ASYMPTOTIC FREENESS IN TRACIAL ULTRAPRODUCTS

CYRIL HOUDAYER AND ADRIAN IOANA

ABSTRACT. We prove novel asymptotic freeness results in tracial ultraproduct von
Neumann algebras. In particular, we show that whenever M = M; x M is a tracial
free product von Neumann algebra and w1 € % (M), uz € % (M;) are Haar uni-
taries, the relative commutants {u;} N MY and {uz}’ N M* are freely independent
in the ultraproduct M“. Our proof relies on Mei-Ricard’s results [MR16] regarding
LP-boundedness (for all 1 < p < 4+00) of certain Fourier multipliers in tracial amalga-
mated free products von Neumann algebras. We derive two applications. Firstly, we
obtain a general absorption result in tracial amalgamated free products that recov-
ers several previous maximal amenability/Gamma absorption results. Secondly, we
prove a new lifting theorem which we combine with our asymptotic freeness results
and Chifan-Toana-Kunnawalkam Elayavalli’s recent construction [CIKE22] to pro-
vide the first example of a II; factor that does not have property Gamma and is not
elementary equivalent to any free product of diffuse tracial von Neumann algebras.

1. INTRODUCTION

In order to state our main results, we recall the following terminology regarding
n-independence and freeness.

Terminology. Let (M, 7) be a tracial von Neumann algebra together with a von Neu-
mann subalgebra B C M. We denote by Eg : M — B the unique trace-preserving
faithful normal conditional expectation and set M © B = ker(Ep).

Let n > 1. Following Popa (see e.g. [Pol3a, Pol3b]), we say that two subsets
X,Y € M © B are n-independent in M with respect to Ep if Eg(z1y1 -+ - 2xyx) = 0, for
every 1 <k <n,zy,...,zp € X and y1,...,yr € Y. We then say that two intermediate
von Neumann subalgebras B C My, My C M are n-independent in M with respect to
Ep if the sets M16 B and My© B are n-independent with respect to Eg. When B = Cl1,
two von Neumann subalgebras M;, My C M are 1-independent in M with respect to
7 if and only if M; and My are T-orthogonal, i.e., 7(zy) = 7(z)7(y), for every x € M;
and y € Ma.

Let I be a nonempty index set. We say that a family (X;);c; of subsets of M & B
is freely independent in M with respect to Ep if Eg(x1---x;) = 0 for every k > 1,
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r1 € Xepy.oyxp € X, with €1 # -+ # € in I. We say that a family (M;);er of
intermediate von Neumann subalgebras B C M; C M is freely independent in M with
respect to Ep if the family of subsets (M; © B);er is freely independent in M with
respect to Ep. In this case, we denote by *p;cr(M;, 7)) = \/;c; M; C M the tracial
amalgamated free product von Neumann algebra where 7; = 75, for every i € I.

Main results. Let I be an at most countable index set such that 2 < |I| < +o0.
Let (M;,7;)icr be a family of tracial von Neumann algebras with a common von Neu-
mann subalgebra (B, 7p) such that for every ¢ € I, we have 7;|p = 79. Denote by
(M,7) = *picr(M;, ;) the tracial amalgamated free product von Neumann algebra.
Let U be a nonprincipal ultrafilter on N. Denote by (MY, 7Y) the tracial ultraproduct
von Neumann algebra. Simply denote by Eg : M — B (resp. Egu : MY — BY) the
unique trace-preserving faithful normal conditional expectation.

Denote by # C M the linear span of B and of all the reduced words in M of the form
w = wy Wy, with n > 1, w; € M., © B for every j € {1,...,n}, and €1,...,6, € I
such that €1 # - -+ # e,,. For every i € I, denote by #; C M © B the linear span of all
the reduced words in M whose first and last letter lie in M; & B. Moreover, denote by
Py, : L2(M) — L%(#;) the corresponding orthogonal projection. By construction, the
family (#;)icr is freely independent in M with respect to Eg. Our first main result is
an extension of this fact to the ultraproduct framework.

Theorem A. Keep the same notation as above. For every i € I, denote by X; the set
of all the elements x = (x,)* € MY © BY such that lim,_y ||2n, — Py (22)|]2 = 0.
Then the family (X;)ier is freely independent in MY with respect to Egu.

The proof of Theorem A relies on Mei-Ricard’s results [MR16] showing that the
canonical projection Py, : # — #; extends to a completely bounded operator Py, :
LP(M) — LP(#;) for every p € (1,400). In particular, we exploit LP-boundedness of
Py, : LP(M) — LP(#;) for every 2 < p < 400. Theorem A is a novel application of
noncommutative LP-spaces to the structure theory of tracial von Neumann algebras.

It follows from Popa’s asymptotic orthogonality property [Po83] (see Lemma 3.1
below) that for every i € I and every unitary u € % (M) such that Egu(u*) = 0 for
every k € Z\ {0}, if z € {u} " MY and Egu(z) = 0, then x € X;. In particular, in the
case B = C1, Theorem A implies the following

Theorem B. Assume that B = C1. For every i € I, let u; € % (MY) be a Haar
unitary.
Then the family ({u;} N MY);c; is freely independent in MY with respect to 7.

Assume that for every i € I, M; is a diffuse abelian von Neumann algebra so that
MY C {u;} N MY. Then Theorem B can be regarded as a far-reaching generalization
of the fact that the family (MZZ” Jier is freely independent in MY with respect to 7.

In the case I = {1,2}, we also obtain the following variation of Theorem A.

Theorem C. Assume that I = {1,2}. Keep the same notation as above. Let Y1 C X;
be a subset with the property that aY1b C Xy for all a,b € M.
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Then the sets Y1 and M © My are freely independent in MY with respect to Epgu.

A typical example of a subset Y; C X; with the property that aY1b C X; or all
a,b € M is given by Y; = A'n (MY © Mi”), where A C M; is a von Neumann
subalgebra such that A A5, B (see Lemmas 2.4 and 3.2).

In the case M = B xF, = (BXZ)xp - *p (B xXZ) = M *p---xg M,, Popa
showed in [Po83, Lemma 2.1] that for the canonical Haar unitary u € L(Z) C M, the
sets {u} N (MY o M¥) and M © M are 2-independent in MY with respect to Egu (see
also [HU15] for the free product case). Letting Y1 = {u}’ N (MY & MY), Theorem C
can be regarded as a generalization and a strengthening of Popa’s result.

In the case I = {1,2} and B = C1, we exploit Mei-Ricard’s results [MR16] to obtain
the following indecomposability result in MY,

Theorem D. Assume that I = {1,2} and B = C1. Letu; € % (MY) be a Haar unitary
and ug € U (MY) such that ™ (ug) = ™ (u2) = 0.

Then there do not exist vi,vo € % (MY) such that ™ (v1) = ™ (v?) = ™(v2) = 0
and [u1,v1] = [v1, v2] = [ve, uz] = 0.

Another way to formulate Theorem D is as follows. Let u; € % (MY) be a Haar
unitary, ug € % (MY) such that ¥ (ug) = ™ (u2) = 0 and v; € % (MY) such that
[ur,v1] = 0 and 7¥(v1) = 74(v?) = 0. Then we have {vi,us} N MY = C1. This
generalizes the well-known fact (see e.g. [[012, Lemma 6.1]) that {u;,us} N MY = C1.
In Section 3, we generalize Theorem D to arbitrary tracial amalgamated free product
von Neumann algebras (see Theorem 3.5).

Theorem D is new even in the case M = L(C x Cy), where Cy, Cs are cyclic groups
with |C1]| > 1 and |Ca| > 2. In this case, M = M+ Mo, where M; = L(C1), My = L(C?).
Moreover, M is an interpolated free group factor by [Dy92, Corollary 5.3] and thus has
positive 1-bounded entropy, h(M) > 0, in the sense of [Ju05, Hal5]. By [Hal5, Corollary
4.8] (see also [CIKE22, Facts 2.4 and 2.9]), if u;,ug € M are generating unitaries, then
there are no Haar unitaries vy, vo € MY satisfying [uy,v1] = [v1,va] = [v2, us] = 0. This
fact was used in [CIKE22] to construct two non-elementarily equivalent non-Gamma
II; factors.

Theorem D considerably strengthens this fact when C; = Z, uy € % (M), us €
U (Ms). Unlike [Halb], we cannot say anything about arbitrary generating unitaries
u1 and ug, that do not belong to M; and Ms, respectively. On the other hand, while
the free entropy methods from [Hal5] only rule out the existence of Haar unitaries
vy, v € U (MY) satisfying [u1,v1] = [v1,va] = [va,u2] = 0, Theorem D also excludes
the existence of such finite order unitaries vy, v2 provided that vy, v?, v have trace zero.

Let u; € % (M%) and us € % (M) be as in Theorem D, and assume that u3* = 1, for
some m > 2. Then {us} N MY has finite index in MY and therefore, unlike in Theorem
B, {u1} N MY and {uz} N MY are not freely independent in MY with respect to 7.
Instead, the proof of Theorem D relies on a subtler analysis of commuting unitaries
belonging to {u1} N MY and {us}’ N MY. However, similarly to the proof of Theorem
B, we make crucial use of Mei—Ricard’s results [MR16].
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We do not know if Theorem D holds if we remove the assumption that E gu (u3) = 0.
However, a standard diagonal argument implies the existence of N € N such that the
assumption that E gu (uf) = 0, for every k € Z\ {0}, can be relaxed by assuming instead
that Egu(uf) = 0, for every k € Z\ {0} with |k| < N.

Application to absorption in AFP von Neumann algebras. We use Theorem C
to obtain a new absorption result for tracial amalgamated free product von Neumann
algebras.

Theorem E. Assume that I = {1,2}. Keep the same notation as above and assume
that M is separable. Let P C M be a von Neumann subalgebra such that POMy A, B
and P'0 MY 4, BY. Then we have P C M;.

