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Abstract 

Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting 
electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is 
encoded in the properties of its electronic-photon collective modes: surface plasmon polaritons 
(SPPs). Here we show that polaritonic interference patterns are particularly well suited to unveil 
the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales 
commensurate with the electronic scattering. Spacetime SPP interference patterns recorded in 
tera-hertz (THz) frequency range provided unobstructed readouts of the group velocity and 
lifetime of polariton that can be directly mapped onto the electronic spectral weight and the 
relaxation rate. Our data uncovered prominent departures of the electron dynamics from the 
predictions of the conventional Fermi-liquid theory. The deviations are particularly strong when 
the densities of electrons and holes are approximately equal. The proposed spacetime imaging 
methodology can be broadly applied to probe the electrodynamics of quantum materials.  

Main text 

Introduction 

Plasmon polaritons are coherent electron density oscillations dressed with electromagnetic fields. 

These collective modes play a prominent role in the charge response of metals and 

semiconductors. Graphene is an exemplary platform for plasmonics due to its high tunability and 

relatively low electronic losses(1–4). In most previous studies of plasmon polaritons in graphene, 

the graphene was heavily doped, so that many-body effects did not qualitatively alter the 

conventional Fermi-liquid picture of charge dynamics(3). However, electrons in graphene near 

the charge neutral point (CNP) form a correlated Dirac fluid(5–7), which exhibits unusual 

behaviors such as a quantum critical scattering rate, breakdown of Wiedemann-Franz law, and 

large magnetoresistance(8–12). These exotic properties stem from electron-electron 

interactions, whose strength is parametrized by the ratio between Coulomb energy and kinetic 

potential: the effective fine-structure constant  𝛼 = 𝑒2 𝜖ℏ𝑣𝐹⁄  (13–15). Here, 𝜖 is the dielectric 

constant of the environment and 𝑣𝐹 is the graphene Fermi velocity. 

To investigate the collective behavior of the Dirac fluid, we visualized the “worldlines” of surface 

plasmon polaritons (SPPs), i.e., the trajectories of polaritonic wave packets in spacetime. The 

experiments were performed using a home-built cryogenic terahertz scanning near-field optical 

microscope (THz-SNOM)(16–18) that gave us access to sub-picosecond dynamics with sub-50-

nm spatial resolution. From the measured SPP worldlines we extracted two key observables, the 

SPP group velocity vg and the SPP lifetime τp, that provided evidence for non-Fermi-liquid effects 

in the charge dynamics. 

 

 



Results 

Nano-THz response of a graphene ribbon 

We investigated graphene ribbons encapsulated in hexagonal boron nitride (hBN). The ribbons 

were integrated in a back-gated structure assembled on a Si/SiO2 wafer. Ohmic Cr/Au contacts 

enabled electrical measurements (Fig. 1a, see Materials and Methods, and Supplemental 

material S1). Our THz-SNOM operated with broadband THz pulses, spanning a range of 

frequencies from 0.5-1.5 THz (Fig. 1a), generated via a photo-conductive antenna (PCA). The THz 

pulses were focused on the tip of an atomic force microscope (AFM) and the forward-scattered 

THz pulses were detected by another PCA with sub-picosecond (ps) temporal resolution. The 

demodulation of the detected signal produced artifact-free THz images with a 50-nm spatial 

resolution as described in Refs. (16, 17)(see Materials and Methods). By raster scanning the 

sample under the tip, we obtained images of the amplitude and phase of the local THz electric 

field(18).  

A representative image of a nano-THz signal is shown in Fig. 1b. The false color plot displays the 

amplitude of the local field. The nano-THz signal on graphene is enhanced compared to that of 

the substrate owing to the higher THz conductivity.  The nano-THz response is maximized at the 

center of the graphene ribbon. This spatially inhomogeneous response originates from the 

graphene SPP, as we detail below. To help us analyze the data, we calculated the THz near-field 

reflection coefficient (𝑟𝑝) for our structure, which is composed of encapsulated graphene, 285-

nm-thick SiO2 and the Si back gate. (Fig.1c). The SPP dispersion manifests itself as a line of 

enhanced Im 𝑟𝑝(19) in the frequency-momentum parameter space (the red dashed line in Fig. 1c). 

The nearly linear (rather than common square-root-like) dispersion of the graphene SPP in the 

parameter space accessible with THz nano-imaging is caused by the screening from the back gate. 

(Supplemental material S2).    

 

To complete the basic nano-THz characterization of our structure, we investigated the evolution 

of the response of graphene as we tuned its Fermi level with the gate voltage Vbg.  In Fig. 1d,e, 

we show data obtained by scanning across the graphene ribbon (along the dashed line in Fig. 1b) 

while varying Vbg.  The amplitude of the nano-THz signal increases with the gate voltage as the 

Fermi level is driven away from the CNP and the graphene THz conductivity increases(20). The 

CNP of the sample is at Vbg~ 0 V, attested by the symmetric gate dependence in Fig. 1d,e  and 

further confirmed by transport measurements (Supplemental material S3). At low carrier 

densities (|Vbg| < 3 V), both the amplitude and phase of the nano-THz signal are maximized at 

the center of the ribbon. However, at |Vbg| > 3 V, the maximum of the phase signal shifts to the 

edges, whereas the amplitude signal remains most prominent at the center. These observations 

can be explained by the change in the SPP wavelength(18) (Supplemental material S7): namely, 

our sample acts as a plasmonic cavity supporting multiple reflections at the ribbon boundaries, 



which create wavelength-dependent interference patterns in the interior of the cavity. As we 

sweep the back gate voltage from |Vbg|=0 V to |Vbg|=30 V, the calculated wavelength of THz SPPs 

grows from 5 to 26 μm, the latter number exceeding the width of the ribbon.  

 

Fig. 1. Nano-THz imaging of plasmons in a gateable graphene cavity. (a) Schematics of the nano-

THz experiment setup.  A monolayer graphene ribbon encapsulated by hBN resides on a SiO2/Si 

substrate and is illuminated with broadband terahertz pulses (0.5-1.5 THz). The tip acts as a nano-

antenna, launching and detecting polaritonic wave packets.  (b) Nano-THz image of the 

broadband THz signal on a graphene ribbon at Vbg=5 V and T=297 K. (c) The imaginary part of the 

reflection coefficient (𝑟𝑝) calculated as a function of momentum and frequency at carrier density 

𝑛 = 1.1 × 1012 𝑐𝑚−2. The maximum of Im(𝑟𝑝), indicated by the green dashed line, traces the 

SPP dispersion, which is nearly linear in momentum. The spectrum of the nano-THz pulse is 

plotted as a blue dashed line. (d,e) Gate voltage dependence of nano-THz amplitude and phase 

profile across the graphene ribbon, obtained by scanning along the white dashed line marked in 

(b).  
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Spacetime mapping of electron-photon polaritons 

Tracking the moving polaritonic wave packets necessitates high spatial and temporal resolution. 

For example, the spatiotemporal dynamics of infrared hyperbolic phonon polariton in hBN was 

visualized by ultrafast transmission electron microscopes and scattering-type SNOMs(s-SNOM) 

integrated with time-domain interferometry(21, 22). Terahertz waves traveling in graphene 

metamaterials have also been visualized using aperture-based THz near-field probe and spatially 

resolved electro-optical sampling, achieving a spatial resolution of a few micrometers(23, 24). 

Inspired by these innovations, we devised and implemented nano-THz spacetime imaging 

offering a direct access to the electric field profiles of polariton wave packets with the spatial 

resolution down to 10-4 of the THz wavelengths in free space.  

Here, we employed our THz-SNOM, which incorporates the terahertz time-domain 

spectroscopy(thz-tds) and s-SNOM, simultaneously offers exceptional spatial and temporal 

resolution to record the SPP dynamics in graphene on a map with ultrafine spacetime pixel. A 

representative map collected at 𝑉𝑏𝑔 = 15 𝑉 and 𝑇 = 297 K is presented in Fig. 2b. To obtain this 

map, we scanned the tip along the white dashed line in Fig. 1b while slowly varying the time delay, 

thus unfolding the temporal profile of the scattered THz pulses (Supplemental material S4). The 

signal along the vertical time axis manifests itself as a time domain trace of the tip-scattered THz 

pulse. One typical trace shown in Fig. 2a is extracted from the center of the graphene ribbon 

(dashed black line in Fig. 2b). To eliminate the spatially uniform background, we applied the 

second spatial derivative to this spacetime map. As shown in Fig. 2c (also Supplemental material 

S5), the derivative plot reveals a periodic checkerboard pattern. 



