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Abstract. We prove novel asymptotic freeness results in tracial ultraproduct von
Neumann algebras. In particular, we show that whenever M = M1 ∗M2 is a tracial
free product von Neumann algebra and u1 ∈ U (M1), u2 ∈ U (M2) are Haar uni-
taries, the relative commutants {u1}′ ∩ MU and {u2}′ ∩ MU are freely independent
in the ultraproduct MU . Our proof relies on Mei–Ricard’s results [MR16] regarding
Lp-boundedness (for all 1 < p < +∞) of certain Fourier multipliers in tracial amalga-
mated free products von Neumann algebras. We derive two applications. Firstly, we
obtain a general absorption result in tracial amalgamated free products that recov-
ers several previous maximal amenability/Gamma absorption results. Secondly, we
prove a new lifting theorem which we combine with our asymptotic freeness results
and Chifan–Ioana–Kunnawalkam Elayavalli’s recent construction [CIKE22] to pro-
vide the first example of a II1 factor that does not have property Gamma and is not
elementary equivalent to any free product of diffuse tracial von Neumann algebras.

1. Introduction

In order to state our main results, we recall the following terminology regarding
n-independence and freeness.

Terminology. Let (M, τ) be a tracial von Neumann algebra together with a von Neu-
mann subalgebra B ⊂ M . We denote by EB : M → B the unique trace-preserving
faithful normal conditional expectation and set M ⊖B = ker(EB).

Let n ≥ 1. Following Popa (see e.g. [Po13a, Po13b]), we say that two subsets
X,Y ⊂M ⊖B are n-independent in M with respect to EB if EB(x1y1 · · ·xkyk) = 0, for
every 1 ≤ k ≤ n, x1, . . . , xk ∈ X and y1, . . . , yk ∈ Y . We then say that two intermediate
von Neumann subalgebras B ⊂ M1,M2 ⊂ M are n-independent in M with respect to
EB if the setsM1⊖B andM2⊖B are n-independent with respect to EB. When B = C1,
two von Neumann subalgebras M1,M2 ⊂ M are 1-independent in M with respect to
τ if and only if M1 and M2 are τ -orthogonal, i.e., τ(xy) = τ(x)τ(y), for every x ∈ M1

and y ∈M2.
Let I be a nonempty index set. We say that a family (Xi)i∈I of subsets of M ⊖ B

is freely independent in M with respect to EB if EB(x1 · · ·xk) = 0 for every k ≥ 1,

2020 Mathematics Subject Classification. 46L10, 46L51, 46L54, 46L52, 03C66.
Key words and phrases. Amalgamated free products; Continuous model theory; Noncommutative

Lp-spaces; Ultraproducts; von Neumann algebras.
CH is supported by Institut Universitaire de France.
AI is supported by NSF DMS grants 1854074 and 2153805, and a Simons Fellowship.

1



2 CYRIL HOUDAYER AND ADRIAN IOANA

x1 ∈ Xε1 , . . . , xk ∈ Xεk with ε1 ̸= · · · ̸= εk in I. We say that a family (Mi)i∈I of
intermediate von Neumann subalgebras B ⊂ Mi ⊂ M is freely independent in M with
respect to EB if the family of subsets (Mi ⊖ B)i∈I is freely independent in M with
respect to EB. In this case, we denote by ∗B,i∈I(Mi, τi) =

∨
i∈I Mi ⊂ M the tracial

amalgamated free product von Neumann algebra where τi = τ |Mi for every i ∈ I.

Main results. Let I be an at most countable index set such that 2 ≤ |I| ≤ +∞.
Let (Mi, τi)i∈I be a family of tracial von Neumann algebras with a common von Neu-
mann subalgebra (B, τ0) such that for every i ∈ I, we have τi|B = τ0. Denote by
(M, τ) = ∗B,i∈I(Mi, τi) the tracial amalgamated free product von Neumann algebra.

Let U be a nonprincipal ultrafilter on N. Denote by (MU , τU ) the tracial ultraproduct
von Neumann algebra. Simply denote by EB : M → B (resp. EBU : MU → BU ) the
unique trace-preserving faithful normal conditional expectation.

Denote by W ⊂M the linear span of B and of all the reduced words inM of the form
w = w1 · · ·wn, with n ≥ 1, wj ∈ Mεj ⊖ B for every j ∈ {1, . . . , n}, and ε1, . . . , εn ∈ I
such that ε1 ̸= · · · ̸= εn. For every i ∈ I, denote by Wi ⊂ M ⊖ B the linear span of all
the reduced words in M whose first and last letter lie in Mi ⊖B. Moreover, denote by
PWi

: L2(M) → L2(Wi) the corresponding orthogonal projection. By construction, the
family (Wi)i∈I is freely independent in M with respect to EB. Our first main result is
an extension of this fact to the ultraproduct framework.

Theorem A. Keep the same notation as above. For every i ∈ I, denote by Xi the set
of all the elements x = (xn)

U ∈MU ⊖BU such that limn→U ∥xn − PWi
(xn)∥2 = 0.

Then the family (Xi)i∈I is freely independent in MU with respect to EBU .

The proof of Theorem A relies on Mei–Ricard’s results [MR16] showing that the
canonical projection PWi

: W → Wi extends to a completely bounded operator PWi
:

Lp(M) → Lp(Wi) for every p ∈ (1,+∞). In particular, we exploit Lp-boundedness of
PWi

: Lp(M) → Lp(Wi) for every 2 ≤ p < +∞. Theorem A is a novel application of
noncommutative Lp-spaces to the structure theory of tracial von Neumann algebras.

It follows from Popa’s asymptotic orthogonality property [Po83] (see Lemma 3.1
below) that for every i ∈ I and every unitary u ∈ U (MU

i ) such that EBU (uk) = 0 for
every k ∈ Z \ {0}, if x ∈ {u}′ ∩MU and EBU (x) = 0, then x ∈ Xi. In particular, in the
case B = C1, Theorem A implies the following

Theorem B. Assume that B = C1. For every i ∈ I, let ui ∈ U (MU
i ) be a Haar

unitary.
Then the family ({ui}′ ∩MU )i∈I is freely independent in MU with respect to τU .

Assume that for every i ∈ I, Mi is a diffuse abelian von Neumann algebra so that
MU

i ⊂ {ui}′ ∩MU . Then Theorem B can be regarded as a far-reaching generalization
of the fact that the family (MU

i )i∈I is freely independent in MU with respect to τU .
In the case I = {1, 2}, we also obtain the following variation of Theorem A.

Theorem C. Assume that I = {1, 2}. Keep the same notation as above. Let Y1 ⊂ X1

be a subset with the property that aY1b ⊂ X1 for all a, b ∈M1.
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Then the sets Y1 and M ⊖M1 are freely independent in MU with respect to EBU .

A typical example of a subset Y1 ⊂ X1 with the property that aY1b ⊂ X1 or all
a, b ∈ M1 is given by Y1 = A′ ∩ (MU ⊖ MU

1 ), where A ⊂ M1 is a von Neumann
subalgebra such that A ⪯̸M1 B (see Lemmas 2.4 and 3.2).

In the case M = B ⋊ Fn = (B ⋊ Z) ∗B · · · ∗B (B ⋊ Z) = M1 ∗B · · · ∗B Mn, Popa
showed in [Po83, Lemma 2.1] that for the canonical Haar unitary u ∈ L(Z) ⊂ M1, the
sets {u}′∩ (MU ⊖MU

1 ) and M ⊖M1 are 2-independent in MU with respect to EBU (see
also [HU15] for the free product case). Letting Y1 = {u}′ ∩ (MU ⊖MU

1 ), Theorem C
can be regarded as a generalization and a strengthening of Popa’s result.

In the case I = {1, 2} and B = C1, we exploit Mei–Ricard’s results [MR16] to obtain
the following indecomposability result in MU .

Theorem D. Assume that I = {1, 2} and B = C1. Let u1 ∈ U (MU
1 ) be a Haar unitary

and u2 ∈ U (MU
2 ) such that τU (u2) = τU (u22) = 0.

Then there do not exist v1, v2 ∈ U (MU ) such that τU (v1) = τU (v21) = τU (v2) = 0
and [u1, v1] = [v1, v2] = [v2, u2] = 0.

Another way to formulate Theorem D is as follows. Let u1 ∈ U (MU
1 ) be a Haar

unitary, u2 ∈ U (MU
2 ) such that τU (u2) = τU (u22) = 0 and v1 ∈ U (MU ) such that

[u1, v1] = 0 and τU (v1) = τU (v21) = 0. Then we have {v1, u2}′ ∩ MU = C1. This
generalizes the well-known fact (see e.g. [Io12, Lemma 6.1]) that {u1, u2}′ ∩MU = C1.
In Section 3, we generalize Theorem D to arbitrary tracial amalgamated free product
von Neumann algebras (see Theorem 3.5).

Theorem D is new even in the case M = L(C1 ∗ C2), where C1, C2 are cyclic groups
with |C1| > 1 and |C2| > 2. In this case,M =M1∗M2, whereM1 = L(C1),M2 = L(C2).
Moreover, M is an interpolated free group factor by [Dy92, Corollary 5.3] and thus has
positive 1-bounded entropy, h(M) > 0, in the sense of [Ju05, Ha15]. By [Ha15, Corollary
4.8] (see also [CIKE22, Facts 2.4 and 2.9]), if u1, u2 ∈M are generating unitaries, then
there are no Haar unitaries v1, v2 ∈MU satisfying [u1, v1] = [v1, v2] = [v2, u2] = 0. This
fact was used in [CIKE22] to construct two non-elementarily equivalent non-Gamma
II1 factors.

Theorem D considerably strengthens this fact when C1 = Z, u1 ∈ U (M1), u2 ∈
U (M2). Unlike [Ha15], we cannot say anything about arbitrary generating unitaries
u1 and u2, that do not belong to M1 and M2, respectively. On the other hand, while
the free entropy methods from [Ha15] only rule out the existence of Haar unitaries
v1, v2 ∈ U (MU ) satisfying [u1, v1] = [v1, v2] = [v2, u2] = 0, Theorem D also excludes
the existence of such finite order unitaries v1, v2 provided that v1, v

2
1, v2 have trace zero.

Let u1 ∈ U (MU
1 ) and u2 ∈ U (MU

2 ) be as in Theorem D, and assume that um2 = 1, for
some m > 2. Then {u2}′∩MU has finite index in MU and therefore, unlike in Theorem
B, {u1}′ ∩MU and {u2}′ ∩MU are not freely independent in MU with respect to τU .
Instead, the proof of Theorem D relies on a subtler analysis of commuting unitaries
belonging to {u1}′ ∩MU and {u2}′ ∩MU . However, similarly to the proof of Theorem
B, we make crucial use of Mei–Ricard’s results [MR16].
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We do not know if Theorem D holds if we remove the assumption that EBU (u22) = 0.
However, a standard diagonal argument implies the existence of N ∈ N such that the
assumption that EBU (uk1) = 0, for every k ∈ Z\{0}, can be relaxed by assuming instead
that EBU (uk1) = 0, for every k ∈ Z \ {0} with |k| ≤ N .

Application to absorption in AFP von Neumann algebras. We use Theorem C
to obtain a new absorption result for tracial amalgamated free product von Neumann
algebras.

Theorem E. Assume that I = {1, 2}. Keep the same notation as above and assume
that M is separable. Let P ⊂M be a von Neumann subalgebra such that P ∩M1 ⪯̸M1 B

and P ′ ∩MU ⪯̸MU BU . Then we have P ⊂M1.

Theorem E vastly generalizes Popa’s seminal result [Po83] that the generator masa
L(⟨a⟩) is maximal amenable inside the free group factor L(F2) = L(⟨a, b⟩). Specifically,
it extends several maximal amenability/Gamma absorption results. Theorem E general-
izes [HU15, Theorem A] (see also [Ho14, Theorem A]) to arbitrary tracial amalgamated
free product von Neumann algebras. As we observe in Remark 4.2, if P ⊂ M is an
amenable von Neumann subalgebra such that P ∩M1 ⪯̸M1 B, then we necessarily have

P ′ ∩MU ⪯̸MU BU . Thus, Theorem E also yields a new proof of [BH16, Main theorem]
in the setting of tracial amalgamated free product von Neumann algebras.

