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Abstract. Supervised learning has become the dominant paradigm in
computer-aided diagnosis. Generally, these methods assume that the
training labels represent “ground truth” information about the target
phenomena. In actuality, the labels, often derived from human anno-
tations, are noisy/unreliable. This aleoteric uncertainty poses signifi-
cant challenges for modalities such as electroencephalography (EEG),
in which “ground truth” is difficult to ascertain without invasive experi-
ments. In this paper, we propose a novel Bayesian framework to mitigate
the effects of aleoteric label uncertainty in the context of supervised deep
learning. Our target application is EEG-based epileptic seizure detection.
Our framework, called BUNDL, leverages domain knowledge to design
a posterior distribution for the (unknown) “clean labels” that automat-
ically adjusts based on the data uncertainty. Crucially, BUNDL can be
wrapped around any existing detection model and trained using a novel
KL divergence-based loss function. We validate BUNDL on both a sim-
ulated EEG dataset and the Temple University Hospital (TUH) corpus
using three state-of-the-art deep networks. In all cases, BUNDL improves
seizure detection performance over existing noise mitigation strategies.
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1 Introduction

Deep learning is becoming ubiquitous in computer-aided diagnosis with medical
imaging data. The most common paradigm is supervised learning, which relies
on labeled training data to learn complex and generalizable patterns. The un-
derlying assumption of supervised learning is that the training labels provide
accurate“ground truth” information about the phenomena of interest. In actu-
ality, these labels can be unreliable due to noise, human error, and subjective
biases. This unreliability can be viewed as aleoteric uncertainty arising from
the complex imaging data and the manual label annotations. Aleoteric uncer-
tainty is further exacerbated in modalities that are not easily readable through
visual inspection, such as genomics data, fMRI connectomics, and electroen-
cephalography (EEG). Particularly, epileptic seizure detection using EEG has
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seen extensive adoption of supervised AI models [27,2,5,4,19,9,14] but also has
high aleoteric uncertainty due to environmental noise and data artifacts [6,3].
As a consequence, the manually annotated seizure interval and onset location
are ambiguous, and AI models trained on such noisy labels inadvertently learn
misleading features, resulting in poor generalization performance.

Considerable progress has been made within the AI community to quantify
uncertainty [1,12,13] and to adaptively de-noise the data while still trusting the
given labels [20]. More recently, there has been work that tackles the problem
of learning with uncertain labels [23]. These methods can be broadly grouped
into three categories. The first category is data pruning, in which a pretraining
step is used to re-weight or remove noisy samples prior to training [26,16,17].
These methods can lead to degeneracies in complex data modalities by remov-
ing critical data points. The second category proposes “robust architectures”
that use an auxiliary deep network to estimate the transition from clean label to
noisy label via a joint optimization [7], EM strategies [15], or sequentially trained
multi-networks [25]. These methods suffer from increased time complexity, scala-
bility issues, and over-fitting on smaller datasets. The third category devises “ro-
bust loss functions” which use prior information for self-supervised label adjust-
ment [10], model regularization to prevent overfitting [28], and loss correction via
bootstrapping [18,21]. However, these methods do not model instance-dependent
label transitions, which is often the case for complex data modalities.

We propose a novel statistical framework called Bayesian UNcertainty-aware
Deep Learning (BUNDL) to mitigate the impact of label inaccuracies when
training deep networks. BUNDL assumes a conditional Bernoulli distribution
for the unknown “clean labels” that alters the predicted posterior probability
when uncertainty is higher in the data. Our target application is epileptic seizure
detection from scalp EEG data. Accordingly, we leverage domain knowledge that
the seizure is generally over-segmented by clinicians [3,8] and infer the clean la-
bel posterior from the observed EEG by minimizing a novel KL divergence loss
function. BUNDL is developed in a network-agnostic manner and is validated on
both simulated EEG data and the publicly available Temple University Hospital
(TUH) corpus [22] using three state-of-the-art deep networks for seizure detec-
tion. Our results show that BUNDL achieves better seizure detection perfor-
mance than existing noise mitigation strategies while being network-independent
and easily adapted to new applications. We also conduct a secondary analysis
of seizure onset zone (SOZ) localization and demonstrate that using BUNDL to
“correct” the seizure detection task also improves localization.

