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Abstract

Motivation: We introduce a novel framework BEATRICE to identify putative causal variants from GWAS statistics. Identifying causal variants is 
challenging due to their sparsity and high correlation in the nearby regions. To account for these challenges, we rely on a hierarchical Bayesian 
model that imposes a binary concrete prior on the set of causal variants. We derive a variational algorithm for this fine-mapping problem by mini-
mizing the KL divergence between an approximate density and the posterior probability distribution of the causal configurations. 
Correspondingly, we use a deep neural network as an inference machine to estimate the parameters of our proposal distribution. Our stochastic 
optimization procedure allows us to sample from the space of causal configurations, which we use to compute the posterior inclusion probabili-
ties and determine credible sets for each causal variant. We conduct a detailed simulation study to quantify the performance of our framework 
against two state-of-the-art baseline methods across different numbers of causal variants and noise paradigms, as defined by the relative ge-
netic contributions of causal and noncausal variants.

Results: We demonstrate that BEATRICE achieves uniformly better coverage with comparable power and set sizes, and that the performance 
gain increases with the number of causal variants. We also show the efficacy BEATRICE in finding causal variants from the GWAS study of 
Alzheimer’s disease. In comparison to the baselines, only BEATRICE can successfully find the APOE ɛ2 allele, a commonly associated variant 
of Alzheimer’s.

Availability and implementation: BEATRICE is available for download at https://github.com/sayangsep/Beatrice-Finemapping.

1 Introduction

Genome-wide association studies (GWAS) provide a natural 
way to quantify the contribution each genetic variant to the 
observed phenotype (Uffelmann et al. 2021). However, 
the univariate nature of GWAS does not take into account 
the correlation structure shared between the genetic variants 
due to low recombination of nearby DNA regions (Visscher 
et al. 2012). Strong correlations can inflate the effect size of a 
non-causal genetic variant, thus leading to false positive iden-
tifications (Brzyski et al. 2017). Fine-mapping (Maller et al. 
2012, Spain and Barrett 2015) addresses this problem by ana-
lyzing the correlation structure of the data to identify small 
subsets of causal genetic variants (Spain and Barrett 2015, 
Schaid et al. 2018). These subsets, known as credible sets, 
capture the uncertainty of finding the true causal variant 
within a highly correlated region (Hutchinson et al. 2020). 
Unlike P values, the corresponding posterior inclusion proba-
bilities (PIPs) computed during fine-mapping can be com-
pared across studies of different sample sizes.

Traditional fine-mapping methods can be grouped into 
two general categories. The first category uses a penalized re-
gression model to predict the output phenotype based on the 
collection of genetic variants (Cho et al. 2009, Sabourin et al. 
2015). Popular regularizations like LASSO (Tibshirani 1996) 

and Elastic Net (Sabourin et al. 2015) simultaneously per-
form effect size estimation while slowly shrinking the smaller 
effect sizes to zero. The drawback of penalized regression 
models is that they optimize phenotypic prediction and, due 
to the correlation structure, do not always identify the true 
causal variants. The second category relies on Bayesian 
modeling. Here, the phenotype is modeled as a linear combi-
nation of the genetic variants, with sparsity incorporated into 
the prior distribution for the model weights. Approximate 
inference techniques, such as Markov Chain Monte Carlo 
(MCMC) (Guan and Stephens 2011) and variational methods 
(Carbonetto and Stephens 2012) have been used to infer the 
effect sizes, PIPs, and credible sets. While these approaches 
represent valuable contributions to the field, they require the 
raw genotype and phenotype information, which raises pri-
vacy and regulatory concerns, particularly in the cases of pub-
licly shared datasets. MCMC sampling also requires a burn-in 
period, which adds a substantial (100×) runtime overhead.

In response to these concerns, fine-mapping approaches 
have moved towards using summary statistics, which can be 
easily shared across sites. For example, the works of 
(Hormozdiari et al. 2014, Chen et al. 2015, Benner et al. 
2016) use a stochastic or exhaustive search to identify the 
posterior probabilities of the causal configurations. However, 
exhaustive search based methods are restricted by the number 
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of assumed causal variants, as this leads to an exponential in-
crease in the dimensionality of the approximate posterior dis-
tribution. Stochastic search approaches (Benner et al. 2016) 
are less computationally expensive, but, by construction, they 
cannot handle infinitesimal effects from noncausal variants. 
Another fine-mapping approach is SuSiE (Zou et al. 2022), 
which estimates the variant effect sizes as a sum of “single 
effects.” These “single effect” vectors contain one nonzero el-
ement representing a causal variant and are estimated using a 
Bayesian step-wise selection approach. SuSiE provides a sim-
ple framework to robustly estimate PIPs and credible sets; 
however, there is limited evidence for its performance given 
the presence of infinitesimal genetic effects. Such scenarios 
can appear due to polygenicity of the trait, trans-interactions 
of variants, or varying correlation structure of the genomic 
region. Finally, the most recent fine-mapping method is 
CARMA (Yang et al. 2023). Unlike previous methods, 
CARMA assumes a spike-slab prior over the effect sizes and 
uses a stochastic shotgun bases sampling approach for esti-
mating posterior probabilities.

In this article, we introduce BEATRICE, a novel frame-
work for Bayesian finE-mapping from summAry daTa using 
deep vaRiational InferenCE (https://github.com/sayangsep/ 
Beatrice-Finemapping). In contrast to prior work, we approx-
imate the posterior distribution of the causal variants given 
the GWAS summary statistics as a binary concrete distribu-
tion (Jang et al. 2016, Maddison et al. 2016), whose parame-
ters are estimated by a deep neural network. This unique 
formulation allows BEATRICE to use computationally effi-
cient gradient-based optimization to minimize the KL diver-
gence between the proposal binary concrete distribution and 
the posterior distribution of the causal variants. In addition, 
our unique optimization strategy samples a representative set 
of causal configurations in the process of minimizing the em-
pirical KL divergence; these configurations can be used to ob-
tain the PIPs and the credible sets. We compare our model 
with two state-of-the-art fine-mapping approaches, SuSiE 
(Zou et al. 2022) and FINEMAP (Benner et al. 2016). We 
perform an extensive simulation study and quantify the per-
formance of each model across increasing numbers of causal 
variants and increasing noise, as determined by the degree to 
which non-causal variants explain the phenotype variance. 
The runtimes of both SuSiE and BEATRICE are under one 
minute, which is significantly less than the runtimes of 
FINEMAP and CARMA. On average BEATRICE achieves a 
2.2 fold increase in coverage, a 10% improvement in AUPRC, 
and similar power in comparison to SuSiE and FINEMAP.

