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Abstract: Polaritons are light-matter quasiparticles that govern the optical response of quantum
materials at the nanoscale, enabling on-chip communication and local sensing. Here we report a
novel type of polaritons, Landau-phonon polaritons (LPPs), in magnetized charge-neutral
graphene encapsulated in hexagonal boron nitride (hBN). These quasiparticles emerge from the
interaction of Dirac magnetoexciton modes in graphene with the hyperbolic phonon polariton
modes in hBN. Utilizing infrared magneto-nanoscopy, we reveal the ability to completely halt the
LPP propagation in real space at quantized magnetic fields, defying the conventional optical
selection rules. The LPP-based nanoscopy also tells apart two fundamental many-body
phenomena: the Fermi velocity renormalization and field-dependent magnetoexciton binding
energies. Our results highlight the potential of magnetically-tuned Dirac heterostructures for
precise nanoscale control and sensing of light-matter interaction.

One-Sentence Summary: Total magnetic control of phonon-polaritons is achieved via their
strong coupling with Landau-level transitions.
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Main Text: Polaritons are light-matter quasiparticles that play a fundamental role in the optical
response of polarizable materials (/—/8). Phonon polaritons were studied historically first (/8) and
they are examples of modes demonstrating strong light-matter coupling. In complex materials,
polaritons can involve several distinct matter excitations, yielding a rich variety of collective
phenomena (/9-21, 3). If the optical properties of a material are tunable, polaritons inherit this
tunability. For example, the dispersion of plasmon-polaritons in two-dimensional (2D) conductors
can be controlled by changing their charge carrier concentration (/3—15) or applying an electric
current (16, 17). However, attaining strong mode coupling with conducting materials is difficult
because of their high electronic losses. Graphene is one of the promising polaritonic platforms
because of its low intrinsic electron scattering rate (22) and corresponding high quality factors (8,
3,9).

Here, we report the discovery of the Landau-phonon polaritons (LPP) in a 2D graphene-
hexagonal boron nitride (hBN) heterostructure. The LPPs result from the hybridization (/9-21) of
phonon polaritons of the hBN encapsulating layers (8§—70) with Dirac magnetoexcitons (6, 7) (or
“Landau polaritons” (5)) of charge-neutral graphene (6, 7). LPPs belong under a broader umbrella
of magneto-phonon resonance (MPR) effects, resulting from a near coincidence of the energy
spacing between a pair of Landau levels and the energy of an optical phonon. We comment on
other MPR effects(23—27), such as magneto polarons (23—-25), in the outlook. Employing the state-
of-the-art magneto scanning near-field optical microscopy (m-SNOM) (6, 28—30), we have imaged
real-space interference patterns created by the LPPs. We demonstrate that the LPP propagation
can be switched on and off using magnetic fields. We have been able to detect as many as six
different LPP branches. Several of them originate from optically dark transitions, suggesting that
the usual selection rules (3/-37) no longer apply in the extended momentum-frequency space
accessible with the m-SNOM. Our high-precision mapping of the LPP dispersion has also enabled
us to quantify many-body effects that yield the effective Fermi velocity in graphene (37-335, 38,
39).

Our experimental setup is depicted in Fig. 1A. The experiments involved focusing infrared
radiation onto the tip of an atomic force microscope that acted as a scannable nanoscale antenna.
Light scattered from the tip carried near-field information to a far-field detector. Another,
stationary nanoantenna in the form of a metallic bar deposited on graphene, played the dual role
of an electrical contact and a polariton launcher. Both the sample and the m-SNOM resided in an
optical cryostat allowing the control of temperature and magnetic field applied in the out-of-plane
direction (see Supplementary section S1 and Reference (6)). We present and discuss the results of
these measurements below, after we have introduced the necessary theoretical background.

High-Momentum Magneto-Optics of Graphene

In a transverse magnetic field, the density of states in graphene splits into Landau levels
(LLs) of energy E,, = sgn(n)m(hvp/l,g), where n = 0,41, 12, ... is the LL index, vg is the
Fermi velocity, e is the elementary charge, [z = \/h/e|B| is the magnetic length, and B is the
magnetic field (Fig. 1B). This characteristic square-root n- and B-dependence is a manifestation
of the Dirac-like energy-momentum dispersion of graphene quasiparticles. In a charge-neutral
graphene the optical transitions can occur between LLs with indices of opposite sign, —n — n’, at
frequencies w < \/m + ./|n’|. The oscillator strength of each transition is a function of the in-
plane momentum k. Conventional far-field infrared experiments excite graphene at very small k,
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with a non-negligible oscillator strength only at |n| — |n'| = £1. This selection rule at k — 0 is
evident in the nonlocal optical conductivity o(w, k) of graphene shown in Fig. 1C (blue curve in
Fig. 1D). Such peaks in the optical conductivity Re g,, have been observed in many magneto-
optical absorption experiments (31, 33, 34, 36, 37, 40).
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Fig. 1. High-Momentum Magneto-Optics of Graphene. (A) Schematics of our sample and m-
SNOM setup. Gold contacts enable transport measurements and gating of graphene and also serve
as polariton launchers. (B) Landau level (LL) energy as a function of magnetic field B and LL
index n = 0,41, ..., 4. Black (red) arrows mark —n — n + 1 and —n = n inter-Landau level
transitions (ILTs) for a photon energy of Aw = 188 meV (1519 cm™?1). (C) Real part of the
graphene conductivity (41) at B = 3.35 T as a function of frequency ® and in-plane momentum k
calculated using Fermi velocity vg = 1.19 X 10° m/s and dampingy = 24.3 cm™!. The relevant
—n —> n=+1(—n - n) ILTs are labeled in black (red). The black bell-shaped curve illustrates the
momenta accessible via m-SNOM (14), with k = 1/ry, = 33 um™ marked by the vertical

dashed line. (D) The line cuts at momentak = 0 andk = 33 pm™ extracted from panel (C).

The theory also predicts that at finite momenta transitions between any pair of LLs become
possible (47). Among these additional “forbidden” transitions, the first ones to become noticeable
as k increases are the —n — n transitions, see Fig. 1C. Faint signatures of such forbidden modes
have been seen in previous far-field experiments (3/). They were attributed to mildly relaxed
momentum conservation due to disorder scattering. As discussed below, our experiments have
revealed much stronger evidence of the forbidden inter-LL transitions (ILTs), presumably because
the requisite large in-plane momenta were created by scattering of light with the tip. Indeed, the
forbidden transitions become comparable in strength to the nearby allowed ones at momenta of
the order of the inverse magnetic length, e.g., 31 = 71 um~! at B = 3.35 T. The momentum
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range important in the m-SNOM is illustrated by the bell-shaped curve in Fig. IC. For the
estimated tip radius of 7,;, = 30 nm, it is centered around k = 33 um™' marked by the vertical
dashed line (/4). At such k the forbidden transitions are only slightly weaker than the allowed
ones, see the orange line in Fig. 1D. Also, the allowed transitions at nonzero k are diminished with
respect to the k = 0 case (the blue line in Fig. 1D) to fulfill the optical sum rule.
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Fig. 2. Hybridization of hBN Phonon Polaritons with Graphene Landau Polaritons, resulting
in Landu-Phonon Polaritons (LPPs). (A-C) Calculated LPP dispersion at magnetic fields of 0.0,
3.35, and 6.0 T, respectively. The false color represents Im r,(k, w), the imaginary part of the
reflection coefficient for p-polarized light. Graphene is assumed to be charge neutral with a
constant LL broadening (31) y = 24.3 cm™?! and Fermi velocity vy = 1.19 X 10 m/s, the latter
being the value extracted from Fig. 4C. Inset in (B): An enlarged view of the region exhibiting
strong coupling and an avoided crossing between the Landau and the hBN phonon polaritons; the
arrow marks w = 1519 cm™corresponding to the data in panels (D-F). (D-F) Nano-imaging data
collected from the region marked by the red rectangle in Fig. 1A atT = 154 Kand B = 0.0, 3.35,
and 6.0 T, respectively. The near-field signal S; (demodulated at the 3™ harmonic of the tip
frequency, refer to Supplementary section S1) shows relative differences between regions with
and without graphene that strongly depend on the magnetic field. The reduced signal-to-noise ratio
in (D), compared to (E-F), is due to a shorter integration time. The double-headed arrow in F marks
the location of the line scan analyzed further in Fig. 3.
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Modeling of Polariton Dispersion