2 Unified Framework to Mitigate Aleoteric Label Noise

Fig. 1(left) illustrates the graphical model that underlies BUNDL. For simplicity,
we assume label corruption depends only on the current input, not the entire
training dataset. Mathematically, we let x ∈ R

Nd be a random variable for
the input data of dimension Nd, ŷ ∈ {0, 1} be a Bernoulli random variable
corresponding to the given noisy label, and y ∈ {0, 1} be the unobserved clean
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Fig. 1: Left: Directed graphical model during training. Right: Overall training
strategy of BUNDL using the observed data x and given labels ŷ in every epoch.

label. In our case, x is a single frame of multichannel EEG, ŷ is the corresponding
clinician annotated seizure versus baseline classification, and y is the unobserved
ground truth seizure information. Our generative process(Fig. 1(left)) assumes
that the clean labels y are used to generate the input data x and that both x and
y inform the noisy labels ŷ. Finally, both x and ŷ are observed during training.

2.1 Learning the Clean Label Posterior via Distributional Loss

Our goal during modified supervised training is to learn a function fθ(·) param-
eterized by θ that infers the clean label posterior distribution given the input
data, i.e., p(y|x). This function can then be applied to new test data samples.

We train fθ(·) using the labeled pairs (x, ŷ) by first defining the noisy label
posterior distribution as p(ŷ|x) = B(ŷ; pg), where B(·) denotes a Bernoulli distri-
bution, and the parameter pg is the clinician provided (binary) label of baseline
versus seizure activity. We note that if the labels were instead provided as a
continuous measure of clinician confidence, then these could be used as pg.

We account for label uncertainty by defining the posterior distribution of the
clean label y given the observed data and noisy label pair (x, ŷ) as follows:

p(y|x, ŷ) = B(y; pg(1− zŷx) + fθ(x)z
ŷ
x), (1)

where zŷx is instance-dependent aleoteric uncertainty and fθ(x) is the average of
the model prediction fθ(·) across multiple stochastic forward passes to the model
using dropout. Intuitively, when zŷx is low, the model trusts the given labels pg
since accuracy of manual annotations of clean samples is reliable. When zŷx is
high, the model hinges towards its self-supervision fθ(x).

By marginalizing ŷ in Eq. (1), we obtain the clean label posterior p(y|x) =
B(y; pyc), where the Bernoulli parameter pyc is computed as follows:

pyc = pg(z
1

x · fθ(x) + pg(1− z1x)) + (1− pg)(z
0

x · fθ(x) + pg(1− z0x)) (2)
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We implement the function fθ(·) using a deep neural network. The opti-
mal parameter θ∗ are learned by minimizing the KL divergence between the
Bernoulli distribution parameterized by Eq. (2) and the deep network predic-
tion Q(y|x; θ) = B(y; fθ(x)) for all samples in the training dataset:

θ∗ = argmin
θ

DKL(P ||Q)

= argmax
θ

(

pyc · log(fθ(x)) + (1− pyc) · log(1− fθ(x))
)

Computing Uncertainty from Monte-Carlo Dropout (MCD): As shown
in Fig. 1(right), BUNDL estimates the posterior distribution of the clean la-
bels through multiple forward passes of the input EEG to the deep network.
These passes generate “posterior estimates” with the randomness provided by
dropout [24]. We estimate the data uncertainty zŷx as the empirical entropy
(rescaled between 0 and 1) of these posterior samples [12]. From a practical
standpoint, the network output is random in the initial stages of training and
cannot provide a good uncertainty estimate. Therefore, we pretrain the network
with a subset of data away from the seizure onset and set zŷx = 0. This way we
avoid learning from highly uncertain EEG data around change points in early
stages of training. We then update the network parameters using the zŷx con-
tinuously predicted by the model for another 30 epochs. We also use a small
tolerance of 0.001 for pg to ensure numerical stability. The dropout rate is set at
0.2 and 20 posterior samples are used in every epoch. The learning rate is chosen
through grid search in the range [10−6, 10−2] to choose the best performing rate
across nested 10-fold cross validation.See supplement for the algorithms.

