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ABSTRACT

Resting-sate fMRI (rs-fMRI) has emerged as a viable tool

to localize the epileptogenic zone (EZ) in medication refrac-

tory focal epilepsy patients. However, due to clinical proto-

col, datasets with reliable labels for the EZ are scarce. Some

studies have used the entire resection area from post-operative

structural T1 scans to act as the ground truth EZ labels dur-

ing training and testing. These labels are subject to noise, as

usually the resection area will be larger than the actual EZ

tissue. We develop a mathematical framework for character-

izing noisy labels in EZ localization. We use a multi-task

deep learning framework to identify both the probability of

a noisy label as well as the localization prediction for each

ROI. We train our framework on a simulated dataset derived

from the Human Connectome Project and evaluate it on both

the simulated and a clinical epilepsy dataset. We show supe-

rior localization performance in our method against published

localization networks on both the real and simulated dataset.

Index Terms— Epilepsy, Dynamic Functional Connec-

tivity, Noisy Labels, Semi-supervised Learning

1. INTRODUCTION

The ratio of corrupted to clean labels in real world datasets is

reported to be anywhere from 8.0% to 38.5% [1]. The chal-

lenge of curating datasets with accurate labels is especially

significant in medical imaging. Datasets tend to be small to

begin with, and institutional policies or patient privacy can

prevent data from being shared. Labeling of medical images

is especially resource-intensive and potentially unreliable, as

it requires specific domain expertise and there often exists a

large degree of inter-observer variability [2].

Epilepsy is one of the most common neurological dis-

orders and is linked to a fivefold increase in mortality [3].

Surgical treatment is a viable approach for medication re-

fractory epilepsy [4]. However, identifying the epileptogenic

zone (EZ) is a challenging task that requires many presurgi-

cal evaluations. Invasive monitoring using implanted intracra-

nial electrodes can provide accurate EZ localization that can

help plan treatment, but is associated with surgical risks [5].

Resting-state fMRI (rs-fMRI) measures co-activation patterns

in the brain, and has shown promise in identifying regions as-

sociated with the EZ that could potentially improve presurgi-

cal evaluation and localization [6, 7].

Previously established EZ localization models using rs-

fMRI connectivity, like those in [6, 8] have used the entire re-

section area, delineated from the post-operative structural T1

images, to act as the EZ label during train and testing. How-

ever, it is well known that these resections usually are larger

than the EZ, either as a means of removing secondary tissue

that can also be problematic or ensuring the resection is lib-

eral enough to ensure all EZ tissue is removed [9]. Therefore,

parts of the EZ label in these models are mislabeled.

We develop a framework to identify noisy labels for EZ

localization. Specifically, we model the probability of an in-

correct label using the concrete distribution [10], which is a

continuous relaxation of the Bernoulli distribution. Leverag-

ing the data augmentation techniques presented in [11] for

EZ simulation, we create a simulated dataset that contains

noisy labels that reflect the expected pattern of noisy labels.

We develop a multi-task neural network architecture to learn

the concrete distribution parameters of interest in a strongly

pre-trained fashion and perform localization. Our proposed

method outperforms localization methods presented in [8, 6]

on both datasets and highlight representative examples.

2. METHODS

2.1. Graphical model representation

Fig. 1 shows the graphical model for one subject. Mathe-

matically, let n ∈ {1, · · · , N} index node (brain ROI), and

X ∈ R
N×N×T be the data. Following [8], we construct dy-

namic connectivity matrices as the input, so Xn ∈ R
N×T is

the dynamic connectivity profile associated with node n. Let

Yn be the observed label and Ỹn be the real, unobserved la-

bel for node n and let Zn be a latent random variable that

captures corruption of label n, which is parameterized by ³n.



Fig. 1. A graphical model showing the dependencies in our

model. Shaded nodes are observed while white are latent.