Each ILT gives rise to a collective excitation, which has been previously referred to as a
Landau polariton (5) (the term we use here), Dirac magnetoexciton, or magnetoplasmon (6, 7). If
the Landau polaritons are tuned in resonance with the hyperbolic phonon-polaritons in hBN by
changing the applied magnetic field, the hybrid modes, which are the aforementioned LPPs, can
form. We have carried out numerical simulations to model the LPP dispersion expected under our
experimental conditions. As customary in near-field studies, we deduce the dispersion of the
collective modes from the frequency and momentum-dependent p-polarized reflection coefficient
of the sample, 1, = 7;,(k, w). Figs. 2A-C demonstrate the imaginary part of 7 calculated for three
representative values of the magnetic field. The multiple branches of phonon polaritons in the
upper Reststrahlen band of hBN (~1360-1610 cm™) are evident in all three cases (8—10). Without
the magnetic field (Fig. 2A), the charge-neutral graphene influences the response of the
heterostructure only weakly, via its “universal” optical conductivity ¢ = e?/4h (31).

At3.35 T (Fig. 2B), the frequency of the —1 — 2 ILT is inside the hBN upper Reststrahlen
band, which generates avoided crossings in the polariton dispersion. These features manifest as a
coupling and hybridization of the —1 — 2 inter-LL Landau polariton with the hBN phonon
polaritons, i.e., the formation of the LPPs. Modeling the system as two coupled harmonic
oscillators (42, 43) (see Supplementary section S6), we extract the mode splitting Q = 43.3 cm’!
at the largest avoided crossing and mode linewidths of I 3pqay = 50.6 cm™ and Tgy = 4.0 cm’!
for the uncoupled Landau polariton and hBN phonon polariton, respectively. Hence, the strong

207 = 1.5 > 1.0 is fulfilled at this magnetic field.

coupling criterion C = 5
+ThpN

2
l—‘Landau

At 6.0 T (Fig. 2C), our calculations indicate no ILTs inside the Reststrahlen band, so the
phonon-polariton dispersion is again largely unaffected by graphene. Notably, these calculations
show that the polariton damping at 6.0 T should be lower than that at 0 T because the LL
quantization makes graphene more optically transparent away from the discrete ILT frequencies
(31).

Nano-Imaging of LPP

We now turn to our experimental nano-imaging results that reveal field-tunable features of
LPPs in real space. Figures 2D-F show m-SNOM images acquired at a temperature of 154 K and
magnetic fields of B = 0.0, 3.35, and 6.0 T, matching Figs. 2A-C, respectively. The incident
photon energy is 188 meV (wavenumber o = 1519 cm™). Note that our scan area contained three
different regions: 1) a gold electrode on the left, which served as a polariton launcher; 2) hBN-
encapsulated graphene on the top right showing propagating LPP polaritons; 3) hBN without
graphene in the bottom right, showing phonon-polariton modes only. At 0.0 T (Fig. 2D) and 6.0 T
(Fig. 2F), we observed polariton fringes parallel to the gold electrode in both regions 2) and 3). At
0.0 T, the fringes in the region containing graphene exhibited a higher damping. At 6.0 T, the
impact of graphene was minimal. These findings are consistent with our simulations (Fig. 2a,c)
and also previous work (37). On the other hand, at 3.35 T (Fig. 2E), there is a striking contrast
between the regions with and without graphene. The polariton propagation in hBN-graphene
ceases such that all but the first fringe is suppressed. This gives clear evidence for the existence of
the hybridization gap in the LPP dispersion, i.e., the strong mode coupling, predicted by our
theoretical calculations (Fig. 2B).
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To study the magnetic-field dependence of the LPP dispersion in detail, we obtained a
field-tip-position map of the m-SNOM signal (Fig. 3A) by sweeping B from —6.0 T to +6.0 T.
The maps were acquired by performing repeated scans with the tip along lines perpendicular to the
gold electrode, as marked by the black arrow in Fig. 2F. At our selected photon energy of 188 meV
(o = 1519 cm™!) within the hBN Reststrahlen band, we observe the suppression of the fringes for
certain distinct field values, e.g., for the discussed case of B =3.35 T. When approaching such
fields from a higher (lower) absolute magnetic field side, the polariton wavelength decreases
(increases) along with an overall reduction in near-field signal and a decrease of the propagation
length. Figure 3B shows line profiles that have been extracted at B = 0.0, +3.3, and +5.8 T,
respectively. While we observe oscillatory polariton fringes at 0.0 and £5.8 T, at the —1 — 2 ILT
at B = +3.3 T, the fringes are strongly damped, consistent with the predicted observations in
Fig. 2. These features are observed for both directions of the magnetic field, B > 0 and B < 0. We
note that the ILTs can also be suppressed by doping graphene off charge neutrality (via the Pauli
blocking (31, 33, 37)), which provides additional opportunities for controlling LPPs (see
Supplementary section S3).
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Fig. 3. Magnetic-Field Dependence of the Polariton Dispersion. (A) Near-field signal S;3
acquired via a repeated line scan while sweeping the magnetic field from —6.0 to 6.0 T at a rate
of 0.4 mT/s; measurement was taken at ® = 1519 cm™® and T = 154 K. The position of this line
scan was perpendicular to the gold contact, which served as a polariton launcher, see Figs. 1A and
2F. (B) Line profiles extracted from (A) at magnetic fields B = 0.0, £3.3, and £5.8 T. (C) The
near-field signal in (A) averaged over the distance. Minima of the averaged signal are assigned to
the ILTs shown by the labels. (D) Calculated near-field signal (Supplementary section S4) as a
function of magnetic field. Parameter values are chosen to be the same as in Figs. 1C-D and 2A-C.
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Averaging the data in Fig. 3A over the tip position removes the spatial oscillations, which
allows us to focus on the B-dependence of the signal (Fig. 3C). We can compare the trace in
Fig. 3C with the theoretical simulations in Fig. 3D. For simplicity, in these simulations we did not
include a separate polariton launcher. Instead, we modeled a more common m-SNOM setup where
the tip is the only nanoantenna interacting with the sample, which is uniform and infinite in size.
It is fair to compare the predictions of this model with Fig. 3C since in both cases the signal
depends only on the magnetic field, not the tip position. We see that Figs. 3C and 3D are in good
agreement. The dips in the theoretical curve come from distinct ILTs. Assuming this is also the
case in the data, we can label them accordingly. Furthermore, fitting the data to the theory allows
us to determine the graphene Fermi velocity, which we discuss in detail below.