Let us point out that in the setting of tracial free products M =M1 ∗M2 of Connes-
embeddable von Neumann algebras, the inclusion M1 ⊂ M satisfies a more general
absorption property. Indeed, [HJNS19, Theorem A] shows that if P ⊂ M is a von
Neumann subalgebra such that P ∩ M1 is diffuse and has 1-bounded entropy zero,
then P ⊂ M1. In the case M = L(Fn) is a free group factor, the aforementioned
absorption property holds for any diffuse maximal amenable subalgebra Q ⊂M , thanks
to the recent resolution of the Peterson–Thom conjecture via random matrix theory
[BC22, BC23] and 1-bounded entropy [Ha15, Ha20] (see also [HJKE23]).

Application to continuous model theory of II1 factors. We next present an ap-
plication of Theorem B to the continuous model theory of II1 factors. A main theme in
this theory, initiated by Farah–Sherman–Hart in [FHS11], is to determine whether two
given II1 factors M,N are elementarily equivalent. By the continuous version of the
Keisler–Shelah theorem this amounts to M and N admitting isomorphic ultrapowers,
MU ∼= NV , for some ultrafilters U and V on arbitrary sets [FHS11, HI02]. It was shown
in [FHS11] that property Gamma and being McDuff are elementary properties, lead-
ing to three distinct elementary classes of II1 factors. A fourth such elementary class
was then provided in [GH16]. The problem of determining the number of elementary
classes of II1 factors was solved in [BCI15], where the continuum of non-isomorphic II1
factors constructed in [Mc69] were shown to be pairwise non-elementarily equivalent.
However, all the available techniques for distinguishing II1 factors up to elementary
equivalence were based on central sequences. It thus remained open to construct any
non-elementarily equivalent II1 factors which do not have any non-trivial central se-
quences, i.e., fail property Gamma.
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This problem was solved by Chifan–Ioana–Kunnawalkam Elayavalli in [CIKE22] using
a combination of techniques from Popa’s deformation/rigidity theory and Voiculescu’s
free entropy theory. First, deformation/rigidity methods from [IPP05] were used to
construct a non-Gamma II1 factor M via an iterative amalgamated free product con-
struction. It was then shown that M is not elementarily equivalent to any (necessarily
non-Gamma) II1 factor N having positive 1-bounded entropy, h(N) > 0, in the sense
of Jung [Ju05] and Hayes [Ha15]. Examples of II1 factors N with h(N) > 0 include
the interpolated free group factors L(Ft), 1 < t ≤ ∞, and, more generally, any tracial
free product N = N1 ∗ N2 of diffuse Connes-embeddable von Neumann algebras. For
additional examples of such II1 factors, see [CIKE22, Fact 2.7]. However, the methods
from [CIKE22] could not distinguishM up to elementary equivalence from N = N1∗N2,
whenever N1 or N2 is a non-Connes-embeddable tracial von Neumann algebra (the ex-
istence of which has been announced in the preprint [JNVWY20]). In particular, since
it is unclear if M is Connes-embeddable, it remained open whether M is elementarily
equivalent to M ∗ L(Z).

Theorem B allows us to settle this problem for a variant of the II1 factor constructed
in [CIKE22]:

Theorem F. There exists a separable II1 factor M which does not have property
Gamma and that is not elementarily equivalent to N = N1 ∗N2, for any diffuse tracial
von Neumann algebras (N1, τ1) and (N2, τ2).

In particular, Theorem F provides the first example of a non-Gamma II1 factor M
which is not elementarily equivalent to M ∗ L(Z). The conclusion of Theorem F is
verified by any II1 factor M satisfying the following:

Theorem G. There exists a separable II1 factor M which does not have property
Gamma and satisfies the following. For every countably cofinal ultrafilter U on a set J
and u1, u2 ∈ U (MU ) such that {u1}′′ and {u2}′′ are 2-independent inMU with respect to
τU , there exist Haar unitaries v1, v2 ∈ U (MU ) such that [u1, v1] = [u2, v2] = [v1, v2] = 0.

An ultrafilter U on a set J is called countably cofinal if there exists a sequence (An)n∈N
in U with

⋂
n∈NAn = ∅. Any free ultrafilter on N is countably cofinal.

The proof of Theorem G uses the iterative amalgamated free product construction
introduced in [CIKE22]. In [CIKE22, Theorem B], this construction was used to build
a non-Gamma separable II1 factor M with the following property: for any unitaries
u1, u2 ∈ U (MU ) such that {u1}′′ and {u2}′′ are orthogonal and u21 = u32 = 1, there
exist Haar unitaries v1, v2 ∈ U (MU ) such that [u1, v1] = [u2, v2] = [v1, v2] = 0. The
proof of [CIKE22, Theorem B] relies crucially on a lifting lemma showing that any
unitaries u1, u2 ∈ U (MU ) such that {u1}′′ and {u2}′′ are orthogonal and u21 = u32 = 1
lift to unitaries in M with the same properties. A key limitation in [CIKE22] was the
assumption that u1 and u2 have orders 2 and 3. We remove this limitation here by
proving a general lifting result of independent interest (see Theorem 5.1) which shows
that any unitaries u1, u2 ∈ U (MU ) such that {u1}′′ and {u2}′′ are 2-independent admit
lifts u1 = (u1,n)

U and u2 = (u2,n)
U with {u1,n}′′ and {u2,n}′′ orthogonal for every
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n ∈ N. With this result in hand, adjusting the iterative construction from [CIKE22]
implies Theorem G.

To explain how Theorem F follows by combining Theorem G and Theorem B, letM be
a II1 factor as in Theorem G, N = N1∗N2 a free product of diffuse tracial von Neumann
algebras and u1 ∈ U (N1), u2 ∈ U (N2) Haar unitaries. Since {u1}′′ and {u2}′′ are freely
and thus 2-independent, it follows that MU ̸∼= NV , for any countably cofinal ultrafilter
U and any ultrafilter V. Indeed, Theorem B implies that any Haar unitaries (more
generally, any trace zero unitaries) v1, v2 ∈ U (NV) such that [u1, v1] = [u2, v2] = 0 are
freely independent and therefore do not commute. If U is an ultrafilter which is not
countably cofinal, then we also have that MU ̸∼= NV , for any ultrafilter V. Otherwise,
using [BCI15, Lemma 2.3] we would get that MU ∼= M , thus NV ∼= M is separable,
hence NV ∼= N and therefore M ∼= N . But then MW ∼= NW , for any free ultrafilter
W on N. Since W is countably cofinal, this is a contradiction. Altogether, we conclude
thatMU ̸∼= NV , for any ultrafilters U ,V, and thusM,N are not elementarily equivalent.

Application to the orthogonalization problem. We end the introduction with an
application to the following orthogonalization problem: given a II1 factor M and two
subsets X,Y ⊂ M ⊖ C1, when can we find u ∈ U (M) such that uXu∗ and Y are
orthogonal? In the case X = A ⊖ C1 and Y = B ⊖ C1, for von Neumann subalgebras
A,B ⊂ M , this and related independence problems have been studied extensively by
Popa (see e.g. [Po13a, Po13b, Po17]). When X,Y ⊂ M ⊖ C1 are finite, a standard
averaging argument shows that we can find u ∈ U (M) such that uXu∗ and Y are
“almost orthogonal”: for every ε > 0, there exists u ∈ U (M) such that |⟨uxu∗, y⟩| < ε,
for every x ∈ X, y ∈ Y . This implies the existence of v ∈ U (MU ), where U is a free
ultrafilter on N, such that vXv∗ and Y are orthogonal. In this context, much more is
true: by a result of Popa (see [Po13a, Corollary 0.2]), if X,Y ⊂M ⊖C1 are countable,
then there exists u ∈ U (MU ) such that uXu∗ and Y are freely independent.

By combining this result with the proof of our lifting theorem (Theorem 5.1) we settle
affirmatively the above orthogonalization problem whenever X,Y ⊂M ⊖C1 are finite.

Theorem H. Let M be a II1 factor and X,Y ⊂M ⊖ C1 be finite sets.
Then there exists u ∈ U (M) such that uXu∗ and Y are orthogonal.

Acknowledgements. This work was initiated when CH was visiting the University
of California at San Diego (UCSD) in March 2023. He thanks the Department of
Mathematics at UCSD for its kind hospitality. The authors thank Ben Hayes, Srivatsav
Kunnawalkam Elayavalli and Sorin Popa for their useful comments.

2. Preliminaries

2.1. Noncommutative Lp-spaces. Let (M, τ) be a tracial von Neumann algebra. For
every p ∈ [1,+∞), we write Lp(M) = Lp(M, τ) for the completion of M with respect to

the norm ∥ · ∥p defined by ∥x∥p = τ(|x|p)1/p for every x ∈ M . More generally, given a
subspace W ⊂M , we denote by Lp(W ) ⊂ Lp(M) the closure of W with respect to ∥·∥p.
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Then Lp(M) is the noncommutative Lp-space associated with the tracial von Neumann
algebra M . We simply write L∞(M) =M .

We will use the following generalized noncommutative Hölder inequality (see e.g.
[Ta03, Theorem IX.2.13]): for all k ≥ 2, all p1, . . . , pk, r ∈ [1,+∞) such that 1

r =∑k
j=1

1
pj

and all (xj)j ∈
∏k

j=1 L
pj (M), we have x = x1 · · ·xk ∈ Lr(M) and ∥x1 · · ·xk∥r ≤

∥x1∥p1 · · · ∥xk∥pk .
For all 1 ≤ p ≤ q < +∞ and all x ∈M , we have ∥x∥1 ≤ ∥x∥p ≤ ∥x∥q ≤ ∥x∥∞ and so

we may regard M ⊂ Lq(M) ⊂ Lp(M) ⊂ L1(M).

2.2. Ultraproduct von Neumann algebras. Let U be a nonprincipal ultrafilter on
N. Whenever (M, τ) is a tracial von Neumann algebra, we denote by (MU , τU ) the
tracial ultraproduct von Neumann algebra. We regard L2(MU ) ⊂ L2(M)U as a closed
subspace and we denote by e : L2(M)U → L2(MU ) the corresponding orthogonal pro-
jection. Recall the following elementary yet useful facts.

Lemma 2.1. Keep the same notation as above. The following assertions hold:

(i) Let (ξn)n be a ∥ · ∥2-bounded sequence in L2(M) and set ξ = (ξn)
U ∈ L2(M)U .

Then ξ ∈ L2(MU ) if and only if for every ε > 0, there exists a ∥ · ∥∞-bounded
sequence (xn)n in M such that limn→U ∥ξn − xn∥2 ≤ ε.

(ii) Let r > 2. Then for every ∥ · ∥r-bounded sequence (ξn)n in Lr(M), we have
ξ = (ξn)

U ∈ L2(MU ).
(iii) Let (ξn)n be a ∥ · ∥2-bounded sequence in L2(M). Let (xn)n and (yn)n be ∥ · ∥∞-

bounded sequences in M . Set ξ = (ξn)
U ∈ L2(M)U , x = (xn)

U ∈ MU and
y = (yn)

U ∈MU . If ξ ∈ L2(MU ), then (xnξnyn)
U = xξy ∈ L2(MU ).

Proof. (i) It is straightforward.
(ii) Let (ξn)n be a ∥ · ∥r-bounded sequence in Lr(M). There exists κ > 0 such that

supn∈N τ(|ξn|r) < κ. Set ξ = (ξn)
U ∈ L2(M)U . For every n ∈ N, write ξn = vn|ξn| for

the polar decomposition of ξn ∈ Lr(M). For every n ∈ N and every t > 0, define the
spectral projection pn,t = 1[0,t](|ξn|) ∈M . For every n ∈ N and every t > 0, we have

∥ξn p⊥n,t∥22 ≤ ∥|ξn| p⊥n,t∥22 = τ(|ξn|21(t,+∞)(|ξn|)) ≤
1

tr−2
τ(|ξn|r1(t,+∞)(|ξn|)) ≤

κ

tr−2
.