  

Fig. 2. Spacetime mapping of plasmon polaritons in a graphene ribbon cavity. (a) THz time 

domain signal collected with the tip located at the center of the graphene ribbon. (b) Nano-THz 

spacetime map. The data are obtained by scanning the tip along the same line across the 

graphene sample while sweeping the time delay between the scattered THz pulse and the optical 

detection beam. The substrate region is indicated by the gray shaded area. (c) Second spatial 

derivative of the data in panel (b), showing the checkerboard pattern. This pattern is generated 

by SPP wave packets launched by the tip as they propagate across the ribbon and reflect off its 

edges. (d) Simulated spacetime map in a half-plane sample where SPPs are launched at a time 

delay of 0 ps by the tip, located at various distances X from the edge. The launching events are 

labeled with the red dots and the detection events with the blue dots. The solid arrows whose 

slope is equal to the reciprocal of the SPP group velocity show the plasmon trajectories. The 

coalescence of detection event traces forms the worldline of the SPPs. In these numerical 

simulations, the group velocity is 20 μm/ps and the plasmon lifetime is 0.85 ps. (e) Simulated 

nano-THz spacetime map of SPPs in a ribbon cavity. The substrate region is marked by the shaded 

area. The dashed white lines mark the SPP detection worldline.   

 

The formation of the checkerboard pattern can be understood from the geometrical construction 

shown in Fig.2d. Consider an SPP launching event at t=0 ps by the tip located at a distance x1 from 

the edge. Since the SPP dispersion is almost linear (Fig. 1e), various frequency components of the 
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broadband THz pulse create polaritons propagating with the same speed 𝑣𝑔. The launched SPP 

wave packet travels outward from the tip, undergoes a reflection from the edge, and then travels 

inward. If the propagation losses are not too large, so that the reflection wave packet is able to 

complete the round trip, this event is detected by the THz-SNOM at time 𝑡1  = 2𝑥1 /𝑣𝑔. In Fig. 

2d, we depict a few such launching and detection events (red and blue dots) as well as the 

corresponding round-trip SPP trajectories (solid lines with slopes ±𝑣𝑔
−1). As the tip is moved away 

from the edge, the detection time grows proportionally longer, producing an SPP “detection 

worldline” in the spacetime coordinates. This worldline emanates from the point (𝑥 = 0, 𝑡 = 0) 

and has slope 2/𝑣𝑔 . The worldline fades away at large distances and long times, providing 

information about plasmonic losses. A more comprehensive elucidation of the spacetime map is 

provided in Supplemental material S4.  

 

In the above discussion, we considered the SPP reflections only from the edge nearest to the tip. 

In Fig. 2e, we model the spacetime map for the case of a finite-width plasmonic cavity where 

both edges can reflect the SPPs, so that each of them generates a worldline (Supplemental 

material S6). The worldlines begin at 𝑡 = 0 at the two opposite edges and tilt inward to intersect 

at the center. At the intersection point, the SPP wave packets reflected from the two edges return 

to the tip simultaneously. The worldlines reverse their slope once they reach an edge of the 

ribbon; this corresponds to repeated reflections of the wave packets inside the cavity. Due to the 

finite width of the wave packets, the net observable pattern resembles a checkerboard pattern, 

in agreement with the experimental data in Fig. 2c.  

 

SPP dynamics and worldlines 

To study the dynamics of the SPP wave packets, we obtained spacetime maps at various 

temperatures at a fixed back gate voltage. In Fig.3a-c, we present three spacetime maps collected 

at 𝑇 = 300 K, 170 K, and 55 K (all at Vbg = 15 V). In the spacetime maps, the SPPs at lower 

temperatures show more robust and longer-lived oscillations. The temporal oscillations of the 

SPPs extracted from the center of the spacetime map (white dashed lines in Fig. 3a-c) are 

summarized in Fig. 3d. These oscillations can be modeled as described in Supplemental material 

S9. The best fit to the experimental data is found when the simulated plasmon lifetime is 0.75 ps, 

1.8 ps, and 4.75 ps (Fig. 3d) (Supplemental material S8). These plasmon lifetimes correspond to 

plasmonic relaxation rates (1/𝜏𝑝) of 1.33, 0.56, and 0.21 THz, respectively. Except for the first 

one, these lifetimes are longer than the previously measured record-high lifetime of infrared 

SPPs(3) (1.6 ps at 𝑇 = 60 K and photon energy ~110 meV(3)).   



 

Fig. 3. Temperature dependence of the SPP relaxation rate in the Fermi liquid regime. (a-c) 

Second-order spatial derivatives of spacetime maps taken at 300 K, 170 K and 55 K, all at gate 

voltage 𝑉𝑔 =15 V. (d) Temporal oscillations of the SPP field at the center of the graphene cavity 

along the white dashed lines in a-c. The gray dashed lines are simulated temporal oscillations 

yielding the SPP lifetimes of 0.75 ps (T=300 K), 1.8 ps (T=170 K) and 4.75 ps (T=55 K). The black 

solid line is the THz scattering signal probed at the location of the gold launcher. (e) Temperature 

dependence of the SPP decay rate (inverse lifetime). The black dots are the SPP decay rates 1/𝜏𝑝 

extracted from the fittings in panel (d). The red curve is the estimate of the SPP relaxation rate, 

considering various momentum-relaxing scattering mechanisms as described in the text. The 

shaded grey region shows the relaxation rate contributed by electron-impurity scattering, 

whereas the magenta region depicts the contribution of electron-phonon scattering. The 

scattering rate analysis is described in Supplemental material S10.   

 

The spacetime patterns of polaritonic wave packets (Figs.2-3) are ultimately governed by the 

dispersion of SPP in the frequency (𝜔)-momentum (q) space. The SPP dispersion can be derived 

from the pole of the near-field reflection coefficient via 𝑟𝑝(𝑞, 𝜔) ≃ 1 − (2𝑞𝑑 𝜖2𝐷⁄ ) for q ≫ ω c⁄ . 

Here, 𝜖2𝐷 = 1 + (𝑖𝑞2 𝜔⁄ )𝑒2𝑉𝜎  is the 2D dielectric function of graphene, 𝑉 = 𝑉(𝑞, 𝜔)  is the 

effective Coulomb interaction kernel, and 𝜎  is the sheet conductivity(25). Under our 

experimental conditions, 𝑉  is well approximated by the inverse capacitance 𝑉 = 𝐶−1 =

4𝜋𝑑 𝜖⁄  per unit area, where 𝑑 is the distance between the graphene and the gate and 𝜖 is the 

dielectric constant of the spacer. The nontrivial physics we observe is encoded in the optical 

conductivity 𝜎 = 𝜎(𝜔), accessible through the analysis of SPP worldlines and dispersions.  
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In the Fermi liquid regime realized in heavily doped graphene with the chemical potential  

exceeding the temperature 𝜇 ≫ 𝑘𝑏𝑇, the conductivity is well captured by the Drude formula: 

 𝜎(𝜔) =
𝑖

𝜋

𝐷

𝜔 + 𝑖Γ𝑑
 , (1) 

where 𝐷 is the Drude weight and Γ𝑑  is the momentum-relaxing scattering rate(26). Assuming 

𝜔 ≫ Γ𝑑, the corresponding observables in spacetime maps read as: 

 𝑣𝑔 = √ 
𝐷

𝜋𝐶
 , 𝜏𝑝 =

2

Γ𝑑
    (2) 

The SPP lifetime (𝜏𝑝) is twice as large as the invers of Γ𝑑, which can be attributed to the screening 

effect produced by the back gate. (see Supplemental section S9 for details). Hence, the two main 

characteristics of the SPP worldlines -- the slope (2/𝑣𝑔) and the decay time (𝜏𝑝) -- are governed 

in the Drude model by the Drude weight and the scattering rate, respectively. Both quantities 

can be directly measured as the geometrical metrics of worldlines. The calculated SPP decay rate 

(red curve in Fig.3e) shows that a combination of electron-phonon and impurity scattering is in 

quantitative agreement with the SPP-extracted data, as detailed in Supplemental material S10. 