Theorem E vastly generalizes Popa’s seminal result [Po83] that the generator masa
L((a)) is maximal amenable inside the free group factor L(F3) = L({(a,b)). Specifically,
it extends several maximal amenability /Gamma absorption results. Theorem E general-
izes [HU15, Theorem A] (see also [Hol4, Theorem A]) to arbitrary tracial amalgamated
free product von Neumann algebras. As we observe in Remark 4.2, if P C M is an
amenable von Neumann subalgebra such that PN M; £, B, then we necessarily have
P' N MY £y BY. Thus, Theorem E also yields a new proof of [BH16, Main theorem]
in the setting of tracial amalgamated free product von Neumann algebras.

Let us point out that in the setting of tracial free products M = M; * My of Connes-
embeddable von Neumann algebras, the inclusion M; C M satisfies a more general
absorption property. Indeed, [HIJNS19, Theorem A] shows that if P C M is a von
Neumann subalgebra such that P N M; is diffuse and has 1-bounded entropy zero,
then P C M;. In the case M = L(F,) is a free group factor, the aforementioned
absorption property holds for any diffuse maximal amenable subalgebra () C M, thanks
to the recent resolution of the Peterson—Thom conjecture via random matrix theory
[BC22, BC23] and 1-bounded entropy [Hal5, Ha20] (see also [HJKE23]).

Application to continuous model theory of II; factors. We next present an ap-
plication of Theorem B to the continuous model theory of II; factors. A main theme in
this theory, initiated by Farah—Sherman—Hart in [FHS11], is to determine whether two
given II; factors M, N are elementarily equivalent. By the continuous version of the
Keisler—Shelah theorem this amounts to M and N admitting isomorphic ultrapowers,
MY = NV for some ultrafilters & and V on arbitrary sets [FHS11, HI02]. It was shown
in [FHS11] that property Gamma and being McDuff are elementary properties, lead-
ing to three distinct elementary classes of II; factors. A fourth such elementary class
was then provided in [GH16]. The problem of determining the number of elementary
classes of II; factors was solved in [BCI15], where the continuum of non-isomorphic II;
factors constructed in [Mc69] were shown to be pairwise non-elementarily equivalent.
However, all the available techniques for distinguishing II; factors up to elementary
equivalence were based on central sequences. It thus remained open to construct any
non-elementarily equivalent II; factors which do not have any non-trivial central se-
quences, i.e., fail property Gamma.
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This problem was solved by Chifan—Ioana—Kunnawalkam Elayavalli in [CTKE22] using
a combination of techniques from Popa’s deformation/rigidity theory and Voiculescu’s
free entropy theory. First, deformation/rigidity methods from [[PP05] were used to
construct a non-Gamma II; factor M via an iterative amalgamated free product con-
struction. It was then shown that M is not elementarily equivalent to any (necessarily
non-Gamma) II; factor N having positive 1-bounded entropy, A(N) > 0, in the sense
of Jung [Ju05] and Hayes [Hal5]. Examples of II; factors N with A(N) > 0 include
the interpolated free group factors L(F;), 1 < ¢ < oo, and, more generally, any tracial
free product N = Nj % Ns of diffuse Connes-embeddable von Neumann algebras. For
additional examples of such II; factors, see [CIKE22, Fact 2.7]. However, the methods
from [CIKE22] could not distinguish M up to elementary equivalence from N = NjxNa,
whenever N or Nj is a non-Connes-embeddable tracial von Neumann algebra (the ex-
istence of which has been announced in the preprint [JNVWY20]). In particular, since
it is unclear if M is Connes-embeddable, it remained open whether M is elementarily
equivalent to M * L(Z).

Theorem B allows us to settle this problem for a variant of the II; factor constructed
in [CIKE22):

Theorem F. There exists a separable 11y factor M which does not have property
Gamma and that is not elementarily equivalent to N = Ny * Na, for any diffuse tracial
von Neumann algebras (N1,71) and (N2, T2).

In particular, Theorem F provides the first example of a non-Gamma II; factor M
which is not elementarily equivalent to M  L(Z). The conclusion of Theorem F is
verified by any II; factor M satisfying the following:

Theorem G. There exists a separable 117 factor M which does not have property
Gamma and satisfies the following. For every countably cofinal ultrafilter U on o set J
and uy,ug € % (MY) such that {u1}" and {uz}" are 2-independent in MY with respect to
U there exist Haar unitaries vy, vy € % (MY) such that [uy,v1] = [ug, vo] = [v1,v2] = 0.

An ultrafilter U on a set J is called countably cofinalif there exists a sequence (A, )neN
in U with (), cy An = 0. Any free ultrafilter on N is countably cofinal.

The proof of Theorem G uses the iterative amalgamated free product construction
introduced in [CIKE22]. In [CIKE22, Theorem B], this construction was used to build
a non-Gamma separable II; factor M with the following property: for any unitaries
ui,ug € % (MY) such that {u1}” and {uz}” are orthogonal and u? = u3 = 1, there
exist Haar unitaries vy,vo € % (MY) such that [u1,v1] = [ug,v2] = [v1,v2] = 0. The
proof of [CIKE22, Theorem B] relies crucially on a lifting lemma showing that any
unitaries ug, uz € % (M%) such that {u;}” and {ug}” are orthogonal and u? = u3 = 1
lift to unitaries in M with the same properties. A key limitation in [CIKE22] was the
assumption that u; and ue have orders 2 and 3. We remove this limitation here by
proving a general lifting result of independent interest (see Theorem 5.1) which shows
that any unitaries uy, us € % (M%) such that {u;}" and {us}” are 2-independent admit
lifts w1 = (u1,) and ug = (ug,)¥ with {u1,}” and {us,}” orthogonal for every
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n € N. With this result in hand, adjusting the iterative construction from [CIKE22]
implies Theorem G.

To explain how Theorem F follows by combining Theorem G and Theorem B, let M be
a II; factor as in Theorem G, N = Ny Ny a free product of diffuse tracial von Neumann
algebras and uy € % (N1), ug € % (N3) Haar unitaries. Since {u1}” and {us}” are freely
and thus 2-independent, it follows that MY 2 NV, for any countably cofinal ultrafilter
U and any ultrafilter V. Indeed, Theorem B implies that any Haar unitaries (more
generally, any trace zero unitaries) vy, vy € % (NV) such that [u1,v1] = [ug,ve] = 0 are
freely independent and therefore do not commute. If U/ is an ultrafilter which is not
countably cofinal, then we also have that MY 2 NV, for any ultrafilter V. Otherwise,
using [BCI15, Lemma 2.3] we would get that MY = M, thus NY = M is separable,
hence NV = N and therefore M = N. But then M"YV = N, for any free ultrafilter
W on N. Since W is countably cofinal, this is a contradiction. Altogether, we conclude
that MY 2 NV for any ultrafilters U, V, and thus M, N are not elementarily equivalent.

Application to the orthogonalization problem. We end the introduction with an
application to the following orthogonalization problem: given a II; factor M and two
subsets X,Y C M & C1, when can we find v € % (M) such that uXu* and Y are
orthogonal? In the case X = AS Cl1 and Y = B & C1, for von Neumann subalgebras
A, B C M, this and related independence problems have been studied extensively by
Popa (see e.g. [Pol3a, Pol3b, Pol7]). When X, Y C M © C1 are finite, a standard
averaging argument shows that we can find v € % (M) such that uXu* and Y are
“almost orthogonal”: for every € > 0, there exists u € % (M) such that |(uzu*,y)| < ¢,
for every 2 € X,y € Y. This implies the existence of v € % (M%), where U is a free
ultrafilter on N, such that vXv* and Y are orthogonal. In this context, much more is
true: by a result of Popa (see [Pol3a, Corollary 0.2]), if X, Y € M © C1 are countable,
then there exists u € % (MY) such that uXu* and Y are freely independent.

By combining this result with the proof of our lifting theorem (Theorem 5.1) we settle
affirmatively the above orthogonalization problem whenever X,Y C M & C1 are finite.

Theorem H. Let M be a Iy factor and X,Y C M © C1 be finite sets.
Then there exists u € % (M) such that uXu* and Y are orthogonal.

Acknowledgements. This work was initiated when CH was visiting the University
of California at San Diego (UCSD) in March 2023. He thanks the Department of
Mathematics at UCSD for its kind hospitality. The authors thank Ben Hayes, Srivatsav
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2. PRELIMINARIES

2.1. Noncommutative LP-spaces. Let (M, ) be a tracial von Neumann algebra. For
every p € [1,+00), we write LP(M) = LP(M, 1) for the completion of M with respect to
the norm || - ||, defined by ||z||, = 7(|z|P)'/? for every x € M. More generally, given a
subspace # C M, we denote by LP(#') C LP(M) the closure of # with respect to ||-||,.
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Then LP(M) is the noncommutative LP-space associated with the tracial von Neumann
algebra M. We simply write L*°(M) = M.

We will use the following generalized noncommutative Hélder inequality (see e.g.
[Ta03, Theorem I1X.2.13]): for all & > 2, all p1,...,pk,r € [1,+00) such that % =

Z?:l p%. and all (z;); € H?:l LPi(M),wehavex = x1 -+ -2z € L'(M) and ||z1 - - - x| <

Z1llpy - [y -
For all 1 <p < ¢ < +oo and all x € M, we have ||z|; < |z, < |z|q < ||#]s and so

we may regard M C LY(M) C LP(M) c LY(M).

2.2. Ultraproduct von Neumann algebras. Let I/ be a nonprincipal ultrafilter on
N. Whenever (M,7) is a tracial von Neumann algebra, we denote by (MY, 7Y) the
tracial ultraproduct von Neumann algebra. We regard L%(MY) ¢ L2(M)¥ as a closed
subspace and we denote by e : L2(M)¥ — L*(MY) the corresponding orthogonal pro-
jection. Recall the following elementary yet useful facts.