Domain Knowledge for Seizure Detection: The seizure interval tends to be
“over-segmented” by clinicians due to the comparatively higher cost of missing
a seizure than introducing false positives [3,8]. Consequently, we opt to trust the
control class labels and set z0x=̃0 during training only. The overestimated seizure
class is unreliable, hence, we quantify z1x using the entropy of posterior samples.
Hence, pyc = pg(z

1

xfθ(x) + pg(1− z1x))
3.

2.2 Evaluation setup

We use the optimal parameters θ∗ learned for fθ(·) during training to directly
estimate the clean label parameter pyc from new testing data. We report metrics
at the window and seizure levels for detailed comparison. At window level, we
compare area under the receiver operating characteristic curve (AUROC), and
area under the precision-recall curve (AUPRC) aggregated across individual time
points. During cross validation, we select the learning rate and detection thresh-
old for each method to allow no more than 3 minutes of false positives per hour
in the validation dataset. At the seizure level, we report the false positive rate
(FPR) (min/hour), sensitivity, and the latency (seconds) of seizure prediction.
We perform repeated 10-fold cross validation with patient-level splits

3 (1− pg)(pg(1− z0x) + fθ(x)z
0

x)=̃0 when pg ∈ {0, 1}
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Fig. 2: (a) Example EEG from 19 channel 10-20 montage plotted across time.
Seizure interval is denoted in green. (b) Corresponding scalp plot depicting SOZ

Baseline Algorithms:We compare BUNDL with two state-of-the-art approaches
to handle noisy labels: (1) Self Adaptive learning (SelfAdapt) [10], which alters
the clean label posterior using self-supervision independent of data uncertainty,
and (2) Noisy Adaptation Layer (NAL) [7], which builds a robust model to
jointly estimate clean label and noisy label posterior using EM like algorithm.
We use their “complex model” as it is better suited to the task. Finally, our
baseline is the traditional cross-entropy loss (CEL), which does not assume any
label noise. We use the state-of-art DeepSOZ model [14] for all comparisons.

Network Comparison: Since BUNDL is model-agnostic, we use three recently
published networks for seizure detection to compare the performance of BUNDL
against traditional CEL-based training. These networks are as following:

1. DeeSOZ [14] consists of a transformer that employs self-attention to extract
features across EEG channels in a time window. The global features from
the transformer is then processed by an LSTM to predict seizure, whereas
channel-wise features are passed through pooling layer to localize SOZ.

2. TGCN [4] employs eight layers of spatio-temporal convolutions (STC) con-
sisting of 1-D convolutions to process EEG within each channel’s neighbor-
hood. This is followed by three linear layers to predict seizure

3. CNN [5] also consists of 1-D convolutions and batch normalization that pro-
cess an EEG time window altogether unlike TGCN that does it within a
neighborhood. This is followed by LSTM layer to predict seizure activity.

Extension to Seizure Onset Zone (SOZ) Localization:. SOZ localization is
crucial for real-world epilepsy management. Unlike seizure detection, the goal of
SOZ localization is to identify the EEG channels from which the seizure activity
originates, as shown in Fig.2. We hypothesize that accounting for noise in the
seizure detection labels will help us stabilize and/or improve SOZ localization.
We compare the performance of DeepSOZ for SOZ localization when the seizure
detection branch is trained with BUNDL to when it is trained with CEL. We
report accuracy averaged at seizure-level and patient-level as in [14].
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Table 1: Description of patient demographics in simulated and TUH dataset.
Simulated dataset TUH dataset

Number of patients 120 120
Total Number of seizures 631 642

Average seizures per patient 5.3±2.69 14.7±25.2
Min/Max seizures per patient 1/10 1/152

Average EEG duration per patient 52.8±26.97 min 79.8±135 min
Average seizure duration 170.5±120.4 sec 88.0±123.5 sec
Min/Max seizure duration 29/491 sec 7.5/1121 sec

3 Results

3.1 Epilepsy Datasets

Simulated Data:4 We use the SEREEGA framework [11] in MATLAB to simu-
late 10 min EEG recordings for 120 subjects with 1-10 seizure events per subject.
We select 10-20 montage channels from the 32-channel New York Head (ICBM-
NY) leadfield matrix. Background activity is generated via four sources in each
brain quadrant with continuous ERSP data in alpha, beta, and occasional slow
waves, and one randomly located source for spike artifacts (6-14 Hz). Background
sources include multiple randomly chosen white noise intervals. Seizure source
locations vary for each subject, with continuous intervals of spikes and sharp
waves (2.5-4 Hz) having uniformly varying onset times and duration. We gener-
ate noisy labels by oversegmenting seizures by 30% for training and using the
clean labels for evaluation. We choose to oversegment seizures, as this matches
our clinical hypotheses, and we defer other types of label noise to future.