The joint distribution of Yn, Ỹn,Zn conditioning on Xn

from the graphical model is

P (Yn, Ỹn,Zn|Xn) = P (Yn|Ỹn,Zn)P (Ỹn|Xn)P (Zn|Xn).
(1)

We define the helper function ∆(Yn, Ỹn) = YnỸn + (1 −
Yn)(1 − Ỹn), which indicates when the observed label is

corrupted or not. We define our likelihood term as

P (Yn|Ỹn,Zn) = [Ä∆(Yn,Ỹn)(1− Ä)(1−∆(Yn,Ỹn))](1−Zn)

[³(1−∆(Yn,Ỹn))
n (1− ³n)

∆(Yn,Ỹn)]Zn

(2)

where Ä ≈ 0.99, or essentially is 1. In contrast to exist-

ing methods, like the one in [12], our goal is to develop a

framework that can learn ³n as opposed setting it a priori.

The terms P (Ỹn|Xn) and P (Zn|Xn) describe the class la-

bel distribution and noise content in the data respectively. We

use two separate deep networks to characterize these distribu-

tions, parameterized by ¹1 and ¹′2 = ¹2
⋃
³ respectively.

Concrete distribution Instead of using the discrete Bernoulli

distribution, we model the latent random variable Zn via the

concrete distribution [10]

Zn = Ã

(
1

t

(

log

(
³n

1− ³n

)

+ log

(
un

1− un

)))

(3)

which gives a continuous relaxation of the Bernoulli distribu-

tion, where un is a uniform random variable on the interval

of [0, 1]. Here, the temperature t is a hyperparameter of the

distribution. We observed more stable training from using the

concrete Bernoulli compared to the discrete case.

Learning the parameters We use two deep networks to

to model P (Ỹ|X) and P (Z|X) where ¹1 parameterizes

P (Ỹ|X) and ¹′2 parameterizes P (Z|X). Our goal is to find

the optimal ¹ = ¹1
⋃
¹′2 that maximizes the incomplete

log-likelihood P (Y|X; ¹). We use the EM algorithm to iter-

atively solve this problem [13]. For an arbitrary distribution

q(Ỹ,Z|Y,X), we can derive a lower bound of the incom-

plete log-likelihood

Fig. 2. Bottom: The label uncertainty parameter network is

pretrained in a fully supervised manner to learn ³ from X.

Top: after pretraining, the localization network is trained only

with the observed noisy labels Y.

logP (Y|X; ¹) ≥ q(Ỹ,Z|Y,X) log
P (Y, Ỹ,Z|X; ¹)

q(Ỹ,Z|Y,X)
.

(4)

The E-step involves computing the posterior of the latent

variables using the current parameters ¹(t),

P (Ỹ,Z|Y,X; ¹(t)) =

P (Y|Ỹ,Z; ¹(t))P (Ỹ|X; ¹(t))P (Z|X; ¹(t))
∑

Ỹ′,Z′ P (Y|Ỹ′,Z′; ¹(t))P (Ỹ′|X; ¹(t))P (Z′|X; ¹(t))

(5)

where the expected complete log-likelihood can be written as

Q(¹; ¹(t)) =
∑

Ỹ,Z

P (Ỹ,Z|Y,X; ¹(t)) logP (Y, Ỹ,Z|X; ¹).

(6)

For the M-step, we exploit two deep networks to model

the probability P (Ỹ|X; ¹1) and P (Z|X; ¹′2). Recall that

¹′2 = ¹2
⋃
³. The gradient of Q with respect to ¹ can be

decoupled into two parts, which are implemented via back-

propagation of the two separate neural networks:

∂Q

∂¹
=

∑

Ỹ

P (Ỹ|Y,X; ¹(t))
∂

∂¹1
P (Ỹ|X; ¹1)+

∑

Z

P (Z|Y,X; ¹(t))
∂

∂¹′2
P (Z|X; ¹′2)

(7)

2.2. Deep learning network architecture

Our workflow is shown in Fig. 2. The data is input to both

the localization network and the label uncertainty parameter

network. The label uncertainty parameter network predicts ³

from X in a fully supervised manner (including knowledge

of Ỹ) during pretraining. We use the model from [8] as the



Fig. 3. We use a CNN architecture with an ANN to predict ³.

localization network. Once pretrained, we do not include in-

formation of Ỹ when training the localization network.

Label uncertainty parameter network: Fig. 3 shows the la-

bel uncertainty parameter network used for pretraining. We

use cross-shaped convolutional filters designed in [14] to per-

form feature extraction from the dynamic connectivity inputs.