Let ε > 0 and choose t > 0 large enough so that κ
tr−2 ≤ ε2. For every n ∈ N, set

xn = ξn pn,t ∈ M and observe that we have ∥ξn − xn∥2 = ∥ξn p⊥n,t∥2 ≤ ε. Since

sup {∥xn∥∞ | n ∈ N} ≤ t, Item (i) implies that ξ = (ξn)
U ∈ L2(MU ).

(iii) Assume that ξ = (ξn)
U ∈ L2(MU ). Choose κ > 0 large enough so that

sup {∥xn∥∞, ∥yn∥∞ | n ∈ N} ≤ κ. Let ε > 0. By Item (i), there exists a ∥ · ∥∞-bounded
sequence (zn)n in M such that limn→U ∥ξn − zn∥2 ≤ ε. Set z = (zn)

U ∈ MU . Then
∥ξ − z∥2 = limn→U ∥ξn − zn∥2 ≤ ε. Since xzy = (xnznyn)

U ∈MU , we have

∥(xnξnyn)U − xξy∥2 ≤ ∥(xnξnyn)U − (xnznyn)
U∥2 + ∥xzy − xξy∥2

= lim
n→U

∥xn(ξn − zn)yn∥2 + ∥x(z − ξ)y∥2
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≤ 2κ2∥ξ − z∥2 ≤ 2κ2ε.

Since this holds for every ε > 0, it follows that (xnξnyn)
U = xξy ∈ L2(MU ). □

We also record the following basic fact concerning tracial ultraproducts:

Lemma 2.2. Keep the same notation as above. Let (xn)n be a ∥ · ∥∞-bounded sequence
in M . Set x = (xn)

U ∈MU . Then for every p ∈ [1,+∞) we have ∥x∥p = limn→U ∥xn∥p.

Proof. We may assume that sup {∥xn∥∞ | n ∈ N} ≤ 1 and thus ∥x∥∞ ≤ 1. Note that
|x|2 = x∗x = (x∗nxn)

U = (|xn|2)U . Then for every k ∈ N, we have |x|2k = (|xn|2k)U and
thus τU (|x|2k) = limn→U τ(|xn|2k). Thus, if P (t) ∈ C[t] is a polynomial with complex
coefficients and Q(t) = P (t2), then τU (Q(|x|)) = limn→U τ(Q(|xn|)). Since by the
Stone–Weierstrass theorem {P (t2) | P (t) ∈ C[t]} is dense in C([0, 1]) in the uniform
norm, we get that τU (f(|x|)) = limn→U τ(f(|xn|)), for every f ∈ C([0, 1]). In particular,
τU (|x|p) = limn→U τ(|xn|p), for every p ∈ [1,+∞), which implies the conclusion. □

2.3. Amalgamated free products. Let I be an at most countable index set such
that 2 ≤ |I| ≤ +∞. Let (Mi, τi)i∈I be a family of tracial von Neumann algebras with a
common von Neumann subalgebra (B, τ0) such that for every i ∈ I, we have τi|B = τ0.
Denote by (M, τ) = ∗B,i∈I(Mi, τi) the tracial amalgamated free product von Neumann
algebra. Simply denote by EB : M → B the unique trace-preserving faithful normal
conditional expectation.

Denote by W ⊂M the linear span of B and of all the reduced words inM of the form
w = w1 · · ·wn, with n ≥ 1, wj ∈ Mεj ⊖ B for every j ∈ {1, . . . , n}, and ε1, . . . , εn ∈ I
such that ε1 ̸= · · · ̸= εn. For every subset J ⊂ I, denote by LJ ⊂ W (resp. RJ ⊂ W )
the linear span of all the reduced words whose first (resp. last) letter lies in Mj ⊖ B
for some j ∈ J . For every i ∈ I, denote by Wi ⊂ W the linear span of all the reduced
words whose first and last letter lie in Mi ⊖B. We will use the following consequences
of Mei–Ricard’s results (see [MR16, Theorem 3.5]).

Theorem 2.3 (Mei–Ricard [MR16]). Let p ∈ (1,+∞), J ⊂ I, and i ∈ I. The following
assertions hold:

(i) The projection map PLJ
: W → LJ extends to a completely bounded operator

PLJ
: Lp(M) → Lp(LJ).

(ii) The projection map PRJ
: W → RJ extends to a completely bounded operator

PRJ
: Lp(M) → Lp(RJ).

(iii) The projection map PWi
: W → Wi extends to a completely bounded operator

PWi
: Lp(M) → Lp(Wi).

Proof. We use the notation Hε of [MR16, Section 3].
(i) For every j ∈ J , set εj = −1 and for every j ∈ I \ J , set εj = 1. Then with

ε = (εi)i∈I , we have PLJ
= Id−Hε

2 . Therefore, [MR16, Theorem 3.5] implies that
PLJ

: W → LJ extends to a completely bounded operator PLJ
: Lp(M) → Lp(LJ).

(ii) The proof is completely analogous to Item (i).
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(iii) We have PWi
= PLi

◦ PRi
= PRi

◦ PLi
. Therefore, Items (i) and (ii) imply that

PWi
: W → Wi extends to a completely bounded operator PWi

: Lp(M) → Lp(Wi). □

Let Pp be one of the operators from Theorem 2.3 (i.e., PLJ
, PRJ

, or PWi
). Then the

operators (Pp)p∈(1,+∞) are consistent with the inclusions Lq(M) ⊂ Lp(M), in the sense
that Pq = Pp|Lq(M), for every 1 < p ≤ q < +∞. This is why we denote P instead of Pp.

2.4. Popa’s intertwining theory. We review Popa’s criterion for intertwining von
Neumann subalgebras [Po01, Po03]. Let (M, τ) be a tracial von Neumann algebra and
A ⊂ 1AM1A, B ⊂ 1BM1B be von Neumann subalgebras. By [Po03, Corollary 2.3] and
[Po01, Theorem A.1] (see also [Va06, Proposition C.1]), the following conditions are
equivalent:

(i) There exist n ≥ 1, a projection q ∈ Mn(B), a nonzero partial isometry v ∈
M1,n(1AM)q and a unital normal ∗-homomorphism π : A → qMn(B)q such
that av = vπ(a) for all a ∈ A.

(ii) There exist projections p ∈ A and q ∈ B, a nonzero partial isometry v ∈ pMq
and a unital normal ∗-homomorphism π : pAp→ qBq such that av = vπ(a) for
all a ∈ A.

(iii) There is no net of unitaries (wk)k in A such that

∀x, y ∈ 1AM1B, lim
k

∥EB(x
∗wky)∥2 = 0.

If one of the previous equivalent conditions is satisfied, we say that A embeds into B
inside M and write A ⪯M B.

Following [Jo82, PP84], we say that an inclusion of tracial von Neumann algebras
P ⊂M has finite index if L2(M, τ) has finite dimension as a right P -module. If A0 ⊂ A
is a von Neumann subalgebra with finite index and if A ⪯M B, then A0 ⪯M B (see
[Va07, Lemma 3.9]).

We record the following new criterion for intertwining von Neumann subalgebras.

Lemma 2.4. Let (M, τ) be a separable tracial von Neumann algebra and A,B ⊂M be
von Neumann subalgebras such that A ⪯̸M B. Then there exists u ∈ U (AU ) such that
EBU (xumy) = 0, for all x, y ∈M and all m ∈ Z \ {0}.

Proof. To prove the lemma, it suffices to argue that for every finite subset F ⊂M , ε > 0
and K ∈ N, we can find u ∈ U (A) such that ∥EB(xu

my∗)∥2 < ε, for all m ∈ Z \ {0}
with |m| ≤ K. To this end, fix a finite subset F ⊂M , ε > 0 andK ∈ N. For u ∈ U (M),
set ψ(u) =

∑
m∈Z\{0},|m|≤K

∑
x,y∈F ∥EB(xu

my∗)∥22.
Let v ∈ U (M) with {v}′′ ⪯̸M B. For every N ∈ N, set

φ(v,N) =
1

N

N∑
k=1

∑
x,y∈F

∥EB(xv
ky∗)∥22.

We claim that limN→∞ φ(v,N) = 0. Indeed, set ξ =
∑

x∈F xeBx
∗ ∈ ⟨M,B⟩, where

(⟨M,B⟩,Tr) is Jones basic construction of B ⊂M . Using that ∥EB(z)∥22 = Tr(zeBz
∗eB)
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for every z ∈M , we obtain that

(2.1) ∀N ∈ N, φ(v,N) = Tr

((
1

N

N∑
k=1

vkξv−k

)
ξ

)
.

By von Neumann’s ergodic theorem, there exists η ∈ L2(⟨M,B⟩,Tr) such that vηv∗ = η

and limN→∞ ∥ 1
N

∑N
k=1 v

kξv−k − η∥2,Tr = 0. Then wη = ηw, for all w ∈ {v}′′. Since
{v}′′ ⪯̸M B, we obtain that η = 0. In combination with (2.1), this proves our claim
that limN→∞ φ(v,N) = 0.

We are now ready to finish the proof. Since A ⪯̸M B, we can find a diffuse abelian
von Neumann subalgebra A0 ⊂ A such that A0 ⪯̸M B (see [BO08, Corollary F.14]). Let
v ∈ U (A0) be a Haar unitary with {v}′′ = A0. Ifm ∈ Z\{0}, then {vm}′′ ⊂ A0 has finite
index, and thus {vm}′′ ⪯̸M B. The above claim gives that limN→∞ φ(vm, N) = 0, for all
m ∈ Z \ {0}. Thus, we can find N ∈ N such that

∑
m∈Z\{0},|m|≤K φ(vm, N) < ε2. Since∑

m∈Z\{0},|m|≤K φ(vm, N) = 1
N

∑N
k=1 ψ(v

k), we find 1 ≤ k ≤ N such that ψ(vk) < ε2.

Thus, u = vk satisfies the desired conclusion, which finishes the proof. □

3. Proofs of Theorems A, B, C, D

3.1. Popa’s asymptotic orthogonality property. Let I be an at most countable
index set such that 2 ≤ |I| ≤ +∞. Let (Mi, τi)i∈I be a family of tracial von Neumann
algebras with a common von Neumann subalgebra (B, τ0) such that for every i ∈ I, we
have τi|B = τ0. Denote by (M, τ) = ∗B,i∈I(Mi, τi) the tracial amalgamated free product

von Neumann algebra. Simply denote by EB : M → B (resp. EBU : MU → BU ) the
unique trace-preserving faithful normal conditional expectation.

The following lemma is a generalization of Popa’s asymptotic orthogonality property
(see [Po83, Lemma 2.1]) in the framework of tracial amalgamated free product von
Neumann algebras. The key new feature of the proof is that we exploit Theorem 2.3 to
work inside the Hilbert space L2(MU ) instead of L2(M)U as in Popa’s proof.

Lemma 3.1. Let i ∈ I. Let u ∈ U (MU
i ) be a unitary such that EBU (uk) = 0 for

every k ∈ Z \ {0}. For every x = (xn)
U ∈ {u}′ ∩MU such that EBU (x) = 0, we have

limn→U ∥xn − PWi
(xn)∥2 = 0.

Proof. Let x = (xn)
U ∈ {u}′∩MU such that EBU (x) = 0. Without loss of generality, we

may assume that ∥xn∥∞ ≤ 1 for every n ∈ N. To prove that limn→U ∥xn−PWi
(xn)∥2 = 0,

we show that limn→U ∥PLI\{i}(xn)∥2 = limn→U ∥PRI\{i}(xn)∥2 = 0. Since RI\{i} =

JLI\{i}J , it suffices to prove that limn→U ∥PLI\{i}(xn)∥2 = 0. To simplify the notation,
we set Pi = PLI\{i} .

By Lemma 2.1(ii) and Theorem 2.3(i), we have (Pi(xn))
U ∈ L2(MU ). Set Hi =

L2(MU ) ∩ (LI\{i})
U ⊂ L2(MU ) and denote by PHi

: L2(MU ) → Hi the corresponding

orthogonal projection. Then we have PHi
(x) = (Pi(xn))

U ∈ Hi. For every N ≥ 1, we
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have

N · ∥PHi
(x)∥22 =

N∑
k=1

∥ukPHi
(x)u−k∥22(3.1)

=
N∑
k=1

∥PukHiu−k(ukxu−k)∥22

=

N∑
k=1

∥PukHiu−k(x)∥22.

