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}01;?255/ 2/ doi.org/10.1146/annurev-micro-041222- The micronutrient iron is essential for phytoplankton growth due to its

central role in a wide variety of key metabolic processes including photo-
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synthesis and nitrate assimilation. As a result of scarce bioavailable iron in
seawater, marine primary productivity is often iron-limited with future iron

high cellular iron requirements, phytoplankton evolved diverse mechanisms
that enable uptake of multiple forms of iron, storage of iron over short and

A long timescales, and modulation of their iron requirement under stress. Ge-
OPEN () AccEs' [N nomics continues to increase our understanding of iron-related proteins that

are homologous to those characterized in other model organisms, while re-
cently, molecular and cell biology have been revealing unique genes and
processes with connections to iron acquisition or use. Moreover, there are an
increasing number of examples showing the interplay between iron uptake
and extracellular processes such as boundary layer chemistry and microbial
interactions.
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Micronutrient:

a chemical element or
compound that is
required for growth in
relatively small
quantities

Dissolved iron: iron
species that can pass
through a 0.2- or
0.4-pm filter, thus
including both soluble
iron species (less than
0.02 pm) and colloidal
iron species
(nanoparticulate
species that are not
truly dissolved)
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1. INTRODUCTION

Nutrient availability in the ocean has immense influence on global primary productivity and mi-
crobially mediated biogeochemical cycling. In this context, the role of iron (Fe) as a micronutrient
that limits phytoplankton growth has garnered significant interest over the past several decades.
Although reviews from the 1950s and 1960s in this very journal describe early recognition of the
universal requirement for iron to support life (127), uncertainty remained surrounding its sig-
nificance in controlling phytoplankton growth in the natural environment (89, 150). Following
the first accurate measurements of dissolved iron in seawater in the 1980s that revealed surface
concentrations less than 0.5 nmol/kg (57, 82, 83) and experiments demonstrating increases in phy-
toplankton biomass after iron enrichment (31, 107, 108), the high importance of iron as a control
on phytoplankton abundances and productivity in the ocean began to be more fully recognized.

With extensive and ongoing efforts to obtain high-quality iron measurements in the ocean,
namely via the GEOTRACES program (3), dissolved iron concentrations in the surface ocean
are now known to typically be in the 0.1 to 0.6 nM range but may be as low as 0.01 nM (52,
163) contributing to widespread limitation of growth in large areas of the ocean (115). Moreover,
iron has been found to simultaneously colimit eukaryotic phytoplankton growth with nitrogen
(26), the other trace metal Mn (25), and light in subsurface chlorophyll maxima layers (66) and
in the Southern Ocean (21). Furthermore, there are interactive effects between iron and other
micronutrients, such as vitamin By, (14, 15), copper (125), and Zn (38). The availability of silicic
acid and iron may also have interactive effects on diatoms, a lineage of phytoplankton belonging
to the Stramenopile clade, as they require silicic acid to produce their cell walls (27, 69, 106).

Iron limitation in phytoplankton is traced to their early evolutionary history, most notably with
the evolution of oxygenic photosynthesis. In phytoplankton, iron has essential roles as a cofactor
for several proteins in diverse cellular processes, namely photosynthesis and nitrate assimilation
(103). Oxygenic photosynthesis emerged approximately three billion years ago when dissolved
iron concentrations were significantly higher, and phytoplankton made use of this abundant iron
to irreversibly incorporate it into their photosynthetic electron transport chain and other key
enzymes (11, 171). Following widespread and persistent oxygenation of surface waters 1,850
1,250 Mya (2), iron in seawater formed insoluble ferric oxyhydroxides that precipitated, resulting
in the low dissolved iron concentrations observed today (11, 94). In addition to biological uptake,
dissolved iron adsorbs onto particle surfaces or forms colloidal authigenic particles that may ag-
gregate into larger particles and sink, further contributing to iron removal from the surface ocean,
although these processes are somewhat reversable (22, 162).
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Iron removal is balanced by inputs that vary regionally (161). On global scales, iron supply
is dominated by continental margin sediments where lateral advection transports iron beyond
coastal waters. Iron released from hydrothermal vents is also a significant source as it is trans-
ported long distances and eventually upwelled, particularly in the Southern Ocean (5). In contrast,
atmospheric dust deposition is relatively important in low-latitude regions (161), and on regional
scales, rivers, glaciers, and sea ice melt also contribute to iron inputs (53, 129, 135). Following
biological uptake, rapid recycling can further sustain iron in the euphotic zone (22).