We then apply a 1D convolution (brown in Fig.3) along the

columns of the intermediate features, then reshape the repre-

sentation into a N × MT matrix to then feed into a 3 layer

ANN and obtain predictions ³n. To ensure 0 ≤ ³n ≤ 1, we

use a softmax layer. We have access to both Ỹn,Y using a

simulated dataset. We sample Z and our loss function is

Lα = −
1

N

N∑

n=1

ϵ1(1−∆(Yn, Ỹn)) log(Zn)+

ϵ2∆(Yn, Ỹn) log(1− Zn).

(8)

The function Lα is a weighted cross entropy function that

encourages ³n to be high when the labels Yn, Ỹn are dif-

ferent and encourages ³n to be low when the labels are the

same. We introduce the weights ϵ1, ϵ2 to handle the class-

imbalance, as only a relatively small subset of the nodes will

be mislabeled. This network identifies the connectivity pat-

terns associated with correctly labeled vs. mislabeled nodes.

Combined network training: Once the label uncertainty pa-

rameter network is pretrained, we attach the model in [8],

as the localization network for combined training. Let yn ∈
R

N×2 be the one-hot encoded version of Yn. Let ŷn ∈ R
N×2

be the network outputs for node n. We do combined network

training with the following loss function:

L = −
1

N

[

(1− Zn)
[
yn,1¶1 log ŷn,1 + ¶2yn,2 log ŷn,2

]

︸ ︷︷ ︸

Certain term

+

Zn

(
log ŷn,1 + log ŷn,2

2

)

︸ ︷︷ ︸

Uncertain term

]

+¼1

∣
∣
∣
∣
∣
(1− Zn)−

|
∑

i∈ne(n) Yi −
M
2 |

M
2

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Neighborhood smoothing term

.

(9)

L is broken down into three main terms. The certain term re-

flects when we are confident about the observed label. There-

fore, we backpropagate the original weighted cross entropy

loss as the certain term. The uncertain term reflects the case

when we believe label n is mislabeled, and therefore we back-

propagate the average of the two prediction terms log ŷn,1 and

log ŷn,2. The hyperparameters ¶1, ¶2 are the cross entropy

weights which help mitigate class imbalance. The neigh-

borhood smoothing term acts as a biologically inspired reg-

ularization term that takes direct spatial neighbors of node n

into account, where M is the number of neighbors consid-

ered (M = 6 in this work). When
|
∑

i∈ne(n) Yi−
M

2 |
M

2

= 0, the

neighbors of n belong to both classes, and node n is on the

boundary of the resection, for which we are more unsure of

its label. Given ¼1 > 0, this case encourages ³n to be close

to 1 when we minimze the loss during backpropagation. Con-

versely, when
|
∑

i∈ne(n) Yi−
M

2 |
M

2

= 1, the neighbors of node n

all belong to the same class which encourages ³n to be low.

Prediction on test data: We use both ŷn and ³n for n ∈
{1, · · · , N} during testing. Let ȳ = 1

N

∑N

n=1 ŷn. During

testing, we fuse the predictions and alpha parameters for each

test subject separately in the following fashion

ŷtestn = ŷn(1− ³n) + ȳ³n. (10)

Eq.10 takes both model outputs to arrive at a prediction ŷtestn

for each node n which asserts that the final prediction should

be close to the original network prediction when we are confi-

dent about the label (³n low) or be close to the average predic-

tion when we are not confident about the label (³n high). The

way we fuse information in Eq.10 is similar to the weighted

combination of uncertain vs. certain terms in L.
Implementation details: We implement our network using

the PyTorch [15] deep learning library. We pretrain the la-

bel uncertainty parameter network using the Adam optimizer

for 250 epochs with a learning rate of 0.001 that decays by a

factor of 0.8 every 20 epochs. Once pretrained, we set the ini-

tial learning rate for the label parameter network to 0.00005
and train the entire network using the Adam optimizer for 150

epochs with a learning rate of 0.0005 that decays by a factor

of 0.8 every 10 epochs. We set the hyperparameters ϵ1 = 1.1,

ϵ2 = 0.15,¶1 = 0.16 , ¶2 = 1.2 and ¼1 = 0.08 which were

determined via cross validation on a separate HCP dataset.

3. EXPERIMENTAL RESULTS

Datasets: We use noise models introduced in [11] to simulate

the EZ region to obtain X,Y, Ỹ from 400 HCP subjects [16].