We claim that the Hilbert subspaces (ukHiu
−k)k∈Z are mutually orthogonal in L2(MU )

i.e. for every k ∈ Z\{0}, ukHiu
−k and Hi are orthogonal in L2(MU ). Indeed, for every

k ∈ Z \ {0}, since EBU (uk) = 0, we may write uk = (un,k)
U ∈ MU

i where (un,k)n is a

∥ · ∥∞-bounded sequence in Mi ⊖ B. Let ξ = (ξn)
U ∈ Hi and η = (ηn)

U ∈ Hi where
(ξn)n and (ηn)n are ∥ · ∥2-bounded sequences in LI\{i}. By construction, it is plain to
see that for all n ∈ N and all k ∈ Z \ {0}, the vectors un,kξnu

∗
n,k and ηn are orthogonal

in L2(M). By Lemma 2.1(iii), since ξ = (ξn)
U ∈ L2(MU ), we have

⟨ukξu−k, η⟩ = ⟨(un,kξnu∗n,k)U , (ηn)U ⟩ = lim
n→U

⟨un,kξnu∗n,k, ηn⟩ = 0.

This finishes the proof of the claim.
From (3.1), since the projections (PukHiu−k)k∈Z are mutually orthogonal, we infer

that

(3.2) N · ∥PHi
(x)∥22 =

N∑
k=1

∥PukHiu−k(x)∥22 ≤ ∥x∥22.

Since (3.2) holds for every N ≥ 1, we have limn→U ∥Pi(xn)∥2 = ∥PHi
(x)∥2 = 0. This

finishes the proof of the lemma. □

Using a 2× 2 matrix trick, we obtain the following extension of Lemma 3.1.

Lemma 3.2. Let i ∈ I. Let u ∈ U (MU
i ) be a unitary such that EBU (vukv∗) = 0 for

every k ∈ Z \ {0} and every v ∈ U (Mi). For every x = (xn)
U ∈ {u}′ ∩MU such that

EMU
i
(x) = 0 and every y, z ∈Mi, we have limn→U ∥yxnz − PWi

(yxnz)∥2 = 0.

Proof. Set B = M2(B), Mj = M2(Mj) for every j ∈ I and M = M2(M) so that we
have M = ∗B,j∈IMj . Let x = (xn)

U ∈ {u}′ ∩MU be such that EMU
i
(x) = 0. Since

any element of Mi is a linear combination of at most four unitaries of Mi, it suffices to
prove that for every v, w ∈ U (Mi), we have limn→U ∥vxnw − PWi

(vxnw)∥2 = 0.
Let v, w ∈ U (Mi). Set

U =

(
vuv∗ 0
0 w∗uw

)
∈ U (M U

i ) and X =

(
0 vxw
0 0

)
∈ M U ⊖ M U

i .
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By construction, we have UX = XU and EBU (Uk) = 0 for every k ∈ Z \ {0}. We may
now apply Lemma 3.1 to X = (Xn)

U ∈ M U ⊖ BU and conclude that

lim
n→U

∥vxnw − PWi
(vxnw)∥2 = lim

n→U
∥(Xn)12 − PWi

((Xn)12)∥2 = 0.

This finishes the proof of the lemma. □

3.2. Proofs of Theorem A, Theorem B, Theorem C.

Proof of Theorem A. Keep the same notation as in the statement of Theorem A. Let
k ≥ 1 and ε1, . . . , εk ∈ I be such that ε1 ̸= · · · ̸= εk. For every 1 ≤ j ≤ k, let
xj = (xj,n)

U ∈ Xεj . We may assume that sup {∥xj,n∥∞ | 1 ≤ j ≤ k, n ∈ N} ≤ 1. We
show that EBU (x1 · · ·xk) = 0.

For every i ∈ I and every p ∈ (1,+∞), we simply denote by Pi : L
p(M) → Lp(Wi)

the completely bounded operator (see Theorem 2.3(iii)). For every p ∈ (1,+∞), choose
κp > 0 large enough so that

sup {∥Pi(x)∥p | i ∈ {ε1, . . . , εk}, x ∈ Lp(M), ∥x∥p ≤ 1} ≤ κp.

Fix 1 < r < 2 (e.g., r = 3
2). Let p ∈ (1,+∞) be such that 1

r = 1
2 + k−1

p . For every

1 ≤ j ≤ k and every n ∈ N, write xj,n = Pεj (xj,n) + (xj,n − Pεj (xj,n)) and observe that

• Pεj (xj,n) ∈ L2(Wεj ) and limn→U ∥xj,n − Pεj (xj,n)∥2 = 0;

• Pεj (xj,n) ∈ Lp(Wεj ) and max
{
∥Pεj (xj,n)∥p, ∥xj,n − Pεj (xj,n)∥p

}
≤ 1 + κp.

For every n ∈ N, we may write x1,n · · ·xk,n − Pε1(x1,n) · · ·Pεk(xk,n) as a sum of 2k − 1
terms that are products of length k for which at least one of the factors is of the form
xj,n − Pεj (xj,n) for some 1 ≤ j ≤ k. For every n ∈ N, using the triangle inequality and
the generalized noncommutative Hölder inequality, we obtain

∥x1,n · · ·xk,n − Pε1(x1,n) · · ·Pεk(xk,n)∥r ≤ (2k − 1)(1 + κp)
k−1max

j
∥xj,n − Pεj (xj,n)∥2.

This implies that

(3.3) lim
n→U

∥x1,n · · ·xk,n − Pε1(x1,n) · · ·Pεk(xk,n)∥r = 0.

Next, set q = kr so that 1
r = k

q . For every 1 ≤ j ≤ k and every n ∈ N, since

Pεj (xj,n) ∈ Lq(Wεj ), we may choose wj,n ∈ Wεj such that ∥Pεj (xj,n) − wj,n∥q ≤ 1
n+1 .

For every 1 ≤ j ≤ k and every n ∈ N, write Pεj (xj,n) = wj,n + (Pεj (xj,n) − wj,n) and
observe that

• max
{
∥wj,n∥q, ∥Pεj (xj,n)− wj,n∥q

}
≤ 1 + κq.

We may then write Pε1(x1,n) · · ·Pεk(xk,n)−w1,n · · ·wk,n as a sum of 2k−1 terms that are
products of length k for which at least one of the factors is of the form Pεj (xj,n)−wj,n

for some 1 ≤ j ≤ k. For every n ∈ N, using the triangle inequality and the generalized
noncommutative Hölder inequality, we obtain

∥Pε1(x1,n) · · ·Pεk(xk,n)− w1,n · · ·wk,n∥r ≤ (2k − 1)(1 + κq)
k−1max

j
∥Pεj (xj,n)− wj,n∥q.



ASYMPTOTIC FREENESS IN TRACIAL ULTRAPRODUCTS 13

This implies that

(3.4) lim
n→U

∥Pε1(x1,n) · · ·Pεk(xk,n)− w1,n · · ·wk,n∥r = 0.

By combining (3.3) and (3.4), it follows that

(3.5) lim
n→U

∥x1,n · · ·xk,n − w1,n · · ·wk,n∥r = 0.

In particular, since EBU (x1 · · ·xk) = (EB(x1,n · · ·xk,n))U , using Lemma 2.2 and the fact
that EB is ∥ · ∥r-contractive, we have

∥EBU (x1 · · ·xk)∥r = lim
n→U

∥EB(x1,n · · ·xk,n)∥r = lim
n→U

∥EB(w1,n · · ·wk,n)∥r.

Since for every 1 ≤ j ≤ k and every n ∈ N, we have wj,n ∈ Wεj and since ε1 ̸= · · · ̸= εk,
it follows that EB(w1,n · · ·wk,n) = 0. Thus, we obtain EBU (x1 · · ·xk) = 0. □

Remark 3.3. We were informed by Sorin Popa that he and Stefaan Vaes had recently
made the following observation. In the case L(F2) = A1 ∗ A2 is a free group factor
with A1

∼= A2
∼= L(Z), they showed that A′

1 ∩ L(F2)
U and A2 are freely independent in

L(F2)
U with respect to τU .

We obtain the following consequence of Theorem A which implies Theorem B.

Theorem 3.4. Assume that B = C1. For every i ∈ I, let (Ai,k)k∈N be a decreas-

ing sequence of separable diffuse abelian von Neumann subalgebras of MU
i such that⋂∞

k=1Ai,k = C1.
Then for every i ∈ I, Mi =

∨∞
k=1(A

′
i,k ∩MU ) ⊂ MU is a nonamenable irreducible

subfactor with property Gamma. Moreover, the family (Mi)i∈I is freely independent in
MU with respect to τU .

Proof. Let i ∈ I. For every k ∈ N, since Ai,k is separable, we have (A′
i,k ∩MU )′∩MU =

Ai,k by [Po13a, Theorem 2.1]. This further implies that

M ′
i ∩MU = (

∞∨
k=1

A′
i,k ∩MU )′ ∩MU =

∞⋂
k=1

(A′
i,k ∩MU )′ ∩MU =

∞⋂
k=1

Ai,k = C1.

Therefore, Mi ⊂MU is a irreducible subfactor. Since A′
i,0 ∩MU is nonamenable, Mi is

nonamenable as well. Let V be another nonprincipal ultrafilter on N. For every k ∈ N
and every λ ∈ (0, 1), choose a projection pλ,k ∈ Ai,k such that τU (pλ,k) = λ. Then

pλ = (pλ,k)
V ∈ M ′

i ∩M V
i is a projection such that (τU )V(pλ) = λ. Therefore, M ′

i ∩M V
i

is a diffuse von Neumann algebra and so Mi has property Gamma.
A combination of Lemma 3.1 and Theorem A implies that all k, ℓ ∈ N, the family

(A′
i,k∩MU )i∈I is freely independent inMU with respect to τU . Since for every i ∈ I, the

sequence of von Neumann subalgebras (A′
i,k ∩MU )k is increasing, Kaplansky’s density

theorem further implies that the family (Mi)i∈I is freely independent inMU with respect
to τU . □
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Proof of Theorem C. Keep the same notation as in Theorem A. Let Y1 ⊂ X1 be a
subset with the property that aY1b ⊂ X1 for all a, b ∈ M1. Denote by M1Y1M1 the
linear span of all the elements of the form aY b for a, b ∈M1 and Y ∈ Y1. Then we have
M1Y1M1 ⊂ X1. Likewise, denote by M1W2M1 the linear span of all the elements of
the form awb for a, b ∈M1 and w ∈ W2. Observe that any word with letters alternating
from Y1 and M1W2M1 can be written as a linear combination of words with letters
alternating from M1Y1M1 ∪ (M1 ⊖ B) and W2. Since M1Y1M1 ∪ (M1 ⊖ B) ⊂ X1 and
W2 ⊂ X2, Theorem A implies that the sets Y1 and M1W2M1 are freely independent in
MU with respect to EBU .

Using Kaplansky’s density theorem, for any element x ∈ M ⊖ M1, there exists a
∥ · ∥∞-bounded sequence (xn)n in M1W2M1 such that xn → x for the strong operator
topology. Combining this fact with the first paragraph of the proof, we infer that the
sets Y1 and M ⊖M1 are freely independent in MU with respect to EBU . □

3.3. Proof of Theorem D. This subsection is devoted to the proof of Theorem D.
Moreover, we generalize Theorem D to arbitrary tracial amalgamated free product von
Neumann algebras.

Theorem 3.5. Assume that I = {1, 2}. Let u1 ∈ U (MU
1 ) and u2 ∈ U (MU

2 ) be such
that EBU (uk1) = 0, for every k ∈ Z \ {0}, and EBU (u2) = EBU (u22) = 0.

Then there do not exist unitaries v1, v2 ∈ U (MU ) such that [u1, v1] = [v1, v2] =
[v2, u2] = 0 and EBU (v1) = EBU (v21) = EBU (v2) = 0.