2 Materials and methods

2.1 Generative assumptions of fine-mapping

BEATRICE is based on a generative additive effect model. 
Formally, let y 2 Rn×1 denote a vector of (scalar) quantitative 
traits across n subjects. The corresponding genotype data X 2
Rn×m is a matrix, where m represents the number of genetic 
variants in the analysis. Without loss of generality, we assume 
that the columns of X have been normalized to have mean 0 
and variance 1, i.e. 1

n

P

i Xij ¼ 0 and 1
n

P

i X
2
ij ¼ 1 for 

j ¼ 1; . . . ;m. The quantitative trait is generated as follows: 

y ¼ Xβþ η η ÿ N 0;
1

τ
In

ÿ ÿ

; (1) 

where β 2 Rm×1 is the effect size, η 2 Rn×1 is additive white 
Gaussian noise with variance 1

τ
, and In is the identity matrix.

2.2 Genome-wide association studies

GWAS uses a collection of element-wise linear regression 
models to estimate the effect of each genetic variant. 
Mathematically, the GWAS effect sizes are computed as 
β̂ ¼ 1

n XTy, with the corresponding vector of normalized 
z-scores equal to z ¼

oo

τ
n

p

XTy (Chen et al. 2015, Uffelmann 
et al. 2021). The main drawback of GWAS is that noncausal 
genetic variants can have large effect sizes due to 
the polygenicity of the quantitative trait (Cheng et al. 2020), 
varying degrees of linkage disequilibrium (LD) with causal 
variants (Brzyski et al. 2017), and/or interactions of the vari-
ant with enriched genes (Cheng et al. 2020). One popular 
strategy to mitigate this drawback is to impose a sparse prior 
over β given the set of causal variants: 

β ÿ N 0;
1

τ
σ2

ΣC

ÿ ÿ

(2) 

ΣCði; jÞ¼

0; i 6¼ j

1; i¼ j and i is causal

ɛ; i¼ j and i is noncausal with nonzero effect

0; otherwise

8

>

>

>

>

>

<

>

>

>

>

>

:

(3) 

Notice from Equation (3) that the variance of βðiÞ for a 
causal variant is σ2

τ 
and the variance of βðiÞ for a noncausal 

variant with nonzero effect is ɛ σ2

τ
, where ɛ is assumed to be 

small. This formulation handles residual influences from the 
non-causal variants, which are often observed in real-world 
data. Under this assumed prior, we can show (Servin and 
Stephens 2007, Chen et al. 2015) that the normalized GWAS 
effect sizes z are distributed as: 

pðzjΣX;ΣCÞ ¼ N
ÿ

z; 0;ΣX þΣXðn σ2
ΣCÞΣX

ÿ

(4) 

where ΣX ¼ 1
n XTX is the empirical correlation matrix of the 

genotype data, also known as the LD matrix. Broadly, the 
goal of fine-mapping is to identify the diagonal elements of ΣC that corresponds to 1 given the effect sizes z and the LD 
matrix ΣX. The derivation is provided in Supplementary 
Section S1.1.

2.3 The deep Bayesian variational model

BEATRICE uses a variational inference framework for fine 
mapping. For convenience, we represent the diagonal ele-
ments of ΣC by the vector c 2 Rm×1, where c encodes the 
causal variant locations. Given that we do not know the ef-
fect sizes and locations of the causal and noncausal variants, 
rather than fixing ɛ in Equation (3), we assume that the diag-
onal elements of ΣC are drawn from a binary concrete distri-
bution, which can be viewed as a continuous relaxation of 
the Bernoulli distribution. Under this assumption, the vari-

ance of the effect size βi is modeled as ci ÿ
σ2

τ

ÿ ÿ

, where ci 2

½0;1ÿ is a binary concrete random variable. The binary con-
crete distribution provides support for small nonzero values, 
which can be automatically learned from the data during in-
ference, as described below.
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Figure 1 provides an overview of BEATRICE. Our frame-
work consists of three main components: An inference mod-
ule, a random sampler, and a generative module. The inputs 
to BEATRICE are the summary statistics z and the LD matrix 
ΣX. The inference module estimates the parameters p of our 
proposal distribution qðÿ;p;λÞ using a neural network. The 
random process sampler uses the parameters p to sample 
potential causal vectors c according to the given proposal dis-
tribution. Finally, the generative module calculates the likeli-
hood of the observed summary statistics z via Equation (4).

2.3.1 Proposal distribution

The goal of fine mapping is to infer the posterior distribution 
pðcjfz;ΣXgÞ, where c corresponds to the diagonal elements of 
ΣC. Due to the prior formulation in Equations (2) and (3), 
solving for the true posterior distribution is computationally 
intractable, as it requires a combinatorial search over the pos-
sible causal configurations. Thus, we approximate the poste-
rior distribution pðcjfz;ΣXgÞ with a binary concrete 
distribution qðc;p; λÞ (Maddison et al. 2016), where the 
parameters p of the distribution are functions of the inputs 
fz;ΣXg. Samples c generated under a binary concrete distri-
bution can be viewed as continuous relaxations of indepen-
dent Bernoulli random variables. This reparametrization 
(Jang et al. 2016) allows us to learn p from the data using 
standard gradient descent.

Formally, let ci and pi denote the ith element of the vectors 
c and p, respectively. Each ci is independent and is distributed 

qðci;pi; λÞ ¼
λpic

− λ − 1
i ð1 − piÞð1 − ciÞ

− λ − 1

ÿ

pic
− λ
i þð1 − piÞð1 − cÞ− λ

ÿ2
; (5) 

where the parameter λ controls the extent of relaxation from 
a Bernoulli distribution. We can easily sample from the bi-
nary concrete distribution in Equation (5) via the relation 

ci ¼ ξ

log U
1 − U

ÿ ÿ

þ log
pi

1 − pi

ÿ ÿ

λ

 !