 

Electronic interactions from spacetime metrology 

We now focus on the SPP spacetime dynamics in the vicinity of the CNP. Our THz spacetime maps 

collected at ambient temperature reveal plasmonic propagation at gate voltages as low as 5 V, 1 

V or even 0 V at the CNP (Fig.4). We attribute the presence of SPPs at the CNP to the response of 

thermally excited electrons and holes(9, 10, 27, 28). The SPP group velocity increases with gate 

voltage, as evidenced by shallower worldline slopes (dashed arrows in Fig. 4a-c and Fig. 4e-g). 

The evolution of the group velocity as a function of the back gate voltage is summarized in Fig. 

4d.  The group velocity of SPP increases with carrier density from 6 m/ps or  2% of the speed of 

light near the CNP to 26 um/ps at Vbg = 30 V. The worldline of the SPPs at the CNP is short-lived: 

the plasmonic wave packets cease to exist after only 0.2-0.3 ps. Applying a gate voltage as low as 

1 V nearly doubles the lifetime manifested by the extended SPP propagation range. We quantify 

the SPP lifetime by analyzing the temporal decay of the SPP field along the worldlines of SPP that 

travel along the ribbon at various gate voltages (Fig. 4h, with additional details presented in 

Supplemental material S13). The SPP relaxation rate decreases from ~5 THz at the CNP to less 

than 1.5 THz at μ > 120 meV (Fig. 4i). The significant enhancement of the SPP relaxation rate at 

the CNP cannot be explained solely by the momentum-relaxing scattering rates, which generally 

either remain unchanged or decrease with carrier density(29). The influence of the interband 

transition in nano-THz data is also negligible (Supplemental material S12). 



Searching for the origins of the evolution of the SPP dynamics in Fig. 4d,i, we recall that in the 

absence of Umklapp processes, dc charge transport in monopolar Fermi liquids is not impeded 

by momentum-conserving electron scattering because the total momentum and current are 

proportional to each other. This is the case in highly doped graphene. However, the situation is 

different in materials hosting both electrons and holes(14, 30–32) such as charge-neutral 

graphene at a finite temperature. The electron-hole scattering produces current relaxation and 

therefore enhanced plasmonic losses(30, 33–35). Below, we attempt to verify the importance of 

this so-called electron-hole drag effect by examining how the conductivity we deduce from our 

measurements varies as a function of the gate voltage at a finite temperature. 

 

For the quantitative analysis of the doping dependence trends in Fig.4, we have adopted the two-

component model of the THz conductivity of graphene(36):  

 𝜎ℎ(𝜔) =
𝑖

𝜋

𝐷ℎ
𝜔 + 𝑖Γ𝑑

+
𝑖

𝜋

𝐷𝑘 − 𝐷ℎ
𝜔 + 𝑖Γ𝑑 + 𝑖Γ𝑒

 , (3) 

where 𝐷ℎ is the so-called hydrodynamic Drude weight and 𝐷𝑘 is the kinetic Drude weight;  Γ𝑑 is 

the momentum-relaxing scattering rate attributed to the combined action of impurities and 

phonons; and Γ𝑒 is the electronic scattering rate (Supplemental material S13). The first term in 

(3) describes the contribution from the hydrodynamic-type flow, where all the charge carriers 

move in the same direction. Accordingly, 𝐷ℎ is nonzero only away from the CNP.  The second 

term in (3) represents the contribution associated with the electrons and holes moving in 

opposite directions in response to the same electric field. The electron-hole drag is manifest in 

the added momentum relaxation rate Γ𝑒 of this term. We display the ratio of the spectral weights 

(i.e., the numerators) of the two contributions in the inset of Fig. 4d. This plot shows that the 

hydrodynamic Dirac fluid behavior dominates the graphene response at elevated temperatures 

and at lower carrier densities. 

As shown in Fig. 4d,i, the two-component model [Eq. (3)] captures the trends seen in the 

evolution of both the scattering rate and the group velocity as functions of the chemical potential . 

For simplicity, we assumed that the scattering rates Γ𝑑 and Γ𝑒 are constant and obtained the best 

fit to the data for  Γe = 3.0 THz and Γd = 0.47 THz. These choices of parameters reproduce the 

entire gate-dependent data set developed from 17 separate spacetime maps. We remark that in 

a more accurate model, Γ𝑒 should decrease away from the CNP as the system evolves into a liquid 

with a progressively larger Fermi surface(37).  At the CNP, the hydrodynamic term in Eq. (3) 

vanishes, so that the current relaxation rate reaches its maximum value of Γ𝑑 + Γ𝑒.  At the CNP, 

the electronic scattering time Γ𝑒
−1 is actually shorter than a single oscillation cycle of the SPPs, 

yet the effect is still observable in our data. Simultaneously, the SPP group velocity 𝑣𝑔 attains its 

minimum at the CNP (blue and red lines in Fig.4d). Evidently, electronic interactions slow down 

the SPP in a Dirac fluid in a manner analogous to a viscous drag. From the fitted Γ𝑒, we estimate 



the graphene fine-structure constant as 0.34 (Supplemental material S16), which matches the 

theoretical estimate (assuming 𝑣𝐹 = 1.3 × 106m/s and 𝜅 = 5). 

   

Fig. 4. SPP dynamics renormalized by electronic interactions in Dirac fluid (a-c) Spacetime maps 

collected across the graphene ribbon when applying different back gate voltages. White arrows 

mark the slopes of the SPP worldline. A shallower slope corresponds to a faster SPP group velocity. 

(d) Dots display the gate dependence of the graphene SPP group velocity at 300K. Solid red line: 

theoretical group velocity obtained from Eq. (3) by setting Γe = 0 THz, as described in the text. 

The solid blue trace was obtained by setting the electronic scattering rate  Γe = 3 THz. The false 

color map in the inset of (d) presents the ratio between the two numerators 𝐷ℎ and 𝐷𝑘 − 𝐷ℎ in 

the two-component model [Eq. (3)]. The white dashed line presents the trajectory of gate-

dependent measurements probing the transition from a Dirac fluid regime to a Fermi liquid 

regime. (e-g) Spacetime maps collected along the graphene ribbon (marked as blue dashed lines 

in Fig. 1b) at 𝑉𝑔=0 V (e), 1 V( f), and 5 V (g). The black arrows mark the SPP worldlines. (h) Time-

dependent polariton field strength extracted along the SPP worldlines in (e-g). The field strength 

is normalized by its maximum value. The dashed curves show the exponential decay e−t/τp 

controlled by the SPP lifetime τp. (i) Dirac-fluid/Fermi-liquid crossover visualized by the gate-

dependent SPP relaxation at room temperature. In the Dirac fluid regime (𝐸𝑓 ≪ 𝑘𝑏𝑇), the SPP 

damping is determined by Γ𝑑 + Γ𝑒 (marked by the blue dashed line). In the Fermi liquid regime 

(𝐸𝑓 ≫ 𝑘𝑏𝑇), the SPP damping is solely determined by Γ𝑑 (marked by the red dashed line). The 
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blue solid line shows the calculated gate-dependent SPP relaxation rate based on the two-fluid 

model (Γd = 0.47 THz, Γe = 3 THz).  

 

Discussion 

 

To summarize, we introduced a nano-THz spacetime metrology to measure the group velocity 

and lifetime of SPP wave packets in graphene. The developed spacetime mapping method grants 

access to the low-energy electrodynamics of quantum materials with sub-diffraction and sub-

cycle spacetime resolution on the order of 50nm × 50fs. Our observations revealed a significant 

renormalization of both parameters near the charge neutrality point of graphene, which is 

consistent with the electron-hole drag effect in the Dirac fluid. Our nano-THz spacetime mapping 

opens a new realm for spatiotemporal control of polaritons(21, 22, 24, 38–46) and for nano-

spectroscopy of low-energy collective modes in many other quantum materials(47–53). 

