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Abstract

Motivation: \We introduce a novel framework BEATRICE to identify putative causal variants from GWAS statistics. Identifying causal variants is
challenging due to their sparsity and high correlation in the nearby regions. To account for these challenges, we rely on a hierarchical Bayesian
model that imposes a binary concrete prior on the set of causal variants. We derive a variational algorithm for this fine-mapping problem by mini-
mizing the KL divergence between an approximate density and the posterior probability distribution of the causal configurations.
Correspondingly, we use a deep neural network as an inference machine to estimate the parameters of our proposal distribution. Our stochastic
optimization procedure allows us to sample from the space of causal configurations, which we use to compute the posterior inclusion probabili-
ties and determine credible sets for each causal variant. VWWe conduct a detailed simulation study to quantify the performance of our framework
against two state-of-the-art baseline methods across different numbers of causal variants and noise paradigms, as defined by the relative ge-
netic contributions of causal and noncausal variants.

Results: We demonstrate that BEATRICE achieves uniformly better coverage with comparable power and set sizes, and that the performance
gain increases with the number of causal variants. We also show the efficacy BEATRICE in finding causal variants from the GWAS study of
Alzheimer's disease. In comparison to the baselines, only BEATRICE can successfully find the APOE £2 allele, a commonly associated variant

2 Archana Venkataraman (®%*

of Alzheimer's.

Availability and implementation: BEATRICE is available for download at https://github.com/sayangsep/Beatrice-Finemapping.

1 Introduction

Genome-wide association studies (GWAS) provide a natural
way to quantify the contribution each genetic variant to the
observed phenotype (Uffelmann et al. 2021). However,
the univariate nature of GWAS does not take into account
the correlation structure shared between the genetic variants
due to low recombination of nearby DNA regions (Visscher
et al. 2012). Strong correlations can inflate the effect size of a
non-causal genetic variant, thus leading to false positive iden-
tifications (Brzyski et al. 2017). Fine-mapping (Maller et al.
2012, Spain and Barrett 2015) addresses this problem by ana-
lyzing the correlation structure of the data to identify small
subsets of causal genetic variants (Spain and Barrett 2015,
Schaid et al. 2018). These subsets, known as credible sets,
capture the uncertainty of finding the true causal variant
within a highly correlated region (Hutchinson ez al. 2020).
Unlike P values, the corresponding posterior inclusion proba-
bilities (PIPs) computed during fine-mapping can be com-
pared across studies of different sample sizes.

Traditional fine-mapping methods can be grouped into
two general categories. The first category uses a penalized re-
gression model to predict the output phenotype based on the
collection of genetic variants (Cho et al. 2009, Sabourin et al.
2015). Popular regularizations like LASSO (Tibshirani 1996)

and Elastic Net (Sabourin et al. 2015) simultaneously per-
form effect size estimation while slowly shrinking the smaller
effect sizes to zero. The drawback of penalized regression
models is that they optimize phenotypic prediction and, due
to the correlation structure, do not always identify the true
causal variants. The second category relies on Bayesian
modeling. Here, the phenotype is modeled as a linear combi-
nation of the genetic variants, with sparsity incorporated into
the prior distribution for the model weights. Approximate
inference techniques, such as Markov Chain Monte Carlo
(MCMC) (Guan and Stephens 2011) and variational methods
(Carbonetto and Stephens 2012) have been used to infer the
effect sizes, PIPs, and credible sets. While these approaches
represent valuable contributions to the field, they require the
raw genotype and phenotype information, which raises pri-
vacy and regulatory concerns, particularly in the cases of pub-
licly shared datasets. MCMC sampling also requires a burn-in
period, which adds a substantial (100x) runtime overhead.

In response to these concerns, fine-mapping approaches
have moved towards using summary statistics, which can be
easily shared across sites. For example, the works of
(Hormozdiari et al. 2014, Chen et al. 2015, Benner et al.
2016) use a stochastic or exhaustive search to identify the
posterior probabilities of the causal configurations. However,
exhaustive search based methods are restricted by the number
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of assumed causal variants, as this leads to an exponential in-
crease in the dimensionality of the approximate posterior dis-
tribution. Stochastic search approaches (Benner et al. 2016)
are less computationally expensive, but, by construction, they
cannot handle infinitesimal effects from noncausal variants.
Another fine-mapping approach is SuSiE (Zou et al. 2022),
which estimates the variant effect sizes as a sum of “single
effects.” These “single effect” vectors contain one nonzero el-
ement representing a causal variant and are estimated using a
Bayesian step-wise selection approach. SuSiE provides a sim-
ple framework to robustly estimate PIPs and credible sets;
however, there is limited evidence for its performance given
the presence of infinitesimal genetic effects. Such scenarios
can appear due to polygenicity of the trait, trans-interactions
of variants, or varying correlation structure of the genomic
region. Finally, the most recent fine-mapping method is
CARMA (Yang et al. 2023). Unlike previous methods,
CARMA assumes a spike-slab prior over the effect sizes and
uses a stochastic shotgun bases sampling approach for esti-
mating posterior probabilities.