; (6) 

where ξðÿÞ is the sigmoid function, and the random variable 
U is sampled from a uniform distribution over the interval [0, 
1]. Here, pi specifies the underlying probability map and U 
provides stochasticity for the sampling procedure in Equation 
(6). In practice, the gradient of Equation (6) with respect to pi 

tends to have a low variance, which helps to stabilize the 

optimization. The relationship between the random variable 
and the parameters are provided in Supplementary 
Section S1.2.

Intuitively, every element of the random vector c can be 
regarded as a continuous relaxation from a Bernoulli random 
variable, where λ controls the extent of relaxation from the 0/ 
1 Bernoulli distribution. This continuous representation 
allows us to model the infinitesimal effects of the noncausal 
variants. Additionally, the underlying probability map p cap-
tures the relative importance of a variant containing a causal 
signal. The two unique properties of the probability maps are 
Pðci >

1
2 Þ¼ pi and limλ!0 Pðci ¼ 1Þ ¼ pi. The first property 

indicates that pi controls the degree to which ci assumes low 
values close to 0 and high values close to 1. This property 
also give BEATRICE flexibility to handle genetic variants 
with different levels of association, thus aligning with our 
generative process that assumes some noncausal variants may 
have small non-zero effects. The second property implies that 
a high probability pi at location i is highly indicative of a 
causal variant. Taken together, the binary concrete distribu-
tion has an easily optimized parameterization with desir-
able properties.

2.3.2 Variational inference

We select the variational parameters fp;λg to minimize the 
Kullback–Leibler (KL) divergence between the proposal dis-
tribution and the posterior distribution of the causal vector c 
given the input data fz;ΣXg, that is 

fpÿ
; λÿg ¼ arg min

fp;λg
KL
ÿ

qðc;p; λÞ jj pðcjfz;ΣXgÞ
ÿ

(7) 

Using Bayes’ Rule, Equation (7) can be rewritten as follows: 

fpÿ
; λÿg ¼ arg min

fp;λg
KL
ÿ

qðc;p; λÞ jj pðc;p0; λ0ÞÞ
ÿ

− Eqðÿ;p;λÞ log
ÿ

pðzjΣX; cÞ
ÿh i

;

(8) 

where we have assumed an element-wise binary concrete 
prior pðc;p0;λ0Þ over the vector c. We fix the relaxation pa-
rameter to be small ðλ ¼ 0:01Þ and the probability map to be 

uniform p0 ¼ ½1
m ; . . . ; 1

mÿ
T. Thus, the first term of Equation (8) 

can be viewed as a regularizer that encourages sparsity in 
causal vectors c. The second term of Equation (8) can be 
interpreted as the likelihood of the observed test statistics. 
The works of Pirinen et al. (2013) and Wakefield (2009) have 
demonstrated that under certain assumptions, the likelihood 
term of the summary statistics is the same as the original data 
likelihood pðyjX; cÞ derived from Equation (1).

During optimization, the relaxation parameter λ is annealed 
(Jang et al. 2016, Maddison et al. 2016) to a small nonzero 
value (0.01) with fixed constant rate, and the underlying prob-
ability map p is optimized using gradient descent. Specifically, 
we use a neural network to generate the vector p ¼Fðz;ϕÞ. 
The details of the neural network architecture are provided in 
Supplementary Section S1.4. Practically speaking, the neural 
network ties the input data fz;ΣXg to the parameter space of 
the proposal distribution in a data-driven fashion. 
Empirically, we find that generating p as a function of the in-
put data regularizes the model and leads to a stable 
optimization.

Figure 1. Overview of BEATRICE. The inputs to our framework are the 

LD matrix ΣX and the summary statistics z. The inference module uses a 

neural network to estimate the underlying probability map p. The random 

process generates random samples cl for the Monte Carlo integration in 

Equation (12). Finally, the generative module calculates the likelihood of 

the summary statistics from the sample causal vectors cl .
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Optimizing pÿ now amounts to learning the parameters of 
the neural network ϕ. Given a fixed value of λ, the neural net-

work loss function follows from Equation (8) as 

LðϕÞ ¼KL
ÿ

qðc;pðϕÞ; λÞ jj pðc;p0; λ0ÞÞ
ÿ

− Eqðÿ;pðϕÞ;λÞ log
ÿ

pðzjΣX; cÞ
ÿh i

:

(9) 

We have defined pðϕÞ¢Fðz;ϕÞ for notational convenience.

2.3.3 Optimization strategy

Since Equation (9) does not have closed-form expressions, we 
use Monte Carlo integration to accurately approximate LðϕÞ
in the regime of small λ, i.e. when the binary concrete distri-
bution behaves similarly to a Bernoulli distribution.

Let c1ðϕÞ; . . . ; cLðϕÞ be a collection of causal vectors sam-
pled independently from qðÿjpðϕÞ;λÞ according to Equation 
(6). The likelihood term of Equation (9) is computed as 

Eqðÿ;pðϕÞ;λÞ log
ÿ

pðzjΣX; cÞ
ÿh i

¼
1

L

X

L

l¼1

log
ÿ

p
ÿ

zjΣX; c
lðϕÞ

ÿÿ

;

(10) 

where the right-hand side probability is computed using 
Equation (4) by substituting clðϕÞ for the diagonal entries of 
ΣC in each term of the summation. Once again, the continu-
ous relaxation used to generate clðϕÞ in Equation (6) allows 
us to directly optimize ϕ.