We find that the dips corresponding to the —1 — 2 transitions are the strongest in our
frequency window, testifying to a strong mode coupling regime (see also Supplementary section
S6). In addition, we observe clear signatures of several other transitions. They include allowed
transitions —2 —» 3 and —3 — 4, as well as transitions —1-> 1, —2 > 2, and —3 - 3
forbidden by the standard selection rules (37, 34, 36, 37). In total, we can resolve six different
ILTs in our data. Notably, the forbidden transitions (26, 31, 44) show up much stronger compared
to what was previously seen in far-field infrared spectroscopy (3/). As hypothesized above, this
massive breakdown of the selection rules originates from the greater role of high-momentum field
components k ~ Iz in our m-SNOM measurements (Fig. 1C-D).

Tunability of LPPs

We have fitted the polaritonic fringes in Fig. 3 to exponentially decaying sine waves ~
, where k = Re k + i Im k is the complex polariton momentum (Supplementary Information
S10). From this fitting, we deduced the LPP wavelength Ap = 2 t/Re k (Fig. 4A) and the quality
factor Q = Re k/Im k (Fig. 4B). For example, at B = 0 T, we found 1p = 647 nm and Q = 12.
As B increases, the crossing of each ILT results in a deep minimum of the Q-factor as well as a
characteristic change in A,. Within the studied magnetic field range, we have observed a
modulation depth of A ax/Amin ~ 2 (Fig. 4A) and Qpax/ Qmin ~ 10 (Fig. 4B). The latter is much
larger than the values Qax/@min ~ 2 reported for gate-tuning of doped graphene-hBN polaritons
(19). In particular, near the -1 — 2 transition, altering the magnetic field by only 10% changes the
Q-factor by a factor of five. Therefore, the magnetic field provides a feasible path towards on/off
switching of polariton propagation in 2D systems.

e1kx

Many-body effects

Finally, we discuss many-body effects manifested in deviations of the ILT frequencies from the
VB - law valid for free Dirac fermions. An alternative description of these deviations is the
renormalization of the effective Fermi velocity vET defined by Eq. (1) below. From the minima in
the Q-factor we can read off the magnetic fields B associated with each ILT and obtain the
corresponding field-dependent vEf. We find that vE decreases with B for all transition types
following a non-logarithmic B-dependence (squares in Fig. 4C). These values agree surprisingly
well with previous far-field infrared (37/) and Raman (32) spectroscopy results. Importantly, we
extract vET associated with both allowed and forbidden ILTs with the same measurement. In this
regard, the m-SNOM provides a unified approach for LL spectroscopy that lifts many previous

limitations.
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Fig. 4. Magnetic-Field Dependence of LPP Properties and Fermi Velocity Renormalization.
(A) Polariton wavelength Ap and (B) polariton quality factor Q = Re k/ Im k as a function of the
magnetic field B. Solid lines show experimental values extracted from Fig. 2; shaded regions show
the standard deviation of the measurement. (C) Effective Fermi velocity vET as a function of the
logarithmic magnetic field In(B), derived for different ILTs (see text): Squares show experimental
values derived from (B). Diamonds represent calculated values of ngf (see Supplementary section
S8) (35). We observe a non-logarithmic trend. Inset: The red (black) points show Vﬁff for the -1 —
1 (-1 - 2) ILT measured via Raman spectroscopy (32) (far-field infrared spectroscopy (31)). The
tapering shape of the Dirac cone illustrates the Fermi velocity renormalization (31, 32, 38),
resulting in a logarithmic B-dependence of the far-field data (31, 32). (D) Squares and diamonds
show the exciton binding energy A, of the Landau polaritons derived from the experiment and
theory, respectively. The exciton binding energy is larger for the ILTs with n’ = —n compared to
those with n’ = —(n £ 1) and generally increases with magnetic field. Inset: The dependence of
the exciton binding energy on the magnetic field and type of the ILT can be explained within a
semiclassical model where quantized electronic orbitals of the LLs are shaped as narrow rings of

radius rj = lgy/2]j| , j = n or n’. The magnetoexciton binding energy Ay, (see text) is given by

the Coulomb attraction energy of these rings. For a fixed n, this binding energy is the largest when
the ring radii are equal, at n’ = —n.

Our theoretical calculations (Supplementary section S8) of the effective Fermi velocity
(diamonds in Fig. 4C) show a good agreement with the data utilizing one adjustable parameter,
the value of v at one specific ILT (here, —2 — 3 gives the best agreement). These calculations
also corroborate our experimental observation that the effective Fermi velocity of the —n - n

ILTs is consistently below the trend followed by the —n — n £ 1 ones.

Our explanation for the above observation of vEL is as follows: Despite its common usage,

the term “effective” Fermi velocity is somewhat misleading in the present context. A more accurate
statement is that the interaction corrections to the observed ILT energy hw, resulting in vET,

include contributions from both the Fermi velocity renormalization (a polaronic effect) and
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excitonic effects. Namely, hw is given by the LL energy difference, |E,| + |E,,|, minus the
magnetoexciton binding energy A,/

hveff
ho = —
lg

(V21 + 20) = (Bl + B ) = B 1)

ren

The LLs E,, in this expression obey the quantization rule |E,| = E(q,) where E = hv;®"q is the

renormalized quasiparticle dispersion and q,, = lz1y/2|n| is the quantized momentum of a Dirac

fermion residing at the nth LL (inset Fig. 4C). The effective Fermi velocity vE is (approximately)

equal to the renormalized v;®" only if the magnetoexciton binding energy A,,,,/ is neglected. In

that case a logarithmic dependence of vE™ on E (at fixed n and n') follows from the perturbation

theory formula vp(E) = vp(A) [1 +ialn|A/E| + ] where a = e?/(khvy) < 1is the

Coulomb coupling constant, A is the high-energy cutoff, and k is the effective dielectric constant
of the graphene environment (34). This formula has been derived for graphene in zero magnetic
field; however, it remains approximately correct at nonzero B (Supplementary section S8),
meaning that the renormalized Fermi velocity is first and foremost a function of energy, vp*" =
vt (E). Since E,, and E,, are B-dependent (37, 32), vg®™" usually acquires a logarithmic B-
dependence for a given ILT, as found in previous far-field spectroscopy studies (31, 32, 34, 335,
38) (inset in Fig. 4C). On the other hand, here we have studied ILTs at a fixed laser frequency so
that the transition energy hw = |E,| + |E,| remained the same, being split roughly equally

between |E,| and |E,,r|. Therefore, in our experiments, the renormalized Fermi velocity vp*" =

Vi (hw/2) should have little B-field dependence and the observed variation of vET (Fig. 4C)
should mostly come from the change of magnetoexciton binding energy A,,,,», which follows non-
logarithmic trend with changing magnetic field.