In this article, we introduce BEATRICE, a novel frame-
work for Bayesian finE-mapping from summAry daTa using
deep vaRiational InferenCE (https://github.com/sayangsep/
Beatrice-Finemapping). In contrast to prior work, we approx-
imate the posterior distribution of the causal variants given
the GWAS summary statistics as a binary concrete distribu-
tion (Jang et al. 2016, Maddison et al. 2016), whose parame-
ters are estimated by a deep neural network. This unique
formulation allows BEATRICE to use computationally effi-
cient gradient-based optimization to minimize the KL diver-
gence between the proposal binary concrete distribution and
the posterior distribution of the causal variants. In addition,
our unique optimization strategy samples a representative set
of causal configurations in the process of minimizing the em-
pirical KL divergence; these configurations can be used to ob-
tain the PIPs and the credible sets. We compare our model
with two state-of-the-art fine-mapping approaches, SuSiE
(Zou et al. 2022) and FINEMAP (Benner et al. 2016). We
perform an extensive simulation study and quantify the per-
formance of each model across increasing numbers of causal
variants and increasing noise, as determined by the degree to
which non-causal variants explain the phenotype variance.
The runtimes of both SuSiE and BEATRICE are under one
minute, which is significantly less than the runtimes of
FINEMAP and CARMA. On average BEATRICE achieves a
2.2 fold increase in coverage, a 10% improvement in AUPRC,
and similar power in comparison to SuSiE and FINEMAP.

2 Materials and methods

2.1 Generative assumptions of fine-mapping
BEATRICE is based on a generative additive effect model.
Formally, let y € R"*! denote a vector of (scalar) quantitative
traits across 7 subjects. The corresponding genotype data X €
R"*™ is a matrix, where m represents the number of genetic
variants in the analysis. Without loss of generality, we assume
that the columns of X have been normalized to have mean 0
and variance 1, ie. 13 X;=0 and %ZZX?I =1 for
j=1,...,m. The quantitative trait is generated as follows:

1
y=Xp+n '7~N<0,;In), (1)

Ghosal et al.

where g€ R"*! is the effect size, n € R"*! is additive white
Gaussian noise with variance 1, and I, is the identity matrix.

2.2 Genome-wide association studies

GWAS uses a collection of element-wise linear regression
models to estimate the effect of each genetic variant.
Mathematically, the GWAS effect sizes are computed as
ﬁ:%XTy, with the corresponding vector of normalized
z-scores equal to z = \/%XTy (Chen et al. 2015, Uffelmann
et al. 2021). The main drawback of GWAS is that noncausal
genetic variants can have large effect sizes due to
the polygenicity of the quantitative trait (Cheng et al. 2020),
varying degrees of linkage disequilibrium (LD) with causal
variants (Brzyski et al. 2017), and/or interactions of the vari-
ant with enriched genes (Cheng er al. 2020). One popular
strategy to mitigate this drawback is to impose a sparse prior
over f given the set of causal variants:

p o~ N(O,%aZZC) (2)
0, i#j

o 1, i=j and i is causal
Ec(l,l) = .. .. .
e, i=j and i is noncausal with nonzero effect

0, otherwise

(3)

Notice from Equation (3) that the variance of (i) for a
causal variant is % and the variance of §(7) for a noncausal
variant with nonzero effect is Sé, where ¢ is assumed to be
small. This formulation handles residual influences from the
non-causal variants, which are often observed in real-world
data. Under this assumed prior, we can show (Servin and
Stephens 2007, Chen et al. 2015) that the normalized GWAS
effect sizes z are distributed as:

p(z|x, B¢) = N(z; 0,Zx —|—2x(n622c)2x) (4)

where Ty = %XTX is the empirical correlation matrix of the
genotype data, also known as the LD matrix. Broadly, the
goal of fine-mapping is to identify the diagonal elements of
3¢ that corresponds to 1 given the effect sizes z and the LD
matrix Xy. The derivation is provided in Supplementary
Section S1.1.

2.3 The deep Bayesian variational model

BEATRICE uses a variational inference framework for fine
mapping. For convenience, we represent the diagonal ele-
ments of ¢ by the vector ¢ € R”*!, where ¢ encodes the
causal variant locations. Given that we do not know the ef-
fect sizes and locations of the causal and noncausal variants,
rather than fixing € in Equation (3), we assume that the diag-
onal elements of Z¢ are drawn from a binary concrete distri-
bution, which can be viewed as a continuous relaxation of
the Bernoulli distribution. Under this assumption, the vari-

ance of the effect size f; is modeled as ¢; - (é), where ¢; €

[0,1] is a binary concrete random variable. The binary con-
crete distribution provides support for small nonzero values,
which can be automatically learned from the data during in-
ference, as described below.
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BEATRICE

Figure 1 provides an overview of BEATRICE. Our frame-
work consists of three main components: An inference mod-
ule, a random sampler, and a generative module. The inputs
to BEATRICE are the summary statistics z and the LD matrix
Xx. The inference module estimates the parameters p of our
proposal distribution q(-;p,4) using a neural network. The
random process sampler uses the parameters p to sample
potential causal vectors ¢ according to the given proposal dis-
tribution. Finally, the generative module calculates the likeli-
hood of the observed summary statistics z via Equation (4).

2.3.1 Proposal distribution
The goal of fine mapping is to infer the posterior distribution
p(c|{z,2x}), where c corresponds to the diagonal elements of
Xc. Due to the prior formulation in Equations (2) and (3),
solving for the true posterior distribution is computationally
intractable, as it requires a combinatorial search over the pos-
sible causal configurations. Thus, we approximate the poste-
rior distribution p(c|{z,Zx}) with a binary concrete
distribution g(c;p,4) (Maddison et al. 2016), where the
parameters p of the distribution are functions of the inputs
{z,2x}. Samples ¢ generated under a binary concrete distri-
bution can be viewed as continuous relaxations of indepen-
dent Bernoulli random variables. This reparametrization
(Jang et al. 2016) allows us to learn p from the data using
standard gradient descent.