The proof of Theorem 3.5 relies on two lemmas. Using the notation from Section 2.3,
for every i, j ∈ I, we put Wi,j = Li ∩ Rj and Pi,j = PLi

◦ PRj
. By Theorem 2.3, we

have a completely bounded operator Pi,j : L
p(M) → Lp(Wi,j), for every p ∈ (1,+∞).

Lemma 3.6. Assume that I = {1, 2}. Let u ∈ U (MU
1 ) be such that EBU (uk) = 0 for

all k ∈ Z \ {0}. Let x = (xn)
U ∈ U ({u}′ ∩MU ) and y = (yn)

U ∈ {x}′ ∩MU with
EBU (x) = EBU (y) = 0. Then limn→U ∥P2,2(yn)∥22 = limn→U ⟨xnP2,2(yn), P1,1(yn)xn⟩.
Thus, limn→U ∥P2,2(yn)∥2 ≤ limn→U ∥P1,1(yn)∥2.

Proof. Since EBU (y) = 0, after replacing yn with yn − EB(yn), we may assume that
EB(yn) = 0, for all n ∈ N. We may assume that xn ∈ U (M) and ∥yn∥∞ ≤ 1, for all
n ∈ N. For p ∈ (1,+∞), let κp = sup {∥Pi,j(x)∥p | i, j ∈ {1, 2}, x ∈ Lp(M), ∥x∥p ≤ 1} .

For every n ∈ N and i, j ∈ {1, 2}, put yi,jn = Pi,j(yn). Then yn =
∑2

i,j=1 y
i,j
n and

∥yi,jn ∥p ≤ κp, for every n ∈ N, i, j ∈ {1, 2} and p ∈ (1,+∞). We claim that

(3.6) lim
n→U

∥EB(xny
2,2
n x∗ny

i,j
n

∗
)∥1 = 0, for every (i, j) ̸= (1, 1).

Let (i, j) ̸= (1, 1). By Lemma 3.1, we have limn→U ∥xn − P1,1(xn)∥2 = 0. By using the
noncommutative Hölder inequality and that 1 = 1

2 + 3 · 1
6 , we get that

∥xny2,2n x∗ny
i,j
n

∗ − P1,1(xn)y
2,2
n P1,1(xn)

∗yi,jn
∗∥1 ≤ (κ26 + κ36)∥xn − P1,1(xn)∥2.
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This implies that

(3.7) lim
n→U

∥xny2,2n x∗ny
i,j
n

∗ − P1,1(xn)y
2,2
n P1,1(xn)

∗yi,jn
∗∥1 = 0.

Next, let vn ∈ W1,1 and w
i,j
n ∈ Wi,j such that ∥P1,1(xn)−vn∥4 ≤ 1

n and ∥yi,jn −wi,j
n ∥4 ≤ 1

n ,

for every n ∈ N and i, j ∈ {1, 2}. Then ∥vn∥4, ∥wi,j
n ∥4 ≤ κ4+

1
n ≤ κ4+1. Since 1 = 4 · 14 ,

applying the noncommutative Hölder inequality again gives that

∥P1,1(xn)y
2,2
n P1,1(xn)

∗yi,jn
∗ − vnw

2,2
n v∗nw

i,j
n

∗∥1 ≤
15(κ4 + 1)3

n
.

This implies that

(3.8) lim
n→U

∥P1,1(xn)y
2,2
n P1,1(xn)

∗yi,jn
∗ − vnw

2,2
n v∗nw

i,j
n

∗∥1 = 0.

By combining (3.7) and (3.8), it follows that

(3.9) lim
n→U

∥xny2,2n x∗ny
i,j
n

∗ − vnw
2,2
n v∗nw

i,j
n

∗∥1 = 0.

Now, vnw
2,2
n v∗nw

i,j
n

∗ ∈ W1,1W2,2W1,1W ∗
i,j ⊂ W1,1W ∗

i,j . Since (i, j) ̸= (1, 1), W1,1 and

Wi,j are orthogonal (algebraic) B-bimodules. Thus, EB(W1,1W ∗
i,j) = {0} and therefore

EB(vnw
2,2
n v∗nw

i,j
n

∗
) = 0, for every n ∈ N. In combination with (3.9), this proves (3.6).

Finally, for every n ∈ N, we have that ∥y2,2n ∥22 = ⟨y2,2n , yn⟩ = ⟨xny2,2n , xnyn⟩. Since
limn→U ∥xnyn − ynxn∥2 = 0, we get that

lim
n→U

∥y2,2n ∥22 = lim
n→U

⟨xny2,2n , ynxn⟩ = lim
n→U

(

2∑
i,j=1

⟨xny2,2n , yi,jn xn⟩).

On the other hand, (3.6) gives that limn→U ⟨xny2,2n , yi,jn xn⟩ = 0 if (i, j) ̸= (1, 1). Thus,

we get limn→U ∥y2,2n ∥22 = limn→U ⟨xny2,2n , y1,1n xn⟩, which proves the main assertion. Since

|⟨xny2,2n , y1,1n xn⟩| ≤ ∥y2,2n ∥2∥y1,1n ∥2, we get that limn→U ∥y2,2n ∥2 ≤ limn→U ∥y1,1n ∥2. □

Lemma 3.7. In the setting of Lemma 3.6, assume additionally that EBU (x2) = 0 and
y ∈ {v}′ ∩MU , for some v = (vn)

U ∈ U (MU
2 ).

(i) If EBU (v) = 0, then limn→U ∥P1,1(yn)∥2 = limn→U ∥P2,2(yn)∥2 = 0.
(ii) If EBU (v) = EBU (v2) = 0, then y = 0.

Proof. We keep the notation from the proof of Lemma 3.6.
(i) Assume that EBU (v) = 0. Write v = (vn)

U , where vn ∈M2 ⊖B, for every n ∈ N,
and sup {∥vn∥∞ | n ∈ N} <∞. We first claim that

(3.10) lim
n→U

∥xny2,2n − y1,1n xn∥2 = 0.

Since vyv∗ = y, we get that limn→U ∥v∗nynvn − yn∥2 = 0. Thus, we derive that

lim
n→U

⟨vny1,1n v∗n, yn⟩ = lim
n→U

⟨y1,1n , yn⟩ = lim
n→U

∥y1,1n ∥22.
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Since (M2 ⊖ B)W1,1(M2 ⊖ B) ⊂ W2,2 we also get that Pi,j(vny
1,1
n v∗n) = 0, for every

(i, j) ̸= (2, 2) and n ∈ N. This implies that ⟨vny1,1n v∗n, yn⟩ = ⟨vny1,1n v∗n, y
2,2
n ⟩, for every

n ∈ N. Since |⟨vny1,1n v∗n, y
2,2
n ⟩ ≤ ∥y1,1n ∥2∥y2,2n ∥2, for every n ∈ N, we conclude that

limn→U ∥y1,1n ∥22 ≤ limn→U ∥y1,1n ∥2∥y2,2n ∥2 and thus

(3.11) lim
n→U

∥y1,1n ∥2 ≤ lim
n→U

∥y2,2n ∥2.

On the other hand, Lemma 3.6 implies that

(3.12) lim
n→U

∥y2,2n ∥22 = lim
n→U

⟨xny2,2n , y1,1n xn⟩ and lim
n→U

∥y2,2n ∥2 ≤ lim
n→U

∥y1,1n ∥2.

It is now clear that (3.11) and (3.12) together imply (3.10). Since y also commutes with

x∗ = (x∗n), applying (3.10) to x∗ instead of x gives that limn→U ∥x∗ny
2,2
n − y1,1n x∗n∥2 = 0

and thus limn→U ∥y2,2n xn − xny
1,1
n ∥2 = 0. In combination with (3.10), this implies that

(3.13) lim
n→U

∥x2ny2,2n − y2,2n x2n∥2 = 0.

Since y commutes with x2 = (x2n) and EBU (x2) = 0, (3.6) from the proof of Lemma

3.6 gives that limn→U ∥EB(x
2
ny

2,2
n x2n

∗
y2,2n

∗
)∥1 = 0, thus limn→U ⟨x2ny

2,2
n , y2,2n x2n⟩ = 0.

Together with (3.13) we get that limn→U ∥x2ny
2,2
n ∥2 = 0. Since xn ∈ U (M) we get that

limn→U ∥y2,2n ∥2 = 0 and (3.11) gives that limn→U ∥y1,1n ∥2 = 0, proving part (i).
(ii) Assume that EBU (v) = EBU (v2) = 0. By (i), we have limn→U ∥yn − (yn1,2 +

yn2,1)∥2 = 0. Since vy = yv, we have limn→U ∥vnyn − ynvn∥2 = 0 and so

(3.14) lim
n→U

∥vnyn1,2 + vny
n
2,1 − yn1,2vn − yn2,1vn∥2 = 0.

For every n ∈ N, we have vny
n
1,2 = P2,2(vny

n
1,2), y

n
2,1vn = P2,2(y

n
2,1vn), vny

n
2,1 =

P1,1(vny
n
2,1) +P2,1(vny

n
2,1) and y

n
1,2vn = P1,1(y

n
1,2vn) +P1,2(y

n
1,2vn). In combination with

(3.14), we obtain

(3.15) lim
n→U

∥vnyn2,1 − yn1,2vn∥2 = 0 and lim
n→U

∥vnyn2,1 − P1,1(vny
n
2,1)∥2 = 0.

For every n ∈ N, set ηn = P1,1(vny
n
2,1) ∈ L2(M). Then (3.15), Theorem 2.3 and

Lemma 2.1 together imply that η = (ηn)
U = (vny

n
2,1)

U = (yn1,2vn)
U ∈ L2(MU ) and that

y = v∗η + ηv∗. Since v∗y = yv∗, we obtain (v∗)2η = η(v∗)2 and so v2η = ηv2. Since
EBU (v2) = 0, we may write v2 = (wn)

U where wn ∈M2 ⊖B for every n ∈ N. For every
n ∈ N, since ηn = P1,1(ηn), we have wnηn = P2,1(wnηn) ⊥ P1,2(ηnwn) = ηnwn. Then
we obtain v2η ⊥ ηv2. Since v2η = ηv2, this further implies that v2η = 0 and so η = 0.
Thus, y = 0. □

Proof of Theorem 3.5. Theorem 3.5 follows directly from part (ii) of Lemma 3.7. □
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4. Proof of Theorem E

Proof of Theorem E. Let P ⊂M be a von Neumann subalgebra such that P ∩M1 ⪯̸M1

B and P ′ ∩MU ⪯̸MU BU . Set A = P ∩M1. By [IPP05, Theorem 1.1], since A ⪯̸M1 B,
we have P ′ ∩M ⊂ A′ ∩M ⊂ M1 and so P ′ ∩M = P ′ ∩M1. The set of projections
p ∈ P ′∩M1 for which Pp ⊂ pM1p attains its maximum in a projection z ∈ Z (P ′∩M1).
It suffices to prove that z = 1. By contradiction, assume that z ̸= 1. Set q = z⊥ and
Q = Pq.

Claim 4.1. We have Q ⪯M M1.

Proof of Claim 4.1. By contradiction, assume that Q ⪯̸M M1. Choose a sequence (wk)k
in U (Q) such that limk ∥EM1(x

∗wky)∥2 = 0 for all x, y ∈ qM . Set Q = Q′ ∩ (qMq)U =
q(P ′ ∩MU )q. We have Q ⪯̸MU BU .

Firstly, we show that Q ⪯MU MU
1 . By contradiction, assume that Q ⪯̸MU MU

1 . Since

A ⪯̸M1 B, by Lemma 2.4, we may choose u ∈ U (AU ) such that EBU (aumb) = 0 for all

a, b ∈ M1 and all m ∈ Z \ {0}. Since M is separable, Q ⪯̸MU MU
1 , Q ⊂ A′ ∩M and

u ∈ U (AU ), by a standard diagonal argument, we can construct a unitary v ∈ U (Q)
such that EMU

1
(v) = 0 and vu = uv. By Lemma 3.2, the set Y1 = {u}′ ∩ (MU ⊖MU

1 )

satisfies aY1b ⊂ X1 for all a, b ∈ M1. On the one hand, applying Theorem C, since
v ∈ Y1, we have

∀k ∈ N, EBU (v(wk − EM1(wk))v
∗(wk − EM1(wk))

∗) = 0.