We approximate the first term of Equation (9) under the 
assumption of small fλ; λ0g. In this case, the binary concrete 
distribution behaves like a f0;1g Bernoulli distribution. 
Under these conditions, we can write the first term of 
Equation (9) as 

KL
ÿ

qðc;pðϕÞ; λÞ jj pðc; p0; λ0ÞÞ
ÿ

ÿ
X

m

i¼1

piðϕÞ log
piðϕÞ

p0

ÿ ÿ

þ
X

m

i¼1

ð1 − piðϕÞÞ log
1 − piðϕÞ

1 − p0

ÿ ÿ

;

(11) 

where p0 is a fixed scalar parameter used to construct the 
prior vector p0. We note that the criteria fλ ! 0:01;λ0 ¼
0:01g is satisfied in practice, as λ is annealed during the opti-
mization to progressively smaller values and λ0 is fixed a pri-
ori. This approximations allow us to rewrite the neural 
network loss as 

LðϕÞ ÿ −
1

L

X

L

l¼1

log N
ÿ

z;0;ΣX þΣX

ÿ

n σ2
Σ

l
CðϕÞ

ÿ

ΣX

ÿ

þ
X

m

i¼1

piðϕÞ log
piðϕÞ

p0

ÿ ÿ

þð1 − piðϕÞÞ log
1 − piðϕÞ

1 − p0

ÿ ÿ

;

(12) 

where Σl
CðϕÞ is a diagonal matrix with clðϕÞ as the diagonal 

entries. We use a stochastic gradient descent optimizer 
(Kingma and Ba 2014) to minimize the loss LðϕÞ with respect 
to the neural network weights ϕ. This process is detailed in 
Algorithm 1.

In our optimization process, we further take advantage of 
the sparsity of the causal vector, leading to significant 
improvements in computational complexity. The complexity 
analysis is provided in the Supplementary Section S1.5.

3 Verification and comparison

3.1 Causal configurations and PIPs

We evaluate posterior inclusion probabilities (PIPs) and cred-
ible sets of each method. PIPs estimate how likely each vari-
ant is causal as a measure of its importance. Credible sets are 
subsets of variants that likely contain a causal variant, which 
captures the uncertainty of finding the true variant.

The main challenge to estimating the posterior probability 
of a given causal configuration (i.e. set of causal variant loca-
tions) is the exponentially large search space. Let b denote a 
binary vector with a value of 1 at causal locations and a value 
of 0 at noncausal locations. At a high level, b can be viewed 
as a binarized version of the causal vector c in the previous 
sections. Using Bayes’ Rule, the posterior probability of b 
given the input data fz;ΣXg can be written as follows: 

pðbjz;ΣXÞ ¼
pðzjΣX;bÞpðbÞ

P

b02B pðzjΣX;b
0Þpðb0Þ

(13) 

where B is the set of all 2m possible causal configurations, z 
denotes the summary statistics, and ΣX is the LD matrix. 
Even though B is exponentially large, it has been argued 
(Hans et al. 2012) that the majority of these configurations 
have negligible probability and do not contribute to the de-
nominator of Equation (13).

Our stochastic optimization provides a natural means to 
track causal configurations with nonnegligible probability in 
pðbjz;ΣXÞ. Namely, at each iteration of stochastic gradient 
descent, we randomly generate a sample causal vector cl to 
minimize Equation (12). In parallel, we binarize the vector 
cl via 

bl
i ¼

1; cl
i > γ;

0; otherwise

(

and add the resulting vector bl to a reduced set of causal con-
figurations BR. The variational objective ensures that our 
proposal distribution converges to the true posterior distribu-
tion of the causal vectors. Thus, the samples cl lie near modes 
of the posterior distribution, which can also be viewed as the 
neighborhood of nonnegligible probability.

Our experiments use a threshold γ ¼ 0:1 to binarize the 
vectors cl. The threshold γ can be viewed as a user-specified 
lower bound for ɛ, where fixing γ ¼ 0:1 preserves only var-
iants with an estimated effect size variance greater than 
0:1σ2. Interestingly, the threshold γ can also be viewed as a 
sparsity penalty that loosely controls the size of the reduced 
set of causal configurations BR. For example, when γ is large, 
we include only a small set of causal configurations with high 
posterior probability, whereas when γ is small, we allow for 
more configurations to be included in our analysis. A higher 
threshold is often beneficial in the presence of large interac-
tion effects from non-causal variants, and a lower threshold 
is useful when the causal variants are weakly associated with 
the outcome. Finally, we note that γ is also linked to the 
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computational overhead of BEATRICE. When γ is large we 

will need fewer samples to estimate posterior configuration, as 

compared to smaller values of when γ, leading to lower time 

complexity. While we fix the default value for γ at 0.1, this 

parameter can be adjusted by the user as desired. In 

Supplementary Section S1.10, the sensitivity of the results with 

different values of γ.
After obtaining the sampled vectors, we replace the ex-

haustive set B in Equation (13) with the reduced set BR for 

tractable computation of pðbjz;ΣXÞ. We then compute the 

posterior inclusion probability (PIP) of each variant by sum-

ming the probabilities over the subset of BR with a value of 1 

at that variant location. Mathematically, 

Pðbi ¼ 1jz;ΣXÞ ÿ
X

b2S

pðbjz;ΣXÞ (14) 

s:t: S ÿ BR and S ¼ fb j bi ¼ 1g (15) 

where S is a subset of BR that contains a 1 at location i.
Finally, we identify the credible sets in two steps. First, in a 

conditional step-wise fashion, we identify the variants with 

the highest conditional probability given the previously se-

lected variants. This strategy identifies the set of “key” var-

iants with a high probability of being causal. Second, we 

determine the credible set for each key variant, by computing 

the conditional inclusion probabilities of each variant given 

the key variants and adding variants to the credible set. A 

detailed description of this process can be found in the 

Supplementary Methods document (Supplementary Section 

S1.3 in S1 text).

3.2 Baselines

We compare our approach with these state-of-the- 

art methods:

ÿ Finemap: This approach (Benner et al. 2016) uses a sto-

chastic shotgun search to estimate the PIPs and the credi-

ble sets. 
ÿ SuSiE: (Wang et al. 2020, Zou et al. 2022) introduced an 

iterative Bayesian selection approach for fine-mapping 

that represents the causal vector as a sum of “single- 

effect” vectors. 

ÿ CARMA: The work of Yang et al. (2023) introduced a 
Bayesian approach for fine-mapping using a spike-and- 
slab prior over the effect sizes to model the GWAS sum-
mary statistics. 

Further details are provided in Supplementary 
Section S1.15.

3.3 Evaluation strategy

We evaluate several metrics of performance for each method.