Formally, let ¢; and p, denote the ith element of the vectors
c and p, respectively. Each ¢; is independent and is distributed

Ip.c A1 (1=p)(1=c) *!
CI(Ci;Pi,/l): ptz ( pz)( 1) , (5)

(pici‘u (1-p)(1 —C)'A)2

where the parameter A controls the extent of relaxation from
a Bernoulli distribution. We can easily sample from the bi-
nary concrete distribution in Equation (5) via the relation

c,-—f(log (%)Jrlog (]E—IE)) (6)

A

where &(+) is the sigmoid function, and the random variable
U is sampled from a uniform distribution over the interval [0,
1]. Here, p; specifies the underlying probability map and U
provides stochasticity for the sampling procedure in Equation
(6). In practice, the gradient of Equation (6) with respect to p;
tends to have a low variance, which helps to stabilize the

F “

(- 9)
@
O/\)

Inference
Module

c~q(c[p,A) —> C

Generative
Module

Random
Process

Figure 1. Overview of BEATRICE. The inputs to our framework are the
LD matrix Zx and the summary statistics z. The inference module uses a
neural network to estimate the underlying probability map p. The random
process generates random samples ¢ for the Monte Carlo integration in
Equation (12). Finally, the generative module calculates the likelihood of
the summary statistics from the sample causal vectors ¢’.

optimization. The relationship between the random variable
and the parameters are provided in Supplementary
Section S1.2.

Intuitively, every element of the random vector ¢ can be
regarded as a continuous relaxation from a Bernoulli random
variable, where 1 controls the extent of relaxation from the 0/
1 Bernoulli distribution. This continuous representation
allows us to model the infinitesimal effects of the noncausal
variants. Additionally, the underlying probability map p cap-
tures the relative importance of a variant containing a causal
signal. The two unique properties of the probability maps are
P(¢c;>4)=p; and lim,_oP(c;=1) =p;. The first property
indicates that p; controls the degree to which ¢; assumes low
values close to 0 and high values close to 1. This property
also give BEATRICE flexibility to handle genetic variants
with different levels of association, thus aligning with our
generative process that assumes some noncausal variants may
have small non-zero effects. The second property implies that
a high probability p; at location i is highly indicative of a
causal variant. Taken together, the binary concrete distribu-
tion has an easily optimized parameterization with desir-
able properties.

2.3.2 Variational inference

We select the variational parameters {p,4} to minimize the
Kullback-Leibler (KL) divergence between the proposal dis-
tribution and the posterior distribution of the causal vector ¢
given the input data {z, Zx}, that is

{p". 4"} = argmin KL (q(e;p.2) || p(cl{z. Zx}))  (7)
{p.A}
Using Bayes’ Rule, Equation (7) can be rewritten as follows:

{p,4') = argmin KL (4(c:p.4) || p(c; o, 40))) N
~Eq(p [IOg (P(Z|2X> C))} ;

where we have assumed an element-wise binary concrete
prior p(c;py,40) over the vector c¢. We fix the relaxation pa-
rameter to be small (1 =0.01) and the probability map to be

1. ,%}T. Thus, the first term of Equation (8)
can be viewed as a regularizer that encourages sparsity in
causal vectors c. The second term of Equation (8) can be
interpreted as the likelihood of the observed test statistics.
The works of Pirinen et al. (2013) and Wakefield (2009) have
demonstrated that under certain assumptions, the likelihood
term of the summary statistics is the same as the original data
likelihood p(y|X, ¢) derived from Equation (1).

During optimization, the relaxation parameter / is annealed
(Jang et al. 2016, Maddison et al. 2016) to a small nonzero
value (0.01) with fixed constant rate, and the underlying prob-
ability map p is optimized using gradient descent. Specifically,
we use a neural network to generate the vector p = F(z;¢).
The details of the neural network architecture are provided in
Supplementary Section S1.4. Practically speaking, the neural
network ties the input data {z,Zx} to the parameter space of
the proposal distribution in a data-driven fashion.
Empirically, we find that generating p as a function of the in-
put data regularizes the model and leads to a stable
optimization.

uniform p, = |
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Optimizing p* now amounts to learning the parameters of
the neural network ¢. Given a fixed value of A, the neural net-
work loss function follows from Equation (8) as

£(¢) =KL (g(c:p(¢), 4) || ple:po,40)) )

)
—Eqtp)0) [log (P(Z|2x, C))} .

We have defined p(¢) £ F(z; ¢) for notational convenience.

2.3.3 Optimization strategy

Since Equation (9) does not have closed-form expressions, we
use Monte Carlo integration to accurately approximate £(¢)
in the regime of small 4, i.e. when the binary concrete distri-
bution behaves similarly to a Bernoulli distribution.

Let c!(¢),...,ck(¢) be a collection of causal vectors sam-
pled independently from q(:|p(¢),4) according to Equation
(6). The likelihood term of Equation (9) is computed as

Eqpi[log (p(2l2x.¢)) | = ili log (p(2/=x,¢(9)) ).
=1
(10)

where the right-hand side probability is computed using
Equation (4) by substituting c/(¢) for the diagonal entries of
X¢ in each term of the summation. Once again, the continu-
ous relaxation used to generate c/(¢) in Equation (6) allows
us to directly optimize ¢.