Lemma 2.1. Keep the same notation as above. The following assertions hold:

(i) Let (&,)n be a || - ||2-bounded sequence in L2(M) and set & = (&)1 € L2(M)X.
Then & € L2(MY) if and only if for every € > 0, there exists a || - ||oo-bounded
sequence (Tp)n in M such that limy,_yq ||&, — znll2 < .

(ii) Let r > 2. Then for every | - ||,-bounded sequence (&), in L"(M), we have
§= (fn)u € LZ(MU)-

(iii) Let (£2)n be a || - ||2-bounded sequence in L2(M). Let (2,)n and (yn)n e || - ||oo-
bounded sequences in M. Set & = (&)Y € LA(MY, 2 = (z,)4 € MY and
y=(y)¥ € MY. If ¢ € L2(MY), then (zn&nyn)¥ = x€y € LE2(MY).

Proof. (i) It is straightforward.

(ii) Let (&,)n be a || - ||,-bounded sequence in L"(M). There exists £ > 0 such that
sup,en T([€n|") < K. Set € = (&)Y € L2(M)H. For every n € N, write &, = v,|&,| for
the polar decomposition of &, € L"(M). For every n € N and every ¢ > 0, define the
spectral projection p,; = 194 (|§n]) € M. For every n € N and every ¢ > 0, we have

1 . K
0 8= (60 P L oy (nl) < 5760l L 400 (60) € 5

Let € > 0 and choose ¢ > 0 large enough so that 7% < e2. For every n € N, set
Tn = &Pny € M and observe that we have [|&, — znll2 = [|€npryll2 < €. Since
sup {||znlle | 7 € N} < ¢, Ttem (i) implies that £ = (£,)% € L2(MY).

(iii) Assume that & = (&)Y € L*(MY). Choose x > 0 large enough so that
sup {||nlloos [|Unlloo | 7 € N} < k. Let € > 0. By Item (i), there exists a || - ||oo-bounded
sequence (z,), in M such that lim, ||, — zall2 < €. Set 2z = (2,)4 € MY. Then
€ — 2|l2 = limy, sy |16 — 2nll2 < €. Since z2y = (2,9, € MY, we have

5 < ll1€nl s

(zn&nyn) = 2€yll2 < |[(@n&nyn) = (@nznyn)l2 + [lzzy — 2€y|l2
= lim ||z, — 20)ynll2 + [|[2(2 = yll2
n—U
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< 2K%||€ — 2|2 < 2K%e.
Since this holds for every e > 0, it follows that (z,&,yn)¥ = &y € L2(MY). O

We also record the following basic fact concerning tracial ultraproducts:

Lemma 2.2. Keep the same notation as above. Let (xy,)y be a || - ||co-bounded sequence
in M. Setx = (xn,) € MY. Then for everyp € [1,+00) we have ||z, = lim,_ ||zn]l,-

Proof. We may assume that sup {||zn|lec | » € N} < 1 and thus ||z||sc < 1. Note that
lz|? = 2*2 = (2} 2,)" = (|2,]?)Y. Then for every k € N, we have |z|?* = (|z,,|?*)¥ and
thus 74(|z|?*) = lim,_y 7(|z,|?*). Thus, if P(t) € C[t] is a polynomial with complex
coefficients and Q(t) = P(t?), then 74(Q(|z|)) = lim,_y 7(Q(|z,|)). Since by the
Stone-Weierstrass theorem {P(t?) | P(t) € C[t]} is dense in C(]0,1]) in the uniform
norm, we get that 74(f(|z|)) = lim, .y 7(f(|z,|)), for every f € C([0,1]). In particular,
T4(|2|P) = limy, ¢ 7(|zn|P), for every p € [1,+00), which implies the conclusion. O

2.3. Amalgamated free products. Let I be an at most countable index set such
that 2 < |I| < +o0. Let (M;, 7i)ier be a family of tracial von Neumann algebras with a
common von Neumann subalgebra (B, ) such that for every i € I, we have 7;|p = 7.
Denote by (M, T) = *picr(M;, ;) the tracial amalgamated free product von Neumann
algebra. Simply denote by Eg : M — B the unique trace-preserving faithful normal
conditional expectation.

Denote by # C M the linear span of B and of all the reduced words in M of the form
w = wy Wy, with n > 1, w; € M., © B for every j € {1,...,n}, and €1,...,6, € I
such that e; # -+ # ,. For every subset J C I, denote by £y C # (resp. Zj C ¥')
the linear span of all the reduced words whose first (resp. last) letter lies in M; © B
for some j € J. For every i € I, denote by #; C # the linear span of all the reduced
words whose first and last letter lie in M; & B. We will use the following consequences
of Mei-Ricard’s results (see [MR16, Theorem 3.5]).

Theorem 2.3 (Mei-Ricard [MR16]). Letp € (1,+00), J C I, andi € I. The following
assertions hold:

(i) The projection map Py, : W — £y extends to a completely bounded operator
Py, : LP(M) — LP(Z)).
(ii) The projection map Pg, : W — A extends to a completely bounded operator
Pg, :LP(M) — LP(Zy).
(iii) The projection map Py, : # — W; extends to a completely bounded operator
Py, : LP(M) — LP(#;).

Proof. We use the notation H. of [MR16, Section 3].
(i) For every j € J, set ¢; = —1 and for every j € I\ J, set ¢; = 1. Then with
e = (&i)ier, we have Py, = == Therefore, [MR16, Theorem 3.5] implies that
Py, : W — Z; extends to a completely bounded operator Py, : LP(M) — LP(%Zy).
(ii) The proof is completely analogous to Item (i).
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(iii) We have Py, = Py, o Py, = Py, o Py. Therefore, Items (i) and (ii) imply that
Py, - W — W; extends to a completely bounded operator Py, : LP(M) — LP(#;). O

Let P, be one of the operators from Theorem 2.3 (i.e., Py,, Pg,, or Py,). Then the
operators (FPp)pe(1,400) are consistent with the inclusions LY(M) C LP(M), in the sense
that Py = Pp|rs(ar), for every 1 < p < ¢ < +o00. This is why we denote P instead of P,.

2.4. Popa’s intertwining theory. We review Popa’s criterion for intertwining von
Neumann subalgebras [Po01, Po03]. Let (M, 7) be a tracial von Neumann algebra and
A C14M1,4, B C 1gM1p be von Neumann subalgebras. By [Po03, Corollary 2.3] and
[Po01, Theorem A.1] (see also [Va06, Proposition C.1]), the following conditions are
equivalent:
(i) There exist n > 1, a projection ¢ € M, (B), a nonzero partial isometry v €
M ,(14M)g and a unital normal *-homomorphism 7 : A — gM,(B)gq such
that av = vm(a) for all a € A.
(ii) There exist projections p € A and ¢ € B, a nonzero partial isometry v € pMgq
and a unital normal *-homomorphism 7 : pAp — ¢Bq such that av = vm(a) for
all a € A.
(iii) There is no net of unitaries (wy)g in A such that

Vx,y c lAMlB, lilgn H EB(a:*wky)Hg =0.

If one of the previous equivalent conditions is satisfied, we say that A embeds into B
inside M and write A <;; B.

Following [Jo82, PP84], we say that an inclusion of tracial von Neumann algebras
P C M has finite index if L>(M, ) has finite dimension as a right P-module. If Ay C A
is a von Neumann subalgebra with finite index and if A <p; B, then Ay <3 B (see
[Va07, Lemma 3.9]).

We record the following new criterion for intertwining von Neumann subalgebras.

Lemma 2.4. Let (M, 1) be a separable tracial von Neumann algebra and A, B C M be
von Neumann subalgebras such that A £y B. Then there exists u € % (AY) such that
Epgu(zu™y) =0, for all z,y € M and all m € Z\ {0}.

Proof. To prove the lemma, it suffices to argue that for every finite subset F C M, e >0
and K € N, we can find u € % (A) such that ||Eg(zu™y*)|2 < ¢, for all m € Z\ {0}
with |m| < K. To this end, fix a finite subset F' C M, e > 0and K € N. Foru € % (M),
set Y(u) = 3,z (o} yml <K Powyer | Ep(zu™y")]3.

Let v € % (M) with {v}” Ay B. For every N € N, set

N
oo N) = 37 3 [ En(enty )

k=1z,yeF

We claim that Imy_,o ¢(v, N) = 0. Indeed, set { = Y pxepz™ € (M, B), where
((M, B), Tr) is Jones basic construction of B C M. Using that || Eg(2)||3 = Tr(zepz*ep)
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for every z € M, we obtain that

N
(2.1) VN eN, (v, N)=Tr ((zlv ;vkﬁvk> g) .

By von Neumann’s ergodic theorem, there exists € L2((M, B), Tr) such that vnv* =g
and limy_,o0 ||+ S vReu™F — pllamy = 0. Then wny = nw, for all w € {v}”. Since
{v}" Am B, we obtain that n = 0. In combination with (2.1), this proves our claim
that imy_00 (v, N) = 0.

We are now ready to finish the proof. Since A Ay B, we can find a diffuse abelian
von Neumann subalgebra Ay C A such that Ay Axr B (see [BO08, Corollary F.14]). Let
v € % (Ap) be a Haar unitary with {v}” = Ag. If m € Z\{0}, then {v™}" C Ap has finite
index, and thus {v™}"” A3 B. The above claim gives that imy_,, ¢ (v, N') = 0, for all
m € Z\ {0}. Thus, we can find N € N such that >, cs (01 mj<ix 9(0" N) < g2. Since

> mez\{o},jm|<k P, N) = %Ei\;l Y(v¥), we find 1 < k < N such that (v*) < £2.
Thus, u = v* satisfies the desired conclusion, which finishes the proof. [l

3. PrROOFS oF THEOREMS A, B, C, D

3.1. Popa’s asymptotic orthogonality property. Let I be an at most countable
index set such that 2 < |[I| < +o00. Let (M;, 7;)ier be a family of tracial von Neumann
algebras with a common von Neumann subalgebra (B, 7p) such that for every i € I, we
have 7;|p = 79. Denote by (M, 7) = *picr(M;, 7;) the tracial amalgamated free product
von Neumann algebra. Simply denote by Eg : M — B (resp. Egu : MY — BY) the
unique trace-preserving faithful normal conditional expectation.

