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ABSTRACT

Resting-sate fMRI (rs-fMRI) has emerged as a viable tool
to localize the epileptogenic zone (EZ) in medication refrac-
tory focal epilepsy patients. However, due to clinical proto-
col, datasets with reliable labels for the EZ are scarce. Some
studies have used the entire resection area from post-operative
structural T1 scans to act as the ground truth EZ labels dur-
ing training and testing. These labels are subject to noise, as
usually the resection area will be larger than the actual EZ
tissue. We develop a mathematical framework for character-
izing noisy labels in EZ localization. We use a multi-task
deep learning framework to identify both the probability of
a noisy label as well as the localization prediction for each
ROI. We train our framework on a simulated dataset derived
from the Human Connectome Project and evaluate it on both
the simulated and a clinical epilepsy dataset. We show supe-
rior localization performance in our method against published
localization networks on both the real and simulated dataset.

Index Terms— Epilepsy, Dynamic Functional Connec-
tivity, Noisy Labels, Semi-supervised Learning

1. INTRODUCTION

The ratio of corrupted to clean labels in real world datasets is
reported to be anywhere from 8.0% to 38.5% [1]. The chal-
lenge of curating datasets with accurate labels is especially
significant in medical imaging. Datasets tend to be small to
begin with, and institutional policies or patient privacy can
prevent data from being shared. Labeling of medical images
is especially resource-intensive and potentially unreliable, as
it requires specific domain expertise and there often exists a
large degree of inter-observer variability [2].

Epilepsy is one of the most common neurological dis-
orders and is linked to a fivefold increase in mortality [3].
Surgical treatment is a viable approach for medication re-
fractory epilepsy [4]. However, identifying the epileptogenic
zone (EZ) is a challenging task that requires many presurgi-
cal evaluations. Invasive monitoring using implanted intracra-
nial electrodes can provide accurate EZ localization that can

help plan treatment, but is associated with surgical risks [5].
Resting-state fMRI (rs-fMRI) measures co-activation patterns
in the brain, and has shown promise in identifying regions as-
sociated with the EZ that could potentially improve presurgi-
cal evaluation and localization [6, 7].

Previously established EZ localization models using rs-
fMRI connectivity, like those in [6, 8] have used the entire re-
section area, delineated from the post-operative structural T1
images, to act as the EZ label during train and testing. How-
ever, it is well known that these resections usually are larger
than the EZ, either as a means of removing secondary tissue
that can also be problematic or ensuring the resection is lib-
eral enough to ensure all EZ tissue is removed [9]. Therefore,
parts of the EZ label in these models are mislabeled.

We develop a framework to identify noisy labels for EZ
localization. Specifically, we model the probability of an in-
correct label using the concrete distribution [10], which is a
continuous relaxation of the Bernoulli distribution. Leverag-
ing the data augmentation techniques presented in [11] for
EZ simulation, we create a simulated dataset that contains
noisy labels that reflect the expected pattern of noisy labels.
We develop a multi-task neural network architecture to learn
the concrete distribution parameters of interest in a strongly
pre-trained fashion and perform localization. Our proposed
method outperforms localization methods presented in [8, 6]
on both datasets and highlight representative examples.

2. METHODS

2.1. Graphical model representation

Fig. 1 shows the graphical model for one subject. Mathe-
matically, let n € {1,---, N} index node (brain ROI), and
X € RVXNXT be the data. Following [8], we construct dy-
namic connectivity matrices as the input, so X,, € RV*7 is
the dynamic connectivity profile associated with node n. Let
Y, be the observed label and Y, be the real, unobserved la-
bel for node n and let Z,, be a latent random variable that
captures corruption of label n, which is parameterized by a,.
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Fig. 1. A graphical model showing the dependencies in our
model. Shaded nodes are observed while white are latent.

The joint distribution of Y, Y. Z, conditioning on X,
from the graphical model is
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We define the helper function A(Y,,,Y,) =Y, Y, + (1 -

Y,)(1 — Y,), which indicates when the observed label is
corrupted or not. We define our likelihood term as
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where p ~ 0.99, or essentially is 1. In contrast to exist-
ing methods, like the one in [12], our goal is to develop a
framework that can learn «,, as opposed setting it a priori.
The terms P(Y,|X,,) and P(Z,|X,) describe the class la-
bel distribution and noise content in the data respectively. We
use two separate deep networks to characterize these distribu-
tions, parameterized by 6; and 6, = 05 | J « respectively.

Concrete distribution Instead of using the discrete Bernoulli
distribution, we model the latent random variable Z,, via the

concrete distribution [10]
Z, = o L 10g [ —22 ) +1og [ 2 3)
n=a t & 1—a, & 1—u,

which gives a continuous relaxation of the Bernoulli distribu-
tion, where wu,, is a uniform random variable on the interval
of [0,1]. Here, the temperature ¢ is a hyperparameter of the
distribution. We observed more stable training from using the
concrete Bernoulli compared to the discrete case.