We approximate the first term of Equation (9) under the
assumption of small {4,4¢}. In this case, the binary concrete
distribution behaves like a {0,1} Bernoulli distribution.
Under these conditions, we can write the first term of
Equation (9) as

KL (aleip(@).4) || pleipy.in))) = D o log (

31 log (1240

i=1

(11)

where pg is a fixed scalar parameter used to construct the
prior vector p,. We note that the criteria {4 — 0.01,2 =
0.01} is satisfied in practice, as 1 is annealed during the opti-
mization to progressively smaller values and A is fixed a pri-
ori. This approximations allow us to rewrite the neural
network loss as

L(p) ~ - %ZL:logN(z; 0,Zx +Xx (nazZlC(qﬁ))Zx)

=3 108 (PAP0) 1 - p ) tog (1 2A2)),

(12)

where Z/(¢) is a diagonal matrix with ¢/(¢) as the diagonal
entries. We use a stochastic gradient descent optimizer
(Kingma and Ba 2014) to minimize the loss £(¢) with respect
to the neural network weights ¢. This process is detailed in
Algorithm 1.

Ghosal et al.

In our optimization process, we further take advantage of
the sparsity of the causal vector, leading to significant
improvements in computational complexity. The complexity
analysis is provided in the Supplementary Section S1.5.

3 Verification and comparison
3.1 Causal configurations and PIPs

We evaluate posterior inclusion probabilities (PIPs) and cred-
ible sets of each method. PIPs estimate how likely each vari-
ant is causal as a measure of its importance. Credible sets are
subsets of variants that likely contain a causal variant, which
captures the uncertainty of finding the true variant.

The main challenge to estimating the posterior probability
of a given causal configuration (i.e. set of causal variant loca-
tions) is the exponentially large search space. Let b denote a
binary vector with a value of 1 at causal locations and a value
of 0 at noncausal locations. At a high level, b can be viewed
as a binarized version of the causal vector ¢ in the previous
sections. Using Bayes’ Rule, the posterior probability of b
given the input data {z,Zx} can be written as follows:

p(blz, ) = — LEEXDIP(b) (13)

- Cyesp(2lEx B)p(®)

where B is the set of all 2 possible causal configurations, z
denotes the summary statistics, and Xx is the LD matrix.
Even though B is exponentially large, it has been argued
(Hans et al. 2012) that the majority of these configurations
have negligible probability and do not contribute to the de-
nominator of Equation (13).

Our stochastic optimization provides a natural means to
track causal configurations with nonnegligible probability in
p(b|z,Xx). Namely, at each iteration of stochastic gradient
descent, we randomly generate a sample causal vector ¢’ to
rrllinimize Equation (12). In parallel, we binarize the vector
¢ via

bl = {1, cf>y,

1 .
0, otherwise

and add the resulting vector b’ to a reduced set of causal con-
figurations BR. The variational objective ensures that our
proposal distribution converges to the true posterior distribu-
tion of the causal vectors. Thus, the samples ¢’ lie near modes
of the posterior distribution, which can also be viewed as the
neighborhood of nonnegligible probability.

Our experiments use a threshold y=0.1 to binarize the
vectors c. The threshold y can be viewed as a user-specified
lower bound for &, where fixing y = 0.1 preserves only var-
iants with an estimated effect size variance greater than
0.162. Interestingly, the threshold y can also be viewed as a
sparsity penalty that loosely controls the size of the reduced
set of causal configurations BR. For example, when y is large,
we include only a small set of causal configurations with high
posterior probability, whereas when y is small, we allow for
more configurations to be included in our analysis. A higher
threshold is often beneficial in the presence of large interac-
tion effects from non-causal variants, and a lower threshold
is useful when the causal variants are weakly associated with
the outcome. Finally, we note that y is also linked to the
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Algorithm 1 Optimization scheme to minimize Equation (12)

B ={}

Initialize ¢

fort=[1...7T]do
Generate p(¢,) = F(z: )
Randomly sample cﬁ according to Equation (6)
Binarize ¢} to b, and add to 5"

S = {i} s.t. (i) >0.01

Prune set S} such that it consists of 50 indices.
di)=0 ifigs

Generate £L(¢,) according to Equation (12)
bri1 = ¢, — StepSizeVL(¢')

end for

computational overhead of BEATRICE. When 7 is large we
will need fewer samples to estimate posterior configuration, as
compared to smaller values of when y, leading to lower time
complexity. While we fix the default value for y at 0.1, this
parameter can be adjusted by the user as desired. In
Supplementary Section S1.10, the sensitivity of the results with
different values of y.

After obtaining the sampled vectors, we replace the ex-
haustive set B in Equation (13) with the reduced set BX for
tractable computation of p(bjz,Zx). We then compute the
posterior inclusion probability (PIP) of each variant by sum-
ming the probabilities over the subset of BX with a value of 1
at that variant location. Mathematically,

P(b; = 1|z,2x) ~ Y _p(blz,Zx) (14)
beS
st.ScBand S = {b|b; = 1} (15)

where S is a subset of BR that contains a 1 at location i.

Finally, we identify the credible sets in two steps. First, in a
conditional step-wise fashion, we identify the variants with
the highest conditional probability given the previously se-
lected variants. This strategy identifies the set of “key” var-
iants with a high probability of being causal. Second, we
determine the credible set for each key variant, by computing
the conditional inclusion probabilities of each variant given
the key variants and adding variants to the credible set. A
detailed description of this process can be found in the
Supplementary Methods document (Supplementary Section
$1.3 in S1 text).

3.2 Baselines

We compare our approach with these state-of-the-
art methods:

* Finemap: This approach (Benner ez al. 2016) uses a sto-
chastic shotgun search to estimate the PIPs and the credi-
ble sets.