Indeed, our theoretical calculation of the two competing terms, |E,| + |E,,| and A, in

Eq. (1) confirms that at fixed Aw, the former gives a nearly constant contribution to vg for all

measured ILTs, so that vEf variation comes from the latter, with characteristic dips occurring at
n' = —n points (Supplementary section S8). This allows us to extract the binding energy A,/

(Fig. 4D) from vE™. The absolute value of A, ,» generally increases with magnetic field and is
larger for the ILTs with n’ = —n compared to those with n' = —(n £+ 1). A simple way to think
about the magnetoexciton binding energy A, is to imagine that it is equal to the Coulomb
attraction energy of two LL orbitals shaped as concentric rings, one with charge +e, the other with
charge —e (inset Fig. 4D). The ring radii are given by the formula r; = |E;/evr®B| , where j = n
or n/, which is the semiclassical cyclotron radius of a Dirac particle with energy E;. (Note
additional relations r; = [ B\/m = I2q ;-) For a fixed n, this attraction energy is the largest when
the ring radii are equal, i.e., at n’ = —n, yielding the lowest v at such ILTs.

Conclusions and Outlook

Our study has shown that the physics of LPPs is very rich, and it involves simultaneously
three types of effects: polaritonic, excitonic, and polaronic. These effects have distinct
characteristics: 1) The polaritonic effects change collective mode properties in the heterostructure.
‘Forbidden’ optical transitions are now accessible in the momentum space offered by m-SNOM.
The mode coupling between Landau polaritons (magnetoexcitons) in graphene and phonon
polaritons in hBN generates a tunable avoided crossing, which could potentially be further tailored

9
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by utilizing other ILTs, e.g., 0 = 1 ILT or multi-layer engineering. 2) The excitonic effects are
manifestations of the electron-electron interactions. They lead to a finite binding energy, which
also modifies the LPP dispersion. This binding energy can be further tuned via dielectric screening
engineering. 3) The polaron effect is another term for the renormalization of the quasiparticle
dispersion. Although above we emphasized the role of electron-electron interactions as the reason
for the renormalization of the Fermi velocity v;*", this interaction is screened by hBN. Hence, the
interaction of electrons in graphene with phonons in hBN is included implicitly. In our case vi°"
does not change much with magnetic field since we keep the incident photon energy the same
throughout the experiments. Also, in our calculation of the renormalized Fermi velocity we
approximated the hBN dielectric function by its dc (w = 0) value. Goals for future work can be:
1) incorporating more sophisticated theoretical approaches into our model to properly treat
electron-phonon coupling and ii) carrying out a frequency-dependent experimental study of LPPs.

As mentioned in the introduction to this paper, LPPs are specific examples of magneto-
phonon resonance (MPR) effects. Other known MPR effects include magneto-polarons (23-25),
dc magneto-transport oscillations (27), and mode splitting in magneto-Raman spectroscopy (26).
Most of them have been studied in bulk crystals or a single material system. It would be interesting
to investigate if these phenomena are affected by finite-momenta LPPs in a 2D heterostructure.
Finally, it would be desirable to explore a variety of other nano-magneto-optics phenomena using
m-SNOM, including chiral edge magnetoplasmons (45, 46), cavity magneto optics (47), the
polaritonic Hofstadter butterfly (48), magnetoexcitons of fractional quantum Hall states (49), and
collective modes of stripe phases in partially filled Landau levels (50).
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Materials and Methods

S1. Experimental Setup: Magneto Infrared Nanoscopy

Details of our experimental setup have been described in references (6, 57). Infrared nano-
imaging in magnetic fields up to 7 T is demonstrated using a home-built scattering-type scanning
near-field optical microscope (52) that is placed within a closed-cycle cryostat (OptiCool,
Quantum Design). The accessible sample temperature with our scanning probe system is ~10 -
350 K. For infrared near-field imaging, a tunable QCL laser (Hedgehog Mid-IR Laser by DRS
Daylight Solutions) is focused onto an atomic force microscopy tip via a parabolic mirror. As the
resulting light spot is diffraction-limited, it is much larger than the atomic force microscopy tip.
Hence, it also illuminates the gold electrode that here serves as a launcher for the polariton waves
(refer to the sketch of the experimental setup in Fig. 1A). The light scattered from the tip contains
information about both the sample material and its polaritonic excitation. We detect the scattered
light with a mercury-cadmium-telluride (MCT) detector via a self-homodyne detection scheme
(11, 52, 53), which yields a stable scattering signal and a good signal contrast. To separate the
near-field signal from far-field contributions to the detected optical signal, we employ lock-in
demodulation at higher harmonics nQ of the tip tapping frequency €, with n=3 for the data shown
in the main manuscript. We use an Akiyama type scanning probe with a resonance frequency of
about Q = 65 kHz (51), and scanning stages and positioners from Attocube (ANSxyz100/LT/UHV
and ANPxyz101/LT/UHV, respectively).

S2. Fabrication of Graphene-hBN Heterostructure

The sample studied in this work is hBN-encapsulated monolayer graphene. We fabricated
the hBN/graphene/hBN stack using the standard van der Waals dry transfer technique (54).
Graphene and hBN flakes were exfoliated onto Si/SiO2 (285 nm) substrates. The flakes were
examined using an atomic force microscope and those with pristine surfaces and suitable
thicknesses were selected. A Polycarbonate (PC)/ Polydimethylsiloxane (PDMS) was prepared
and used to assemble the stack. We used the stamp to pick up the top hBN at ~120 °C; then
monolayer graphene was picked up by the top hBN at ~100 °C; then, the bottom hBN was picked
up by the graphene layer at ~120 °C. The stack on the stamp was transferred onto a clean Si/Si02
(285 nm) substrate at 180 °C, where the PC melted and detached from the PDMS. The finished
stack was annealed in forming gas (95%N> and 5%H>) at 450 °C for 4 hours to minimize the
polymer residue on the surface. Electrical contacts to the graphene channel were defined via
standard electron beam lithography. The top hBN and graphene at the contact area were etched in
CHF3 /02 (10:1) plasma (40 mTorr, 60 W), exposing the side of the graphene layer. Cr (5 nm) /
Au (40 nm) was thermally evaporated to form side contacts to graphene (55).

Supplementary Text

S3. Pauli-Blocking and Gate-Switchable Dispersion

A transition n = n’ between two LLs can be suppressed (Pauli-blocked) by emptying the
initial LL or filling the final LL via doping graphene off charge neutrality (37, 33, 37). As such,
Pauli-blocking is another clear signature of the ILTs. Here, we show that Pauli-blocking can be
used to effectively tune the LPP dispersion, requiring lower carrier doping than non-magnetic
tuning. This is in stark contrast to the tuning mechanism of plasmons in doped graphene that
depends on modifying the plasma frequency via the charge carrier density (75, 13). Studying the
same line as in Fig. 3A, Fig. S1A shows a measurement at constant magnetic field strength
B = 3.3 T, with filling factor v = 2nAN/eB varied from 0 to 19 (N is the charge carrier
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concentration). Fig. S1B shows corresponding line profiles at distinct filling factors v =
0,5,10,15. At low v, we find a strongly damped polariton, matching well to our magnetic-field
dependent measurements of charge-neutral graphene above. When increasing the filling factor,
due to the Pauli-blocking, we regain a propagating polariton mode with clear oscillatory behavior.