Iron bioavailability is further influenced by its complex physicochemical speciation in seawater
(Figure 1). It exists in two oxidation states: the more soluble ferrous iron (Fe(II)) and less soluble
ferric iron (Fe(II)) that forms Fe(IIl) oxyhydroxide precipitates (28, 77). Fe(I) generally exists in
relatively low concentrations as it undergoes oxidation to Fe(IIT) within minutes to hours (138),
although at times, Fe(I) can account for a high percentage of total dissolved iron (67). Within the
dissolved iron pool, less than 1% is presumed to exist as soluble inorganic Fe(II) or Fe(II), the sum
of which is referred to as Fe'. The remainder is usually bound to organic ligands such as bacterial
siderophores, humic acids, proteins, and exopolysaccharides. With a range of relatively strong
to weak affinities for iron, these organic ligands allow dissolved iron concentrations to persist
above the solubility limits of its inorganic species (55). Transformations among these chemical
species are influenced by pH, temperature, oxygen, and photochemistry, including the dissolution
of particulate iron (48, 96, 160). The result is a spectrum of iron bioavailability, from the most
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Siderophore:
microbially produced
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molecule that has a
high-affinity for iron

Particulate iron: iron
within or attached to
particles greater than
0.2 or 0.4 pm

215



216

available but least abundant being Fe’ to the least available generally being iron bound to certain
strong organic ligands (92).

In response to iron stress or limitation, phytoplankton exhibit a range of physiological re-
sponses that in conjunction with the physiological aspects of iron uptake are reviewed by Marchetti
& Maldonado (103). Photophysiological responses to iron stress are further detailed by Behren-
feld & Milligan (11). Briefly, intracellular iron contents, or quotas, decrease. Maximal uptake rates
of both Fe’ and organically complexed iron increase, suggesting the upregulation of various cell
surface iron transporters (65, 98). Cell sizes may also decrease, thus reducing overall nutrient
requirements and improving nutrient uptake kinetics (103). Phytoplankton remodel their pho-
tosynthetic architecture, including decreases in their pigment inventories, leading to observable
changes in their fluorescent properties (11, 41, 137). In diatoms, iron limitation also affects their
elemental stoichiometry. Specifically, diatoms show increased silicon (Si) relative to carbon and
nitrogen (68), which appears to be driven by reductions in cellular carbon and nitrogen rather
than increases in Si (102).

Here we describe molecular mechanisms underlying iron uptake, cellular iron demand, and re-
sponses to iron stress in marine eukaryotic phytoplankton. Due to their prominence and ecological
importance, previous studies, and therefore this review, largely focus on diatoms (Bacillariophyta)
that alone comprise considerable diversity (20). However, many diatom proteins are homologous
to those found in other phytoplankton lineages, suggesting that some of these mechanisms trans-
late to different taxa. Studies on marine green algae (Prasinophyta), haptophytes (Haptophyta),
dinoflagellates (Dinoflagellata), and other eukaryotic organisms are also included.

2.IRON UPTAKE MECHANISMS AND TRANSPORTERS

Corresponding to the wide variety of iron species available in seawater, eukaryotic phytoplank-
ton evolved to possess a variety of iron uptake mechanisms enabling uptake of multiple iron
sources, thus combating low iron availability and diffusion limitation (Figure 1) (155, 170). The
evolutionary history of eukaryotic phytoplankton is complex and diverse, ranging from primary
endosymbiotic events that created the green and red algal lineages to secondary and tertiary
endosymbioses (74). Genetic origins within these lineages are further complicated by extensive
horizontal gene transfer with bacteria (46). Diatoms, for example, are secondary endosymbionts
with a mosaic of genes derived from both red and green algal endosymbionts, horizontally trans-
ferred genes of bacterial origin, and the retention of metazoan-type genes from their heterotrophic
exosymbiont ancestor (20). This amalgamation of genes allows certain eukaryotic phytoplankton
to possess diverse functional repertoires where iron-related genes are no exception.

2.1. Inorganic Iron Uptake and Intracellular Transport

As normally less than 1% of the dissolved iron pool, soluble inorganic iron (Fe') exists in picomolar
concentrations, yet it is the most bioavailable species and a primary source of iron for marine
phytoplankton (55, 116). Inorganic iron uptake systems characterized in terrestrial organisms have
affinities for iron in the micromolar range suggesting that marine phytoplankton must have novel
mechanisms for inorganic iron acquisition under low concentrations (158). One such mechanism
is the protein phytotransferrin (pTF), an outer membrane receptor that allows cells to import
individual Fe(IIT) atoms via endocytosis (112) (Figure 1). This protein family includes the genes
previously known as ISIP2A in diatoms (1) and FEAI in green algae (86) that are found widely
across phytoplankton lineages (117) and upregulated under low iron availability (12, 35).