* SuSiE: (Wang et al. 2020, Zou et al. 2022) introduced an
iterative Bayesian selection approach for fine-mapping
that represents the causal vector as a sum of “single-
effect” vectors.

* CARMA: The work of Yang et al. (2023) introduced a
Bayesian approach for fine-mapping using a spike-and-
slab prior over the effect sizes to model the GWAS sum-
mary statistics.

Further details are
Section S1.15.

provided in  Supplementary

3.3 Evaluation strategy
We evaluate several metrics of performance for each method.

3.3.1 Evaluating PIPs

We compare the quality of the PIPs via the AUPRC metric.
AUPRC (area under the precision-recall curve) is computed
by sweeping a threshold on the PIPs and computing precision
and recall against the true configuration of causal and non-
causal variants. High precision indicates a low false positive
rate in the estimated causal variants. High recall indicates
that the model correctly identifies more of the causal variants.
Thus, the AUPRC, can be viewed as a holistic measure of per-
formance across both classes. AUPRC is also robust to severe
class imbalance (Davis and Goadrich 2006), which is the case
in fine mapping, as the number of causal variants is small.
Additionally, in Supplementary Section S1.8 we visualize
power vs. FDR for different thresholds of the PIPs. Following
standard nomenclature, both power and recall measures the

probability of detection (%) and FDR (1-precision) meas-

ures the type-I error (5F). Therefore, the power versus FDR
curve provides a visual comparison, while AUPRC gives the
numeric quantification of the performances.

3.3.2 Coverage, power and size of the credible sets

We follow the strategy of Zou et al. (2022) and Wang et al.
(2020) to define a credible set. A credible set is defined as a
collection of variants that contain a single causal variant with
a probability equal to the coverage. Given that the number of
causal variants can be arbitrary, we use two metrics to assess
the quality of the credible sets: Coverage and power. Coverage
is the proportion of credible sets that contain a causal variant,
and power is the proportion of causal variants identified by all
the credible sets. Higher coverage indicates that the method is
confident about its prediction of each causal variant, whereas
higher power indicates the method can accurately identify all
the causal variants.

One caveat is that a method can generally achieve both
higher coverage and higher power simply by adding variants
to the credible sets. To counter this trend, we report the aver-
age size of the credible sets identified by each method.
Ideally, we would like the credible sets to be as small as possi-
ble while retaining high coverage and high power.

4 Experimental results

4.1 Setup for simulation experiments

4.1.1 Genotype simulations

We use the method proposed by Dimitromanolakis et al.
(2019) to simulate genotypes X based on data from the 1000
Genomes Project. We select an arbitrary sub-region
(39.9Mb -40.9 Mb) from Chromosome 2 as the base. After
removing rare variants (MAF < 0.02), the remaining 3.5K
variants are used to simulate pairs of haplotypes to generate
10000 unrelated individuals. We do not run any filtering of
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variants on our simulated data. We chose a MAF threshold
of 0.02, as it lies in the middle of the range 0.01-0.05 used in
GWAS studies (Gibbs et al. 2003). In each experiment below,
we randomly select 72 = 1000 variants and 7 = 5000 individ-
uals to generate the phenotype data.

4.1.2 Phenotype generation

We generate the phenotype y from a standard mixed linear
model (Pirinen et al. 2013), where the influences of the causal
variants are modeled as fixed effects, and the influences of
other noncausal variants are modeled as random effects. In
this case, the genetic risk for a trait is spread over the entire
dataset, with each variant having small individual effects, as
per the polygenicity assumption of a complex trait. We ran-
domly select the causal variants in our simulations. Thus,
some simulations will have causal variants in LD, while
others will select causal variants with low correlation.

Given a set of d causal variants C, let X¢ € R**? denote
the corresponding subset of the genotype data and Xn¢ €
R"™ "% denote the remaining non-causal variants. From
here, we generate the phenotype data y as follows:

y=Xch+gncteL g8 tE
1
8ne ™~ N(Ovim_dXchﬁc)
ﬂ ~ N(Ovld) &~ N(Oaazln)

where f is the d-dimensional effect sizes sampled from a
Gaussian distribution, and ¢ is a zero-mean Gaussian noise
with variance a?. The random variable gy models the effect
of the noncausal variants as a multivariate Gaussian vector
with mean 0 and covariance ﬁXNCX{JO Likewise, g =
X¢p captures the effect of the causal variants.

In our experiments, we define w? as the total phenotypic
variance attributed to the genotype (both g and gy¢) and p
as the proportion of this variance associated with the causal
variants in g.. Using the strategy described in Meyer and
Birney (2018), we enforce these conditions by normalizing
the phenotype y as follows:

.| pe? (1-p)o* .
- %W(gc)gﬁ W@mﬁw (16)

& ~N(0, (1-w?)1,)

where var(g.) and var(gy) are the empirical variances of the
genotype vectors g and gy, respectively.

To replicate real-world scenarios, we use a GWAS setup to
estimate the effect size j3; of each variant i based on the pheno-
type y and the unnormalized genotype data X. Here, we use a
simple linear model and ordinary least squares to estimate the
effect sizes. From here, we convert the estimated effect sizes to
z-scores via z; = Seﬂ—fj, where se(-) denotes the standard error.
The LD matrix is computed as Ty = %XTX, where X is the
normalized genotype data. The z-scores and LD matrix are in-
put to each of the fine-mapping methods above.