The following lemma is a generalization of Popa’s asymptotic orthogonality property
(see [Po83, Lemma 2.1]) in the framework of tracial amalgamated free product von
Neumann algebras. The key new feature of the proof is that we exploit Theorem 2.3 to
work inside the Hilbert space L2(MY) instead of L?(M)Y as in Popa’s proof.

Lemma 3.1. Let i € I. Let u € % (M) be a unitary such that Egu(uf) = 0 for
every k € Z\ {0}. For every x = (x,)% € {u} N MY such that Egu(x) = 0, we have
limy, s ||zn — Py (zy)]]2 = 0.

Proof. Let x = (z,)¥ € {u} N MY such that Egu(z) = 0. Without loss of generality, we
may assume that ||z, || < 1 for every n € N. To prove that lim,,_y ||z, —Py; (25)]|2 = 0,
we show that lim, .z ||P$I\{i} (zn)|l2 = lim,_y ||P%I\{i} (xn)Hg = (0. Since %I\{z} =
J 2\ iy, it suffices to prove that limy, .y || Pe, (,, (2n)||2 = 0. To simplify the notation,
we set P; = Pgl\{i}.

By Lemma 2.1(ii) and Theorem 2.3(i), we have (P;(z,))¥ € L2(MY). Set J# =
L2(MY) N (L) C L2(MY) and denote by Py : L?(MY) — 2 the corresponding
orthogonal projection. Then we have Py (z) = (P;(x,))¥ € 5. For every N > 1, we
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have

N
(3.1) N - |[P ()] = Z 1 P (x)u™" 13

We claim that the Hilbert subspaces (u*.4u=%),cz are mutually orthogonal in L2(AY)
i.e. for every k € Z\ {0}, u*#u* and J# are orthogonal in L?(MY). Indeed, for every
k € Z\ {0}, since Egu(uF) = 0, we may write u* = (un k) € MY where (upk)n is a
| - [|co-bounded sequence in M; © B. Let & = (§,)% € 4 and n = (n,)¥ € H# where
(én)n and (1), are || - [[2-bounded sequences in £\ ;3. By construction, it is plain to
see that for all n € N and all k € Z \ {0}, the vectors up, &nu;, 5, and 7, are orthogonal

in L2(M). By Lemma 2.1(iii), since & = (&,)% € L*(MY), we have
(WFeu™,m) = ((unp&nus 1), (m)") = Jim (up kEntiy gy M) = 0.

This finishes the proof of the claim.
From (3.1), since the projections (P, s, )rez are mutually orthogonal, we infer
that

(3.2) (1P ()13 = ZII ok (@13 < Jl2]l3.

Since (3.2) holds for every N > 1, we have lim,_ || P;(zy)|l2 = |[Px#(x)|]2 = 0. This
finishes the proof of the lemma. O

Using a 2 x 2 matrix trick, we obtain the following extension of Lemma 3.1.

Lemma 3.2. Leti € I. Let u € % (MY) be a unitary such that Epgu(vufv*) = 0 for
every k € 7.\ {0} and every v € % (M;). For every x = (z,)¥ € {u} N MY such that
Eu(x) =0 and every y,z € M;, we have lim,_yy ||[yznz — Py, (yxn2)|2 = 0.

Proof. Set % = May(B), #; = Ma(M;) for every j € I and .# = My(M) so that we
have A = g jcrMj. Let x = (z,)4 € {u} N MY be such that EMM( x) = 0. Since
any element of M; is a linear combination of at most four unitaries of Z\JZ7 it suffices to

prove that for every v,w € % (M;), we have lim,,_y ||vepw — Py, (vzpw)|2 = 0.
Let v,w € % (M;). Set

U:(”“” D )e%(.///ﬁ) and X:<O ”w)e///“@,///y.
0 w*uw 0 0
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By construction, we have UX = XU and Eu (U*) = 0 for every k € Z \ {0}. We may
now apply Lemma 3.1 to X = (X,)¥ € .#" © %4 and conclude that

lim [|vz,w — Py, (ve,w)|l2 = lm [[(Xpn)12 — Py, ((Xn)12)|l2 = 0.
n—U n—U
This finishes the proof of the lemma. O

3.2. Proofs of Theorem A, Theorem B, Theorem C.

Proof of Theorem A. Keep the same notation as in the statement of Theorem A. Let
k > 1 and e1,...,6 € I be such that ey # -+ # ¢. For every 1 < j < k, let
zj = (zj,)" € X,;. We may assume that sup {||zjnllec |1 <j <k,neN} < 1. We
show that Egu(zy---x5) = 0.

For every i € I and every p € (1,+00), we simply denote by P; : LP(M) — LP(¥#;)
the completely bounded operator (see Theorem 2.3(iii)). For every p € (1, +00), choose
kp > 0 large enough so that

Sup{HPi(x)Hp | S {517 cee 7€k}7$ S Lp(M)7 Hpr < 1} < Hp.
Fix 1 <r <2 (eg,r =3). Let p € (1,+00) be such that + = 1 + %. For every
1 <j<kandevery n €N, write 2, = P-;(2jn) + (zjn — P;(zj»)) and observe that
o ., (xjn) € LQ("//EJ.) and limy, ¢ |20 — P, (@jn)ll2 =0;
o P_j(a;n) € LP(V2) and max {|[Pey (230) s 2j0 — Poy (230) [} < 1+ i
For every n € N, we may write 21, -+ Tgn — Py (21,) -+ - Pey (Thn) as a sum of 28 — 1
terms that are products of length k& for which at least one of the factors is of the form

Tjn — P, (2jn) for some 1 < j < k. For every n € N, using the triangle inequality and

the generalized noncommutative Holder inequality, we obtain
Neim - Thm — Pey(10) - Pep (20)]lr < (Qk -1+ ﬁp)kfl mjax 2jn — Pe; (zj0)]l2-

This implies that

(3.3) m (|21 Tppn — Pey (T10) - Pey (Tk0)[lr = 0.
n—U
Next, set ¢ = kr so that % = %. For every 1 < j < k and every n € N, since
P, (xjn) € Lq(%j), we may choose wj, € #-, such that Hst (jn) — Winllg < r%%l

For every 1 < j < k and every n € N, write P. (%)) = wjn + (P, (Tjn) — wjn) and
observe that
o max {[[wjnllg: Pz (2jn) —winllg} <1+ Ky

We may then write P, (z1,,) - - - Py (Thn) — Wi - - - Wk, as & sum of 2k _1 terms that are
products of length k for which at least one of the factors is of the form P, (Tjn) —Wjn
for some 1 < j < k. For every n € N, using the triangle inequality and the generalized
noncommutative Holder inequality, we obtain

1Py (w1,0) - - Py, (ffkm) — Win - 'wk7n||r < (2k -1+ ﬁq)k_l mjax ||P€j (mj,") - wjvan'
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This implies that
(3.4) lim ||P., (z1,n) - Pey (Thn) — Win -+ Wepllr = 0.
n—U

By combining (3.3) and (3.4), it follows that

(3.5) m ||z1n - Thn — Wipn - Wepllr = 0.
n—U

In particular, since Egu (21 - k) = (Eg(z1,5 - Tg.n))Y, using Lemma 2.2 and the fact
that Ep is || - ||.-contractive, we have

I Epu(zy---ap)llr = lim |Ep(z1n - 2kn)llr = lm [[Ep(win - win)l-
n—U n—U

Since for every 1 < j < k and every n € N, we have w;,, € #;, and since €1 # - -+ # &,
it follows that Eg(wi - - - wk,n) = 0. Thus, we obtain Egu(z1---zx) = 0. O

Remark 3.3. We were informed by Sorin Popa that he and Stefaan Vaes had recently
made the following observation. In the case L(F2) = A; % Ag is a free group factor
with A; = Ay = L(Z), they showed that A} N L(F2)¥ and A, are freely independent in
L(F9)¥ with respect to 7.

We obtain the following consequence of Theorem A which implies Theorem B.

Theorem 3.4. Assume that B = C1. For every i € I, let (A;r)ken be a decreas-
ing sequence of separable diffuse abelian von Neumann subalgebras of MZM such that
Mpeq Aix = CL.

Then for every i € I, M; = \[52 (AL, N MY) C MY is a nonamenable irreducible
subfactor with property Gamma. Moreovyer, the family (#;)icr is freely independent in

MY with respect to ™.

Proof. Let i € I. For every k € N, since A; i, is separable, we have (A;k NMYY N MY =
A, by [Pol3a, Theorem 2.1]. This further implies that

o0 o0 [e.e]
O MY = (\] Ay n MUY 0 MY = (Y (A, n MY)Y N MY = () Ai, = CL.
k=1 k=1 k=1

Therefore, .#; C MY is a irreducible subfactor. Since A;,o N MY is nonamenable, .#; is
nonamenable as well. Let ¥ be another nonprincipal ultrafilter on N. For every £k € N
and every A € (0,1), choose a projection pyj € A, such that Tu(p%k) = A. Then
pa = (pag)Y € AN is a projection such that (74)Y(py) = . Therefore, ./ N4
is a diffuse von Neumann algebra and so .#; has property Gamma.