On the other hand, for every k ∈ N, we have vwk = wkv and EM1(wk) → 0 strongly as
k → ∞. Altogether, since vv∗ = v∗v = q = wkw

∗
k = w∗

kwk, this implies that EBU (q) = 0,

a contradiction. Therefore, we have Q ⪯MU MU
1 .

Secondly, we derive a contradiction using the proof of [Io12, Lemma 9.5]. By [Io12,
Lemma 9.5, Claim 1], there exist δ > 0 and a nonempty finite subset F ⊂ qM such
that

∀v ∈ U (Q),
∑

a,b∈F

∥EMU
1
(b∗va)∥22 ≥ δ.

Denote by M1 ⊂ MU
1 the set of all elements x ∈ MU

1 such that EBU (d∗xc) = 0 for
all c, d ∈ M1. Then denote by K ⊂ L2((qMq)U ) the ∥ · ∥2-closure of the linear span
of the set {axb∗ | a, b ∈ qM, x ∈ M1} and by e : L2((qMq)U ) → K the corresponding
orthogonal projection.

Since Q ⪯̸MU BU and since M is separable, by a standard diagonal argument, we
can construct a unitary v ∈ U (Q) such that EBU (d∗vc) = 0 for all c, d ∈ qM . Set
ξ = e(v) ∈ K and η =

∑
a,b∈F bEMU

1
(b∗va)a∗ ∈ (qMq)U . Then for every c, d ∈M1 and

a, b ∈ F , we have EBU (d∗ EMU
1
(b∗va)c) = EBU (d∗b∗vac) = 0. Thus η ∈ K and we have

⟨ξ, η⟩ = ⟨v, η⟩ =
∑

a,b∈F

∥EMU
1
(b∗va)∥22 ≥ δ.

It follows that ξ = e(v) ̸= 0.
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On the one hand, since K ⊂ L2((qMq)U ) is a qMq-qMq-bimodule and since v ∈
Q, for every k ∈ N, we have wkξw

∗
k = wke(v)w

∗
k = e(wkvw

∗
k) = e(v) = ξ. On

the other hand, following the proof of [Io12, Lemma 9.5, Claim 2], we show that
limk⟨wkξw

∗
k, ξ⟩ = 0. This will give a contradiction. By linearity and density, it suf-

fices to show that limk⟨wk a1x1b
∗
1w

∗
k, a2x2b

∗
2⟩ = 0 for all a1, a2, b1, b2 ∈ qM and all

x1, x2 ∈ M1. So let us fix a1, a2, b1, b2 ∈ qM and x1, x2 ∈ M1. We may further assume
that max {∥ai∥∞, ∥bi∥∞, ∥xi∥∞ | i ∈ {1, 2}} ≤ 1. Then for every k ∈ N, we have

|⟨wk a1x1b
∗
1w

∗
k, a2x2b

∗
2⟩| = |τU (x∗2a∗2wka1x1b

∗
1w

∗
kb2)| ≤ ∥EMU

1
(a∗2wka1 x1 b

∗
1w

∗
kb2)∥2.

Using the amalgamated free product structureM =M1∗BM2, the inclusionM1 ⊂M is
mixing relative to B. In particular, since x1 ∈ M1, we have EMU

1
(c∗x1d) = EMU

1
(c∗x1) =

EMU
1
(x1d) = 0 for all c, d ∈ M ⊖M1 (see e.g. the proof of [CH08, Claim 2.5]). This

implies

∀k ∈ N, EMU
1
(a∗2wka1 x1 b

∗
1w

∗
kb2) = EM1(a

∗
2wka1)x1 EM1(b

∗
1w

∗
kb2).

Thus, we have

lim sup
k

|⟨wk a1x1b
∗
1w

∗
k, a2x2b

∗
2⟩| ≤ lim sup

k
∥EM1(a

∗
2wka1)∥2 = 0.

This gives a contradiction and finishes the proof of Claim 4.1. □

Since Q ⪯M M1, there exist n ≥ 1, a projection r ∈ Mn(M1), a nonzero partial
isometry v = [v1, . . . , vn] ∈ M1,n(z

⊥M)r and a unital normal ∗-homomorphism π : Q→
rMn(M1)r such that av = vπ(a) for all a ∈ Q. In particular, we have Avi ⊂

∑n
j=1 vjM1

for every i ∈ {1, . . . , n}. By [IPP05, Theorem 1.1], since A ⪯̸M1 B, we have vi ∈ M1

for every i ∈ {1, . . . , n}. It follows that vv∗ ∈ Q′ ∩M1 and Qvv∗ ⊂ vv∗M1vv
∗. Thus,

we obtain P (z + vv∗) ⊂ (z + vv∗)M1(z + vv∗). This contradicts the maximality of the
projection z ∈ P ′ ∩M1. Therefore, we have z = 1 and so P ⊂M1. □

Remark 4.2. We make two observations.

(i) If A ⊂ M1 is a von Neumann subalgebra such that A ⪯̸M1 B, then we have
A ⪯̸M B. Indeed, this follows from the amalgamated free product structure
M =M1 ∗B M2 and the fact that the inclusion M1 ⊂M is mixing relative to B
(see the proof of Claim 4.1).

(ii) If P ⊂M is an amenable von Neumann subalgebra such that P ⪯̸M B, then we

have P ′ ∩MU ⪯̸MU BU . Indeed, by contradiction, assume that P ′ ∩MU ⪯MU

BU . On the one hand, by [Io12, Lemma 9.5, Claim 1], there exist δ > 0 and a
nonempty finite subset F ⊂M such that

(4.1) ∀v ∈ U (P ′ ∩MU ),
∑

a,b∈F

∥EBU (b∗va)∥22 ≥ δ.

On the other hand, since P is amenable hence hyperfinite by Connes’ fundamen-
tal result [Co75], there exists an increasing sequence (Pk)k of finite dimensional
von Neumann subalgebras of P such that (

⋃
k Pk)

′′ = P and P ′
k ∩ P ⊂ P has
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finite index for every k ∈ N (see e.g. the proof of [Ho12, Theorem 8.1]). Since
P ⪯̸M B, it follows that P ′

k ∩ P ⪯̸M B for every k ∈ N. Since M is separable,

by a standard diagonal argument, we can construct a unitary v ∈ U (P ′ ∩MU )
such that EBU (b∗va) = 0 for all a, b ∈M . This contradicts (4.1). Therefore, we
have P ′ ∩MU ⪯̸MU BU .

5. A lifting theorem and proofs of Theorems G and H

5.1. A lifting theorem. The goal of this subsection is to establish the following lifting
theorem which will be needed in the proof of Theorem G.

Theorem 5.1. Let U be an ultrafilter on a set K and (Mk, τk), k ∈ K, be tracial von
Neumann algebras. Let A,B ⊂

∏
U Mk be separable abelian von Neumann subalgebras

which are 2-independent in
∏

U Mk with respect to (τk)
U . Then there exist orthogonal

abelian von Neumann subalgebras Ck, Dk ⊂Mk, for every k ∈ K, such that A ⊂
∏

U Ck

and B ⊂
∏

U Dk.

We do not know whether Theorem 5.1 still holds if we replace the assumption that
A and B are 2-independent with the weaker assumption that A and B are orthogonal.
When dim(A) = 2 and dim(B) = 3, Theorem 5.1 follows from [CIKE22, Lemma 3.1],
which moreover only assumes that A and B are orthogonal. Theorem 5.1 is new in all
other cases, including when A and B are finite dimensional and of dimension at least 3.

The proof of Theorem 5.1 relies on the following perturbation lemma. First, we
need to introduce some additional terminology. Let (M, τ) be a tracial von Neumann
algebra. We denote by Msa,1 the set of x ∈ M such that x = x∗ and ∥x∥∞ ≤ 1. Let
x = (x1, . . . , xm) ∈Mm and y = (y1, . . . , yn) ∈Mn, for some m,n ∈ N. For u ∈ U (M),
we write uxu∗ = (ux1u

∗, . . . , uxmu
∗). We define

δ(x, y) = min {∥[xi, yj ]∥2 | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ,
ε(x, y) = max {|τ(xiyj)| | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ,
γ(x, y) = max

{
|⟨[xi, yj ], [xi′ , yj′ ]⟩| | 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n, (i, j) ̸= (i′, j′)

}
.

Lemma 5.2. Let (M, τ) be a tracial von Neumann algebra, x = (x1, . . . , xm) ∈ Mm
sa,1

and y = (y1, . . . , yn) ∈ Mn
sa,1, for m,n ∈ N. Set δ0 = δ(x, y), ε0 = ε(x, y), γ0 = γ(x, y).

Assume that 13mn
√
ε0 < δ20 − (mn− 1)γ0. Then there exists v ∈ U (M) such that

∥v − 1∥∞ ≤ 8mnε0
δ20 − (mn− 1)γ0

≤ 8

13

√
ε0 and ε(vxv∗, y) = 0.

Note that Lemma 5.2 is interesting even when M is finite dimensional. To prove
Lemma 5.2, we will need two auxiliary lemmas.

Lemma 5.3. Let (M, τ) be a tracial von Neumann algebra, ξ1, . . . , ξp ∈ Msa,1 and

α1, . . . , αp ∈ R, for some p ≥ 2. Let δ ∈ (0, 1) and ε ∈ (0, δ2

p−1). Assume that ∥ξi∥2 ≥ δ,

for every 1 ≤ i ≤ p, and |⟨ξi, ξj⟩| ≤ ε, for every 1 ≤ i < j ≤ p. Then there exists h ∈M

such that h = h∗, ∥h∥∞ ≤
∑p

j=1 |αj |
δ2−(p−1)ε

and τ(hξi) = αi, for every 1 ≤ i ≤ p.
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Proof. First, we claim that ξ1, . . . , ξp are linearly independent. Otherwise, we can find
β1, . . . , βp ∈ R such that β1ξ1 + · · · + βpξp = 0 and max {|βi| | 1 ≤ i ≤ p} > 0. Let
1 ≤ j ≤ p such that |βj | = max {|βi| | 1 ≤ i ≤ p}. Then −βjξj =

∑
i ̸=j βiξi and

thus |βj | ∥ξj∥22 ≤
∑

i ̸=j |βi| |⟨ξi, ξj⟩| ≤ |βj |
∑

i ̸=j |⟨ξi, ξj⟩|. Since βj ̸= 0, we derive that

∥ξj∥22 ≤
∑

i ̸=j |⟨ξi, ξj⟩|, which implies that δ2 ≤ (p−1)ε, contradicting that δ2 > (p−1)ε.
Since ξ1, . . . , ξp are linearly independent, it follows that we can find λ1, . . . , λp ∈ R

such that h =
∑p

i=1 λiξi satisfies τ(hξj) = ⟨h, ξj⟩ = αj , for every 1 ≤ j ≤ p. Then
|αj | = |

∑p
i=1 λi⟨ξi, ξj⟩| ≥ |λj |∥ξj∥22 −

∑
i ̸=j |λi||⟨ξi, ξj⟩| and thus

(5.1) ∀1 ≤ j ≤ p, |αj | ≥ δ2|λj | − ε
∑
i ̸=j

|λi|.

Adding the inequalities in (5.1) for 1 ≤ j ≤ p gives
∑p

j=1 |αj | ≥ (δ2−(p−1)ε)
∑p

j=1 |λj |.

Thus, ∥h∥∞ ≤
∑p

j=1 |λj | ≤
∑p

j=1 |αj |
δ2−(p−1)ε

. Since h = h∗, this finishes the proof. □

Lemma 5.4. Let (M, τ) be a tracial von Neumann algebra, x = (x1, . . . , xm) ∈ Mm
sa,1

and y = (y1, . . . , yn) ∈ Mn
sa,1, for some m,n ∈ N. Set δ = δ(x, y), ε = ε(x, y), γ =

γ(x, y). Assume that 2mnε < δ2 − (mn− 1)γ and set λ = 2mnε
δ2−(mn−1)γ

< 1.

Then there exists u ∈ U (M) such that

(i) ∥u− 1∥∞ ≤ 2λ.
(ii) δ(uxu∗, y) ≥ δ − 8λ.
(iii) ε(uxu∗, y) ≤ 4λ2.
(iv) γ(uxu∗, y) ≤ γ + 32λ.