4.1.3 Noise configurations

We evaluate the performance of each method while varying
the number of causal variants d, the total genotype variance
w?, and the proportion of this variance associated with the

causal variants p. Formally, we sweep over the ranges
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d=11,4,8,12], w?=10.1,0.2,0.4,0.5,0.7,0.8], and
»=10.1,0.3,0.5,0.7,0.9]. For each parameter setting, we
randomly generate 20 datasets by independently re-sampling
the causal variant locations, the effect sizes {f;}, the non-
causal component gy, and the noise €. We run all fine-
mapping methods over a total of 4x6x5x20=2400
configurations.

4.2 Application to real-world SNP data

We compare the performance of each fine-mapping method
on a GWAS study of Alzheimer’s Disease (AD). AD is a poly-
genic disorder, making it an ideal test bed to evaluate each
model. We use the publicly available GWAS summary statis-
tics released by Wightman ez al. (2021) to obtain the z-scores
and the UK Biobank data to generate the LD matrices. We
compare the fine-mapping results of SuSiE and BEATRICE.
Notice that we cannot run FINEMAP because the reported
GWAS statistics only contain the z-scores, whereas FINEMAP
requires the effect sizes f5; and the corresponding standard
errors to perform fine mapping. This real-world study also
highlights a major drawback of FINEMAP, should the origi-
nal effect sizes and standard errors be unavailable. Both SuSiE
and BEATRICE were run with their default setting.

4.2.1 Data acquisition

The recent GWAS analysis performed by Wightman et al.
(2021) identified multiple statistically significant index SNPs
in AD. We clumped the GWAS statistics to 175 regions and
fine mapped the top 20 regions sorted by the P-values of the
index SNPs. Additionally, we sub-select SNPs from the GWAS
summary statistics that overlap with both the publicly avail-
able 1000 Genome Phase-3 data and the UK Biobank data.

4.2.2 Data preprocessing

We first filter out variants that are not common to both the
1000 Genome database and the UK Biobank database. We
further removed the strand ambiguous SNPs (i.e. those with
complementary alleles, either C/G or A/T SNPs) due to the
lack of strand information. For example, an A/T allele can be
mapped to T/A, or A/T based on the strand information.
Without this information, we cannot map the allele in the
base data and GWAS results. After filtering, we verify that
the counted alleles are present in the GWAS summary statis-
tics for AD and the UK biobank LD matrices. We identify
175 clumps using the GWAS statistics, where each clump
contains SNPs less than 250KB away from the index SNP
with R? > 0.1 and MAF > 0.01. We note that the GWAS sta-
tistics published by Wightman et al. (2021) reported multiple
SNPs in the first clump with z-scores of infinity. For numeri-
cal stability, we clip these z-scores to 200. Finally, we merge
overlapping clumped regions into a single region. Further
details about the clumped variants are reported in
Supplementary Table S1. The resulting variants within each
clump are used to generate LD matrices using the publicly
available LD matrices derived from 337K subjects of the UK
Biobank database (Weissbrod et al. 2020) (https://registry.
opendata.aws/ukbb-1d/).

4.3 Model performance
4.3.1 Simulated experiments
4.3.1.1 Varying the number of causal variants

Figure 2 illustrates the performance of each method
(BEATRICE, FINEMAP, SuSiE, and CARMA) while
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BEATRICE

increasing the number of causal variants from d=1 to
d =12. The points denote the mean performance across all
noise configurations (w?,p) for fixed d, and the error bars
represent the 95% confidence interval across these configura-
tions. We note that BEATRICE achieves a uniformly higher
AUPRC than all baseline methods, which suggests that
BEATRICE can better estimate the PIPs than CARMA,
FINEMAP or SuSiE. BEATRICE also provides a 0.9-1.4-fold
increase in coverage than the baselines while maintaining a
similar power, which indicates that the credible sets gener-
ated by BEATRICE are more likely to contain a causal vari-
ant than the baselines. Finally, we note that BEATRICE,
identifies the same or smaller credible set sizes than CARMA,
FINEMAP, and SuSiE. Taken together, as the number of
causal variants increases, BEATRICE gives us a better esti-
mate of the PIPs. Unlike the baseline methods, BEATRICE
does not impose any prior assumptions over the total number
of causal variants, which may lead to its improved perfor-
mance. Finally, we observe that CARMA achieves notably
lower AUPRC and power than all other methods and is com-
parable to SuSiE and FINEMAP in the other metrics.

4.3.1.2 Increasing the genotype contribution

Figure 3 shows the performance of each method while in-
creasing the genetically explained variance from w* = 0.1 to
@? = 0.8. Similar to the above experiment, the points in the
figure denote the mean performance across all other noise
configurations (d,p) for fixed ®?, and the error bars
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represent the 95% confidence intervals across these configu-
rations. We note that BEATRICE achieves a significantly
higher AUPRC than FINEMAP and CARMA and a slightly
higher AUPRC than SuSiE. When evaluating the credible sets,
we observe similar trends in coverage (BEATRICE is 0.25-
2.34 folds higher) and power (similar performance across
methods). Once again, CARMA achieves significantly lower
AUPRC and power. All four methods identify credible sets of
similar size. We submit that BEATRICE achieves the best
trade-off across the four performance metrics.