Learning the parameters We use two deep networks to
to model P(Y|X) and P(Z|X) where 6, parameterizes
P(Y|X) and 6, parameterizes P(Z|X). Our goal is to find
the optimal § = 6,(J6), that maximizes the incomplete
log-likelihood P(Y|X;60). We use the EM algorithm to iter-
atively solve this problem [13]. For an arbitrary distribution
q(Y,Z|Y,X), we can derive a lower bound of the incom-
plete log-likelihood
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Fig. 2. Bottom: The label uncertainty parameter network is
pretrained in a fully supervised manner to learn o from X.
Top: after pretraining, the localization network is trained only
with the observed noisy labels Y.
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The E-step involves computing the posterior of the latent
variables using the current parameters (%)

P(Y,Z]Y,X;0) =
P(Y[Y,Z;6")P(Y|X;0") P(Z|X; 0)) (5)
Sivrz POY[Y', Z/60) P(Y/|X;00)) P(Z/|X;0))

where the expected complete log-likelihood can be written as

Q(B;01) => " P(Y,Z|Y,X;0")log P(Y, Y, Z|X;0).
Y.Z
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For the M-step, we exploit two deep networks to model

the probability P(Y|X;0;) and P(Z|X;6,). Recall that

05 = 02| Ja. The gradient of @) with respect to 6 can be

decoupled into two parts, which are implemented via back-
propagation of the two separate neural networks:
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2.2. Deep learning network architecture

Our workflow is shown in Fig. 2. The data is input to both
the localization network and the label uncertainty parameter
network. The label uncertainty parameter network predicts «
from X in a fully supervised manner (including knowledge
of Y) during pretraining. We use the model from [8] as the
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Fig. 3. We use a CNN architecture with an ANN to predict a.

localization network. Once pretrained, we do not include in-
formation of Y when training the localization network.

Label uncertainty parameter network: Fig. 3 shows the la-
bel uncertainty parameter network used for pretraining. We
use cross-shaped convolutional filters designed in [14] to per-
form feature extraction from the dynamic connectivity inputs.
We then apply a 1D convolution (brown in Fig.3) along the
columns of the intermediate features, then reshape the repre-
sentation into a N x MT matrix to then feed into a 3 layer
ANN and obtain predictions «,. To ensure 0 < a,, < 1, we
use a softmax layer. We have access to both Y. Y using a
simulated dataset. We sample Z and our loss function is
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The function £, is a weighted cross entropy function that
encourages ., to be high when the labels Y, \?n are dif-
ferent and encourages ., to be low when the labels are the
same. We introduce the weights €1, €2 to handle the class-
imbalance, as only a relatively small subset of the nodes will
be mislabeled. This network identifies the connectivity pat-
terns associated with correctly labeled vs. mislabeled nodes.
Combined network training: Once the label uncertainty pa-
rameter network is pretrained, we attach the model in [8],
as the localization network for combined training. Let y,, €
RY*2 be the one-hot encoded version of Y,,. Let §j,, € RV %2
be the network outputs for node n. We do combined network
training with the following loss function:
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L is broken down into three main terms. The certain term re-
flects when we are confident about the observed label. There-
fore, we backpropagate the original weighted cross entropy
loss as the certain term. The uncertain term reflects the case
when we believe label n is mislabeled, and therefore we back-
propagate the average of the two prediction terms log 9,, 1 and
log y,,2. The hyperparameters 61, d2 are the cross entropy
weights which help mitigate class imbalance. The neigh-
borhood smoothing term acts as a biologically inspired reg-
ularization term that takes direct spatial neighbors of node n
into account, where M is the number of neighbors consid-
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ered (M = 6 in this work). When —=y——— = 0, the
2
neighbors of n belong to both classes, and node n is on the
boundary of the resection, for which we are more unsure of
its label. Given \; > 0, this case encourages «,, to be close

to 1 when we minimze the loss during backpropagation. Con-
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versely, when = 1, the neighbors of node n

all belong to the same class which encourages «, to be low.
Prediction on test data: We use both ¢, and «,, for n €
{1,---, N} during testing. Let§j = 25:1 Jn. During
testing, we fuse the predictions and alpha parameters for each
test subject separately in the following fashion

~test

Eq.10 takes both model outputs to arrive at a prediction 5"

for each node n which asserts that the final prediction should
be close to the original network prediction when we are confi-
dent about the label («,, low) or be close to the average predic-
tion when we are not confident about the label («,, high). The
way we fuse information in Eq.10 is similar to the weighted
combination of uncertain vs. certain terms in L.
Implementation details: We implement our network using
the PyTorch [15] deep learning library. We pretrain the la-
bel uncertainty parameter network using the Adam optimizer
for 250 epochs with a learning rate of 0.001 that decays by a
factor of 0.8 every 20 epochs. Once pretrained, we set the ini-
tial learning rate for the label parameter network to 0.00005
and train the entire network using the Adam optimizer for 150
epochs with a learning rate of 0.0005 that decays by a factor
of 0.8 every 10 epochs. We set the hyperparameters e; = 1.1,
€s = 0.15,0; = 0.16, 52 = 1.2 and \; = 0.08 which were
determined via cross validation on a separate HCP dataset.