The evolution of pTF is a remarkable example of convergent evolution with transferrins that
are found in metazoans and certain photosynthetic organisms, such as land plants and the green
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algae Dunaliella salina. Specifically, both families convergently evolved a requirement for carbonate
(CO?) to coordinate Fe(III) ion binding, resulting in a second-order dependence on the concen-
trations of both Fe’ and CO;~ (7, 112). These second-order kinetics allow pTF to leverage high
concentrations of CO3 ™ to acquire trace quantities of iron; however, in environments with low iron
concentrations, carbonate ion concentrations may also be insufficient, leading to iron-carbonate
colimitation with respect to pTF-mediated iron uptake (112).

Additionally, carbonate ion concentrations are declining due to ocean acidification (60), further
decreasing the ability to bind inorganic iron. Acidification also makes iron less likely to dissoci-
ate from certain organic ligands, further lowering concentrations of Fe’ (143). Collectively, these
effects may explain the negative impacts of acidification on iron-stressed phytoplankton (79, 154,
166), although changes in both pH and carbonate chemistry at the cell surface via photosynthesis
and extracellular enzymes, such as carbonic anhydrases, may allow phytoplankton to overcome
some of these effects (93) (Figure 1).

Prior to the discovery of pTF, kinetic models for iron uptake suggested that dissolved iron
species, including soluble inorganic ferric iron, or Fe(IIT)', required reduction at the cell surface
(142). This model was based on the reductive iron uptake system in baker’s yeast (Saccharomyces
cerevisine) and supported by similar genes found in the genome of the diatom Thalassiosira pseudo-
nana (6), as well as physiological experiments with Thalassiosira spp. (97). This system includes cell
surface ferric reductases that generate free ferrous iron, or Fe(II)', from both Fe(III) and organi-
cally complexed iron. Fe(Iy is then reoxidized by a multicopper oxidase that is coupled to a ferric
iron permease (FTR) for transport across the cell membrane (Figure 1). This process enables
selective iron transport, thus avoiding the uptake of unwanted metals (17); however, as previously
described, the affinities for iron uptake with this system are likely in the micromolar range (88).
While experiments suggest that diatoms exhibit extracellular Fe(I) oxidation that is impacted by
copper availability (97), it is unknown whether or not this system is viable and functions at the cell
surface as opposed to within endosomes. Additionally, while FTRs in T. pseudonana are localized
to the cell surface, the localization of the multicopper oxidase remains unclear, leading to the al-
ternative hypothesis that FTR functions as an independent transporter for Fe(IIT)’ uptake (A.B.
Kustka, personal communication).

Direct uptake of inorganic ferrous iron, or Fe(I), has been observed in different microal-
gae (157) and likely occurs via nonspecific divalent metal transporters (103) that may also
take up iron following ferric reductase activity (158) (Figure 1). Several families of proteins
may perform this function, including ZIP (Zrt, Irt-like protein), NRAMP (natural resistance-
associated macrophage protein), and CDF (cation diffusion facilitator) family transporters where
they have been characterized in nonmarine model organisms (17). Once intracellular, iron must
be trafficked to different sites and transported across organelle membranes; therefore, trans-
porters in these families may also perform this function (Figure 2). To transport iron across
the mitochondrial inner membrane, phytoplankton likely use proteins in the mitochondrial car-
rier family (SLC25A28 and SLC25A37, also referred to as mitoferrins) (17). Phytoplankton
also possess homologs in the Cccl/VIT1 (Ca(Il)-sensitive cross-complementer 1/vacuolar iron
transporter 1) family that transport intracellular iron in fungi and plants; however, while VIT1
transcripts are iron-responsive in green alga Ostreococcus tauri (86), they do not appear to be so
in diatoms (81). Rather, VIT1 in diatoms has been proposed to serve a role in cadmium detoxi-
fication (23), although its specific function remains unclear. Lastly, diatoms and the pelagophyte
Pelagomonas calceolata possess ferroportins that export iron and other divalent metals in multicel-
lular organisms (113, 172); in microalgae, they are hypothesized to export iron from endosomes
(61).
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(@) Intracellular view of iron transport and storage as well as enzymes associated with iron demand. (b) Iron requirements for
photosynthetic electron transport. (¢) Iron requirements for mitochondrial electron transport. Abbreviations: AOX, alternative oxidase;
BioB, biotin synthase; cyt, cytochrome; DMT, divalent metal transporter; FAD, flavin adenine dinucleotide; Fd, ferredoxin; Fld,
flavodoxin; FRE, ferric reductase; FTN, ferritin; fum., fumarate; GOGAT, glutamate synthase; ISIP3, iron starvation-induced protein
3; LOX, lipoxygenase; mN'T, mitoNEET; NiR, nitrite reductase; NR, nitrate reductase; NRT, nitrate transporter; PC, plastocyanin;
POD, peroxidase; PQ, plastoquinone pool; PS, photosystem; PTOX, plastid terminal oxidase; RHO, xanthorhodopsin; ROS, reactive
oxygen species; SiR, sulfite reductase; SLC25A, solute carrier family 25; SOD, superoxide dismutase; suc., succinate; TCA, tricarboxylic
acid; ThiC, phosphomethylpyrimidine synthase; XO, xanthine oxidase. Figure adapted from images created with BioRender.com.
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2.2. Organic Iron Uptake