3.3.1 Evaluating PIPs

We compare the quality of the PIPs via the AUPRC metric. 
AUPRC (area under the precision-recall curve) is computed 
by sweeping a threshold on the PIPs and computing precision 
and recall against the true configuration of causal and non-
causal variants. High precision indicates a low false positive 
rate in the estimated causal variants. High recall indicates 
that the model correctly identifies more of the causal variants. 
Thus, the AUPRC, can be viewed as a holistic measure of per-
formance across both classes. AUPRC is also robust to severe 
class imbalance (Davis and Goadrich 2006), which is the case 
in fine mapping, as the number of causal variants is small. 
Additionally, in Supplementary Section S1.8 we visualize 
power vs. FDR for different thresholds of the PIPs. Following 
standard nomenclature, both power and recall measures the 

probability of detection TP
P

ÿ ÿ

and FDR (1-precision) meas-

ures the type-I error (FP
PP). Therefore, the power versus FDR 

curve provides a visual comparison, while AUPRC gives the 
numeric quantification of the performances.

3.3.2 Coverage, power and size of the credible sets

We follow the strategy of Zou et al. (2022) and Wang et al. 
(2020) to define a credible set. A credible set is defined as a 
collection of variants that contain a single causal variant with 
a probability equal to the coverage. Given that the number of 
causal variants can be arbitrary, we use two metrics to assess 
the quality of the credible sets: Coverage and power. Coverage 
is the proportion of credible sets that contain a causal variant, 
and power is the proportion of causal variants identified by all 
the credible sets. Higher coverage indicates that the method is 
confident about its prediction of each causal variant, whereas 
higher power indicates the method can accurately identify all 
the causal variants.

One caveat is that a method can generally achieve both 
higher coverage and higher power simply by adding variants 
to the credible sets. To counter this trend, we report the aver-
age size of the credible sets identified by each method. 
Ideally, we would like the credible sets to be as small as possi-
ble while retaining high coverage and high power.

4 Experimental results

4.1 Setup for simulation experiments
4.1.1 Genotype simulations

We use the method proposed by Dimitromanolakis et al. 
(2019) to simulate genotypes X based on data from the 1000 
Genomes Project. We select an arbitrary sub-region 
(39:9Mb− 40:9Mb) from Chromosome 2 as the base. After 
removing rare variants (MAF < 0:02), the remaining 3.5K 
variants are used to simulate pairs of haplotypes to generate 
10000 unrelated individuals. We do not run any filtering of 

Algorithm 1 Optimization scheme to minimize Equation (12)

BR ¼ fg

Initialize ϕ0

for t ¼ ½1 . . .T ÿ do

Generate pðϕtÞ ¼ Fðz;ϕtÞ

Randomly sample cl
t according to Equation (6)

Binarize cl
t to bl

t and add to BR 

Sl
t ¼ fig s:t: cl

tðiÞ>0:01 

Prune set Sl
t such that it consists of 50 indices. 

cl
tðiÞ ¼ 0 if i 62 Sl

t 

Generate LðϕtÞ according to Equation (12) 

ϕtþ1 ¼ ϕt − StepSizerLðϕtÞ

end for
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variants on our simulated data. We chose a MAF threshold 
of 0.02, as it lies in the middle of the range 0.01–0.05 used in 
GWAS studies (Gibbs et al. 2003). In each experiment below, 
we randomly select m ¼ 1000 variants and n ¼ 5000 individ-
uals to generate the phenotype data.

4.1.2 Phenotype generation

We generate the phenotype y from a standard mixed linear 
model (Pirinen et al. 2013), where the influences of the causal 
variants are modeled as fixed effects, and the influences of 
other noncausal variants are modeled as random effects. In 
this case, the genetic risk for a trait is spread over the entire 
dataset, with each variant having small individual effects, as 
per the polygenicity assumption of a complex trait. We ran-
domly select the causal variants in our simulations. Thus, 
some simulations will have causal variants in LD, while 
others will select causal variants with low correlation.

Given a set of d causal variants C, let XC 2 Rn×d denote 
the corresponding subset of the genotype data and XNC 2
Rn×m − d denote the remaining non-causal variants. From 
here, we generate the phenotype data y as follows: 

y ¼ XCβþ gNC þ ɛ¢ gC þ gNC þ ɛ

gNC ÿ N 0;
1

m − d
XNCXT

NC

ÿ ÿ

β ÿ Nð0; IdÞ ɛ ÿ Nð0; α2InÞ

where β is the d-dimensional effect sizes sampled from a 
Gaussian distribution, and ɛ is a zero-mean Gaussian noise 
with variance α2. The random variable gNC models the effect 
of the noncausal variants as a multivariate Gaussian vector 
with mean 0 and covariance 1

m − d XNCXT
NC. Likewise, gC ¼

XCβ captures the effect of the causal variants.
In our experiments, we define ω2 as the total phenotypic 

variance attributed to the genotype (both gC and gNC) and p 
as the proportion of this variance associated with the causal 
variants in gC. Using the strategy described in Meyer and 
Birney (2018), we enforce these conditions by normalizing 
the phenotype y as follows: 

~y ¼

oooooooooooooooo

pω2

varðgCÞ

s

gC þ

oooooooooooooooooooo

ð1 − pÞω2

varðgNCÞ

s

gNC þ~ɛ

~ɛ ÿ Nð0; ð1 − ω2Þ1nÞ

(16) 

where varðgCÞ and varðgNCÞ are the empirical variances of the 
genotype vectors gC and gNC, respectively.

To replicate real-world scenarios, we use a GWAS setup to 
estimate the effect size β̂i of each variant i based on the pheno-
type ~y and the unnormalized genotype data ~X. Here, we use a 
simple linear model and ordinary least squares to estimate the 
effect sizes. From here, we convert the estimated effect sizes to 
z-scores via zi ¼

β̂ i

seðβ̂ iÞ
, where seðÿÞ denotes the standard error. 

The LD matrix is computed as ΣX ¼ 1
n XTX, where X is the 

normalized genotype data. The z-scores and LD matrix are in-
put to each of the fine-mapping methods above.