3. EXPERIMENTAL RESULTS

Datasets: We use noise models introduced in [11] to simulate
the EZ region to obtain X, Y, Y from 400 HCP subjects [16].
To simulate the EZ signal used for Y, we augment the fMRI
time series of a spatially continuous region with one of six
noise models described in [11]. We create an artificial noisy
dataset having the labels implicated in Y correspond to re-
gions with the noise models (EZ) and Y include both aug-
mented (EZ) and healthy regions. We create a comprehen-



Fig. 4. Resection boundaries for two patients.

Method Sens Spec Acc AUC p-value
Proposed 0.5 089 0.8 0.71

Only localization 0.57 0.71 0.76 0.62 < 0.01
DeepEZ 0.36 0.69 0.67 057 <0.01

Table 1. Simulated dataset testing metrics w.r.t Y

sive training set by including different types of samples, like
where the spatial region implicated by Y is relatively small,
large, or on the boundary of Y and the healthy regions.

Our clinical dataset consists of 14 pediatric patients with

focal epilepsy from the University of Wisconsin (UW) Madi-
son. Preoperative rs-fMRI data was acquired using an echo
planar imaging sequence (EPI, TR = 802 ms, TE = 33.5
ms, flip angle = 50°, res = 2 mm isotropic). The rs-fMRI
data is preprocessed using the CPAC pipeline [17]. Postop-
erative T1-weighted MRI was acquired using a 3D gradient-
echo pulse sequence (MPRAGE, TR = 604 ms, TE = 2.516
ms, flip angle = 8°, res = 0.8 mm isotropic). As shown in
Fig. 4, we manually segment the resection cavity and consider
this area as the pseudo ground truth EZ for each patient. We
use the Brainnetomme atlas [18] to define N = 246 cortical
and subcortical regions for our analysis.
Localization results: We use 10-fold CV and report the av-
erage sensitivity, specificity, accuracy and AUC on both the
simulated dataset (table 1) and UW clinical dataset (table 2).
We use De Long’s test on AUC to show statistical signif-
icance in our results. We test using the Y labels for the
simulated dataset. We observe the performance of the entire
network with the label uncertainty parameter network (pro-
posed) and without (only localization) as well as the DeepEZ
method from [6] as a baseline method. We pretrain the la-
bel uncertainty parameter network with a different subset of
subjects than the entire network training and testing. In both
tables, the proposed method outperforms the baselines, as
shown by significant difference in the AUC metrics. The
proposed method maintains a good sensitivity while having
a much higher specificity, so it is not suffering from over pre-
dictions where the only localization method is. If trained en-
tirely on a noisy dataset, which is possible in a real world set-
ting, the method from [8] generalizes much worse to real sub-
jects compared to the proposed method that involves learning
the label uncertainty parameter and effectively ignoring mis-
labeled nodes during training.

Method Sens Spec Acc AUC p-value
Proposed 0.42 094 0.89 0.74

Only localization 0.51 0.77 0.84 0.68 0.041
DeepEZ 0.25 0.82 0.82 059 <0.01

Table 2. UW dataset testing metrics.

Proposed Alpha Only Localization DeepEZ

Resection

Fig. 5. Resection (pink), predictions (blue) and « (heat map)
for three separate epilepsy subjects.

Fig. 5 shows the ground truth (pink) labels, predicted
(blue) labels, and recovered alpha values (heat map) for three
separate subjects from the UW dataset. The proposed method
accurately localizes regions within the ground truth label
while having less false positives than the only localization
method. Circled in white, we observe regions that correspond
to false positives in the baseline and high a values in the
proposed. Due to our training procedure and Eq. 10, the
proposed method correctly classifies these regions as healthy,
showing the localization improvement using our approach.

4. CONCLUSION

In this work, we developed a framework for characterizing
noisy labels in EZ localization. We developed a graphical
model and derived the EM equations for our setup, and use
backpropagation from neural networks to achieve parame-
ter updates. We introduce a deep learning framework that
is trained in separate parts to achieve our goal, where we
strongly pretrain the label uncertainty parameter network to
be able to learn the Bernoulli parameters in a supervised
fashion. We create an artificial noisy dataset using EZ sim-
ulation methods. We show promising results, where even
when trained on the noisy labels, our proposed method out-
performs previously established models when testing with the
true labels for both the simulated and real dataset.
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