To simulate the EZ signal used for Ỹ, we augment the fMRI

time series of a spatially continuous region with one of six

noise models described in [11]. We create an artificial noisy

dataset having the labels implicated in Ỹ correspond to re-

gions with the noise models (EZ) and Y include both aug-

mented (EZ) and healthy regions. We create a comprehen-



Fig. 4. Resection boundaries for two patients.

Method Sens Spec Acc AUC p-value

Proposed 0.5 0.89 0.85 0.71
Only localization 0.57 0.71 0.76 0.62 < 0.01

DeepEZ 0.36 0.69 0.67 0.57 < 0.01

Table 1. Simulated dataset testing metrics w.r.t Ỹ

sive training set by including different types of samples, like

where the spatial region implicated by Ỹ is relatively small,

large, or on the boundary of Y and the healthy regions.

Our clinical dataset consists of 14 pediatric patients with

focal epilepsy from the University of Wisconsin (UW) Madi-

son. Preoperative rs-fMRI data was acquired using an echo

planar imaging sequence (EPI, TR = 802 ms, TE = 33.5
ms, flip angle = 50◦, res = 2 mm isotropic). The rs-fMRI

data is preprocessed using the CPAC pipeline [17]. Postop-

erative T1-weighted MRI was acquired using a 3D gradient-

echo pulse sequence (MPRAGE, TR = 604 ms, TE = 2.516
ms, flip angle = 8◦, res = 0.8 mm isotropic). As shown in

Fig. 4, we manually segment the resection cavity and consider

this area as the pseudo ground truth EZ for each patient. We

use the Brainnetomme atlas [18] to define N = 246 cortical

and subcortical regions for our analysis.

Localization results: We use 10-fold CV and report the av-

erage sensitivity, specificity, accuracy and AUC on both the

simulated dataset (table 1) and UW clinical dataset (table 2).

We use De Long’s test on AUC to show statistical signif-

icance in our results. We test using the Ỹ labels for the

simulated dataset. We observe the performance of the entire

network with the label uncertainty parameter network (pro-

posed) and without (only localization) as well as the DeepEZ

method from [6] as a baseline method. We pretrain the la-

bel uncertainty parameter network with a different subset of

subjects than the entire network training and testing. In both

tables, the proposed method outperforms the baselines, as

shown by significant difference in the AUC metrics. The

proposed method maintains a good sensitivity while having

a much higher specificity, so it is not suffering from over pre-

dictions where the only localization method is. If trained en-

tirely on a noisy dataset, which is possible in a real world set-

ting, the method from [8] generalizes much worse to real sub-

jects compared to the proposed method that involves learning

the label uncertainty parameter and effectively ignoring mis-

labeled nodes during training.

Method Sens Spec Acc AUC p-value

Proposed 0.42 0.94 0.89 0.74
Only localization 0.51 0.77 0.84 0.68 0.041

DeepEZ 0.25 0.82 0.82 0.59 < 0.01

Table 2. UW dataset testing metrics.

Fig. 5. Resection (pink), predictions (blue) and ³ (heat map)

for three separate epilepsy subjects.

Fig. 5 shows the ground truth (pink) labels, predicted

(blue) labels, and recovered alpha values (heat map) for three

separate subjects from the UW dataset. The proposed method

accurately localizes regions within the ground truth label

while having less false positives than the only localization

method. Circled in white, we observe regions that correspond

to false positives in the baseline and high ³ values in the

proposed. Due to our training procedure and Eq. 10, the

proposed method correctly classifies these regions as healthy,

showing the localization improvement using our approach.

4. CONCLUSION

In this work, we developed a framework for characterizing

noisy labels in EZ localization. We developed a graphical

model and derived the EM equations for our setup, and use

backpropagation from neural networks to achieve parame-

ter updates. We introduce a deep learning framework that

is trained in separate parts to achieve our goal, where we

strongly pretrain the label uncertainty parameter network to

be able to learn the Bernoulli parameters in a supervised

fashion. We create an artificial noisy dataset using EZ sim-

ulation methods. We show promising results, where even

when trained on the noisy labels, our proposed method out-

performs previously established models when testing with the

true labels for both the simulated and real dataset.
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