 

 

Materials and Methods 

Sample fabrication and geometry  

Encapsulating graphene with two hexagonal boron nitride (hBN) layers is known to significantly 

improve the carrier mobility of graphene devices(54). To fabricate such a device, hBN and 

graphene flakes are first mechanically exfoliated onto SiO2/Si wafer chips. Then, using a 

polypropylene carbonate (PPC) transfer slide, an hBN-graphene-hBN heterostructure is 

assembled. The top hBN needs to be thin (<10nm) so that the s-SNOM can effectively probe the 

electromagnetic response of the graphene underneath. However, thin hBN flakes are difficult to 

pick up using PPC. To get around this, the topmost hBN is a thick (~30nm) flake with a thin (~7nm) 

appendage. The presence of the thick part of the flake allows for relatively easy pickup by the 

PPC transfer slide. The graphene and bottom hBN flakes overlap with both the thick and thin 

parts of the top hBN, although only the area underneath the thin part of hBN is used in the actual 

device. 

The hBN-graphene-hBN stack, residing on the PPC transfer slide, is released onto a Piranha-

cleaned SiO2/doped Si chip with alignment markers at 115°C. During the release process, special 

care is taken to remove the “bubbles” trapped between the layers of the stack by repeatedly 

expanding/shrinking the frontier of PPC/stack contact at 80°C. To remove the remaining PPC film, 

the SiO2/Si chip is annealed at 360°C, <10-5 mbar for 30 minutes. E-beam lithography is used to 

define the ribbon shape of the device, with bilayer 495 A4/950 A2 polymethyl methacrylate 



(PMMA) as the etch mask. Reactive ion etching (RIE) using CHF3/Ar and O2 removes the 

heterostructure outside the etch mask. After etching, the remaining PPC is dissolved by acetone, 

leaving the ribbon behind. Finally, e-beam lithography and e-beam metal evaporation are used 

to fabricate a pair of edge contacts to graphene that lead to two 200 𝜇𝑚 × 200 𝜇𝑚 metal pads.  

The two pads and the doped Si are connected to pins on the sample holder by gold wires glued 

with silver paste on both ends. 

During the measurement, the graphene is grounded while the doped Si is supplied with a DC bias 

𝑉𝑏𝑔 . Based on the parallel capacitor model, the average carrier density in graphene can be 

determined from Vbg and the thickness and permittivity of the dielectric spacer . 

 

Terahertz scanning near-field optical microscopy 

We conducted all the terahertz near-field measurements utilizing the home-built cryogenic THz 

scanning near-field optical microscope(16–18). The THz broadband pulse is generated and 

detected by a pair of photo-conductive antennas (PCAs, Menlo Systems GmbH). Our home-built 

cryogenic ultra-high vacuum atomic force microscope is operated in the tapping mode, in which 

the cantilever of a metallic tip (Rocky Mountain Nanotechnology, LLC) vibrates near its 

fundamental resonance frequency (30-80kHz). The THz radiation from the PCA emitter is 

collimated by a TPX lens and focused onto the tip and sample by a parabolic mirror. The scattered 

field is detected by an unbiased PCA and the photocurrent signal is demodulated by a lock-in 

amplifier at harmonics of the tip tapping frequency. Through this demodulation, we effectively 

probe the near-field tip-sample interaction with a spatial resolution on the order of 50nm. 
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S1: Sample fabrication and geometry 

 

 

Fig. S1 Graphene device geometry (a) Optical image of the sample. (b) Atomic force microscopy 

measurement on the sample. (c) WL signal of the nano-THz measurement on the sample. (d) 

Schematic cartoon of the device.  

 

S2 Screened and free-standing THz plasmons in graphene 

In the Terahertz frequency range, free carriers in a doped Si substrate screen the plasmon 

polaritons in graphene(18). Thus, it is necessary to include the doped substrate in the dispersion 

calculation of surface plasmon polaritons. In Fig. S2, we show the imaginary parts of p-polarized 

reflectance that use a doped (a) and an undoped (b) Si substrate. The carrier density in the doped 

Si substrate is 5 × 1022𝑐𝑚−3. In Fig. S2(a), the dispersion of surface plasmon polaritons is linear 

because of the screening. When the plasmon is unscreened, we see a familiar 2d plasmon 

dispersion, 𝜔~√𝑞, as shown in Fig. S2(b). 

(a)

(b)

(c)

hBN
Graphene

hBN
SiO2

Doped Si back gate

Cr/
Au

𝑉𝑏𝑔

(d)



 

Fig. S2 Plasmon dispersion with and without screening. Imaginary part of the p-polarized reflectance 

coefficient modeled for (a) screened and (b) free-standing graphene with chemical potential 0.1ev. In (a), 

we consider screening by a doped Si substrate with 𝑛 = 5 × 1022𝑐𝑚−3. In (b), we consider an undoped 

intrinsic Si substrate. A typical 2d plasmon dispersion, 𝜔~√𝑞, shows up in the unscreened case. The 

sample structure for the above rp calculation is graphene/SiO2(300nm)/Si. 
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S3. Gate-dependent resistivity  

 

 

 

Fig. S3 In-situ measurement of graphene resistivity at room temperature. The resistance is determined 

by measuring the values at the two gold contacts located at the ends of the graphene ribbon. A peak in 

resistance serves as a distinctive indicator of reaching the charge neutrality point.  

 

 

 

 

 

 

 

 

 

 

 



S4 Spacetime maps and propagating surface plasmon polaritons 

 

Fig. S4. Sequential representation of the detection process of nano-THz spacetime maps. (a) A 

THz pulse is focused onto the tip and sample. (b) E1(t) is directly scattered by the tip; meanwhile, 

an SPP wave packet (red) is launched by the tip and propagates in graphene. (c) Upon completing 

a round trip between the tip and the sample edge, the SPP wave packet is scattered by the tip, 

producing a trace 𝐸2(𝑡) that co-propagates with E1(t) in free space after a time delay. The time 

delay (Δ𝜏) is determined by both the SPP group velocity and the relative distance between the 

tip and the edge x. (d) Schematics of the signal composition of the raw data of a spacetime map 

and the corresponding experimental data. (e) Schematics of the background signal, which can be 

estimated as the time-dependent spatially averaged THz signal inside graphene. (f) The 

spacetime map 𝐸2, which records the worldline of SPP wave packets in the cavity.  

In this section, we discuss step by step the experimental collection process of nano-THz 

spacetime maps. In Fig. S4(a), we display an incoming THz pulse incident on the tip-sample system. 

The tip oscillates at frequency Ω in the vertical direction. The tip-scattered signal contains two 

contributions: E1(t) and E2(t). The pulse E1(t) is directly scattered by the tip and is therefore 

position independent. E1(t) is representative of the local response of graphene and may be 

modeled by assuming an infinitely large graphene sample. The second contribution, E2(t), is non-

local. The E2 (t)  signal is the result of the SPP wave packet being launched by the tip and 

completing the roundtrip between the tip and the sample edge as illustrated in Fig. S4(b). The 

propagating SPP wave packet is outcoupled by the tip and sent to the far field. Both E1(t) and 

E2(t) are demodulated at the tip tapping frequency and co-propagate in free space. The  signal 

𝐸2(𝑡) is delayed with respect to 𝐸1(𝑡) by the time that the SPP wave packet takes to travel 



between the tip and the sample edge. The time delay is determined by the SPP group velocity 

(𝑣𝑔) and the distance between the tip and the sample, which can be expressed as Δ𝜏 = 2𝑥/𝑣𝑔.  

 

In Fig. S4(d), we presented the raw data for a representative spacetime map: the raw data 

present a superposition of the local response 𝐸1(𝑡)  and the spatially dependent polaritonic 

response 𝐸2(𝑡 + Δ𝜏(𝑥)) . Experimentally, t is controlled by the time delay between the 

femtosecond probe pulse and the scattered THz pulse, which defines the vertical axis in 

spacetime maps. The background signal can be approximated as the spatially averaged signal 

inside the graphene. By taking second spatial derivatives (which will be discussed in detail in the 

next section), the local response is removed and the contrast is dominated by the polaritonic 

response (Fig. S4(f)).  