A combination of Lemma 3.1 and Theorem A implies that all k,¢ € N, the family
(A; M U),c1 is freely independent in MY with respect to 7. Since for every i € I, the
sequence of von Neumann subalgebras (Agk, N MY);, is increasing, Kaplansky’s density

theorem further implies that the family (.#;);c; is freely independent in MY with respect
to 7Y, 0
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Proof of Theorem C. Keep the same notation as in Theorem A. Let Y; C X; be a
subset with the property that aY1b C X for all a,b € M;. Denote by M;Y1M; the
linear span of all the elements of the form aY'b for a,b € M7 and Y € Y. Then we have
MY 1My, C Xy. Likewise, denote by Mi#5M; the linear span of all the elements of
the form awb for a,b € My and w € #5. Observe that any word with letters alternating
from Y7 and M #5M; can be written as a linear combination of words with letters
alternating from MY M; U (M; © B) and #5. Since M1Y 1M, U (M, © B) C X; and
Wo C Xo, Theorem A implies that the sets Y; and M;#5M; are freely independent in
MY with respect to Egu.

Using Kaplansky’s density theorem, for any element x € M © M, there exists a
Il - |lco-bounded sequence (zy,), in My #5M; such that x,, — z for the strong operator
topology. Combining this fact with the first paragraph of the proof, we infer that the
sets Y and M © M; are freely independent in MY with respect to E gu. Il

3.3. Proof of Theorem D. This subsection is devoted to the proof of Theorem D.
Moreover, we generalize Theorem D to arbitrary tracial amalgamated free product von
Neumann algebras.

Theorem 3.5. Assume that [ = {1,2}. Let uy € % (MY) and uy € % (MY) be such
that Egu(uf) = 0, for every k € Z\ {0}, and Egu(uz) = Egu(u?) = 0.

Then there do not exist unitaries vi,vo € % (MY) such that [ui,v1] = [v1,v2] =
[UQ,'LLQ] =0 and EBZ/((Ul) = EBZ,{('U%) = EBM(7)2> =0.

The proof of Theorem 3.5 relies on two lemmas. Using the notation from Section 2.3,
for every i,j € I, we put #; j = £ N%; and P, j = Py, o Pp,. By Theorem 2.3, we
have a completely bounded operator P; ; : LP(M) — LP(%; ;), for every p € (1,+00).

Lemma 3.6. Assume that I = {1,2}. Let u € % (M) be such that Egu(u¥) =0 for
all k € Z\ {0}. Let x = (x,)4 € ({uY N MY) and y = (y,)¥ € {x} N MY with
EBM(.’L') = EBu(y) = 0. Then limn_,u HPQ’Q(yn)H% = limn_>u<:):nP2,2(yn),PLl(yn)xn).
Thus, limp sy | Po,2(yn)ll2 < limp oz [P (yn) 2

Proof. Since Egu(y) = 0, after replacing vy, with y, — Ep(y,), we may assume that
Ep(yn) = 0, for all n € N. We may assume that z,, € Z (M) and |[yn|lcc < 1, for all
n € N. For p € (1,+00), let k5, = sup {[| P ;(z)|p | 1,7 € {1,2},2 € LP(M), ||lz[l, < 1}.

For every n € N and 4,j € {1,2}, put ys’ = P, j(y,). Then y, = Z?j:l yn’ and
||yqi1’j||p < kp, for every n € N,i,j € {1,2} and p € (1,+00). We claim that
(3.6) lim || Ep (amyp oy’ )l = 0, for every (7, 7) # (1,1).
n—

Let (4,5) # (1,1). By Lemma 3.1, we have lim,,_y; ||z, — P1,1(zy)||2 = 0. By using the
noncommutative Holder inequality and that 1 = % +3- %, we get that

lznyn?any?” = Praza)yn® Poa(en) i I < (55 + 5 len — Pra(aa)2-
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This implies that
(3.7) lim. lzny2?anys?™ — Pra(zn)ye Pua(an) Y |1 = 0.

Next, let v, € #4.1 and wh’ € #; ; such that || Py, 1(zn) —vnlla < Land [lyp/ —wi [l < L,
for every n € N and i,j € {1,2}. Then |Jvn |4, [wi |4 < ka+ 2 < ka+1. Since 1 =4-3
applying the noncommutative Holder inequality again gives that
. . 15(kyg + 1)3
P Pos ()l — vty "y < DL
This implies that

(3.8) lim. 1P ()Y P () "yl — vnwl i w1 = 0.
By combining (3.7) and (3.8), it follows that

(3.9) Lim. lznys ey’ — vawp ogwi?" [l = 0.

Now, vywp viws’” € WiaWas Wiy, © Wik, Since (i,j) # (1,1), #i1 and
W ; are orthogonal (algebraic) B-bimodules. Thus, Eg(#11%;") = {0} and therefore
Ep(vpwa v wn’J ) =0, for every n € N. In combination with (3.9), this proves (3.6).
Finally, for every n € N, we have that \|yT2L’2||% = (yg’Q,yn> = <xnyz’2,xnyn>. Since
limy, 4 ||Znyn — Ynzn|l2 = 0, we get that
2

2 = 111%<xnyn ayn$n> = lgl?/{( Zl<$nyn uyﬁ]xn»
7]

On the other hand, (3.6) gives that lim,_ i (znya?, yi' zn) = 0 if (i,7) # (1,1). Thus,
. 2212 _ 1 22 1,1 . : . .
we get limy, ¢ ||yn " |15 = im0 (znyn’*, Y’ Tn), which proves the main assertion. Since

(@nyn?, yn )| < e ll2llym |2, we get that limg, gy a2 < limg g lunt 2. O

li 2,2
lim, lyr,

Lemma 3.7. In the setting of Lemma 3.6, assume additionally that Egu(x?) = 0 and
y € {v}Y N MY, for some v = (v, € % (MY).

(1) [f EBM (U) = 0, then limn_ﬂ/{ ”P1,1<yn)H2 = limn_ﬂ/{ HPQQ(Z/TL)HQ =0.
(ii) If Egu(v) = Egu(v?) =0, then y = 0.

Proof. We keep the notation from the proof of Lemma 3.6.
(i) Assume that Egu(v) = 0. Write v = (v,)¥, where v, € My © B, for every n € N,
and sup {||vp|leo | @ € N} < 00. We first claim that

(3.10) lim ||azny,21’2 — y}l’lajnﬂg =0.
n—U
Since vyv* =y, we get that lim,_ ||vkynvy — ynll2 = 0. Thus, we derive that

lim (vpyp vk, yp) = lim (yp', y,) = lim [jyp! 3.
n—U n—U n—U
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Since (M © B)#11(M2 © B) C #22 we also get that R,j(vny%’lv;) = 0, for every
(i,7) # (2,2) and n € N. This implies that (voyn'vE, yn) = (vaye vk, yo?), for every

n € N. Since [(vayn v, u27) < |y’ |2y’

limy, s lyn ' 13 < limpog [lya ll2/lya?[l2 and thus

2, for every n € N, we conclude that

(3.11) lim [l |2 < Tim [y
n—U n—U
On the other hand, Lemma 3.6 implies that

(3.12) lim [|y>? 2.
n—U

3= lim (zoy2?, Yy en) and  lim [ly2?[|z < lim [y,
n—U n—U n—U

It is now clear that (3.11) and (3.12) together imply (3.10). Since y also commutes with

2* = (z¥), applying (3.10) to z* instead of z gives that lim,_ ||zya? — yn' 2kl = 0

9 = 0. In combination with (3.10), this implies that

: 2,2 1,1
and thus lim, .y ||yn " — Tpyn

(3.13) lim. l22ye? — y2Pal|l2 = 0.

(22) and Egu(2?) = 0, (3.6) from the proof of Lemma

n
22,2 2% 272% 2,22 22 9

3.6 gives that lim, || Ep(ziyn"x; yn” )1 = 0, thus lim, y(zoyn”, yn zs) = 0.
Together with (3.13) we get that lim,_ ||#2y2?[|2 = 0. Since z, € % (M) we get that
limy, ¢ ||lya?|l2 = 0 and (3.11) gives that lim, . ||yn"|j2 = 0, proving part (i).

(i) Assume that Egu(v) = Egu(v?) = 0. By (i), we have lim, .y ||yn — (yTa +
y51)ll2 = 0. Since vy = yv, we have limy, 1 [[vnyn — Ynvnl2 = 0 and so

Since y commutes with z2

(3.14) 7}% [vnyT 2 + vnya 1 — Yl2vn — Y2 10nll2 = 0.

For every n € N, we have v,yf'y = Pa2(vnyla), ¥310n = P22(y31vn), vnys, =
Pri(vnys ) + Poa(vnys ) and yi'9vn = Pri(y7ovn) + P12(y7 9vn). In combination with
(3.14), we obtain

(3.15) lim [lonys s = yiovalz =0 and  lim flopysy — Pri(vaysq)lle = 0.
n—U ’ ’ n—U ’ ’

For every n € N, set n, = P11(vays,) € L2(M). Then (3.15), Theorem 2.3 and

Lemma 2.1 together imply that n = (1,)¥ = (vnygil)“ = (yﬁQvn)“ € L%(MY) and that
y = v*n + nu*. Since v*y = yv*, we obtain (v*)?n = n(v*)? and so v?n = nv?. Since
Egu(v?) = 0, we may write v? = (w,)¥ where w, € My © B for every n € N. For every
n € N, since 7, = Pl,l(nn)a we have wpn, = P2,1(wn77n) 1 P1,2(77nwn) = Npwy. Then
we obtain v?n L nv?. Since v?n = nv?, this further implies that v?n = 0 and so n = 0.
Thus, y = 0. O

Proof of Theorem 3.5. Theorem 3.5 follows directly from part (ii) of Lemma 3.7. [
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4. PROOF OF THEOREM E

Proof of Theorem E. Let P C M be a von Neumann subalgebra such that PN My Ay,
B and P'N MY £,u BY. Set A= PN M. By [IPP05, Theorem 1.1], since A £y, B,
we have PPN M Cc AN M C M, and so P" N M = P’ N M. The set of projections
p € P'N My for which Pp C pM;p attains its maximum in a projection z € 2 (P'NMy).
It suffices to prove that z = 1. By contradiction, assume that z # 1. Set ¢ = 2 and
Q= Pq.