4.3.1.3 Varying the contributions of causal and noncausal
variants

Figure 4 illustrates the performance of each method while in-
creasing the contribution of the causal variants from p = 0.1
to p =0.9. Again, the points denote the mean performance
across all other noise configurations (d,w?) for fixed p, and
the error bars represent the 95% confidence intervals across
these configurations. From an application standpoint, the
presence of noncausal variants with small non-zero effects
makes it difficult to detect the true causal variants.
Accordingly, we observe a performance boost across all
methods when p is larger. Similar to our previous experi-
ments, BEATRICE provides the best AUPRC, with converg-
ing performance as p — 1. In addition, BEATRICE identifies
smaller credible sets with significantly higher coverage while
maintaining power. Thus, we conclude that BEATRICE is the
most robust of the three methods to the presence of noise
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Figure 2. The performance metrics for the three methods across varying numbers of causal variants. Along the x-axis, we plot the number of causal
variants, and across the y-axis, we plot the mean and confidence interval (95%) of each metric. We calculate the mean by fixing d to a specific value

d = d* and sweep over all the noise settings where d = d*.
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Figure 3. The performance metric for increasing phenotype variance is explained by genetics. Along the x-axis, we plot the variance explained by
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® = o* and sweep over all the noise settings where w = w*.

from noncausal variants. This performance gain may arise
from our binary concrete proposal distribution for the causal
vector ¢, which provides flexibility to accommodate varying
degrees of association. Finally, we note that compared to all
the approaches, CARMA has significantly lower AUPRC and
power, which suggests that it fails to identify the true causal
SNPs across the various noise paradigms. Moreover, as
shown in Fig. 10, the runtime of CARMA is significantly
higher than the others due to its MCMC procedure. Thus, we
omit it from our subsequent analyses.

4.3.2 Fine-mapping results on real-world AD data

Figure 5 shows the absolute z-scores of the SNPs in each of
the 20 clumps. The GWAS statistics of Wightman ez al.
(2021) report multiple z-scores with high values in each
clump. The inflation in the GWAS statistics could result from
the infinitesimal effects of multiple SNPs within each clump.
This scenario is similar to the simulation settings when p
is small.

Figure 6 shows the PIPs (>0.9) identified by each fine-
mapping method, colored by clump (i.e. locus). The x-axis
corresponds to the SNP index, and the y-axis reports the cor-
responding PIP values. We explore the variants from the first
clump (chr19:44515074-46457976), which contains the
TOMM40, APOC1, and APOE genes. These genes have been
repeatedly identified as potential disease-causing loci for AD
(Lund et al. 2014, Zhou et al. 2014, Cooper et al. 2022,

Chen et al. 2023). In Supplementary Tables S2 and S3, we re-
port the SNPs with PIP >0.9 for BEATRICE and SuSiE, re-
spectively. Figure 7 provides a detailed view of the z-scores,
PIPs estimated by BEATRICE and SuSiE, and the LD struc-
ture of the variants within this clump. Interestingly, one of
the high PIP SNP identified by BEATRICE is rs7412, the
Apolipoprotein E (APOE) 2 allele, which is a common land-
mark “risk” factor for Alzheimer’s disease (Kulminski et al.
2020). As a second point of reference, Fig. 8 provides a detailed
view of the variants in the ninth clump. Clump 9
(chr6:32123639-32900787) is the largest clump (=~8000 SNPs)
in our analyses and overlies the HLA region, which is com-
monly known for complex LD (Evseeva et al. 2010) structure.
In an exploratory analysis, we investigate the biological
consequences of the SNPs with high PIPs (>0.9) of the first
clump, as identified by each method. Further details about
this analysis are presented in Supplementary Section S1.17.

5 Discussion and summary

BEATRICE is a novel and general-purpose tool for fine map-
ping that can be used across a variety of studies. One key con-
tribution of BEATRICE over methods like FINEMAP and
SuSiE is its ability to discern infinitesimal effects from non-
causal variants, including those in high LD with true causal
variants. Our simulated experiments in Section 4.3.1 and
Supplementary  Section S1.8 capture this improved
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Figure 4. The performance metric for multiple levels of noise introduced by noncausal variants. The noise level (p) is explained by the variance ratio of
noncausal variants vs. causal variants. Along the x-axis, we plot the noise level (p); across the y-axis, we plot each metric’s mean and confidence interval
(95%). We calculate the mean by fixing p to a specific value p = p* and sweep over all the noise settings where p = p*.

performance by sweeping the proportion of the observed var-
iance attributed to causal (fixed effects) and noncausal (ran-
dom effects) genetic variants. This parameter p € [0,1] is
swept over its natural domain, such that p =1 implies that
the only link between the genotype and phenotype comes
from the causal variants. At this extreme, all methods achieve
comparable performance (Fig. 4). However, as p decreases,
meaning that the effects of noncausal variants increase,
BEATRICE outperforms both baselines. In Fig. 9, we show
an example of fine mapping using BEATRICE for a simula-
tion setting {d = 1,w?> = 0.1,p = 0.3}. Notice that the z-score
for the causal SNP is not the largest, which accurately high-
lights the importance of fine mapping. In Supplementary
Section S6, we compare examples of the effects of SNP herita-
bility explained by the noncausal SNPs. We show that when
noncausal SNPs explain most of the genetic heritability, only
BEATRICE can successfully assign the highest PIP to the
causal SNPs. This result shows that BEATRICE can success-
fully use the binary concrete distribution to model noncausal
variants with non-zero effects while the sparsity term of £()
prioritizes potentially causal variants.