In the above discussion, we focused exclusively on the tip-launched polariton. While the 

graphene edge may also initiate polariton wave packets, their launching efficiency of the edge at 

THz frequencies is diminished, leading to predominantly tip-launched modes in our observations. 

We posit that with an optimized launcher geometry and illumination setup, edge or contact 

launching modes could be viable. Typically, tip-launched and edge-launched coexist, resulting in 

spacetime maps featuring worldlines with slopes of 1/𝑣𝑔 and 2/𝑣𝑔. 

 

S5 Second derivatives for visualizing the plasmon wave packet 

In this section, we discuss the background suppression/elimination method suitable for 

processing spacetime maps.  In Section S5, we show that the measured near-field signal can be 

decomposed as a spatially dependent component and an independent part.  The near-field signal 

of a spacetime map for a plasmonic medium can be expressed as 

 𝑁𝐹(𝑥, 𝑡) =∑𝐴(𝜔)𝑒𝑖(𝜔𝑡−
𝑞̃(𝜔)𝑥
2

)

𝜔

+∑𝐵(𝜔)𝑒𝑖𝜔𝑡

𝜔

 (S1) 

 

 

Here, we introduce a reference-free method for removing the spatially independent component. 

By calculating the second spatial derivative of 𝑁𝐹(𝑥, 𝑡), we obtain: 

 −
𝜕2𝑁𝐹(𝑥, 𝑡)

𝜕𝑥2
=∑𝑞̃(𝜔)2𝐴(𝜔)𝑒𝑖(𝜔𝑡−

𝑞̃(𝜔)𝑥
2

)

𝜔

 

 

(S2) 



In contrast to the origin signal (S1), the second derivative removes the spatially independent part. 

The prefactor, denoted (A(ω)) in the first term in (S1), is modified to become 𝑞̃(𝜔)2𝐴(𝜔), 

implying a transformation of the shape of the propagating wave packet. However, the group 

velocity and lifetime can be unambiguously extracted from the second spatial derivatives of the 

spacetime map. The second spatial derivative of the raw data is shown in Fig. S5(b). After 

effectively eliminating the background signal, we observe a distinct checkerboard pattern, which 

vividly illustrates the multireflection of polariton wave packets in a plasmonic cavity.  

 

 

Fig. S5 Wave packet information extraction. (a) Raw data for a spacetime map, taken at 𝑇 =

55𝐾, 𝑉𝑏𝑔 = 15𝑉.  (b) Second spatial derivative of the raw data in (a). 

 

 

S6 Numerical simulations of the spacetime maps 

In this section, we discuss the numerical simulations of the spacetime maps. The real-space 

simulations of surface plasmon polaritons is based on a computational framework which was 

applied to simulate plasmon response in WTe2(17, 18) and generate training data for polaritonic 

convolutional neural network(55). In this computational framework, the near-field response of a 

plasmonic medium is simulated, assuming continuous wave excitation.  

𝑁𝐹(𝑥, 𝑡)
−
𝜕2𝑁𝐹(𝑥, 𝑡)

𝜕2𝑥

Raw data Second derivatives(a) (b)



In this work, we have extended the framework to accommodate pulsed excitation, taking into 

account broadband THz pulses that stimulate a plasmonic medium characterized by an energy-

momentum dispersion ω(q). This approach allows direct comparison between experimental 

observations and numerical simulations. In Fig. S6, we summarize the simulation process of a 

spacetime map. In Fig. S6(a) and (b), we present a simulated near-field scattering signal for a 

square graphene sheet. The near-field signal is approximated as the z-polarization of a dipole 

that is raster scanned over the sample surface. A detailed description of the simulation method 

can be found in our previous works(55). The properties of plasmon polaritons at frequency 𝜔0 in 

the simulation are determined by the wavelength 𝜆 and the quality factor Q. The simulation 

results presented in Fig. S6(a) and (b) are based on continuous wave excitation. As such, they do 

not incorporate temporal features.  

 In Fig. S6(c) and (d), we present a single-cycle THz pulse in the time domain and in the frequency 

domain, respectively. The 𝐸(𝑡) and 𝐸(𝜔) traces are connected by the Fourier transformation: 

 

 𝐸(𝑡) =
1

√𝑁
∑𝐸̃(𝜔𝑛)𝑒

𝑖𝜔𝑛𝑡

𝑛

 

 

(S3) 

 
𝐸̃(𝜔) =

1

√𝑁
∑𝐸(𝑡𝑛)𝑒

−𝑖𝜔𝑡𝑛

𝑛

 
(S4) 

 

 

where 𝐸(𝑡) is a real function that describes the electric field profile in the time domain, and 𝐸̃(𝜔) 

is a complex function that determines the amplitude and phase of the pulse at different 

frequency components. A THz pulse in the time domain can be regarded as the superposition of 

continuous waves at various frequencies with different amplitudes and phases. One continuous 

wave component at frequency 𝜔𝑛  corresponds to a near-field signal distribution in the 

simulation volume 𝑁𝐹(𝑥, 𝑦, 𝜔𝑛) . The near-field signal for the sample in the time domain 

𝑁𝐹(𝑥, 𝑦, 𝑡𝑖)  produced by an excitation pulse profile 𝐸̃(𝜔)  can be calculated as the Fourier 

transform of  𝑁𝐹̃(𝑥, 𝑦, 𝜔𝑛) × 𝐸̃𝜔𝑛: 

 𝑁𝐹(𝑥, 𝑦, 𝑡𝑖) =∑𝑁𝐹̃(𝑥, 𝑦, 𝜔𝑛) × 𝐸̃(𝜔𝑛) × 𝑒
𝑖𝜔𝑛𝑡𝑖

𝑛

  (S5) 

In Fig. S6(e), we present a simulated hyperspectral line scan of the near-field signal from the 

center to the edge along the dashed line in Fig. S6, panels (a) and (b). The dispersion of the 

plasmon polaritons is assumed to be linear and the group velocity is assumed to be 5.6 μm/ps. 

In Fig. S6(f), we show the near-field signal in the time domain based on the formula above. The 

worldline of a surface plasmon polariton can be visualized in the second spatial derivatives of 

𝑁𝐹(𝑥, 𝑦0, 𝑡). 



 

 

Fig. S6. Numerical simulations of spacetime maps for surface plasmon polaritons. (a) Real part 

and (b) imaginary part of a simulated near-field profile for a square graphene sheet under 

continuous wave excitation. (c) Time domain trace and (d) frequency domain spectrum of the 

incident THz pulse. (e) Simulated hyperspectral line scan from the center of the graphene sheet 

to the edge, indicated by the white dashed line in (a) and (b). The hyperspectral line scan is 

normalized by the near-field signal produced by the substrate. (f) Simulated spacetime map 

collected along the white dashed line marked in (a) and (b). (g) Spatial second derivatives of the 

spacetime map.  

 

To emulate the geometry of the graphene ribbon in the experiment, we focus our numerical 

simulations on the ribbon geometry shown in Fig. S7.  
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Fig. S7 Simulated near-field signal on the graphene micro-ribbon. The above simulated near field 

images correspond to the map of (a) amplitude and (b) phase signal of a graphene micro-ribbon. 

The simulated spacetime maps for the graphene micro-ribbon are performed along the white 

dashed line.  

 

 

S7 Numerical simulations of the gate voltage dependence of 

nano-THz amplitude and phase profiles. 

To understand the gate voltage dependence of the nano-THz amplitude and phase profiles, we 

numerically simulated the gate-dependent signals based on the plasmonic simulator introduced 

in Section S6. The width of the ribbon in the simulation is 6μm and the polariton wavelength and 

quality factor at each back gate voltage are calculated based on the dielectric function and 2-

component conductivity model described in Section S13. The back gate voltage-dependent 

wavelength and quality factor are plotted in Fig. S8(e) and (f), respectively. Our numerical 

simulations adequately capture the gross features of the data in Fig.1 in the main text, which are 

also shown in Fig. S8.  