Diverse eukaryotic phytoplankton isolates and natural populations also have the ability to take up
iron complexed to organic ligands (70, 92, 99, 141). These include a variety of structurally different
compounds such as polysaccharides, proteins, porphyrins (heme), humic acids, and siderophores.
Collectively, these ligands increase the solubility of iron and form iron-ligand complexes that
normally represent a majority of the dissolved iron pool (55).

Lampe et al.



Dozens of structurally distinct siderophores have been observed and quantified in seawater;
however, the chemical structures of many ligands remain unknown (114). Rather, organic speci-
ation of dissolved iron in seawater is usually characterized in bulk terms by concentrations and
conditional stability constants that are assigned to ligand classes: L; for strong ligands or L, for
weaker ligands (55). Stability constants, however, are poor indicators of bioavailability, and the
disassociation of iron from organic ligands to Fe’ is strongly influenced by light, further compli-
cating their bioavailability (141) (Figure 1). Furthermore, microbial production of iron-binding
ligands in seawater is highly heterogeneous (114). As a result, it is unlikely that there is a single
uptake strategy that phytoplankton can rely upon in all situations, and selective pressure exists
for multiple uptake mechanisms for organically complexed iron in addition to those for inorganic
iron uptake.

The mechanisms for uptake of iron complexed with polysaccharides, proteins, and humic acids
remain unknown. In the case of heme uptake, SLC49-family transporters have been proposed
to serve this role as in metazoans (79). Alternatively, iron may be released at the cell surface by
decycling heme oxygenases (1); however, these processes remain to be experimentally validated.

In contrast, uptake of siderophore-bound iron is better characterized and appears to be com-
mon among eukaryotic phytoplankton even though no marine eukaryote is known to produce
them. As siderophore production is primarily attributed to bacteria for their own uptake mech-
anisms (101), siderophore uptake by eukaryotic phytoplankton represents another example of
phytoplankton-bacterial interactions. The diatom Phaeodactylum tricornutum can take up the hy-
droxamate siderophores ferrioxamine B (FOB) and ferrioxamine E (FOE) (148) while Thalassiosira
oceanica can only use FOB (98). Many other diatoms have also demonstrated FOB use (153), as
well as the dinoflagellate Amphidinium carterae (100) and the haptophytes Gephyrocapsa buxleyi
(formerly Emiliania buxleyi) and Phaeocystis antarctica (110, 140, 153).

As previously described, early studies hypothesized that eukaryotic phytoplankton relied on a
yeast-like reductive iron uptake system for both inorganic and organically complexed iron (see
Section 2.1) (142). Under this model, membrane-bound ferric reductase proteins liberate iron
from extracellular siderophores and other ligands to increase the Fe’ concentration available for
uptake at the cell surface (97) (Figure 1). In addition to possessing genes that are similar to
those of the yeast-like system (6), many phytoplankton species are known to exhibit extracellu-
lar ferric reductase activity that increases alongside uptake rates at low iron concentrations (142).
Furthermore, Fe(I)-specific ligands, e.g., ferrozine, inhibit iron uptake, presumably by trapping
reduced iron as it is produced at the cell surface. However, as this system primarily operates with
micromolar-level iron concentrations (88), it remains unclear whether it is viable for organically
complexed iron at the subnanomolar concentrations that are typical of the marine environment.
Moreover, some marine phytoplankton lack extracellular ferric reductases, including the prasino-
phytes Micromonas pusilla and O. tauri, the alveolate Chromera velia, and G. huxleyi, which is still
capable of FOB uptake (157, 159).