A quantitative analysis of the line profiles yields the filling-factor dependence of the polariton
wavelength 1y (Fig. S1C) and quality factor Q (Fig. S1D). At a constant magnetic field of 3.3 T,
for charge-neutral graphene with v = 0, Ap is significantly larger than its value without a magnetic
field due to the coupling with the —1 — 2 inter-LL resonance. However, the polaritons are strongly
damped preventing a meaningful estimate of 1p at v = 0. When increasing the filling factor to v =
10, Ap decreases to a local minimum and approximately regains the wavelength observed at 0 T
(compare to Fig. 3A). At the same time, the Q-factor increases by more than a factor of 5. This is
readily attributed to the expected Pauli-blocking of the —1 — 2 transition: one expects the 2™
Landau level to be filled at a filling factor of |[v| = 4|n| + 2 = 10 with n’ referring to the index
of the highest LL contributing to the transition (31), i.e., here n'=2. When increasing v beyond 10,
the Q-factor remains almost constant while Ap slowly increases again. This increase of Ap is not
directly related to the Pauli-blocking of the inter-LL excitation and can rather be assigned to the
hybridization between hBN phonon polaritons and plasmon polariton modes in doped graphene
(19). Overall, combining gate tuning with a constant magnetic field opens unique possibilities for
polariton tunability in the low-voltage regime, with a charge carrier concentration difference of
less than 10! cm™ resulting in a polariton wavelength change of several percent.

S4. Numerical Calculation of Graphene Magneto-Optical Conductivity, Polariton Dispersion, and
Near-Field Signal: (Figs. 1C + 1D + 2D +3D)

We calculate the longitudinal conductivity of graphene (plotted in Fig. 1C, D of the main
text) using the approximate Kubo formula

3 — Eu) = )
0e(q,0) = i€%w 2 Z (E ST oy (@) (s1)

m=—oo n=m+1
In this formula, the effect of disorder and electron interactions on LL broadening is

expressed using a single phenomenological parameter y. Equation (S1) neglects contributions
from intra-LL transitions, which are model-dependent and difficult to compute. [For an example
of such calculation, see reference (56).] These intra-LL contributions should be small at
frequencies w > y of interest and should be absent completely under the integer quantum Hall
effect conditions, where each of the Fermi factors f;, is equal to either zero or unity (no partial LL
filling occurs). In principle, the matrix elements F,,,(q) in Eq. (S1) can be separated into two
parts, F,,,(q) = ES,,(q) + 8F,,,, where the first one represents the response of an ideal system
without electron scattering and the second one is a correction due to interactions and disorder. If
y and & F,,, originate from the same physical mechanism, such as the scattering of electrons by
static disorder, then the matrix element §F,,, are expected to scale as y2/(E,, — E,). In the
aforementioned paper, for short-range disorder and in the absence of electron-electron interactions,
the following result has been derived (56)
ﬁ (1 + 80,m)(1 + 80,0) [ 2Im| + 2|n| + 6,
4m (Em - n)z (Zlnl - Zlml + 1)2
In our experiments we typically have y2/w? ~ 1075 ...107*, so that §F,,, should be
negligible. We do not consider such corrections below; however, the question of whether electron

6By = + (m o n)|. (S2)



interaction can produce larger §F,,, for the same small y is conceptually interesting and may
warrant future theoretical study.
The formulas for F,,,,(q) in the ideal system, which are well known, can be written as (47)

2 2
Eum(q) = % |Sgn(mn) An<, ns (x) + An<—1, n>—1(x)| )
q*l3
2 )
1/2
xnz—n1> erllzl_nl (x)e—x/z’

n< = mln(lml, |n|) ) n> = maX(|m|, Inl)' X (SS)

1+96 1+ 60, ny!

An1.n2 (x) = e orz L

2 2 n,!

where L% (x) is the associated Laguerre polynomial. At small momenta q < I3, function

E,m(q) scales as qz“m'"'””‘z, so that the conductivity o,,(q, w) is dominated by the allowed
transitions with |m| — |n| = £1, as discussed in the main text. Precisely at g = 0 (“far-field
limit”), the conduct1v1ty is given by

Oxx (0, ) = z Z Nons ! ,
UL (T T svm) - ot YA 1 svm (34)
w = w:; ly ’ Nms = (fm+1 - fsm) - (f—m—l _f—sm) .

Note that due to the factors 1+ &y, in Eq. (S3), the oscillator strength of the principal
cyclotron transitions 0 — +1 is effectively doubled compared to other ILTs. In Eq. (S4), this
doubling is affected implicitly by summing over the band index s.

In the case of zero temperature, which we consider from now on, the numerators in the series
of Eq. (S4) can have only three possible values: N,,; = 0, —1, or —2. For example, at CNP, they
are equal to N, _; = —2 if s = —1 (inter-band transitions) and N,,; = 0 if s = 1 (intra-band
transitions) for all m except m = 0, for which Ny _; = Ny; = —2. The series for finite doping
differs from that for the CNP only in a finite number of terms for which N,,,; deviates from this
rule. Hence, the far-field limit of the conductivity of a doped system can be easily computed from
that for CNP by adding suitable corrections due to these terms.

Numerical evaluation of the series in Eq. (S4) at CNP poses a problem, however, because of
its slow convergence. To expedite the convergence, we transformed this series into an integral
using standard techniques of complex analysis. The final expression for o.iNF is somewhat lengthy,

so we split it into three parts:
2

e
ot (0,w) = o— (€1 + C; + C3). (852)
The first part C; is a partial sum of the orlglnal series [cf. Eq. (S4)],
M
1 1

C, = —2i® (S5b)

S (Vm+1+vm) —@2 Vm+I+ym’
The upper limit of summation M is largely arbitrary, the minimal choice (where M = 0 or 1)
is given below. The second part C, is the integral

. \/M+§+iz—\/M+1+iz
_ 2 2
C, =a)fdz tanh tz 5 —(z->-2)|. (S5¢)
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We ensure that this integral is free of singularities by taking M = 0 if Re m, > 1 where

2
my, = %(5 — %) and M =1 otherwise. Parameter m,, has the property that at m = m,, the

summand in Eq. (S5b) has a pole in the complex plane of m. The final part of our formula comes
from the residue of that pole:
wt*-1 =«

1
_ 5l - 16 (Rem, — M — =), s5d
204 tanrtma,@(lwI )6 {Rem,, 2 (55d)

where O(x) is a unit step-function. Numerical evaluation Eqs. (S5a-d) is very fast, yielding
the numerically exact results for conductivity SN (0, w) at CNP and thus o, (0, w) at any desired
doping.

Next, we discuss our procedure for computing o, (g, @) at nonzero q. Here both allowed and
“forbidden” ILTs must be included. Once again, the problem is difficult because the terms in
Eq. (S1) decrease slowly with m and n. For simplicity, we focus on the CNP where only the inter-
band transitions are possible. Applying the Wentzel-Kramers-Brillouin (WKB) approximation to
solve the differential equation for L’:fl ~™(x), we derived the following asymptotic formula, valid

form=n>1:

C3=

V2 (=D fx—x_ v T
Anm - An—l,m—l = m ( X, — X) cos (l/J + Z ) ’

x- <x<xyg,

2 1 (*+dy
= (maVn), v =—; [ VN0,
X
Substituting this formula into Eqgs. (S3) and (S1), we see that the high-order terms in Eq. (S1)
scale as 0(x~12 n2) if n » @ and that the dominant contribution comes from m’s that satisfy

the double inequality vVn <+vm < +/n++/x. Let us define the series residual ANt as the

difference between oSNF and the series of Eq. (S1) truncated at some N, so that

N; N

e? Vm ++/n
o) =5 ), ) L Fun(@) + 0027 w). (D)
n=0m=n (\/ﬁ + \/ﬁ) —w?