 

(a) (b)Amplitude Phase

6μm 6μm



 

Fig. S8 The gate voltage dependence of nano-THz amplitude and phase profile across a 

graphene ribbon. (a-d) Experimental data are presented in Panels a,b and simulations are 

displayed in panels c,d. (e,f) back gate voltage-dependent wavelength and quality factor used in 

the numerical simulation. 

 

 

S8 Numerical simulation of the lifetime-dependent spacetime 

map 

In this section, we describe the numerical simulations of spacetime maps with different 

polaritonic lifetimes: 

 
𝜏𝑝 = 𝑄𝑝/𝜔  

(S7) 

Because of the complexity of the tip antenna resonance in the THz frequency range, the 

oscillation of the plasmon in the time domain cannot simply be fit by a sinusoidal oscillation with 

exponential decay. To quantitatively extract the lifetime of the SPP, we numerically simulated 

the SPP spacetime map at the same carrier density with different lifetimes while considering the 

tip resonance. In both the simulation and the experiments, the geometrical loss of the SPP is 

involved. Since the tip launches a circular wave, the electric field strength naturally decays with 

distance because of the diffusion of electromagnetic energy. In Fig. S9(a), we show a THz pulse 

in the time domain, which is used as the optical excitation in the numerical simulation. The time-

domain trace is collected on the gold contact of the sample. The simulation is performed on a 

graphene ribbon whose width is 6𝜇𝑚, and the spacetime map is collected across the ribbon 

(indicated as the white dashed line in Fig. S9(b)). In Fig. S9(c), we showcase a comparative analysis 

between the experimental spacetime maps and their corresponding simulations, which are 

optimized to match the lifetimes as closely as possible. A high level of agreement between 

(a) (b)
Experiment Simulation

5.0μm 5.0μm

(c) (d)

(e)

(f)



experiment and simulation suggests that the numerical simulation effectively captures the nano-

THz electrodynamics of the SPP in the cavity. In Fig. S9(d), we present the simulated temporal 

profile of the SPP oscillation extracted at the center of the cavity (white dashed line in Fig. S9(c)) 

from short (red) to long (blue) lifetimes. The black curve at the bottom is the time domain trace 

that launches the SPP in the cavity. When the SPP lifetime is short, the temporal profiles at the 

center of the cavity exhibit a high degree of similarity to the excitation pulse.  As the SPP lifetime 

increases, the similarity between the temporal fields at the center of the cavity and the excitation 

pulse diminishes. This is because the earlier-launched SPPs persist within the cavity for a longer 

duration, thereby altering the temporal profiles of the signal at the cavity’s center over time. 

 

Fig. S9. Numerical simulations of the lifetime dependent spacetime maps. (a) Near-field terahertz time 

domain trace collected on gold contact. The near-field signal is demodulated at the 1st harmonics of the 

tip tapping frequency. This time domain trace serves as the excitation that initiates the SPP. (b) Geometry 

of the graphene ribbon in the numerical simulation. (c) Comparison between the experimental data and 

numerical simulations at various temperatures. (d) Simulated lifetime-dependent time domain cavity 

resonance. The time domain signals are extracted from the center of the cavity in the second spatial 

derivatives of the spacetime map (marked by the white dashed line in c). The black solid curve at the 

bottom is the time domain trace of the excitation pulse in the simulation.  

In Fig. S10, we present a comprehensive comparison of the temporal cavity oscillations in the 

experimental observations and in the numerical simulations. The solid curves in Fig. S10(a-c) 

represent the temporal oscillations of the SPP signal, which were extracted from the center of 

the cavity (white dashed lines in Fig. S9(c)).  The black dashed curves illustrate the numerical 

simulated temporal cavity oscillations with SPP lifetimes that best match the experimental data. 

Based on the great agreement between the experimental observations and simulated results, we 

conclude that the SPP lifetime is 0.75ps, 1.8ps and 4.75ps at 300K, 170K and 55K, respectively.  

To quantitatively compare the experimental and simulated spacetime maps, we extracted the 

oscillation profiles of the near-field signal at the cavity centers for both experimental data  

𝑆𝑒𝑥𝑝(𝑡) and simulated data 𝑆𝑠𝑖𝑚,𝑡𝑃(𝑡). We define the absolute error between the experimental 

data and the simulated data as: 

(a)

x

y

(b)
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𝜏𝑝 = 0.75  

Simulation
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Σ𝑡𝑃 = ∫|𝑆𝑒𝑥𝑝(𝑡) − 𝑆𝑠𝑖𝑚,𝑡𝑃(𝑡)| 𝑑𝑡

8

0

 

The calculated absolute errors, as functions of the simulation lifetime, are depicted in Fig. S10(d-

f). For each set of experimental data, the extracted lifetime is determined by the position of the 

local minimum. The associated errors are quantified by the variations between these minima. 

 

The solid curves in Fig. S10(a-c) represent the temporal oscillations of the SPP signal, which were 

extracted from the center of the cavity (white dashed lines in Fig. S9(c)).  The black dashed curves 

illustrate the numerical simulated temporal cavity oscillations with SPP lifetimes that best match 

the experimental data. Based on the great agreement between the experimental observations 

and simulated results, we conclude that the SPP lifetime is 0.72 ± 0.0  ps, 1. ± 0.15 ps and 

4.75 ± 0.35 ps at 300K, 170K and 55K, respectively. 

 

Fig. S10. A comprehensive comparison of the temporal oscillations within the cavity obtained from both 

experimental data and numerical simulations. The solid curves in (a-c) represent the temporal 

oscillations of the SPP signal extracted from the center of the cavity (as indicated by the white dashed line 

in Fig. S9(c)) at 300K(a), 170K(b) and 55K(c). The black dashed lines depict the simulated temporal 

oscillations of the SPP signal, using an SPP lifetime of 0.75ps(a), 1.80ps(b) and 4.75ps(c). The curves in (d-

f) illustrate the absolute values discrepancies between experimental and simulated temporal oscillations 

of SPP signals as functions of simulation lifetime at 300K(d), 170K(e) and 55K(f). The lifetimes are 

determined by the positions of local minima, while the associated errors are quantified by the minima’s 

widths. 



S9 Drude conductivity and acoustic plasmon dispersion 

In this section, we describe the Drude model and the analytical dispersion calculations for surface plasmon 

polaritons. 

The complex conductivity 𝜎(𝜔) due to intraband transitions in graphene is adequately described by the 

Drude model(26): 

 𝜎𝑖𝑛𝑡𝑟𝑎(𝜔) =
𝑖

𝜋

𝐷

𝜔 + 𝑖Γ𝑑
 

 

(S8) 

where the  Drude weight is given by: 

 𝐷 =
2𝑒2

ℏ2
𝑇𝑙𝑛(2cosh (

𝜇

2𝑇
) 

  

(S9) 

We calculate the dispersion relationship of the surface plasmon polariton using local capacitance 

approximation(25). We obtain the dispersion by solving the pole of the 2D dielectric function: 

 𝜖 = 1 +
𝑖𝑞2𝑉𝜎

𝑒2𝜔
  

 

(S10) 

where the Coulomb interaction is replaced by 𝑉 = 𝑒2/𝐶. The capacitance is defined as: 

 
𝐶 =

𝜖

4𝜋𝑑
  

(S11) 

In all calculations, we used 𝜖 = 5 and d=300nm.  

The dispersion of the SPP can be calculated by solving the pole of the 2D dielectric function: 

 1 +
𝑖𝑞2𝑉𝜎

𝑒2𝜔
= 0  

 

(S12) 

The dispersion of the SPP can be expressed as the frequency-dependent complex wave vector: 

 𝑞1 + 𝑖𝑞2 = 𝜔√
𝜋𝐶

𝐷
 √1 + 𝑖

Γ𝑑
𝜔
  

 

(S13) 

The above formula is the complete form of the SPP dispersion and is used for all the numerical calculations 

in the manuscript. 