On the other hand, nonreductive siderophore uptake employing siderophore receptors oc-
curs at lower concentrations (87). Rather than employing extracellular reduction, studies with
P, tricornutum revealed that uptake of hydroxamate siderophores, including FOB and ferrichrome,
relies on siderophore binding at the cell surface followed by endocytosis (Figure 1). This uptake
strategy was shown to involve the proteins ISIP1 (73), FBP1, and FRE2 (33). The precise role of
ISIP1 remains unclear, but it appears to predominantly be a diatom-specific protein (73). FBP1 is
a siderophore receptor that was acquired via horizontal gene transfer from bacteria, while FRE2
is a ferric reductase of eukaryotic ancestry (33). Orthologs of FBPI are found in species known to
utilize FOB, including diatoms, haptophytes, dinoflagellates, and prasinophytes.
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This uptake system allows phytoplankton to access iron bound to certain hydroxamate
siderophores, but not catecholates or iron bound to weaker ligands such as humic substances (33).
Moreover, the FBPI gene has diversified and duplicated within genomes; some diatom species en-
code up to five paralogs that potentially bind different substrates. The FRE2 protein is one of five
encoded in the P, tricornutum genome, yet none of the others provide functional redundancy. FRE2
also does not contribute significantly to extracellular iron reduction, indicating that this function
is performed by other ferric reductases that remain to be characterized. Thus, siderophore assimi-
lation by marine eukaryotes is likely achieved through specific receptor-mediated uptake, followed
by endocytosis, reduction, and dissociation the Fe-ligand complex within the cell (Figures 1 and
2). As pTF-mediated iron uptake also depends on endocytosis, these independent pathways likely
converge intracellularly to deliver iron to the chloroplast where cellular iron demand is likely

highest (167) (Figures 1 and 2).

3. IRON-CONTAINING PROTEINS AND STORAGE MECHANISMS
3.1. Iron as a Cofactor

The unique electrochemical properties of iron make it an ideal enzyme cofactor for electron trans-
fer and catalysis (8). As such, it primarily exists as iron-sulfur (Fe-S) clusters, heme, and di-iron or
mononuclear iron in a variety of proteins relating to diverse metabolic processes (Figure 2).

Most notably, iron is heavily used in the photosynthetic electron transport chain (Figure 25).
Within microalgae, theoretical estimations and biochemical data in iron-limited diatoms suggest
that photosynthesis may account for greater than 50% of cellular iron (131, 152). In linear (non-
cyclic) electron flow, electrons are transferred from PSII (2-3 Fe) to the cytochrome bgf complex
(Cyt bef, 5 Fe) via plastoquinol (PQH,), to PSI (12 Fe) via cytochrome ¢4 (also known as cy-
tochrome bsss, 1 Fe), and lastly to a mobile ferredoxin (Fd, 2 Fe), totaling 22-23 iron atoms per
linear electron transport chain (11, 133). Phytoplankton also possess the heme-requiring protein
cytochrome cs59 encoded by the psbl” gene, which acts as an extrinsic subunit of PSII (136).

Similarly, iron is used in the mitochondrial electron transport chain (Figure 2¢). There are 47
iron atoms in each: Complex I (NADH:ubiquinone oxidoreductase) has 30 Fe, Complex II (suc-
cinate dehydrogenase) has 9 Fe, Complex III (cytochrome be;) has 5 Fe, cytochrome ¢ has 1 Fe,
and Complex IV (cytochrome c oxidase) has 2 Fe, further contributing to cellular iron demand,
although to a lesser extent than photosynthesis (131, 132). The mitochondrial alternative oxidase
(AOX) is also localized to the inner mitochondrial membrane and interrupts electron transport
to Complex III to mitigate stress (118); it contains 2 Fe atoms (13). Other iron-requiring mito-
chondrial proteins include the tricarboxylic acid (TCA) cycle protein aconitase that isomerizes
citrate to isocitrate (134) and mitoNEET, which, in metazoans, resides in the mitochondrial outer
membrane to regulate mitochondrial iron homeostasis (79, 85) (Figure 2).