From the above reasoning, we expect that AcSNP scales as N, */? if N, > @ . Hence, for

strong enough magnetic fields where @ = (w + iy)/w, is at most of the order of unity, we can
achieve, say, 5%-accuracy by simply summing over N2 ~ 0.05% ~ 10° terms. As the magnetic
field decreases, w increases and this naive strategy becomes unfeasible because of long
computation times and, more importantly, the accumulation of roundoff errors in evaluating the
Laguerre functions. As an alternative, we briefly experimented with various series acceleration
methods (e.g., Levin’s method) but found them to be numerically unstable, due to their own set of
roundoff errors. Eventually, we settled on estimating the residual by using the asymptotic
formula (S6) and replacing the summation with integration. After some manipulations, our result,
in the absence of damping, can be presented as follows:

(S6)




q
AcSNP(q, w) = f dk_\/q? — k2 arccos C(k_),
0

e? iw
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In weak magnetic fields where x = q%14/2 > 4N,, Eq. (S8) can be evaluated analytically.
Here we have k, = q, C(k_) = —1, so that
e? iw

Ao (g, w) = (S9)

4h q2v? — w? ’

which is a well-known expression for the conductivity of graphene at CNP in the absence of
the magnetic field. Apparently, oSNP(q, w) ~ AcENP(q, w) in this regime. At stronger fields
where x < 4N, , Eq. (S8) can be easily evaluated by a numerical quadrature. Finally, to include a
small LL broadening ¥ < w, we replaced w by w + iy in these equations. Including AcSNF in the
calculation significantly improves the accuracy of the procedure, so that reasonably accurate
results can be obtained for modest N.. We found that N. = 70 is sufficient for the entire parameter
space of momenta, frequencies, and magnetic fields we explored.

The parameters we used for calculating o.5NF (g, ) according to Egs. (S3), (S7)-(S9) were as
follows. Based on our experimental results for the —1 — 2 transition (Fig. 4C), we choose a Fermi
velocity vy = 1.19 X 106 m/s. Our choice of the LL broadening y is based on reference(31),
which suggests an energy-dependent LL broadening of the form y =y, + fE with y, =
0.75 meV and = 0.012. For our photon energy F = Aw = 188 meV, it gives y = 3.01 meV
(24.27 cm™), which is the constant value that we used for our calculations.

Having calculated graphene conductivity, next we compute the reflection coefficient 7, for
the whole heterostructure using the transfer matrix formalism (see, e.g., references (8, 13, 14)).
We assume that the sample has the following structure: hBN (16 nm), graphene, hBN (55 nm),
SiO> (285 nm), Si (semi-infinite), see Fig. 1D. Representative plots for Im 7, as a function of
momentum, frequency, and magnetic field are shown in Fig. 2A-C of the main text.

The near-field signal in Fig. 3D is calculated as described in reference (57), assuming the tip
radius of 7, = 30 nm, length of the long semi-axis of the spheroid of 160 nm, and tip tapping

amplitude of A = 40 nm.

S5. Momentum-Range Accessible via m-SNOM

As m-SNOM is based on scattering-type scanning near-field optical microscopy (s-
SNOM), the accessible momentum range of both techniques can be described in the same manner,
which originates in the simple point-dipole model (/4, 52, 53, 58) of the tip-sample interaction.
The bell-shaped curve in Fig. 1C represents the time-averaged function k?e~2¥#(t) Here the time-
dependent effective dipole position z(t) is (/4): z(t) = b + A(1 — cos Qpt), b is the shortest
distance between the model dipole and the sample, A is the tip tapping amplitude, and Qyp, is the
tip tapping frequency. The analytical formula for this bell-shaped curve is therefore (k%e~2k?), =
k?e=2k(+A) ] (kA) where I,(x) is the modified Bessel function of the first kind. We choose b =
f1ip with f = 0.79 based on s-SNOM modeling literature (59, 60) and we assume 7, = 30 nm
and A = 40 nm, as in section S4 above.




S6. Extracting the Coupling Strength via the Coupled Harmonic Oscillator Model

Coupled harmonic oscillators model for hBN phonon polaritons and graphene Landau polaritons

We model the interaction between hBN hyperbolic phonon polaritons and graphene
Landau polaritons as coupling of two harmonic oscillators (42, 43, 61, 62). The oscillator resonant
frequencies and damping parameters are w;, and [}, respectively, where i = {hBN, Landau}. The
complex eigenfrequencies of this system are given by

) ) 1 (S10)
wy +il /2=w—il/2+ |G? +ZH2

where the sign * indicates the lower (—) and the upper (+) branch solution(42). Here w =
(wnBN + Wrandau)/2, [ = (IhpN + ILandau)/2, G is the coupling strength, and H = wppn —

WLandau — % (hhen — ILandaw)- The real parts of the eigenfrequencies are

1 S11
wy =w * Re ’GZ+ZH2. (11

By calculating w, and the parameters w; and I; of the uncoupled oscillators, we can
determine the coupling strength G from Eq. (S11). Due to the dispersive nature of polaritons, each
parameter depends on the momentum k. The following sections describe the procedure for
extracting w; (k), I;(k), and w4 (k) from the simulated dispersions.

Extraction of the oscillator parameters for uncoupled modes

To calculate the parameters of the oscillators, we simulate the imaginary part of the
reflection coefficient Im 7, that yields the dispersion for each uncoupled mode. For hBN phonon
polaritons, we considered the Im 7, map at B = 6 T shown in Fig. 2C in the main text (and Fig.
S2A). The reason we preferred to use B =6 T instead of B = 0 T is that at zero field, the charge-
neutral graphene influences the polaritonic response of the heterostructure via its “universal”
optical conductivity (3/) o = e?/4h. We isolate the fundamental hyperbolic branch by applying
a window mask to the dispersion map. The mask values are 1 in the interest region and 0 elsewhere
(red area in Fig. S2A). Fig. S2B shows line profiles from the map extracted for different momenta.
The oscillator parameters were obtained by fitting these profiles to the function

2 1 (812)
Imn, x wf;” Im <—a)2 ol + wf) .

The extracted dispersion wygy(q) (White line in Fig. S2A) matches well with the
dispersion in the Im 7, map. Fig. S2C shows the extracted values for f,gy and Iy

To calculate the parameters for the Landau polaritons, we simulated Im 7, for graphene on
top of SiO> (thickness 285 nm). Fig. S2D shows the map at B = 3.35 T. Using the same procedure
described previously for hBN polaritons, we extracted the uncoupled oscillator parameters for the
LLPs. Fig. S2E shows the extracted wyangau(B, k). Fig. S2D (black line) shows w; angau (k) and
Fig. S2F shows, I1.andau and frandau for B = 3.35T.




Dispersion of branches and coupling strength extraction

We extracted w4 (k, B) from Im 7, by locating its maxima for every fixed k. The hBN
phonon polariton dispersion was utilized as a reference to separate the w_and w, branches. The
result of this extraction is illustrated in Fig. S3A and 3D, for B=3.15T and B=3.4T,
respectively. Figs. S3B (S3E) and S3C (S3F) show the spectral gap 2Aw4 (k) = Z(wi - Q) as a
function of the complex parameter H (k). The coupling strength was obtained by fitting the spectral
gap to equation S11.

Coupling strength and criterium for strong coupling

Fig. S4A shows the calculated coupling strength G for different magnetic fields. We can
observe that the coupling strength increases until it reaches a maximum at B =3.3 T. The
frequencies of hBN and Landau modes in which dispersion crossing occurs are shown in Fig. S4B.
By calculating the branches splitting QO = w, — w_ where crossing occurs (Fig. S4C), we
calculated the criterion C = 2Q?/ (F N I Lzamdau) (Fig. S4D) (42). Strong coupling is achieved
for 3.15T < B < 3.4 T, where C > 1.