4.1.3 Noise configurations

We evaluate the performance of each method while varying 
the number of causal variants d, the total genotype variance 
ω2, and the proportion of this variance associated with the 
causal variants p. Formally, we sweep over the ranges 

d ¼ ½1;4;8;12ÿ, ω2 ¼ ½0:1;0:2;0:4;0:5;0:7;0:8ÿ, and 
p ¼ ½0:1;0:3;0:5;0:7;0:9ÿ. For each parameter setting, we 
randomly generate 20 datasets by independently re-sampling 
the causal variant locations, the effect sizes fβig, the non-
causal component gNC, and the noise ~ɛ. We run all fine- 
mapping methods over a total of 4×6×5×20 ¼ 2400 
configurations.

4.2 Application to real-world SNP data

We compare the performance of each fine-mapping method 
on a GWAS study of Alzheimer’s Disease (AD). AD is a poly-
genic disorder, making it an ideal test bed to evaluate each 
model. We use the publicly available GWAS summary statis-
tics released by Wightman et al. (2021) to obtain the z-scores 
and the UK Biobank data to generate the LD matrices. We 
compare the fine-mapping results of SuSiE and BEATRICE. 
Notice that we cannot run FINEMAP because the reported 
GWAS statistics only contain the z-scores, whereas FINEMAP 
requires the effect sizes β̂i and the corresponding standard 
errors to perform fine mapping. This real-world study also 
highlights a major drawback of FINEMAP, should the origi-
nal effect sizes and standard errors be unavailable. Both SuSiE 
and BEATRICE were run with their default setting.

4.2.1 Data acquisition

The recent GWAS analysis performed by Wightman et al. 
(2021) identified multiple statistically significant index SNPs 
in AD. We clumped the GWAS statistics to 175 regions and 
fine mapped the top 20 regions sorted by the P-values of the 
index SNPs. Additionally, we sub-select SNPs from the GWAS 
summary statistics that overlap with both the publicly avail-
able 1000 Genome Phase-3 data and the UK Biobank data.

4.2.2 Data preprocessing

We first filter out variants that are not common to both the 
1000 Genome database and the UK Biobank database. We 
further removed the strand ambiguous SNPs (i.e. those with 
complementary alleles, either C/G or A/T SNPs) due to the 
lack of strand information. For example, an A/T allele can be 
mapped to T/A, or A/T based on the strand information. 
Without this information, we cannot map the allele in the 
base data and GWAS results. After filtering, we verify that 
the counted alleles are present in the GWAS summary statis-
tics for AD and the UK biobank LD matrices. We identify 
175 clumps using the GWAS statistics, where each clump 
contains SNPs less than 250KB away from the index SNP 
with R2 >0:1 and MAF>0:01. We note that the GWAS sta-
tistics published by Wightman et al. (2021) reported multiple 
SNPs in the first clump with z-scores of infinity. For numeri-
cal stability, we clip these z-scores to 200. Finally, we merge 
overlapping clumped regions into a single region. Further 
details about the clumped variants are reported in 
Supplementary Table S1. The resulting variants within each 
clump are used to generate LD matrices using the publicly 
available LD matrices derived from 337K subjects of the UK 
Biobank database (Weissbrod et al. 2020) (https://registry. 
opendata.aws/ukbb-ld/).

4.3 Model performance
4.3.1 Simulated experiments
4.3.1.1 Varying the number of causal variants

Figure 2 illustrates the performance of each method 
(BEATRICE, FINEMAP, SuSiE, and CARMA) while 
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increasing the number of causal variants from d ¼ 1 to 
d ¼ 12. The points denote the mean performance across all 
noise configurations ðω2;pÞ for fixed d, and the error bars 
represent the 95% confidence interval across these configura-
tions. We note that BEATRICE achieves a uniformly higher 
AUPRC than all baseline methods, which suggests that 
BEATRICE can better estimate the PIPs than CARMA, 
FINEMAP or SuSiE. BEATRICE also provides a 0.9–1.4-fold 
increase in coverage than the baselines while maintaining a 
similar power, which indicates that the credible sets gener-
ated by BEATRICE are more likely to contain a causal vari-
ant than the baselines. Finally, we note that BEATRICE, 
identifies the same or smaller credible set sizes than CARMA, 
FINEMAP, and SuSiE. Taken together, as the number of 
causal variants increases, BEATRICE gives us a better esti-
mate of the PIPs. Unlike the baseline methods, BEATRICE 
does not impose any prior assumptions over the total number 
of causal variants, which may lead to its improved perfor-
mance. Finally, we observe that CARMA achieves notably 
lower AUPRC and power than all other methods and is com-
parable to SuSiE and FINEMAP in the other metrics.

4.3.1.2 Increasing the genotype contribution

Figure 3 shows the performance of each method while in-
creasing the genetically explained variance from ω2 ¼ 0:1 to 
ω2 ¼ 0:8. Similar to the above experiment, the points in the 
figure denote the mean performance across all other noise 
configurations ðd;pÞ for fixed ω2, and the error bars 

represent the 95% confidence intervals across these configu-
rations. We note that BEATRICE achieves a significantly 
higher AUPRC than FINEMAP and CARMA and a slightly 
higher AUPRC than SuSiE. When evaluating the credible sets, 
we observe similar trends in coverage (BEATRICE is 0.25– 
2.34 folds higher) and power (similar performance across 
methods). Once again, CARMA achieves significantly lower 
AUPRC and power. All four methods identify credible sets of 
similar size. We submit that BEATRICE achieves the best 
trade-off across the four performance metrics.