When Γ𝑑/𝜔 ≪ 1, we find 

 

 𝑞1 ≈ 𝜔√
𝜋𝐶

𝐷
 

 

(S14) 



 

𝑞2 ≈
1

2
√
𝜋𝐶

𝐷
Γ𝑑  

(S15) 

 

Based on the definition of the group velocity, quality factor and lifetime: 

 
𝑣𝑔 =

𝑑𝜔

𝑑𝑞
 

(S16) 

 
𝑄 =

𝑞1
𝑞2
=
2𝜔

Γ𝑑
 

(S17) 

 
𝜏𝑝 =

𝑄

𝜔
  

(S18) 

one can obtain the relationship between the geometrical metrics of SPP worldlines and the Drude model 

parameters, as summarized in Eq.2 in the main text. 

 

 

S10 Temperature-dependent damping of SPPs in the Fermi liquid 

regime 

In this section, we describe various scattering mechanisms that are relevant to the dissipation of SPP in 

the Fermi liquid region (μ ≫ kbT). 

Electron-phonon scattering rate 

The electronic scattering rate in graphene due to scattering on acoustic phonons is given by(29): 

 Γ𝑝ℎ =
1

ℏ3
𝛽𝐴
2|𝜇|

𝜇𝑠𝑣𝐹
2 (

1

𝑣𝐼
2 +

1

𝑣𝑡
2)𝑘𝑏𝑇  

 

(S19) 

where 𝛽𝐴 = 5.0𝑒𝑉  is the pseudo-magnetic field coupling constant, 𝑣𝑙  and 𝑣𝑡  are the velocities of 

longitudinal and transverse acoustic phonons in graphene, 𝑣𝑓 is the Fermi velocity and 𝜇𝑠 is the graphene 

mass density. The parameters used in the numerical calculation are recorded in Table S1. 

Table S1. Numerical parameters for calculating the electron-phonon scattering rate in graphene(29)  

𝛽𝐴 Pseudo-magnetic field coupling constant 5.0𝑒𝑉 

𝑣𝑙  Velocity of longitudinal acoustic phonons 2.2 × 106𝑐𝑚  −1 
𝑣𝑡 Velocity of transverse acoustic phonons  1.4 × 106 𝑐𝑚  −1 
𝑣𝑓 Fermi velocity 1.3 × 108𝑐𝑚  −1 

𝜇𝑠 Graphene mass density 7.6 × 10−8𝑔 𝑐𝑚−2 
 

Electron-impurity scattering rate 

The electron-impurity scattering rate in graphene is given by(56): 



 
Γ𝑖𝑚𝑝 =

1

ℏ

(
𝑍𝑒2

𝜖 )
2

𝜌𝑖𝑚𝑝

ma  [𝑘𝐵𝑇, 𝜇]
  

 

(S20) 

The electron-impurity scattering rate is proportional to the density of impurities in graphene. For the high-

quality hBN-encapsulated graphene sample, we use 𝜌𝑖𝑚𝑝 = 2.1 × 109𝑐𝑚−1, which has been reported in 

previous on-the-chip terahertz spectroscopy measurements(8). The contribution of SPP damping from 

electron-impurity scattering is negligible in the parameter space pertinent to our experiments.  

 

S11 Extraction and uncertainties of group velocity 

In this section, we discuss the extraction procedure of SPP group velocity in a spacetime map collected on 

a semi-infinite SPP medium or an SPP cavity. Here, we consider that the SPP wave packet is launched and 

detected by the tip.  

In Fig. S11(a), we show one simulated spacetime map on a semi-infinite sample. The group velocity (𝑉𝑔) 

can be determined from the gradient of the worldline: specifically, 𝑉𝑔 equals twice the change in position 

(Δ𝑥) divided by the change in time (Δ𝑡).  

In Fig. S11(b), we present a simulated spacetime map on a cavity with 6-𝜇𝑚 width, which holds SPPs with 

a group velocity identical to that depicted in Fig. S11(a). The group velocity can be extracted from the 

slope of the worldline, marked by the white circle in Fig. S11(b). Because the signal contrast in the 

spacetime map varies between the edge and the center of the cavity, the best location for extracting the 

slope of the worldline is at the location marked by the blue dashed line in Fig. S11(c). We zoom in on the 

region marked by the white dashed rectangle in Fig. S11(b). The black dashed line indicates the position 

of the maximum value in the spatial direction. A segment of the dashed line, situated at the one-quarter 

point within the cavity, exhibits a constant slope and is consistent with the slope determined in Fig. S11(a).  

 
Fig S11. Extraction of plasmonic group velocity in a spacetime map. (a) Simulated spacetime map of a 

semi-infinite sample. The slope is well defined by the SPP detection worldline. (b) Simulated spacetime 

(a) (b) (c)

Δ𝑥

Δ𝑡

Δ𝑥

Δt



map of a plasmonic cavity with 6-μm width. The gray dashed lines indicate the boundary of the cavity. 

The group velocity can be effectively extracted from the location marked by the blue dashed line. (c) 

Zoomed-in view of the region in (b) marked by the white dashed rectangle. The black dashed line shows 

the trace of the maximum value along the space axis. At the one-quarter point of the cavity, the slope of 

the dashed line is constant and is the same as the one extracted from the SPP detection worldline in the 

semi-infinite sample (a). 

 

Here, we apply the same strategy to extract the group velocity and define its error on experimental data. 

In Fig. S12(a), we present the second derivative of a spacetime map, which was collected across the 

graphene ribbon at room temperature, with a back gate voltage set at 4V. In Fig. S12(b), we  zoom in on 

the region in Fig. S12(a) marked with the white dashed rectangle. The white dots indicate the locations of 

the maximum values in the spatial direction at different time delays. The group velocity of the SPPs is 

represented by a straight-line segment with a constant slope, which is clearly illustrated in Fig. S12(c). 

Based on the definition of group velocity of a tip-launched SPP, we extract the group velocity using the 

formula 𝑣𝑔 =
2Δ𝑥

Δ𝑡
. The error of the extracted group velocity is determined by the spatial (𝜎𝑥 ) and 

temporal(𝜎𝑡) resolution of the spacetime map: 𝜎𝑣𝑔 =
𝜎𝑥

Δ𝑡
+

Δ𝑥

Δ𝑡 
𝜎𝑡 .  The gate-dependent group velocity 

presented in Fig. 4(d) in the main text is the average of the slopes extracted from the left and right sides 

of the graphene ribbon.  

 

 

 

Fig. S12 Group velocity extraction and error estimation on experimental data. (a) Experimental data 

plotted in the form of a spacetime map measured at Vbg = 4V. (b) Zoomed-in view of the region in (a) 

marked with the white dashed rectangle. The white dots show the trace of the maximized signal extracted 

at each time delay. A straight-line segment at the one-quarter point of the cavity is observed. (c) 

Visualization of the slope of the SPP worldline in an SPP cavity. The error of the group velocity is 

determined by the spatial and temporal resolution on a spacetime map. 

(a) (b) (c)

Δ𝑥

Δ𝑡



S12 Interband transitions  

 

In this section, we discuss the interband contribution to the conductivity of graphene. As the 

doping is brought closer to charge neutrality, interband contributions could potentially become 

important even at THz frequencies. However, we have found that at room temperature, the 

contribution of interband processes is negligible compared to that of the intraband (Drude) 

response. 

We evaluate the interband conductivity following standard methods in the literature(57–59). An 

analytical expression for the optical conductivity in the local approximation reads as: 

 𝜎𝑖𝑛𝑡𝑒𝑟(𝜔) =
𝑒2

ℎ

𝜋

2
(𝑔(𝜔) +

4𝑖𝜔

𝜋
 ∫

𝑔(2𝜔′) − 𝑔(𝜔)

𝜔2 − 4𝜔′2
𝑑𝜔′

∞

0

) 
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where the function g is defined as: 

 𝑔(𝜔) =
sinh (

𝜔
2𝑇)

cosh (
𝜇
𝑇) + cosh (

𝜔
2𝑇)

 

  

(S22) 

 

Here 𝜔, 𝜇, and 𝑇 are frequency, chemical potential, and temperature, respectively. 

In the T→0 limit, the real part of this expression becomes (
𝑒 

ℎ

𝜋

2
)Θ(𝜔 − 2𝜇), i.e., the well-known 

universal optical conductance of monolayer graphene(60). 