To verify the results, we show in Fig. S5 the calculated frequency branches from equation
S11, in which we used the parameters from the uncoupled hBN and Landau modes and the
extracted coupling strength. Notice we have calculated coupling values only in a narrow range of
magnetic fields. This is because the coupled oscillator model is only well-defined at frequencies
and momenta in which the dispersions of both modes overlap. Nevertheless, the hBN polariton
dispersion is not fully recovered for B > 3.4 T (see Fig. S5 at B = 3.6 T), indicating that these
polariton modes can still interact with each other.

S7. Weak Polariton Fringes Parallel to Graphene Boundary in Fig. 2D-F

Fig. 2D-F shows clear polariton fringes parallel to the gold electrode. The analysis of these
fringes and their dispersion with magnetic field is a central part of this manuscript. We note that
weaker polariton fringes can be observed parallel to the graphene boundary marked by the dashed
white line in Fig. 2D-F. This mode reflection is attributed to the polariton momentum mismatch
between hBN regions with and without graphene. Therefore, the interference fringes parallel to
the graphene boundary are most pronounced in pure hBN at 3.35 T where the momentum
mismatch between the regions 2) and 3) is the largest. In our analysis we do not focus on these
weak polariton fringes.

S8. Many-body effects: Fermi Velocity and Magnetoexciton Binding Energy
Fig. 2D-F The effective Fermi velocity was defined by Eq. (1), copied below for
convenience (assuming n,n’ > 0):
off s E_now (S12)
Fonen’ = o 2w
In the main text we explained that the many-body correction AE_,,_,,, to the energy E_,,_,,,/
of a —n - n' ILT (at zero momentum g = 0) has two parts: i) the correction due to the electron
self-energies AE,, of m = —n, n’ LLs and ii) the magnetoexciton binding energy A_,, ./
AE_, v =(DEy —AE_) —A_, . (S13)

We referred to the former as the Fermi velocity renormalization effect and to the latter as
the excitonic effect. In this approach, the renormalized Fermi velocity of —n — n' ILT is given by



lp AE, — AE_, (S14)
Vpnon' = VPt —F/————
’ A \2n ++2n'
where v is the bare Fermi velocity, so that vf’ffn_m, and v _,_,, are related by
off _ . s A _ (S15)
Fonont = R g o V2
Following previous work (35), we compute the quantities that enter these equations as follows:
d%q
AE, —AE_, = —IWV(Q)I—n,n’(CI),

I—n,n’(q) = me (lgm,n’(q)lz - |gm,—n(q)|2) ,

v

(S16)

d? S17
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Here f,, is again the Fermi occupation factor of mth LL [f;,, = O(—m) if m # 0 and f, = 1/2],

2
9mn(q) is the matrix element defined in Eq. (S3), and v(q) = % is the screened Coulomb

interaction. We neglect dynamical screening effects; however, we include static screening through
the momentum-dependent dielectric function

S18
e(q) = k(@) + (@), (S182)
K(q) = €hBN ( enpn tanh &ypngdy + €9 eppn tanh &pngd; + 6505)
1 2 \¢€otanhépngdy + €npn  E€sos tanh §pnqd; + €ppn/ (S18b)
_ ESioztanh Qd3 + €gi
€s0s = €sioz €g; tanh qd5 + €gi0n
(S18c)

kg (q) = 2miq lim 0™ oy (g, @) .

Function k(q) has the meaning of the effective dielectric constant of graphene environment.

1/2
Parameter €5y = (EIJl_BNE}HlBN . 4.9 is the dc (i.e., w = 0) dielectric constant of hBN defined

as the geometric average of its in-plane and out-of-plane dielectric constants, &gy =

(E}J{BN /El"1BN 12 is the hBN anisotropy factor, €gig, = 3.9 is the dc dielectric constant of SiO»,
€si = 11.7 is the dc dielectric constant of Si, and €, = 1 is the dielectric constant of vacuum.
Parameters d; = 16 nm and d, = 55 nm are thicknesses of the top and bottom hBN layers,
respectively, and d3 = 285 nm is the SiO; thickness. Function k4(q) specified by Eq. (S18c¢)
accounts for the (static) screening of the Coulomb potential by electrons in graphene and o, (q, @)
is the longitudinal conductivity of graphene in the presence of magnetic field computed as
described in Supplementary, Section S4. Representative plots of functions k(q), x4(q), and €(q)
are shown in Fig. S6.

As one can see from these graphs, x(q) (the middle curve) is equal to (€, + €si)/2 at zero
q, then has a small dip to approach (€, + €si02)/2 within a narrow range of relatively low
momenta d3! S q S d;?!, then rises and tends to ey at ¢ = di! = 6.7 x 10° cm™?. The total
dielectric function €(q) (the top curve) shows the same small dip at low g, goes through a modest
maximum, and then approaches the limiting value

2
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at high momenta q > [5?.
The calculation of the binding energies A_,, ,, in Eq. (S17) involves numerical evaluation
of four integrals of the form

f (2m)2 v(q )Ln1 <&> Ly, <#) e~ 1’15/2 , (S520)

which are well behaved. On the other hand, the integral for the self-energy in Eq. (S16) diverges
at large momenta gl > n,v/n’ because

; ,(q)z_m+\/2_n’ (S21)

-nn 4q lB 4

as can be deduced from Egs. (S3) and (S16). We regularize this divergence by renormalization,
i.e., subtraction of vy _,_,,r evaluated at some reference field By. Let [, = l5(B,) be the magnetic
length at B,. Since the high momenta enter through the product glg, we can rescale the integration
variable in Eq. (S16) by the ratio R = lg/l, = /By /B to cancel the divergence. Performing the

subtraction, we find
2

B S22
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where
d’q (S23)
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Note that if the dielectric function is replaced by a constant, e.g., €., then v(q) = 2me?/(€,q)
and Avg (B, By) vanishes identically. In this case, the conventional logarithmic-in-B rule
(35) for the Fermi velocity renormalization is recovered.

In our experiment, all the ILTs were measured at the same photon energy hw. Therefore,
it is convenient to select a particular ILT, e.g., —2 — 3, as a reference, so that By = B_,_,3, where
B_,_,5 is the field at which this ILT occurs. Eq. (S22) entails

e? B
Vg _pnon! = Vp_253 — 8heo, (B 2_)3) o @ (S24)
I I (q I_;3(q
- (Zn)zl (a )\/_+\/_ Ru(Rq )\/_ V3]

Our calculations using this formula show that v _,,_,,+ is almost the same for all the ILTs, as
shown in Fig. S7(a). On the other hand, v¢T

F,—n-n
at n = n' because of relatively larger excitonic corrections A

To obtain the experimental binding energies A

1, given by Eq. (S15), exhibits characteristic dips
_nn' atsuch ILTs, see Fig. S7(b).

we use Eqgs. (S15) and (S24) but set

the effective Fermi velocities equal to their experimentally measured values vﬁfgxp mon- Solving

exp,—n,n’»

for A_, ,r, we obtaln
7 eff 92 B eff
Aexp,—n,n' =7 (\/ﬁ + \/;) VR .exp,—2-3 In ( > UF exp,—n—n'
8hey, B_5_3 P,
(S25)
_ lB l @ -~ (@) — Rv(Rq) —12(Q) lp A 2,3 }
czn)2 Vi + VZ+V3) VZRVZ 3

eff
Fexp,—n-n

and the calculated binding energy A_, 5 for the reference ILT.