A second contribution of BEATRICE is our strategic inte-
gration of neural networks within a larger statistical frame-
work. Specifically, we use the neural network in
Supplementary Fig. S2 as an inference engine to estimate the

parameters p of our proposal distribution. Effectively, we le-
verage the neural network as a universal function approxima-
tor to establish the relationship between the parameter space
and the input data space. We choose neural networks as our
inference engine over other types of functions due to their flex-
ibility, scalability, and ease of optimization via backpropaga-
tion. We demonstrate in Sections 4.3.1 and Supplementary
Sections S1.8 and S1.9 that the deep neural network can suc-
cessfully generate sample causal configurations that well ap-
proximate the true posterior distribution leading to improved
AUPR, power, coverage, and FDR. Moreover, BEATRICE
leverages the continuous representation of the causal vectors ¢!
to backpropagate the gradients through the random sampler
and train the network. These continuous representations of c!
result in low-variance gradients with respect to the underlying
probability map, thus leading to a stable optimization.
Related to the above point, a third contribution of
BEATRICE is its ability to identify the representative sets of
causal configurations from the exponential search space to
compute the PIPs and credible sets. In Supplementary
Sections S1.11, S1.12, and S1.14, we show that BEATRICE
generates well-calibrated PIPs in the presence of model mis-
specification. The improved performance can be attributed to
our random sampling process, which ensures that the ran-
domly sampled causal vectors slowly converge to the causal
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mapping on the top 20 clumps from the Alzheimer’s Disease GWAS. We
report the PIPs of SNPs with PIP > 0.9. The x-axis denotes the SNP index
present in each locus. The y-axis reports the PIP values.

configurations with nonnegligible posterior probability.
Furthermore, this strategy allows us to efficiently estimate the
PIPs in finite run-time. However, we note that the current im-
plementation of BEATRICE does not estimate the posterior
variant effect sizes. Instead, BEATRICE uses the binary con-
crete vectors to model the variance of the effect sizes. This
property allows our model to adjust for infinitesimal effects
from the noncausal variants. Figure 10 compares the average
run-time of each method across all parameter settings. We
observe that the run-time of BEATRICE and SuSiE are less
than 1 min. FINEMAP requires five minutes on average to
converge. CARMA requires approximately 100 min to con-
verge, likely due to the slow MCMC sampling procedure for
generating posterior estimates.

The final contribution of BEATRICE is its simple and flexi-
ble design. Importantly, BEATRICE can easily incorporate
priors based on the functional annotations of the variants.
Specifically, in the current setup, the prior over c is effectively
constant, as captured by po = L. We can integrate functional
information simply by modifying the distribution of py across
the variants. Going one step further, a recent direction in fine
mapping is to aggregate data across multiple studies to iden-
tify causal variants (LaPierre et al. 2021). This extension
would amount to adding multiple log-likelihood terms in
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Figure 7. Detailed results for Clump 1: Top row: absolute zscores of the
included variants; the index SNP is indicated by a black circle. Second
row: PIPs identified by BEATRICE. Third row: PIPs identified by SuSIE.
Bottom row: LD structure between the variants, where the color bar
indicates the r? values.
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Figure 8. Detailed results for Clump 9: Top row: absolute z-scores of the
included variants; the index SNP is indicated by a black circle. Second
row: PIPs identified by BEATRICE. Third Row: PIPs identified by SuSiE.
Bottom row: LD structure between the variants, where the color bar
indicates the r? values.

Equation (12) corresponding to the different GWAS inputs
{zs,Zx,} matrices across studies. A similar extension can be
used for multiple ancestries or traits. In this case, the inputs
{zs,Zx.} would reflect a particular ancestry or trait. The
main difference between BEATRICE and these extensions is
that the parameters p would be generated as a function of
multiple z; scores, i.e. p=f(z1,...,25;¢).

In this work, we have shown that BEATRICE is highly effi-
cient in handling the complexity that arises due to infinitesi-
mal effects and out-of-sample LD matrices (Supplementary
Section $1.13). Thus, we believe that the advantages of
BEATRICE will be more evident when considering polygenic
traits and diseases. Additionally, the high coverage and small
size of credible sets reported in Figs 2-4 show that
BEATRICE can successfully prioritize variants in the presence
of LD. This property is in stark contrast with the baseline
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Figure 10. The runtime comparison of BEATRICE, SuSiE, and FINEMAP across all the simulation settings.

fine-mapping approaches that generate a large number of
credible sets that do not contain a causal variant. Taken to-
gether, we believe BEATRICE could be useful in eQTL stud-
ies, where multiple variants within a locus can show strong
association due to the complex LD structure present in the
human genome (Zou et al. 2019).

In summary, we present BEATRICE, a novel Bayesian
framework for fine mapping that identifies potentially causal
variants within GWAS risk loci through the shared LD struc-
ture. Using a variational approach, we approximate the pos-
terior probability of the causal location(s) via a binary
concrete distribution. In conjunction, we introduce a new
strategy to build a reduced set of causal configurations within
the exponential search space that can be neatly folded into
our optimization routine. This reduced set is used to approxi-
mate the PIPs and identify credible sets. We have demon-
strated through a comprehensive simulation the advantages
of BEATRICE under different noise settings and that
BEATRICE outperforms existing fine-mapping methods.

Hence, BEATRICE is a powerful tool to refine the results of a
GWAS or eQTL analysis. It is also flexible enough to accom-
modate a variety of experimental settings.
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Supplementary data are available at Bioinformatics online.
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Data availability

We have compiled the code for BEATRICE and its dependen-
cies into a docker image, which can be found at https://
github.com/sayangsep/Beatrice-Finemapping. We have also
provided details about the usage and outputs of the model in
Supplementary Section S1.20.
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