Proof. For every 1 ≤ i ≤ m, 1 ≤ j ≤ n, set ξi,j = − i
2 [xi, yj ]. Then ξi,j ∈ Msa,1 and

∥ξi,j∥2 =
∥[xi,yj ]∥2

2 ≥ δ
2 , for every 1 ≤ i ≤ m, 1 ≤ j ≤ n. On the other hand, for every

(i, j) ̸= (i′, j′), we have |⟨ξi,j , ξi′,j′⟩| =
|⟨[xi,yj ],[xi′ ,yj′ ]⟩|

4 ≤ γ
4 .

By applying Lemma 5.3 to ξi,j and αi,j =
τ(xiyj)

2 , we may find h ∈ M such that
h = h∗,

(5.2) ∀1 ≤ i ≤ m, 1 ≤ j ≤ m, τ(hξi,j) =
τ(xiyj)

2
,

and

(5.3) ∥h∥∞ ≤
∑

i,j
|τ(xiyj)|

2

δ2

4 − (mn− 1)γ4
≤ 2mnε

δ2 − (mn− 1)γ
= λ.

Define u = exp(ih) ∈ U (M). We will prove that u satisfies the conclusion. Since for
every x ∈ R, | exp(ix)− 1| ≤ 2|x| and | exp(ix)− (1 + ix)| ≤ x2, using (5.3) we get that

(5.4) ∥u− 1∥∞ ≤ 2λ and ∥u− (1 + ih)∥∞ ≤ λ2.

Let 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then using (5.3) and the second part of (5.4) we get
that ∥uxiu∗yj−(1+ih)xi(1+ih)∗yj∥∞ ≤ ∥u−(1+ih)∥∞(1+∥1+ih∥∞) ≤ λ2(2+λ) ≤ 3λ2
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and ∥(1 + ih)xi(1 + ih)∗yj − (xiyj + i(hxiyj − xihyj))∥∞ = ∥hxihyj∥∞ ≤ λ2. Thus, we
get

∥uxiu∗yj − (xiyj + i(hxiyj − xihyj))∥∞ ≤ 4λ2

and therefore |τ(uxiu∗yj)− τ(xiyj + i(hxiyj − xihyj))| ≤ 4λ2. On the other hand, (5.2)
gives τ(xiyj + i(hxiyj − xihyj)) = τ(xiyj) + τ(ih[xi, yj ]) = τ(xiyj) − 2τ(hξi,j) = 0.
Altogether, we get that |τ(uxiu∗yj)| ≤ 4λ2. Thus, ε(uxu∗, y) ≤ 4λ2, which proves (iii).

Next, ∥[uxiu∗, yj ] − [xi, yj ]∥2 ≤ 2∥uxiu∗ − xi∥2 ≤ 4∥u − 1∥2 ≤ 8λ, by the first part
of (5.4). Hence, ∥[uxiu∗, yj ]∥2 ≥ ∥[xi, yj ]∥2 − 8λ ≥ δ − 8λ, for every 1 ≤ i ≤ m and
1 ≤ j ≤ n. This implies that δ(uxu∗, y) ≥ δ − 8λ, which proves (ii).

Finally, for every (i, j), (i′, j′) we have ∥[uxi′u∗, yj′ ]∥2 ≤ 2, ∥[xi, yj ]∥2 ≤ 2 and thus

|⟨[uxiu∗, yj ], [uxi′u∗, yj′ ]⟩ − ⟨[xi, yj ], [xi′ , yj′ ]⟩|
≤ 2
(
∥[uxiu∗, yj ]− [xi, yj ]∥2 + ∥[uxi′u∗, yj′ ]− [xi′ , yj′ ]∥2

)
≤ 32λ.

Thus, |⟨[uxiu∗, yj ], [uxi′u∗, yj′ ]⟩| ≤ |⟨[xi, yj ], [xi′ , yj′ ]⟩| + 32λ ≤ γ + 32λ. This implies
that γ(uxu∗, y) ≤ γ + 32λ, which proves (iv). Since (i) also holds by the first part of
(5.4), this finishes the proof. □

Proof of Lemma 5.2. We will inductively construct sequences (uk)k∈N ⊂ U (M) and
(λk)k∈N ⊂ (0,∞) with the following properties: λ0 = 1, λ1 = 2mnε0

δ20−(mn−1)γ0
and if we

define v0 = 1, vk = ukuk−1 · · ·u1 ∈ U (M), δk = δ(vkxv
∗
k, y), εk = ε(vkxv

∗
k, y) and

γk = γ(vkxv
∗
k, y), for every k ≥ 0, then for every k ≥ 1 we have that

(i) ∥uk − 1∥∞ ≤ 2λk.
(ii) δk ≥ δk−1 − 8λk.
(iii) εk ≤ 4λ2k.
(iv) γk ≤ γk−1 + 32λk.

(v) λk ≤ λk−1

2 .

Since ε0 ≤ 1, we have that 4mnε0 ≤ 13mn
√
ε0 < δ20 − (mn− 1)γ0. Thus, λ1 <

1
2 and

hence condition (v) holds for k = 1. By applying Lemma 5.4, we can find u1 ∈ U (M)
such that conditions (i)-(iv) hold for k = 1.

Next, assume that we have constructed u1, . . . , ul ∈ U (M) and λ1, . . . , λl ∈ (0,∞),
for some l ∈ N, such that conditions (i)-(v) are satisfied for k = 1, . . . , l. Our goal is to

construct ul+1 and λl+1. Let λl+1 =
2mnεl

δ2l −(mn−1)γl
. We continue with the following claim.

Claim 5.5. λl+1 ≤ λl
2 .

Proof of Claim 5.5. First, (ii) implies that δ2k ≥ (δk−1 − 8λk)
2 ≥ δ2k−1 − 32λk. Then

combining (ii) and (iv) gives that

∀1 ≤ k ≤ l, δ2k − (mn− 1)γk ≥ (δ2k−1 − (mn− 1)γk−1)− 32mnλk

which implies that δ2l − (mn − 1)γl ≥ (δ20 − (mn − 1)γ0) − 32mn(
∑l

k=1 λk). By using

that (v) holds for k = 1, . . . , l, we also get that
∑l

k=1 λk ≤ 2λ1. By combining the last
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two inequalities we get that

(5.5) δ2l − (mn− 1)γl ≥ (δ20 − (mn− 1)γ0)− 64mnλ1.

Since 13mn
√
ε0 < δ20 − (mn− 1)γ0, we get that (δ20 − (mn− 1)γ0)

2 > 169(mn)2ε0 and
thus

(5.6) δ20 − (mn− 1)γ0 > 80mnλ1.

By combining (5.5) and (5.6) we derive that

(5.7) δ2l − (mn− 1)γl ≥ 16mnλ1.

Since (v) holds for every k = 1, . . . , l, we get that λl ≤ λ1. Since εl ≤ 4λ2l by (iii), using
(5.7) we get that

λl+1 =
2mnεl

δ2l − (mn− 1)γl
≤

8mnλ2l
δ2l − (mn− 1)γl

≤ 16mnλ1
δ2l − (mn− 1)γl

· λl
2

≤ λl
2
.

This finishes the proof of the claim. □
By using (v) and Claim 5.5 we get that λl+1 ≤ 1

2l+1 < 1. Thus, 2mnεl < δ2l − (mn−
1)γl. We can therefore apply Lemma 5.4 to vlxv

∗
l and y to find ul+1 ∈ U (M) such that

(i’) ∥ul+1 − 1∥∞ ≤ 2λl+1.
(ii’) δl+1 = δ(ul+1(vlxv

∗
l )u

∗
l+1), y) ≥ δl − 8λl+1.

(iii’) εl+1 = ε(ul+1(vlxv
∗
l )u

∗
l+1, y) ≤ 4λ2l+1.

(iv’) γl+1 = γ(ul+1(vlxv
∗
l )u

∗
l+1, y) ≤ γl + 32λl+1.

By induction, this finishes the construction of (uk)k∈N ⊂ U (M) and (λk)k∈N ⊂ (0,∞).
Finally, since λ0 = 1, (v) implies that λk ≤ 1

2k
, for every k ≥ 0. Using (i), we derive

that ∥vk − vk−1∥∞ = ∥uk − 1∥∞ ≤ 1
2k−1 , for every k ≥ 1. Thus, the sequence (vk)k∈N is

Cauchy in ∥ · ∥∞ and so we can find v ∈ U (M) such that limk→∞ ∥vk− v∥∞ = 0. Using
(iii), we get that εk ≤ 4λ2k ≤ 1

4k−1 , for every k ≥ 1. Thus, ε(vxv∗, y) = limk→∞ εk = 0.

Moreover, using (i) and (v) we get that ∥vk−1∥∞ ≤
∑k

l=1 ∥ul−1∥∞ ≤
∑k

l=1 2λl ≤ 4λ1.

Hence ∥v− 1∥∞ = limk→∞ ∥vk − 1∥∞ ≤ 4λ1 =
8mnε0

δ20−(mn−1)γ0
. This finishes the proof. □

Proof of Theorem 5.1. We may clearly assume that dim(A) ≥ 2 and dim(B) ≥ 2. Since
A and B are separable, we can write A = (

⋃
n∈NAn)

′′, B = (
⋃

n∈NBn)
′′, where An ⊂

A,Bn ⊂ B are finite dimensional von Neumann subalgebras such that An ⊂ An+1,
Bn ⊂ Bn+1, an := dim(An) ≥ 2 and bn := dim(Bn) ≥ 2, for every n ∈ N.

Fix n ∈ N. Write An =
⊕an

i=1Cpn,i and Bn =
⊕bn

j=1Cqn,j , where (pn,i)
an
i=1 and

(qn,j)
bn
j=1 are partitions of unity into projections from A and B, respectively. For every

1 ≤ i ≤ an and 1 ≤ j ≤ bn, represent pn,i, qn,j ∈
∏

U Mk as pn,i = (pkn,i)
U and

qn,j = (qkn,j)
U , where for every k ∈ K, (pkn,i)

an
i=1 and (qkn,j)

bn
j=1 are partitions of unity into

projections from Mk. Denote Ak
n =

⊕an
i=1Cpkn,i and Bk

n =
⊕bn

j=1Cqkn,j . Moreover, we

can arrange that Ak
n ⊂ Ak

n+1 and Bk
n ⊂ Bk

n+1, for every n ∈ N and k ∈ K.
If (rl)

m
l=1 is a partition of unity into nonzero projections from a tracial von Neumann

algebra (N, τ), then {τ(rl+1 + · · ·+ rm)rl − τ(rl)(rl+1 + · · ·+ rm) | 1 ≤ l ≤ m− 1} is
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an orthogonal basis for C ⊖ C1 contained in Csa,1, where C =
⊕m

l=1Crl. Using this
observation, for every 1 ≤ i ≤ an − 1, 1 ≤ j ≤ bn − 1 and k ∈ K, we define

xn,i = τ(pn,i+1 + · · ·+ pn,an)pn,i − τ(pn,i)(pn,i+1 + · · ·+ pn,an),

yn,j = τ(qn,j+1 + · · ·+ qn,bn)qn,j − τ(qn,j)(qn,j+1 + · · ·+ qn,bn),

xkn,i = τ(pkn,i+1 + · · ·+ pkn,an)p
k
n,i − τ(pkn,i)(p

k
n,i+1 + · · ·+ pkn,an),

ykn,j = τ(qkn,j+1 + · · ·+ qkn,bn)q
k
n,j − τ(qkn,j)(q

k
n,j+1 + · · ·+ qkn,bn).