This gives Aexp,_n,n/ in terms of v » and v;?,fgxp,_z_& the calculated electron self-energies,
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S9. Processing of Experimental Near-Field Data

The following section describes the processing of the experimental near-field data that is
displayed in Fig. 2D-F, Fig. 3A, and Fig. SIA. We want to emphasize that we tried to keep data
and image processing to a minimum. The data processing that we did apply is described below for
each (sub-)figure showing experimental near-field data:
Fig. 2D-F: The two-dimensional (2D) scans at 0.0 T (Fig. 2D) and 3.35 T (Fig. 2E) show raw data.
No filter was applied. The scan at 6.0 T (Fig. 2F) was corrected for horizontal strokes using the
“correct horizontal scars (strokes)” function of gwyddion (program version 2.62).
Fig. 3A: The near-field data was corrected for slow spatial drift during this linescan using the
topography information recorded simultaneously with the near-field data. Each line was
horizontally shifted such that the topography step of the gold electrode aligns for all lines (refer to
Fig. 1D for a sketch of the sample). The topography information was also used to select the region
without the gold electrode. Using this information derived from the topography data, the same
procedure was then applied to the near-field data to obtain the drift-corrected version of the near-
field response on hBN and hBN-graphene-hBN shown in Fig. 3A. In addition, we found that the
average near-field signal of our measurement slowly decreased with time. This can be assigned to
minor drift in the optical alignment over the long measurement time of >8h. Assuming a linear
dependence on time, we estimated a drift of 1.01% signal reduction per hour of measurement time
relative to the initial near-field signal. We multiplied the near-field signal of each line with a
constant compensating for this slow linear drift.
Fig. S1A: The near-field data was corrected for slow spatial drift during this linescan using the
topography information recorded simultaneously to the near-field data; this procedure is identical
to the one applied for the near-field data of Fig. 3A. We did not compensate for any potential
temporal drift of the near-field signal, as we assume that it will be negligible due to the shorter
measurement time compared to Fig. 3A.

S10. Extracting the Polariton Wavelength and Quality Factor from Near-Field Line Profiles

Each horizontal line of the near-field data displayed in Fig. 3A and Fig. S1A, represents a
line profile such as the examples displayed in Fig. 3C and Fig. S1B. We analytically describe each
line profile via an exponentially damped sine wave (20, 63—65) with linear background term:

x
S(x) = Sy + Syx + Ae */1v sin <27T/1— — (p0> (S26)
P

The vertical offset Sy, the polariton wavelength A, the polariton decay length L, and the phase
offset ¢, are optimized for each line using a least-square fitting procedure. For this fitting
procedure, the left-most 10% of each line are neglected. The linear background slope S; and the
amplitude A are constants that are optimized once for the whole data set. However, S; and A are
not part of the fitting procedure and, thus, have the same value for all line profiles within a date
set.

Applying this fitting procedure to the data displayed in Fig. 3A (Fig. S1A) directly yields
the polariton wavelength A, displayed in Fig. 4A (Fig. S1C). The quality factor @ (Fig. 4B and
Fig. S1D) is calculated as Q = 2mL, /Ay, i.e., it directly follows from the ratio of the fit parameters
L, and 4.

For our analytical description, we assume that our observed fringe pattern is dominated by
polariton waves that are launched by the gold electrode (refer to Fig. 1D and Fig. 2D-F). This is
opposed to polaritons launched by the tip and then reflected by the gold electrode.
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Note that our analytical description above may be modified to reflect the geometrical spreading of
the polariton waves, resulting in a function of the following form:

X
S(x) = So + Syx + Ax7P e /v sin <27r/1— - <p0> (S27)
P

The additional factor x™P reflects the amplitude reduction due to the geometrical spreading; the
most common version of this factor uses a power p = 1/2, i.e., a factor x~1/2 corresponding to
circularly spreading waves in a plane (20, 63—65). If we apply this modified description to our
data, we still obtain a good match to our data, but the resulting polariton quality factors are about
three times larger compared to the values shown in the main text. However, while it is common to
apply the geometrical spreading factor for polaritons launched by the tip or small antennas (20,
63—635), in our case the edge of a gold contact (refer to Fig. 1A for the sample design) represents a
linear launcher with extension larger than the analyzed polariton propagation length (65). This is
why we chose not to add the factor x~/2 in our analysis. Nevertheless, this also suggests that the
quality factors shown in Fig. 4B and Fig. S1D may be an underestimation.
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Fig. S1. Gate Dependence of the -1-> 2 Graphene LPP at B=3.3 T.

(A) Near-field signal acquired via a repeated scan of the same line as in Fig. 3A while sweeping
the gate voltage and, thus, the filling factor from v = 0 to 19; measurements were done at w =
1519 cm™?, and T = 154 K. (B) Line profiles extracted from A at 4 different filling factors of v =
0,5, 10, and 15, respectively. (C) Polariton wavelength Ap and (D) polariton Q-factor as a function
of v and charge carrier concentration N at 3.3 T; the shaded regions show the standard deviation
of the measurement.
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Fig. S2.

(A) Imr, at B=6T from the main text (Fig. 2C). The red shaded region indicates the area
excluded by the window function. The white solid line is the phonon polariton dispersion extracted
from fitting. (B) Line profiles from (A) extracted for different momenta values (black lines). The
fitted curve is represented as dashed lines. (C) hBN phonon polaritons damping and oscillator
strength extracted from fitting. (D) Im r}, simulated for graphene on SiO> (thickness 285 nm) at
B = 3.35T. The black solid line represents the dispersion extracted from fitting. (E) Extracted
Landau polariton resonance as a function of magnetic field and momenta. The white dashed lines
represent isofrequencies. (F) Landau polariton damping and oscillator strength from fitting.
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Extracted dispersion of lower (green) and upper (yellow) branches for (A) B = 3.15T and (D)
B =3.4T. The simulated Imr, and the dispersion of the uncoupled modes are shown for

reference. Dependence of 2Aw4 (q) on (B,E) the real part and (C,F) the imaginary part of H(k)

forB=3.15Tand B=3.4T.
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(A) Coupling strength as a function of the magnetic field, extracted via fitting. (B) Extracted
spectral position where the hBN phonon polariton and Landau polariton dispersion cross. (C)
Branch separation Q at the crossing point. (D) Criterion C for strong coupling. The blue-shaded
areas represent the uncertainty of the presented variables, assuming straight connections between
the data points as a guide to the eye.
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Calculated branch dispersion based on the uncoupled modes and the extracted coupling strength
for(A)B=32T,(B)B=33T, and (C) B=34T. For (D) B =3.6T we only show the hBN
phonon polariton and the Landau polariton dispersions. The Im(rp) is presented on the background
to show the expected dispersion from the simulation.
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Fig. Se.
Effective dielectric function for electrons in graphene. Functions x(q), Kg(q), and €(q) defined by

Egs. (S18a)-(S18c) for B = 3.35 T. The inset shows a magnification of the small dip at low q that
is observed for kg(q), and €(q).
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(A) Renormalized Fermi velocities given by Eq. (S24). (B) Effective Fermi velocities defined by
Eq. (S15) that include excitonic corrections.
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