Claim 4.1. We have Q < M;.

Proof of Claim 4.1. By contradiction, assume that @ Ay M;. Choose a sequence (wy)g
in 7 (Q) such that limg, | Epy, (z*wy)||2 = 0 for all 2,y € ¢M. Set 2 = Q' N (gMq)¥ =
q(P' 0 MY)q. We have 2 £,u BY.

Firstly, we show that 2 <, MY. By contradiction, assume that 2 4, MY. Since
A 4, B, by Lemma 2.4, we may choose u € % (A") such that Egu(au™b) = 0 for all
a,b € My and all m € Z\ {0}. Since M is separable, 2 4 u MY, 2 Cc A’'N M and
u € % (A"), by a standard diagonal argument, we can construct a unitary v € % (2)
such that Epu(v) = 0 and vu = wv. By Lemma 3.2, the set Yy = {u}' N (MY & MY
satisfies aY1b C X for all a,b € M;. On the one hand, applying Theorem C, since
v € Y1, we have

Vk € N, EBu (v(wk — E]W1 (wk))v*(wk — E]\/[1 (wk))*) =0.

On the other hand, for every k € N, we have vwy = wiv and Epy, (wg) — 0 strongly as
k — oo. Altogether, since vv* = v*v = ¢ = wpw; = wjwy, this implies that Egu(q) =0,
a contradiction. Therefore, we have 2 < MY.

Secondly, we derive a contradiction using the proof of [lo12, Lemma 9.5]. By [lo12,
Lemma 9.5, Claim 1], there exist § > 0 and a nonempty finite subset .# C ¢M such
that

Voew(2), Y |Eyu®va)l} =

Denote by My C MY the set of all elements € MY such that Egu(d*zc) = 0 for
all ¢,d € M. Then denote by .# C L2((¢gM¢q)"") the || - ||o-closure of the linear span
of the set {axb* | a,b € ¢M,z € My} and by e : L?((¢Mq)) — # the corresponding
orthogonal projection.

Since 2 A ju BY and since M is separable, by a standard diagonal argument, we
can construct a unitary v € % (£2) such that Egu(d*ve) = 0 for all ¢,d € ¢M. Set
E=e(v) € X andn =3, c 5 bEyu (b va)a” € (gMq)¥. Then for every ¢,d € M; and
a,b € Z, we have Epgu (d* Epu (b*va)c) = Egu(d*b*vac) = 0. Thus n € 2 and we have

) =) = 3 [ By (ea)f >

a,beF

It follows that & = e(v) # 0.
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On the one hand, since .# C L2((¢Mq)¥) is a ¢Mg-gMg-bimodule and since v €
2, for every k € N, we have wpw; = wre(v)w; = e(wpvwy) = e(v) = & On
the other hand, following the proof of [[012, Lemma 9.5, Claim 2|, we show that
limy (wp€wy, ) = 0. This will give a contradiction. By linearity and density, it suf-
fices to show that limy(wy aiz1b] wi,asxebs) = 0 for all ai,a,bi,b2 € ¢M and all
1,22 € My. So let us fix a1, a9,b1,b2 € ¢M and 1,22 € M;. We may further assume
that max {||a;||eos ||billco, [|Zilloo | © € {1,2}} < 1. Then for every k € N, we have

|(wg, a1 210} W, aswably)| = 7Y (whadwrarz1bjwiby)| < || Eppu(aqwiar x1 bwgba) 2.
Using the amalgamated free product structure M = Mj xp My, the inclusion My C M is
mixing relative to B. In particular, since 21 € My, we have Ej i (c*x1d) = Epu (c*xzy) =
EM%{(I‘ld) = 0 for all ¢,d € M © M (see e.g. the proof of [CHO8, Claim 2.5]). This
implies

VEeN, Eyu (aswray 1 bjwiba) = Epy (a5wiar) z1 Epr, (bjwiba).
Thus, we have

lim sup [(wy a121b] Wy, agz2bs)| < limsup || Eas, (a5wiar)]|2 = 0.
k k

This gives a contradiction and finishes the proof of Claim 4.1. O

Since @@ =p; M, there exist n > 1, a projection r € M, (M;), a nonzero partial
isometry v = [v1, ..., v5] € My ,(2-M)r and a unital normal *-homomorphism 7 : Q —
rM,,(Mi)r such that av = vr(a) for all @ € Q. In particular, we have Av; C Y 1, v;M;
for every i € {1,...,n}. By [IPP05, Theorem 1.1], since A £y, B, we have v; € M
for every i € {1,...,n}. It follows that vo* € Q' N M; and Quv* C vv*Mjvv*. Thus,
we obtain P(z + vv*) C (z 4+ vv*)Mi(z + vv*). This contradicts the maximality of the
projection z € P’ N Mj. Therefore, we have z =1 and so P C M. O

Remark 4.2. We make two observations.

(i) If A C M, is a von Neumann subalgebra such that A Ay, B, then we have
A £y B. Indeed, this follows from the amalgamated free product structure
M = My xg My and the fact that the inclusion M7 C M is mixing relative to B
(see the proof of Claim 4.1).

(ii) If P C M is an amenable von Neumann subalgebra such that P A5 B, then we
have P’ N MY 4, BY. Indeed, by contradiction, assume that P’ N MY <,
BY. On the one hand, by [[012, Lemma 9.5, Claim 1], there exist § > 0 and a
nonempty finite subset .# C M such that

(4.1) Voe#(P'aMY), > | Epu(b va)ll > 6.
a,beF

On the other hand, since P is amenable hence hyperfinite by Connes’ fundamen-
tal result [Co75], there exists an increasing sequence (Py)y of finite dimensional
von Neumann subalgebras of P such that (|J, Px)” = P and P, P C P has
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finite index for every k € N (see e.g. the proof of [Hol2, Theorem 8.1]). Since
P Au B, it follows that P, NP Ay B for every k € N. Since M is separable,
by a standard diagonal argument, we can construct a unitary v € % (P’ N MY)
such that Egu(b*va) = 0 for all a,b € M. This contradicts (4.1). Therefore, we
have P’ N MY 4 BY.

5. A LIFTING THEOREM AND PROOFS OF THEOREMS G AND H

5.1. A lifting theorem. The goal of this subsection is to establish the following lifting
theorem which will be needed in the proof of Theorem G.

Theorem 5.1. Let U be an ultrafilter on a set K and (Mg, 1),k € K, be tracial von
Neumann algebras. Let A, B C [[,;, My be separable abelian von Neumann subalgebras
which are 2-independent in [],; My, with respect to (y)". Then there exist orthogonal
abelian von Neumann subalgebras Cy, Dy, C My, for every k € K, such that A C [],, Ck
and B C [[;; D.

We do not know whether Theorem 5.1 still holds if we replace the assumption that
A and B are 2-independent with the weaker assumption that A and B are orthogonal.
When dim(A) = 2 and dim(B) = 3, Theorem 5.1 follows from [CIKE22, Lemma 3.1],
which moreover only assumes that A and B are orthogonal. Theorem 5.1 is new in all
other cases, including when A and B are finite dimensional and of dimension at least 3.

The proof of Theorem 5.1 relies on the following perturbation lemma. First, we
need to introduce some additional terminology. Let (M, 7) be a tracial von Neumann
algebra. We denote by Ms, 1 the set of x € M such that x = 2* and ||z] < 1. Let
x=(T1,...,%ym) € M and y = (y1,...,yn) € M", for some m,n € N. For u € % (M),
we write uzu® = (uziu®, ..., ur,u*). We define

§(x,y) = min {||[zs,y;lll2 | 1 <i <m,1<j<n},
e(x,y) = max {|7(zy;)| | 1 <i <m,1 < j<n},
v(z,y) = max {|[{[z;, y;], [z, yp )| | 1 <d,8" <m, 1< 4,5 <n, (i,5) # (7,5}

Lemma 5.2. Let (M,T) be a tracial von Neumann algebra, x = (x1,...,2m) € Ma,

and y = (y1,...,Yn) € Mg, 1, for m,n € N. Set o = §(z,y),e0 = (2, y), 70 = V(2,y).
Assume that 13mn./2g < 62 — (mn — 1)y9. Then there exists v € % (M) such that

8
o= 1]l < e

8
< =/ d *y) =0.
5 (mn— 1) = 13 o and e(vzv*,y)

Note that Lemma 5.2 is interesting even when M is finite dimensional. To prove
Lemma 5.2, we will need two auxiliary lemmas.

Lemma 5.3. Let (M, 7) be a tracial von Neumann algebra, &1,...,§ € Msa1 and
ai,...,ap €R, for somep>2. Let § € (0,1) and ¢ € (0, p‘sle) Assume that ||&||2 > 0,

for every 1 < i <p, and [(§,&;)| < e, for every 1 <i < j < p. Then there exists h € M

P o
such that h = h*,||hllco < (gﬁ%_llj){‘s and 7(h&;) = ay, for every 1 <1i < p.
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Proof. First, we claim that &i,...,§, are linearly independent. Otherwise, we can find
Bi,-..,0p € R such that $1& + -+ + Bpép = 0 and max {|F;| |1 <i<p} > 0. Let
1 < j < psuch that |8j| = max{[8]|1<i<p} Then —3;§; = >, ., B:& and
thus |B5] 16113 < 22545 1Bl 1466 €] < 1851 20545 (€, &) Since B; # 0, we derive that
€113 < >izj [(€i:&;5)], which implies that 52 < (p—1)e, contradicting that §2 > (p—1)e.