Set xn = (xn,i)
an−1
i=1 ∈ Aan−1

n , yn = (yn,j)
bn−1
j=1 ∈ Bbn−1

n , xkn = (xkn,i)
an−1
i=1 ∈ Man−1

k

and ykn = (ykn,j)
bn−1
j=1 ∈ M bn−1

k . Let n ∈ N, 1 ≤ i, i′ ≤ an − 1 and 1 ≤ j, j′ ≤ bn − 1

with (i, j) ̸= (i′, j′). Since An and Bn are 2-independent, xn,i ̸= 0 and yn,j ̸= 0,

we have that ∥[xn,i, yn,j ]∥2 =
√
2∥xn,i∥2∥yn,j∥2 > 0 and τ(xn,iyj,n) = 0. Moreover,

⟨[xn,i, yn,j ], [xn,i′ , yn,j′ ]⟩ = 2τ(xn,ixn,i′)τ(yn,jyn,j′). Since (xn,i)
an−1
i=1 and (yn,j)

bn−1
j=1 are

pairwise orthogonal, we get that ⟨[xn,i, yn,j ], [xn,i′ , yn,j′ ]⟩ = 0. Altogether, we derive
that δ(xn, yn) > 0 and ε(xn, yn) = γ(xn, yn) = 0.

Thus, we get that limk→U δ(x
k
n, y

k
n) = δ(xn, yn) > 0, limk→U ε(x

k
n, y

k
n) = ε(xn, yn) = 0

and limk→U γ(x
k
n, y

k
n) = γ(xn, yn) = 0. By applying Lemma 5.2, we find vkn ∈ U (Mk),

for every k ∈ K, such that ε(vknx
k
nv

k
n
∗
, ykn) = 0, for every k ∈ K, and limk→U ∥vkn −

1∥∞ = 0. Since xkn and ykn are bases for Ak
n and Bk

n, respectively, we get that vknA
k
nv

k
n
∗

and Bk
n are orthogonal, for every k ∈ K.

To complete the proof we consider two cases:

Case 1. U is countably cofinal.
In this case, we proceed as in the proof of [BCI15, Lemma 2.2]. Since U is countably

cofinal, there exists a decreasing sequence {Sn}n≥2 of sets in U such that
⋂

n≥2 Sn = ∅.
For n ≥ 2, let Tn = {k ∈ K | ∥vkm − 1∥∞ < 1

n , ∀1 ≤ m ≤ n} ∈ U and set Kn = Sn ∩ Tn.
Then {Kn}n≥2 is a decreasing sequence of sets in U such that

⋂
n≥2Kn = ∅. Let

K1 = K \K2. For every k ∈ K, let n(k) be the smallest integer n ≥ 1 such that k ∈ Kn.
Then n(k) is well-defined and limk→U n(k) = +∞.

For k ∈ K, let Ck = Ak
n(k), D

0
k = Bk

n(k) and vk = vkn(k). If n(k) ≥ 2, then as k ∈ Kn(k)

we have ∥vk−1∥∞ < 1
n(k) . Since limk→U n(k) = +∞, we get that limk→U ∥vk−1∥∞ = 0.

Let n ∈ N. Since {k ∈ K | n(k) ≥ n} ∈ U and the sequences {Ak
m}m∈N and {Bk

m}m∈N
are increasing for every k ∈ K, we get that

∏
U A

k
n ⊂

∏
U Ck and

∏
U B

k
n ⊂

∏
U D

0
k.

Since An ⊂
∏

U A
k
n and Bn ⊂

∏
U B

k
n, we conclude that An ⊂

∏
U Ck and Bn ⊂

∏
U D

0
k.

As this holds for every n ∈ N, we get that A ⊂
∏

U Ck and B ⊂
∏

U D
0
k. Finally, let

Dk = vkD
0
kv

∗
k. Then Ck = Ak

n(k) and Dk = vkn(k)B
k
n(k)v

∗
n(k) are orthogonal, for every

k ∈ K. Since limk→U ∥vk − 1∥∞ = 0, we get that
∏

U D
0
k =

∏
U Dk and B ⊂

∏
U Dk.

This finishes the proof of Case 1.

Case 2. U is not countably cofinal.
Since U is not countably cofinal, {k′ ∈ K | f(k′) = limk→U f(k)} ∈ U , for every f ∈

ℓ∞(K) (see the proof of [BCI15, Lemma 2.3 (2)]). If n ∈ N, since limk→U ∥vkn−1∥∞ = 0,
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we get that Rn := {k ∈ K | vkn = 1} ∈ U . Using again that U is not countably cofinal,
we further deduce that R :=

⋂
n∈NRn = {k ∈ K | vkn = 1, ∀n ∈ N} ∈ U .

If k ∈ R, then vkn = 1, hence Ak
n and Bk

n are orthogonal, for every n ∈ N. Since
the sequences {Ak

n}n∈N and {Bk
n}n∈N are increasing, we get that Ck = (

⋃
n∈NA

k
n)

′′ and

Dk = (
⋃

n∈NB
k
n)

′′ are orthogonal, for every k ∈ R. For k ∈ K \ R, let Ck = Dk = C1.
If n ∈ N, then An ⊂

∏
U A

k
n ⊂

∏
U Ck and Bn ⊂

∏
U B

k
n ⊂

∏
U Dk. As this holds for

every n ∈ N, we get that A ⊂
∏

U Ck and B ⊂
∏

U Dk. This finishes the proof of Case
2 and of the theorem. □

5.2. Proof of Theorem G. In order to construct a II1 factor satisfying the hypothesis
of Theorem G, we follow closely the construction from [CIKE22, Definition 5.1]. This
construction uses the following key result from [CIKE22].

Corollary 5.6 (Corollary 4.3 in [CIKE22]). Let (M, τ) be a tracial von Neumann al-
gebra having no type I direct summand. Let u1, u2 ∈ U (M) such that {u1}′′ ⊥ {u2}′′.

Then there exists a II1 factor P = Φ(M,u1, u2)
′′ generated by a copy of M and Haar

unitaries v1, v2 ∈ U (P ) so that [u1, v1] = [u2, v2] = [v1, v2] = 0. Moreover, if Q ⊂M is
a von Neumann subalgebra such that Q ⪯̸M {ui}′′, for every 1 ≤ i ≤ 2, then Q′∩P ⊂M .

For a II1 factor M , we let W (M) be the set of pairs (u1, u2) ∈ U (M)× U (M) such
that {u1}′′ and {u2}′′ are orthogonal. We endow U (M) × U (M) with the product
∥ · ∥2-topology. We next repeat the construction from [CIKE22, Definition 5.1] where
we replace V (M) (the set of pairs (u1, u2) ∈ W (M) such that u21 = u32 = 1) with W (M).

Definition 5.7. Let M1 be a II1 factor. We construct a II1 factor M which contains
M1 and arises as the inductive limit of an increasing sequence (Mn)n∈N of II1 factors.
To this end, let σ = (σ1, σ2) : N → N × N be a bijection such that σ1(n) ≤ n, for
every n ∈ N. Assume that M1, . . . ,Mn have been constructed, for some n ∈ N. Let

{(un,k1 , un,k2 )}k∈N ⊂ W (Mn) be a ∥ · ∥2-dense sequence. Since σ1(n) ≤ n, we have

(u
σ(n)
1 , u

σ(n)
2 ) ∈ W (Mn) and we can define Mn+1 := Φ(Mn, u

σ(n)
1 , u

σ(n)
2 ). Then Mn ⊂

Mn+1 and Mn+1 is a II1 factor by Corollary 5.6. Thus, M := (
⋃

n∈NMn)
′′ a II1 factor.

Proposition 5.8. Let M be the II1 factor introduced in Definition 5.7 and U be a
countably cofinal ultrafilter on a set I. Let u1, u2 ∈ U (MU ) such that {u1}′′ and {u2}′′
are 2-independent.

Then there exist Haar unitaries v1, v2 ∈MU so that [u1, v1] = [u2, v2] = [v1, v2] = 0.

Proposition 5.8 follows by repeating the argument used in the proof of [CIKE22,
Proposition 5.3], which we recall for the reader’s convenience.

Proof. Since M = (
⋃

n∈NMn)
′′ and U is countably cofinal, by applying [BCI15, Lemma

2.2] we can find (ni)i∈I ⊂ N such that u1, u2 ∈
∏

i∈U Mni . Also, the proof of [BCI15,
Lemma 2.2] provides a function f : I → N such that limi→U f(i) = +∞.

Since {u1}′′ and {u2}′′ are 2-independent, Theorem 5.1 provides orthogonal von Neu-
mann subalgebras Ci, Di ⊂Mni , for every i ∈ I, such that u1 ∈

∏
U Ci and u2 ∈

∏
U Di.

Thus, we can represent u1 = (u1,i)
U and u2 = (u2,i)

U , where u1,i ∈ U (Ci) and
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u2,i ∈ U (Di), for every i ∈ I. In particular, {u1,i}′′ and {u2,i}′′ are orthogonal, and
thus (u1,i, u2,i) ∈ W (Mni), for every i ∈ I.

As the sequence {(uni,j
1 , uni,j

2 )}j∈N is dense in W (Mni), we can find ji ∈ N such that

∥u1,i−uni,ji
1 ∥2+ ∥u2,i−uni,ji

2 ∥2 ≤ 1
f(i) , for every i ∈ I. For i ∈ I, let li ∈ N with σ(li) =

(ni, ji). Then Mσ(li)+1 = Φ(Mσ(li), u
ni,ji
1 , uni,ji

2 ). Corollary 5.6 gives Haar unitaries

v1,i, v2,i ∈ U (Mσ(li)+1) ⊂ U (M) with [uni,ji
1 , v1,i] = [uni,ji

2 , v2,i] = [v1,i, v2,i] = 0. Using

that limi→U f(i) = +∞, we conclude that v1 = (v1,i)
U , v2 = (v2,i)

U ∈ U (MU ) are Haar
unitaries such that [u1, v1] = [u2, v2] = [v1, v2] = 0. □

To ensure that M does not have property Gamma, it suffices to take M1 to have
property (T), as the next result from [CIKE22] shows:

Proposition 5.9 (Proposition 5.4 in [CIKE22]). Assume that M1 has property (T).
Then M does not have property Gamma.

Proof of Theorem G. Let M1 be a separable II1 factor with property (T), e.g., take
M1 = L(PSLn(Z)), for n ≥ 3. LetM be constructed as in Definition 5.7. The conclusion
follows from Propositions 5.8 and 5.9. □

5.3. Proof of Theorem H. We may clearly assume that z ̸= 0 and z ∈Msa,1, for every
z ∈ X∪Y . Further, we may assume that X and Y consist of pairwise orthogonal vectors.
Enumerate X = {x1, . . . , xm} and Y = {y1, . . . , yn} and define x = (x1, . . . , xm) ∈Mm

sa,1

and y = (y1, . . . , yn) ∈Mn
sa,1.

By [Po13a, Corollary 0.2] there exists v ∈ U (MU ) such that vMv∗ and M are freely
and hence 2-independent. Then ∥[vxiv∗, yj ]∥2 =

√
2∥xi∥2∥yj∥2 > 0 and τU (vxiv

∗yj) = 0,
for every 1 ≤ i ≤ m, 1 ≤ j ≤ n. Moreover, for every (i, j) ̸= (i′, j′), we have
⟨[vxiv∗, yj ], [vxi′v∗, yj′ ]⟩ = τ(xixi′)τ(yjyj′) = 0. Thus, we conclude that δ(vxv∗, y) > 0
and ε(vxv∗, y) = γ(vxv∗, y) = 0. In particular,

(5.8) 13mn
√
ε(vxv∗, y) < δ(vxv∗, y)2 − (mn− 1)γ(vxv∗, y).

Writing v = (vk)
U , where vk ∈ U (M), for all k ∈ N. Then limk→U δ(vkxv

∗
k, y) =

δ(vxv∗, y), limk→U ε(vkxv
∗
k, y) = ε(vxv∗, y) and limk→U γ(vkxv

∗
k, y) = γ(vxv∗, y). Using

(5.8) gives k ∈ N such that 13mn
√
ε(vkxv

∗
k, y) < δ(vkxv

∗
k, y)

2−(mn−1)γ(vkxv
∗
k, y). By

applying Lemma 5.2, we can find w ∈ U (M) such that ε(w(vkxv
∗
k)w

∗, y) = 0. Letting
u = wvk ∈ U (M), we get that ε(uXu∗, Y ) = 0, i.e., uXu∗ and Y are orthogonal. □
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[Va07] S. Vaes, Explicit computations of all finite index bimodules for a family of II1 factors.
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