TUH Corpus:5 TUH [22] is a public dataset with 642 seizure recordings from
120 patients (Table 1. Each recording contains 10-20 montage EEG data and
clinician-annotated intervals of the temporal seizure interval and the seizure on-
set channels. For preprocessing, we resample the EEG signals to 200 Hz to ensure
uniformity. We filter the signals (1.6-30 Hz) and apply a clipping mechanism to
remove high-intensity artifacts, setting the threshold at two standard deviations
from the mean. All signals are normalized to have zero mean and unit variance
within a recording. We crop recordings to a duration of 10 minutes centered
around the seizure interval, while ensuring a uniform distribution of onset times

and segment the input EEG to one-second non-overlapping windows.

3.2 Performance Comparisons with BUNDL

Seizure Detection Accuracy: Table 2 compares BUNDL using DeepSOZ with
three state-of-the-art noise mitigation strategies on the simulated data. The per-
formance metrics are computed against the ground-truth clean labels for simu-
lated data. We observe that BUNDL achieves the best overall performance with

4 Simulated data and code repository
5 TUH dataset.
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Table 2: Seizure detection performance based on the DeepSOZ architecture [14]
under different noise mitigation strategies on simulated data.

Method
Window-Level Seizure-Level

AUROC AUPRC FPR Sensitivity Latency

BUNDL 0.97±0.02 0.95±0.03 2.60±0.85 0.90±0.06 30.1±21.7

SelfAdapt [10] 0.93±0.03 0.89±0.04 5.63±2.17 0.84±0.05 59.9±31.7

NAL [7] 0.95±0.03 0.92±0.03 4.88±1.61 0.89± 0.07 56.0± 22.4

CEL [14] 0.93±0.04 0.89±0.04 5.8±3.6 0.85±0.10 58.4±34.3

Table 3: Seizure detection performance based on the DeepSOZ architecture [14]
under different noise mitigation strategies on TUH data.

Method
Window-Level Seizure-Level

AUROC AUPRC FPR Sensitivity Latency

BUNDL 0.917±0.031 0.60±0.15 2.30±1.10 0.742±0.08 7.6±10.9

SelfAdapt [10] 0.908±0.030 0.55±0.14 2.50±1.23 0.768±0.069 17.7±14.8

NAL [7] 0.912±0.034 0.60±0.15 4.24±1.96 0.829± 0.056 22.3± 15.1

CEL [14] 0.916±0.028 0.60±0.14 3.6±1.77 0.786±0.065 16.9±16.2

a mean AUROC of 0.97 and a mean AUPRC of 0.95 against the clean labels
at the one-second window level. While NAL achieves similar window-level per-
formance, BUNDL shows considerable gains at the seizure level. Specifically,
BUNDL reduces both latency and false-positive rate (FPR) by 50% over NAL.
The SelfAdapt and CEL methods have similar overall performance, which indi-
cates that SelfAdapt is failing to capture and/or mitigate label noise.

Table 3 reports the seizure detection accuracy of all four methods (BUNDL
and baselines) on the TUH dataset. In this case, the performance metrics are
computed against the (presumed noisy) given labels, as we do not have access
to “clean labels” for real-world data. This mismatch between the model outputs
(i.e., estimated clean labels) and the given labels results in a uniform decrease
in window-level AUROC and AUPRC as compared to the simulated data. At
the seizure level, BUNDL has the lowest FPR (2.3 min/hour) and onset latency
(7.6 sec), which is a significant improvement over the baseline methods. We note
that the baseline methods achieve a slightly higher sensitivity than BUNDL.
This can be partially attributed to the mismatched evaluation against the noisy
given labels. In addition, the increased FPR for the baselines suggest that they
are over-segmenting the seizure, which can also lead to higher sensitivity.

Fig. 3 illustrates the predicted “clean” seizure probability pyc across time
for EEG from a patient in TUH. BUNDL correctly predicts the seizure whereas
other methods have increased false positives (red) and latency.