Since &1, ...,y are linearly independent, it follows that we can find Ay,..., A, € R

such that h = Y7 | \;& satisfies 7(h&;) = (h,&;) = a;, for every 1 < j < p. Then
ol = | 22020 Ml €)1 = INIIEGIE — 2igy [Nl (6 €5) ] and thus
(5.1) VI<j<p, oyl =Nl - |l
i#]

Adding the inequalities in (5. 1) for 1 < j <pgives 0_, |aj| > (02— (p—1)e) YF_; [\.
Thus, (Al < Y2 [Aj] < Z221%L Since h = h*, this finishes the proof. O
Lemma 5.4. Let (M, 7) be a tracial von Neumann algebra, x = (x1,...,zm) € MZ,
and y = (Y1,...,Yn) € Mg, for some m,n € N. Set § = §(z,y),e = s(x Y)Yy =
y(z,y). Assume that 2mne < 6% — (mn — 1)y and set \ = 52_%;’:7;{1)7 <1

Then there exists u € % (M) such that

(1) fJu—1lloe < 20

(ii) d(uzu*,y) > § — 8.

(iii) e(uzu*,y) < 4X2.

(iv) y(uzu*,y) < v+ 32\
Proof. For every 1 < i < m,1 < j <mn, set & ; = —3[x;,y;]. Then & ; € Mg and
6,51l = I x“yj]nz > 5 ¢, for every 1 < i < m,1 < j <n. On the other hand, for every
(13) # (77, we hase [{6 8,0} = (Eoslzensll < g

By applying Lemma 5.3 to & ; and o;; = %, we may find h € M such that
h = h*,
(5.2) Vi<i<m1<j<m, 7(h&;)= T(x;yj)
and

S \T(l“éyj)l mne

(5:3) 1hlloo < 57— = A

<
& —(mn—1)7 02— (mn—1)y

Define u = exp(ih) € % (M). We will prove that u satisfies the conclusion. Since for
every x € R, |exp(iz) — 1| < 2|z| and |exp(iz) — (1 +iz)| < 22, using (5.3) we get that
(5.4) Ju—1lloo <2\ and |ju— (1 +ih)[e < N2

Let 1 <i<mand 1 < j <n. Then using (5.3) and the second part of (5.4) we get
that [|uzu*y; — (14ih)z; (1+ih)*Yjlleo < lu—(1+ih)|[oc(1+[|1+iR]lo) < A2(2+X) < 32
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and [|(1 + ih)z;(1 +ih)*y; — (ziy; + i(haiyy; — 2:hy;)) oo = [[hxihy;]lco < A% Thus, we
get
luziwy; — (wiy; + i(haiy; — zihy;)) oo < 422

and therefore |7 (uz;u*y;) — 7(x;y; +i(hz;y; — xihy;))| < 4A2. On the other hand, (5.2)
gives T(x;y; + i(haiy; — xihy;)) = 7(zy;) + 7(ih[zs, y;]) = 7(ziy;) — 27(h& ;) = 0.
Altogether, we get that |7(uz;u*y;)| < 4\2. Thus, e(uzu*,y) < 4%, which proves (iii).

Next, [|[uziu®,y;] — [z, y;]ll2 < 2||luziu® — zil|2 < 4]ju — 1|2 < 8, by the first part
of (5.4). Hence, ||[uz;u*,y;]ll2 > ||[zi,y;lll2 —8X > 6 — 8\, for every 1 < i < m and
1 < j <n. This implies that §(uzru*,y) > § — 8\, which proves (ii).

Finally, for every (i, 7), (¢, j') we have ||[uzyu*,y;]ll2 < 2, ||[zs, y;]ll2 < 2 and thus

[(uziw®, yi], [uziw”, yyl) — (@i yj], [z, yir])|
< 2([[uwiv”, ys] = i, yilllz + Nuwew”, yy] = [, yplll2) < 32X

Thus, [([uzu®,y;], [uzyu*,yi])| < (26, y5], @i, yi])| + 320 < v + 32X, This implies
that 'y(uasu ,y) < v+ 32\, which proves (iv). Since (i) also holds by the first part of
(5.4), this finishes the proof. O

Proof of Lemma 5.2. We will inductively construct sequences (ug)keny C % (M) and
(Mk)ken C (0,00) with the following properties: A\g = 1, \; = 527%2% and if we
0

define vg = 1, vy = upup—1---u1 € % (M), 6 = d(vprvy,y),er = e(vpavy,y) and
Y = Y(vgavy,y), for every k > 0, then for every k > 1 we have that

i) Huk — 1||OO < 2)g.

(ii) Op > Op—1 — 8A.
(iil) ep < 4X2.

(iv) % < % 1 + 32\
(v) A

Slnce 0 S 1, we have that 4mney < 13mn,/gg < 63 — (mn — 1)yo. Thus, A\ < % and
hence condition (v) holds for £ = 1. By applying Lemma 5.4, we can find u; € % (M)
such that conditions (i)-(iv) hold for k = 1.

Next, assume that we have constructed uq,...,u; € Z (M) and A1,..., N\ € (0,00),
for some [ € N, such that conditions (i)-(v) are satisfied for k = 1,...,l. Our goal is to

construct w41 and Ajq1. Let Ay = %. We continue with the following claim.

. AL
Claim 5.5. A\ < 4.

Proof of Claim 5.5. First, (ii) implies that 67 > (0g—1 — 8\,)? > 87_; — 32\;. Then
combining (ii) and (iv) gives that
VI<k<I & —(mn—1)y > (05 — (mn—1)ye_1) — 32mny,

which implies that 62 — (mn — 1)y, > (68 — (mn — 1)y) — 32mn(22:1 k). By using
that (v) holds for £k =1,...,[, we also get that 22:1 Ax < 2)\1. By combining the last
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two inequalities we get that
(5.5) 62 — (mn — 1)y > (02 — (mn — 1)y) — 64mn;.

Since 13mn./gg < 62 — (mn — 1)vo, we get that (62 — (mn — 1)79)? > 169(mn)?cy and
thus

(5.6) 62 — (mn — 1)y > 80mn;.
By combining (5.5) and (5.6) we derive that
(5.7) 62 — (mn — 1)y > 16mn;.

Since (v) holds for every k = 1,...,1, we get that \; < A;. Since g; < 4)\? by (iii), using
(5.7) we get that

2mne; 8mn)\12 16mnA NN
6 —(mn—1)y = 6 —(mn—1)y = 0 —(mn—-1)y 2 = 2
This finishes the proof of the claim. O

By using (v) and Claim 5.5 we get that A4 < 21% < 1. Thus, 2mne; < 62 — (mn —
1)y;. We can therefore apply Lemma 5.4 to vjzv; and y to find w1 € % (M) such that
(@) [lurt1 = oo < 2X041.
(ii") 1 = O(wr (wzop)ugyy),y) = 0 — 8
(i) €141 = e(upr (v )ujyy, y) < 4N
(V") Y1 = Y (wav) )ugy g, y) < e+ 3204
By induction, this finishes the construction of (uk)keN C % (M) and (Ag)ren C (0, 00).
Finally, since \g = 1, (v) implies that A\p < 2,“ for every k > 0. Using (i), we derive
that ||vg — vk—1]lco = |Jur — 1]|co < 2,%1, for every k > 1. Thus, the sequence (vg)ken is
Cauchy in || - ||s and so we can ﬁnd v € % (M) such that limg_, ||vg — v|lcc = 0. Using
(iii), we get that e < 4)\2 4k r, for every k > 1. Thus, e(vav*,y) = limg_oo € = 0.
Moreover, using (i) and (v) we get that ||[vg — 1|00 < lel lug — 1|00 < 21:1 20 < 4\

Hence [|[v — 1||oo = limg 00 ||vg — 1]|oo < 41 = %. This finishes the proof. O

Proof of Theorem 5.1. We may clearly assume that dim(A) > 2 and dim(B) > 2. Since
A and B are separable, we can write A = ({U,cy 4n)”, B = (Upen Bn)”, where A, C
A, B, C B are finite dimensional von Neumann subalgebras such that A, C A,41,
B,, C Bpy1, an :=dim(A,) > 2 and b, := dim(B,,) > 2, for every n € N.

Fix n € N. Write 4, = @}", Cp,,; and B, @] 1 Cgn,j, where (p,;)i", and
(Qn,j)§l1 are partitions of unity into projections from A and B, respectively. For every
1 <i<apand 1l < j < by, represent pni,qn; € [y Mk as pny = (p,]’ii)u and
Inj = (qnj) , where for every k € K, (pF )ity and (qnj)j | are partitions of unity into
projections from Mj,. Denote AF = b (Cpm and BF = @J 1 an - Moreover, we
can arrange that A* C AkJrl and BF C Bn+1’ for every n € N and k € K.

If (r;)*, is a partition of unlty into nonzero prOJectlons from a tracial von Neumann
algebra (N, ), then {r(rjy1+ - +rm)ri—7(r)(rgr +---+1mm) [ 1 <T<m—1} is
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an orthogonal basis for C' & C1 contained in Cs, 1, where C' = @2, Cry. Using this
observation, for every 1 <i<a, —1,1<j<b,—1and k € K, we define

Tpi = T(Pnji+1 + -+ Pnan)Pni — T(Pni) Pnit1 + - + Pran)s
yn,] T(qn,j—H ot )i — T(@ng) (Gngt1 + 0+ dn,)
= 7(p}; vl Tt pfz,an)pﬁ,i - T(Pﬁ,i (p’fb,z'ﬂ +-- +p7lz,an)?
yn,] T(Gh g1+ + G )ahg = T(an ) (@ g1+ + iy,
Set z, = (:Bm)fnll € Adn— 1,yn = (yn,J)b" Ve Bl gk — (gF )f”ll € Ma"_1

j=1 n »n n,i
and y¥ = (ynj)b”_1 € Mb" L LetneN,1<i,i# <ap,—1land1<jj <b,—1
with (4,7) # (i, 7). Slnce A, and B, are 2-independent, z,; # 0 and y,; # 0,

we have that ||[znq, Ynjlll2 = jll2 > 0 and 7(zpy;n) = 0. Moreover,

([Znis Yn gy [Tnirs Un 7)) = 27 (T im0 )T (Yn,jYn g)- Since (wn)in7" and (yn,;)iey" are

pairwise orthogonal, we get that ([, Yn j]; [€nisUnj7]) = 0. Altogether, we derive
that 0(zy,yn) > 0 and 5(xn,yn) = Y(xn, yn) = 0.