In Fig. S13, we show the temperature-dependent interband contribution to the graphene optical 

conductivity based on (S21) and (S22) in the frequency range relevant to our experiments. The 

magnitude of 𝜎𝑖𝑛𝑡𝑒𝑟 increases as temperature decreases. In Fig. S13(b-e), we show the intraband 

and interband contributions at the charge neutral point. At room temperature, intraband 

transitions dominate the conductivity. The interband contribution begins to become comparable 

to the intraband contribution below 30K, at which point the transition energy (4mev) is 

comparable to the thermal energy (kbT).  



 
Fig. S13 Interband transition contribution to the graphene optical conductivity. (a) Interband 

optical conductivity of an undoped graphene sample calculated at different temperatures. (b-e) 

Comparison between intraband and interband optical response at 300K, 100K, 40K and 10K.  

 

S13 Two-component conductivity model 

The two-component conductivity model was reported in Ref.(36): 

 𝜎(𝜔) =
𝑖

𝜋

𝐷ℎ
𝜔 + 𝑖Γ𝑑

+
𝑖

𝜋

𝐷 − 𝐷ℎ
𝜔 + 𝑖Γ𝑑 + 𝑖Γ𝑒

 

  

(S23) 

where 𝐷ℎ is the hydrodynamic Drude weight and D is the kinetic Drude weight. 

The kinetic Drude weight is given by 

 
𝐷 =

2𝑒2

ℏ2
𝑇𝑙𝑛(2cosh (

𝜇

2𝑇
)  

(S24) 

The hydrodynamic model is given by 

 
𝐷ℎ = 𝜋𝑒2𝑛/𝑚ℎ  

(S25) 

 

where the corresponding hydrodynamic mass is given by  

 
𝑚ℎ =

3

𝜋

𝑇3

ℏ2𝑣𝐹
4𝑛
[
𝜋2

3

𝜇

𝑇
+
1

3

𝜇3

𝑇3
− 4𝐿𝑖3(−𝑒

𝜇𝑇) ]  
(S26) 

𝐿𝑖𝑛(𝑧) is the polylogarithm function of order n and argument z.  

T=300K T=100K

T=40K
T=10K

(a)
(b) (c)

(d) (e)



At the charge neutrality point, 𝐷ℎ  = 0 and the graphene is in the Dirac fluid regime is marked by a notable 

contribution from the electron-hole scattering: 

 𝜎(𝜔) =
𝑖

𝜋

𝐷𝑘
𝜔 + 𝑖Γ𝑑 + 𝑖Γ𝑒

   (𝜇 = 0𝑚𝑒𝑣) 

  

(S27) 

At high carrier density, Dh is approximately the same as Dk and the graphene conductivity collapses into 

the non-interacting model in which the electron-hole scattering is dormant in the electromagnetic 

response: 

 
𝜎(𝜔) =

𝑖

𝜋

𝐷𝑘
𝜔 + 𝑖Γ𝑑

  (𝜇 ≫ 𝑘𝑏𝑇)  
(S28) 

 

 

S14 Geometrical decay of Surface plasmon Polariton field 

strength  

In Fig. 4 in the main text, we presented three representative spacetime maps collected at Vbg=0, 1, and 5V 

along the long axis of the graphene ribbon. A longer distance in space allows us to track the decay of the 

free propagating wave packet without considering intersection and multireflection. Since the wavelength 

of the SPP exceeds the width of the ribbon, the geometrical decay of SPP field strength resulting from its 

spreading across space can be disregarded. The temporal decay of the SPP wave packet can be described 

by an exponential decay function 𝑒−𝑡/𝜏𝑝 , where 𝜏𝑝 is the SPP lifetime.   

In the following numerical simulations, we demonstrate that the geometrical decay is absent in the 

experimental scenario in Fig. 4(e-g) in the main text, where the width of the graphene ribbon is smaller 

than the wavelength of the SPP. In Fig. S14(a-c), we simulate the spacetime map collected on a large 

sample; the SPP lifetime in the simulation is set to be 1.43ps. The sample geometry is depicted in Fig. 

S14(a). The electromagnetic energy of an SPP wave packet initiated by a tip can propagate in both the x 

and y directions. In Fig. S14(c), we juxtapose the exponential decay function with the simulated field 

strength extracted along the SPP worldline. The worldline is denoted by the black dashed line in Fig. S14(b). 

The simulated field strength on the SPP worldline exhibits a decay rate that surpasses that of the 

exponential decay function. This accelerated decay can be attributed to additional geometric factors that 

need to be considered.(61) 

In the data acquisition scheme for Fig. 4(e-f) in the main text, the width of the ribbon is indeed smaller 

than the SPP wavelength (defined as 1THz). This implies that the sample geometry employed in the 

simulations for Fig. S14(a-c) may not be applicable. In Fig. S14(d-f), we numerically simulate the spacetime 

map in a graphene ribbon. The sample geometry is shown in Fig. S14(d); the width of the graphene ribbon 

is 6μm. In Fig. S14(f), we show the temporal decay profile of the SPP field strength along the worldline on 

a graphene ribbon (black solid curve) and on a graphene square (red solid curve). The temporal decay 

along the ribbon is slower than on a square sample, and it aligns more closely with an exponential decay 

function.  On a graphene ribbon whose width is less than the SPP wavelength, the SPP lifetime can be 

effectively determined through numerical fitting using an exponential decay function. 



 
Fig. S14 Geometrical decay in SPP medium with different geometry. (a) Square medium. (b) Simulated 

spacetime map. (c) Extracted time-dependent electric field strength along the worldline and comparison 

to the fitting. (d) Graphene ribbon. (e) Simulated spacetime map along a 6μm-wide ribbon. (f) Extracted 

time-dependent electric field strength along the worldlines in the graphene ribbon in (d) and the graphene 

square in (a). The temporal decay of the SPP field strength in the graphene ribbon can be well described 

by the exponential decay function without considering geometrical decay. 
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S15 Group velocity renormalization from a large scattering rate 

The dispersion relationship for a screened SPP is given by: 

 
𝑞̃ = 𝑞1 + 𝑖𝑞2 = 𝜔√

𝜋𝐶

𝐷
 √1 + 𝑖

Γ

𝜔
  

(S29) 

The approximation used to derive Equation (2) in the main text is not valid when the damping is 

comparable to or larger than the frequency: the presence of the damping leads to the renormalization of 

the SPP wave vector (𝑞1) and the group velocity. In this section, we explore the dependence of the 

complex SPP wave vector on the scattering rate (Γ). The real and imaginary parts of the complex wave 

vector 𝑞̃ are plotted as a function of the scattering rate in Fig. S15.  The imaginary part of 𝑞̃ increases with 

Γ  monotonically. The real part of 𝑞̃  remains approximately constant when Γ/ω  is small. However, it 

begins to deviate and increase when Γ/ω is comparable to or larger than 1. This explains why the real 

part of the wave vector increases with the scattering rate when the scattering rate is much larger than 

the frequency of the excitation. It follows that the group velocity decreases with the scattering rate. 

 

Figure S15. Dispersion renormalization in the presence of a large scattering rate. Here, we illustrate 

how the real part (solid line) and imaginary part (dashed line) of the SPP wave vector change with the 

scattering rate Γ.  

 

 

 



S16 Evaluating graphene’s fine structure constant 

We follow previous literature(8, 14) to estimate graphene’s fine structure constant.  

The fine structure constant of graphene, denoted 𝛼, is defined as: 

 

 

 
𝛼 =

1

137

𝑐

𝑣𝑓

1

𝜖
  (S30) 

 

Using the Fermi velocity 𝑣𝑓 = 1.3 × 106𝑚/  and dielectric screening 𝜖 = 5 , we calculated the fine 

structure constant theoretically as 𝛼𝑅𝑃𝐴 = 0.336. 

The extracted scattering rate at the room temperature is Γ𝑒 = 3THz.  

The quantum critical electron-electron scattering is given by: 

 
Γ𝑒 = 𝐶 (

𝑘𝐵𝑇

ℏ
)  

(S31) 

The constant C extracted from the measured electronic scattering rate is C=0.43. The fine structure 

constant evaluated from the measured electronic scattering rate is 𝛼 = √𝐶/3.646 = 0.343 
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