4.3.1.3 Varying the contributions of causal and noncausal 

variants

Figure 4 illustrates the performance of each method while in-
creasing the contribution of the causal variants from p ¼ 0:1 
to p ¼ 0:9. Again, the points denote the mean performance 
across all other noise configurations ðd;ω2Þ for fixed p, and 
the error bars represent the 95% confidence intervals across 
these configurations. From an application standpoint, the 
presence of noncausal variants with small non-zero effects 
makes it difficult to detect the true causal variants. 
Accordingly, we observe a performance boost across all 
methods when p is larger. Similar to our previous experi-
ments, BEATRICE provides the best AUPRC, with converg-
ing performance as p ! 1. In addition, BEATRICE identifies 
smaller credible sets with significantly higher coverage while 
maintaining power. Thus, we conclude that BEATRICE is the 
most robust of the three methods to the presence of noise 

Figure 2. The performance metrics for the three methods across varying numbers of causal variants. Along the x-axis, we plot the number of causal 

variants, and across the y-axis, we plot the mean and confidence interval (95%) of each metric. We calculate the mean by fixing d to a specific value 

d ¼ dÿ and sweep over all the noise settings where d ¼ dÿ.
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from noncausal variants. This performance gain may arise 
from our binary concrete proposal distribution for the causal 
vector c, which provides flexibility to accommodate varying 
degrees of association. Finally, we note that compared to all 
the approaches, CARMA has significantly lower AUPRC and 
power, which suggests that it fails to identify the true causal 
SNPs across the various noise paradigms. Moreover, as 
shown in Fig. 10, the runtime of CARMA is significantly 
higher than the others due to its MCMC procedure. Thus, we 
omit it from our subsequent analyses.

4.3.2 Fine-mapping results on real-world AD data

Figure 5 shows the absolute z-scores of the SNPs in each of 
the 20 clumps. The GWAS statistics of Wightman et al. 
(2021) report multiple z-scores with high values in each 
clump. The inflation in the GWAS statistics could result from 
the infinitesimal effects of multiple SNPs within each clump. 
This scenario is similar to the simulation settings when p 
is small.

Figure 6 shows the PIPs (>0:9) identified by each fine- 
mapping method, colored by clump (i.e. locus). The x-axis 
corresponds to the SNP index, and the y-axis reports the cor-
responding PIP values. We explore the variants from the first 
clump (chr19:44515074–46457976), which contains the 
TOMM40, APOC1, and APOE genes. These genes have been 
repeatedly identified as potential disease-causing loci for AD 
(Lund et al. 2014, Zhou et al. 2014, Cooper et al. 2022, 

Chen et al. 2023). In Supplementary Tables S2 and S3, we re-
port the SNPs with PIP>0:9 for BEATRICE and SuSiE, re-
spectively. Figure 7 provides a detailed view of the z-scores, 
PIPs estimated by BEATRICE and SuSiE, and the LD struc-
ture of the variants within this clump. Interestingly, one of 
the high PIP SNP identified by BEATRICE is rs7412, the 
Apolipoprotein E (APOE) ɛ2 allele, which is a common land-
mark “risk” factor for Alzheimer’s disease (Kulminski et al. 
2020). As a second point of reference, Fig. 8 provides a detailed 
view of the variants in the ninth clump. Clump 9 
(chr6:32123639–32900787) is the largest clump (ÿ8000 SNPs) 
in our analyses and overlies the HLA region, which is com-
monly known for complex LD (Evseeva et al. 2010) structure.

In an exploratory analysis, we investigate the biological 
consequences of the SNPs with high PIPs (>0:9) of the first 
clump, as identified by each method. Further details about 
this analysis are presented in Supplementary Section S1.17.

5 Discussion and summary

BEATRICE is a novel and general-purpose tool for fine map-
ping that can be used across a variety of studies. One key con-
tribution of BEATRICE over methods like FINEMAP and 
SuSiE is its ability to discern infinitesimal effects from non-
causal variants, including those in high LD with true causal 
variants. Our simulated experiments in Section 4.3.1 and 
Supplementary Section S1.8 capture this improved 

Figure 3. The performance metric for increasing phenotype variance is explained by genetics. Along the x-axis, we plot the variance explained by 

genetics ðω2Þ, and across the y-axis, we plot each metric’s mean and confidence interval (95%). We calculate the mean by fixing ω2 to a specific value 

ω ¼ ωÿ and sweep over all the noise settings where ω ¼ ωÿ.
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performance by sweeping the proportion of the observed var-
iance attributed to causal (fixed effects) and noncausal (ran-
dom effects) genetic variants. This parameter p 2 ½0;1ÿ is 
swept over its natural domain, such that p ¼ 1 implies that 
the only link between the genotype and phenotype comes 
from the causal variants. At this extreme, all methods achieve 
comparable performance (Fig. 4). However, as p decreases, 
meaning that the effects of noncausal variants increase, 
BEATRICE outperforms both baselines. In Fig. 9, we show 
an example of fine mapping using BEATRICE for a simula-
tion setting fd ¼ 1;ω2 ¼ 0:1;p ¼ 0:3g. Notice that the z-score 
for the causal SNP is not the largest, which accurately high-
lights the importance of fine mapping. In Supplementary 
Section S6, we compare examples of the effects of SNP herita-
bility explained by the noncausal SNPs. We show that when 
noncausal SNPs explain most of the genetic heritability, only 
BEATRICE can successfully assign the highest PIP to the 
causal SNPs. This result shows that BEATRICE can success-
fully use the binary concrete distribution to model noncausal 
variants with non-zero effects while the sparsity term of LðÿÞ
prioritizes potentially causal variants.

A second contribution of BEATRICE is our strategic inte-
gration of neural networks within a larger statistical frame-
work. Specifically, we use the neural network in 
Supplementary Fig. S2 as an inference engine to estimate the 

parameters p of our proposal distribution. Effectively, we le-
verage the neural network as a universal function approxima-
tor to establish the relationship between the parameter space 
and the input data space. We choose neural networks as our 
inference engine over other types of functions due to their flex-
ibility, scalability, and ease of optimization via backpropaga-
tion. We demonstrate in Sections 4.3.1 and Supplementary 
Sections S1.8 and S1.9 that the deep neural network can suc-
cessfully generate sample causal configurations that well ap-
proximate the true posterior distribution leading to improved 
AUPR, power, coverage, and FDR. Moreover, BEATRICE 
leverages the continuous representation of the causal vectors cl 

to backpropagate the gradients through the random sampler 
and train the network. These continuous representations of cl 

result in low-variance gradients with respect to the underlying 
probability map, thus leading to a stable optimization.