Thus, we get that limg . 0(2%, y%) = §(zn, yn) > 0, limg gy e(zk, y%) = e(@n, yn) =0
and limy_y y(2%, y%) = v(2n, yn) = 0. By applying Lemma 5.2, we find vf € %(Mk),
for every k € K, such that e(vfzkof" %) = 0, for every k € K, and limy_q |[vF —
1]joo = 0. Since z¥ and y¥ are bases for A¥ and B, respectively, we get that vFAFk”
and BF are orthogonal, for every k € K.

To complete the proof we consider two cases:

Case 1. U is countably cofinal.

In this case, we proceed as in the proof of [BCI15, Lemma 2.2]. Since U is countably
cofinal, there exists a decreasing sequence {Sy, }n>2 of sets in U such that (,~, Sn = 0.
Forn >2,let T, = {k € K | ||}, = 1]oc < 2,V1 <m < n} €U and set K,, = S, N T,.
Then {K,},>2 is a decreasing sequence of sets in U such that [),~, K, = 0. Let
K, = K\ K». For every k € K, let n(k) be the smallest integer n > 1 such that k € K,,.
Then n(k) is well-defined and limg_y; n(k) = +o0.

For k € K, let Cy, = Ak( k) ,DY = Bk(k) and v = Uﬁ(k). If n(k) > 2, then as k € K,
we have || — 1|00 < T) Since limy_,yy n(k) = 400, we get that limg 4 ||vr —1||cc = 0.

Let n € N. Since {k € K | n(k) > n} € U and the sequences {A* },,en and {BE }en
are increasing for every k € K, we get that [[,, A C [[,,Ck and [[,, B c I, DY.
Since A,, C [, A* and B,, C [[,, B%, we conclude that A, C [[,, Ck and B,, C [[,, DY.
As this holds for every n € N, we get that A C [[,,Cx and B C [], Dg. Finally, let
Dy = kagv,’;. Then C}, = Aﬁ(k) and Dy = UfE(k)B'Z(k)UZ(k) are orthogonal, for every
k € K. Since limg_y [|vx — 1[joc = 0, we get that [[,, DY =[], Dx and B C [],, Dr-
This finishes the proof of Case 1.

Case 2. U is not countably cofinal.
Since U is not countably cofinal, {k¥' € K | f(k') = limy_ f(k)} € U, for every f €
(>®(K) (see the proof of [BCI15, Lemma 2.3 (2)]). If n € N, since limy,_y¢ |vF —1]|oo = 0,
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we get that R, := {k € K | v¥ = 1} € U. Using again that U is not countably cofinal,
we further deduce that R := (), oy R = {k € K | vf =1,vn e N} e U.

If k € R, then v¥ = 1, hence A* and BF are orthogonal, for every n € N. Since
the sequences {AF} ey and {BE},cn are increasing, we get that C = (U,,cn A%)” and
Dy, = (U,,en BE)" are orthogonal, for every k € R. For k € K\ R, let Cy, = Dy, = C1.
If n € N, then A, C [[,, A% c I[,,Cx and B, C [[,, B¥ C [I,; Dx- As this holds for
every n € N, we get that A C [[,;, Cx and B C [];; Dy. This finishes the proof of Case
2 and of the theorem. O

5.2. Proof of Theorem G. In order to construct a II; factor satisfying the hypothesis
of Theorem G, we follow closely the construction from [CIKE22, Definition 5.1]. This
construction uses the following key result from [CIKE22].

Corollary 5.6 (Corollary 4.3 in [CIKE22]). Let (M,T) be a tracial von Neumann al-
gebra having no type I direct summand. Let uy,ug € % (M) such that {ui}" L {u2}".
Then there exists a 11y factor P = ®(M,uy,u2)” generated by a copy of M and Haar
unitaries vi,v2 € % (P) so that [u1,v1] = [ug, v2] = [v1,v2] = 0. Moreover, if Q C M is
a von Neumann subalgebra such that Q £ar {wi}”, for every1 <i <2, then QNP C M.

For a II; factor M, we let #' (M) be the set of pairs (u1,us) € % (M) x % (M) such
that {u1}” and {ug}” are orthogonal. We endow % (M) x % (M) with the product
|| - ||l2-topology. We next repeat the construction from [CIKE22, Definition 5.1] where
we replace ¥ (M) (the set of pairs (u1,us) € # (M) such that u} = u3 = 1) with %' (M).

Definition 5.7. Let M be a II; factor. We construct a II; factor M which contains
M, and arises as the inductive limit of an increasing sequence (M,),en of II; factors.
To this end, let ¢ = (01,02) : N = N x N be a bijection such that o1(n) < n, for
every n € N. Assume that Mi,..., M, have been constructed, for some n € N. Let
{(u’f’k,ug’k)}keN C #(My,) be a || - |2-dense sequence. Since o1(n) < n, we have
(uf(n),ug(n)) € W (M,) and we can define M, := @(Mn,uf(n),ug(n)). Then M, C
My 11 and M, 11 is a II; factor by Corollary 5.6. Thus, M := (|, ey Mn)” a Iy factor.

Proposition 5.8. Let M be the 11y factor introduced in Definition 5.7 and U be a
countably cofinal ultrafilter on a set I. Let uy,uz € % (M%) such that {u1}" and {us}"
are 2-independent.

Then there exist Haar unitaries vy,vy € MY so that [u1,v1] = [ug, v2] = [v1,v2] = 0.

Proposition 5.8 follows by repeating the argument used in the proof of [CTKE22,
Proposition 5.3], which we recall for the reader’s convenience.

Proof. Since M = (,,ey Mn)" and U is countably cofinal, by applying [BCI15, Lemma
2.2] we can find (n;),c.; C N such that uy,us € [[;c;y My,. Also, the proof of [BCIL5,
Lemma 2.2] provides a function f : I — N such that lim;_y, f(i) = +o0.

Since {u1}” and {uz}” are 2-independent, Theorem 5.1 provides orthogonal von Neu-
mann subalgebras C;, D; C M,,,, for every i € I, such that uy € [],, C; and up € [[;; D;.
Thus, we can represent u; = (uu)u and uy = (um)”, where u1; € %(C;) and
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ug; € % (D;), for every i € I. In particular, {ui;}"” and {uz;}” are orthogonal, and
thus (u14,ug) € # (M,,), for every i € I.

As the sequence {(u]"”, ugi’j)}jeN is dense in # (M,,), we can find j; € N such that
i = wf % {|2 + Jugs — 5™ [l < 7, for every i € I. Fori € I, let I; € N with o(l;) =

(ni,4;). Then Myg)41 = @(Mg(li),u?“ji,ug“ji). Corollary 5.6 gives Haar unitaries
V1,0, V25 € U (My(y41) C % (M) with [uf™”, vy ;] = [uy®™*, va;] = [v14,v2,4] = 0. Using
that lim; s f(i) = 400, we conclude that vy = (v1;)%,ve = (vo;)¥ € % (MY) are Haar
unitaries such that [ui,v1] = [ug,ve] = [v1,v2] = 0. 0

To ensure that M does not have property Gamma, it suffices to take M; to have
property (T), as the next result from [CIKE22] shows:

Proposition 5.9 (Proposition 5.4 in [CIKE22]). Assume that My has property (T).
Then M does not have property Gammea.

Proof of Theorem G. Let M; be a separable 11 factor with property (T), e.g., take
M, = L(PSLy(Z)), for n > 3. Let M be constructed as in Definition 5.7. The conclusion
follows from Propositions 5.8 and 5.9. U

5.3. Proof of Theorem H. We may clearly assume that z # 0 and z € Mg, 1, for every
z € XUY. Further, we may assume that X and Y consist of pairwise orthogonal vectors.
Enumerate X = {z1,...,xn}and Y = {y1,...,yn} and define z = (x1,...,2:) a1
and y = (y1,...,yn) € Mg ;.

By [Pol3a, Corollary 0.2] there exists v € % (M%) such that vMv* and M are freely
and hence 2-independent. Then ||[vz;v*, y;]|l2 = V2||zil|2]|yjll2 > 0 and 7 (va0*y;) = 0,
for every 1 < i < m, 1 < j < n. Moreover, for every (i,7) # (i',j'), we have
([vzv*, ys), [vegv®, yy]) = 7(x2i)7(y5y57) = 0. Thus, we conclude that é(vzv*,y) > 0
and e(vzv*,y) = y(vav*,y) = 0. In particular,

(5.8) 13mny/e(vrv*,y) < d(vav*,y)* — (mn — 1)y(vav*,y).
Writing v = (vg)¥, where v, € Z (M), for all k € N. Then limy_ d(vgav},y) =

d(vav*,y), limg_y e(vpavy, y) = e(vev*,y) and limg_yy y(vpavy, y) = y(vav*,y). Using

(5.8) gives k € N such that 13mn./e(vgav},y) < 6(viavs,y)? — (mn—1)y(vgzv}, y). By
applying Lemma 5.2, we can find w € % (M) such that e(w(viavi)w*,y) = 0. Letting
u=wvg € % (M), we get that e(uXu*,Y) =0, i.e., uXu* and Y are orthogonal. [
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