture 1.5 one should have that

d(p) ≈ d(p).

See Figure 9 for the linear regression when p = 1/2. See also the table and the plot in Figure 10 for
a summary of our numerical simulations for different values of the parameter p ∈ (0, 1).

We highlight that the discrepancy between our lower bound ³∗(p) and the numerical values for
d(p) is tiny (see the fourth column in the table in Figure 10). Since these simulations look only
at the length of the longest increasing subsequence, we also tested if the real longest increasing
subsequence and the subsequence obtained through our selection rule S in (1.6) are close, getting a
positive answer. See the results in Figure 11, p. 41.

Figure 9: The blue dots are the points
(

k log(2), log(LISk(p))
)

for k = 10, . . . , 18. The linear

regression of these points gives the line a(1/2) + d(1/2)x = −0.323 + 0.815x. Therefore we estimate
that d(1/2) ≈ 0.815.

LIS(Perm(µp, n)) ≈ C(p) · nd(p)

p ³∗(p) d(p) |d(p)−³∗(p)|

0.1 0.584 0.58 ± 10−2 < 2 · 10−2

0.2 0.653 0.656±7·10−3 < 1.4 · 10−2

0.3 0.712 0.715±5·10−3 < 10−2

0.4 0.765 0.766±4·10−3 < 8 · 10−3

0.5 0.812 0.814±3·10−3 < 6 · 10−3

0.6 0.855 0.857±2·10−3 < 4 · 10−3

0.7 0.895 0.897±2·10−3 < 4 · 10−3

0.8 0.932 0.933 ± 10−3 < 2 · 10−3

0.9 0.967 0.967 ± 10−3 < 2 · 10−3

Figure 10: Left: For various values of the parameter p (first column) we indicate the value of our
lower bound ³∗(p) (second column), the value of the exponent d(p) estimated from simulations (third
column), and the difference between these two values (fourth column). Right: In blue, the plot of
the function ³∗(p). In red, the numerical values for the exponents d(p) (computed numerically).
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Figure 11: From left to right: (1) A permutation of length 262144 sampled from the Brownian
separable permuton µ1/2 with one longest increasing subsequence in red of length 22546. (2)
The same permutation with one increasing subsequence of length 21751 in cyan computed using
our selection rule S in (1.6). (3-4) The two diagrams in (1) and (2) with only the two increasing
subsequences. (5) The cyan increasing subsequence is plotted on top of the red increasing subsequence.
Note that the two sequences are very similar since the cyan subsequence almost completely covers
the red subsequence.
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