Applying BUNDL to Different DL Models: Table 4 compares BUNDL
with CEL (i.e., no noise mitigation) using three state-of-the-art deep networks.
In simulated data, BUNDL is uniformly better than CEL in all metrics. In TUH
dataset, BUNDL uniformly improves FPR and latency for all models. Once
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Table 4: Comparison of BUNDL and CEL using three state-of-the-art deep neu-
ral networks (DNN) across two datasets

DNN
Simulated data TUH data

Method FPR Sensitivity Latency FPR Sensitivity Latency

DeepSOZ
BUNDL 2.6±0.8 0.90±0.06 30.1±21.7 2.3±1.1 0.74±0.08 7.6±10.9
CEL 5.8±3.6 0.85±0.10 58.4±34.3 3.6±1.8 0.79±0.06 16.9±16.2

TGCN
BUNDL 2.63±0.85 0.89±0.04 191.6±37.6 2.6±2.5 0.75±0.09 30.1±29.7
CEL 9.34±1.65 0.93±0.03 256.5±45.2 3.3±1.6 0.84±0.06 41.3±19.5

CNN
BUNDL 2.1±0.75 0.94±0.04 37.7±28.8 2.7±3.5 0.54±0.23 11.2±28.9
CEL 4.6±1.36 0.94±0.05 45.6±21.4 3.0±2.2 0.66±0.13 15.5±20.1

Fig. 3: Example seizure detection. Blue line is predicted clean seizure probability;
dashed line is the detection threshold. Given seizure interval is in blue, predicted
seizure interval is in red, and the intersection (correct prediction) is in purple.

again, we notice a slightly lower sensitivity for BUNDL, which can partially be
attributed to computing the TUH evaluation metrics against the noisy clinician
labels. We note that the sensitivity of BUNDL was highest in the simulated
experiment, for which we had access to the “ground truth” clean labels.

Label Transition in TUH: We analyze the joint distribution p(ŷ, y|x) by mul-
tiplying predicted p(y|ŷ, x) with p(ŷ|x) given by the test labels , to understand
the behavior of noisy and predicted “clean” labels. Around onset region (i.e.,
30-seconds before the annotated onset), the clinician labels are determined to
be false positives by BUNDL with 0.21 probability (lower left quadrant), which
reflects the ambiguous seizure start. During seizure, this probability rises to
0.383, due to increased uncertainty in EEG during seizure time points seen in
Fig. 4(a) indicating that the clinician maybe mislabelling seizure onset. Effec-
tively, BUNDL hedges towards baseline for highly uncertain intervals.

SOZ Localization: At seizure level, DeepSOZ trained using CEL has a local-
ization accuracy of 0.601±0.176, which improves to 0.633±0.149 using BUNDL.
Similarly at patient level, accounting for noisy labels using BUNDL increases the
accuracy from 0.591±0.144 (CEL) to 0.620±0.111. This suggests that reducing
ambiguities in detection helps to improve localization, as shown for one patient
in Fig. 5. More examples are plotted in supplementary material.
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Fig. 4: (a) Predicted data uncertainty zx in three time regions (b) Transition
matrix - p(ŷ, y|x).(i) Onset region and (ii) seizure region

Fig. 5: Temporal seizure detection and seizure onset localization of two patients
predicted by (a) DeepSOZ-BUNDL (b) DeepSOZ-CEL. Predicted SOZ is given
by red heatmap. True SOZ is marked in black and mentioned underneath.

4 Conclusion

We have introduced, BUNDL, a novel statistical framework to mitigate the im-
pact of noisy training labels. Specifically, BUNDL designs the transition between
clean and noisy labels using a novel probabilistic model and facilitates robust
training with a distributional loss. Using the backdrop of epileptic seizure de-
tection, we demonstrated that training with BUNDL achieves improved perfor-
mance as compared to state-of-art techniques in both simulated and real EEG
data. Moreover, BUNDL can be used to train any existing deep learning model
with minimal overhead. In an exploratory evaluation, we also demonstrate that
addressing label noise in seizure detection enhances seizure onset zone localiza-
tion, which is a critical step in epilepsy management. BUNDL is developed in
a model-agnostic way and easily adaptable. Future work will explore its use in
other medical imaging applications with various label noise types.
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