Related to the above point, a third contribution of 
BEATRICE is its ability to identify the representative sets of 
causal configurations from the exponential search space to 
compute the PIPs and credible sets. In Supplementary 
Sections S1.11, S1.12, and S1.14, we show that BEATRICE 
generates well-calibrated PIPs in the presence of model mis-
specification. The improved performance can be attributed to 
our random sampling process, which ensures that the ran-
domly sampled causal vectors slowly converge to the causal 

Figure 4. The performance metric for multiple levels of noise introduced by noncausal variants. The noise level ðpÞ is explained by the variance ratio of 

noncausal variants vs. causal variants. Along the x-axis, we plot the noise level ðpÞ; across the y-axis, we plot each metric’s mean and confidence interval 

(95%). We calculate the mean by fixing p to a specific value p ¼ pÿ and sweep over all the noise settings where p ¼ pÿ.
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configurations with nonnegligible posterior probability. 
Furthermore, this strategy allows us to efficiently estimate the 
PIPs in finite run-time. However, we note that the current im-
plementation of BEATRICE does not estimate the posterior 
variant effect sizes. Instead, BEATRICE uses the binary con-
crete vectors to model the variance of the effect sizes. This 
property allows our model to adjust for infinitesimal effects 
from the noncausal variants. Figure 10 compares the average 
run-time of each method across all parameter settings. We 
observe that the run-time of BEATRICE and SuSiE are less 
than 1 min. FINEMAP requires five minutes on average to 
converge. CARMA requires approximately 100 min to con-
verge, likely due to the slow MCMC sampling procedure for 
generating posterior estimates.

The final contribution of BEATRICE is its simple and flexi-
ble design. Importantly, BEATRICE can easily incorporate 
priors based on the functional annotations of the variants. 
Specifically, in the current setup, the prior over c is effectively 
constant, as captured by p0 ¼

1
m. We can integrate functional 

information simply by modifying the distribution of p0 across 
the variants. Going one step further, a recent direction in fine 
mapping is to aggregate data across multiple studies to iden-
tify causal variants (LaPierre et al. 2021). This extension 
would amount to adding multiple log-likelihood terms in 

Equation (12) corresponding to the different GWAS inputs 
fzs;ΣXs

g matrices across studies. A similar extension can be 
used for multiple ancestries or traits. In this case, the inputs 
fzs;ΣXs

g would reflect a particular ancestry or trait. The 
main difference between BEATRICE and these extensions is 
that the parameters p would be generated as a function of 
multiple zs scores, i.e. p ¼ f ðz1; . . . ; zS;ϕÞ.

In this work, we have shown that BEATRICE is highly effi-
cient in handling the complexity that arises due to infinitesi-
mal effects and out-of-sample LD matrices (Supplementary 
Section S1.13). Thus, we believe that the advantages of 
BEATRICE will be more evident when considering polygenic 
traits and diseases. Additionally, the high coverage and small 
size of credible sets reported in Figs 2–4 show that 
BEATRICE can successfully prioritize variants in the presence 
of LD. This property is in stark contrast with the baseline 

Figure 5. z-scores of the variants present each of the 20 clumps. The 

scores are obtained from a GWAS study of Alzheimer’s Disease 

(Wightman et al. 2021) colored by locus. The x-axis denotes the SNP 

index present in each locus. The y-axis reports the absolute z-scores.

Figure 6. The posterior inclusion probabilities obtained by running fine 

mapping on the top 20 clumps from the Alzheimer’s Disease GWAS. We 

report the PIPs of SNPs with PIP > 0:9. The x-axis denotes the SNP index 

present in each locus. The y-axis reports the PIP values.

Figure 7. Detailed results for Clump 1: Top row: absolute z-scores of the 

included variants; the index SNP is indicated by a black circle. Second 

row: PIPs identified by BEATRICE. Third row: PIPs identified by SuSiE. 

Bottom row: LD structure between the variants, where the color bar 

indicates the r2 values.

Figure 8. Detailed results for Clump 9: Top row: absolute z-scores of the 

included variants; the index SNP is indicated by a black circle. Second 

row: PIPs identified by BEATRICE. Third Row: PIPs identified by SuSiE. 

Bottom row: LD structure between the variants, where the color bar 

indicates the r2 values.
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fine-mapping approaches that generate a large number of 
credible sets that do not contain a causal variant. Taken to-
gether, we believe BEATRICE could be useful in eQTL stud-
ies, where multiple variants within a locus can show strong 
association due to the complex LD structure present in the 
human genome (Zou et al. 2019).

In summary, we present BEATRICE, a novel Bayesian 
framework for fine mapping that identifies potentially causal 
variants within GWAS risk loci through the shared LD struc-
ture. Using a variational approach, we approximate the pos-
terior probability of the causal location(s) via a binary 
concrete distribution. In conjunction, we introduce a new 
strategy to build a reduced set of causal configurations within 
the exponential search space that can be neatly folded into 
our optimization routine. This reduced set is used to approxi-
mate the PIPs and identify credible sets. We have demon-
strated through a comprehensive simulation the advantages 
of BEATRICE under different noise settings and that 
BEATRICE outperforms existing fine-mapping methods. 

Hence, BEATRICE is a powerful tool to refine the results of a 

GWAS or eQTL analysis. It is also flexible enough to accom-

modate a variety of experimental settings.

Supplementary data

Supplementary data are available at Bioinformatics online.
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Figure 9. The fine-mapping performance of BEATRICE, SuSiE, and FINEMAP at a noise setting of fd ¼ 1;ω2 ¼ 0:1;p ¼ 0:3g. (a) The absolute z-score of 

each variant as obtained from GWAS. (b) Pairwise correlation between the variants. (c–e) illustrate the posterior inclusion probabilities of each variant, as 

estimated by the three methods. The circle marked by an arrow shows the location of the causal variant. The other nonzero markers represent the 

variants assigned to a credible set, coded based on the assignment.

Figure 10. The runtime comparison of BEATRICE, SuSiE, and FINEMAP across all the simulation settings.
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Data availability

We have compiled the code for BEATRICE and its dependen-
cies into a docker image, which can be found at https:// 
github.com/sayangsep/Beatrice-Finemapping. We have also 
provided details about the usage and outputs of the model in 
Supplementary Section S1.20.
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