In addition to electron transport chains, nitrogen assimilation requires iron and likely con-
tributes to a large proportion of cellular iron demand (130) (Figure 2). In particular, the reduction
of nitrate depends on the iron-containing enzymes nitrate reductase and nitrite reductase. Fur-
thermore, nitrite reductase and the plastid-localized glutamate synthase depend on ferredoxin for
electron transfer (126, 146). Phytoplankton also possess a mitochondrial NADPH-dependent glu-
tamate synthase, and diatoms possess a NADPH-dependent nitrite reductase in addition to the
terredoxin-dependent gene; however, both of these enzymes also require iron (24, 146, 169). Be-
sides photosynthetic electron transport and nitrogen assimilation, ferredoxins are also employed
in diverse other processes, including sulfite reduction via sulfite reductase (126).

Iron is also required for the synthesis of certain organic compounds (Figure 2). Among the
final steps of heme synthesis are coproporphyrinogen oxidase that possesses an iron-sulfur clus-
ter and ferrochelatase that catalyzes the insertion of iron into protoporphyrin IX yielding heme
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(47, 84, 122). Cytochrome P450s are a diverse family of heme-containing enzymes that are found
across the tree of life and catalyze a wide range of reactions (54, 165); of particular note are specific
carotenoid hydroxylases in the cytochrome P450 family that are involved in the synthesis of certain
accessory pigments, such as fucoxanthin and other photoprotective xanthophylls in phytoplank-
ton (40). The synthesis of both vitamin B, (thiamine) and vitamin B; (biotin) also requires iron via
the proteins phosphomethylpyrimidine synthase (ThiC) and biotin synthase (BioB), respectively
(32, 35, 39, 109). Lastly, the synthesis of the chromophore retinal for microbial rhodopsins (see
Section 4) includes a B-carotene cleavage enzyme (B-carotene 15,15'-dioxygenase) that is likely an
iron-containing enzyme (91, 149).

Some of the proteins involved in both the production and removal of reactive oxygen species
(ROS) require iron as well. Xanthine oxidase is one of several oxidoreductases that produce ROS
in peroxisomes (43, 119). Detoxification of ROS is catalyzed by superoxide dismutases (SODs),
which produce hydrogen peroxide (49), and one type of SOD among others that phytoplankton
possess requires iron (59). Catalases or heme peroxidases, which also require iron, then dispose of
the hydrogen peroxide produced SODs (50).

Other iron-requiring proteins include a variety of DNA metabolism enzymes (128) and
lipoxygenases (LOXs) that are responsible for the oxidation of polyunsaturated fatty acids (44)
(Figure 2). Furthermore, there are likely additional iron-requiring metalloenzymes and processes
that remain to be uncovered. In diatoms for example, iron is incorporated into their silica cell walls,
yet this process is not well understood (45, 71).

3.2. Iron Detoxification and Storage

Free iron is toxic as it produces ROS via the Fenton reaction (62); therefore, organisms require
mechanisms to safely mobilize or sequester it within a cell. For intracellular trafficking and short-
term storage, phytoplankton may use phytochelatins and metallothioneins as metallochaperones,
both of which are low-molecular-weight proteins rich in cysteine enabling high metal-binding
capacities (18, 86, 147). In the chlorarachniophyte Bigelowiella natans, an iron-responsive CobW
domain-containing protein may serve this role (76).

The ability to take up more iron than needed to sustain maximum growth, or luxury up-
take, can provide a competitive advantage to phytoplankton. In iron-limiting regions of the ocean
where iron inputs are episodic, luxury uptake coupled to long-term storage may support continued
growth and allow phytoplankton to subsist, particularly for certain diatoms (81, 168). Two long-
term iron storage mechanisms in phytoplankton have been described: vacuoles and the protein
ferritin (Figure 2).

Highly localized intracellular concentrations of iron in the diatom Thalassiosira weissflogii and
green alga D. salina are indicative of a vacuolar storage mechanism (120, 123). In D. salina, these
were further identified to be acidic vacuoles and may be analogous to those in other organisms
where polyphosphate provides high iron-binding capacities. This hypothesis is further supported
by the presence of the acidic vacuole-associated protein H* -pyrophosphatase in D. salina (123),
which was also found to be upregulated under iron stress in O. tauri (86).

Divalent metal transporters localized to the vacuole may serve to export iron to the cytoplasm.
Specially, ZIP-family and NRAMP proteins are hypothesized to serve this role in diatoms (81),
and in T pseudonana, one ZIP-family protein showed vacuolar localization (144) (Figure 2). In
Ostreococcus, high expression of Cec1/VIT1, which is homologous to a vacuolar iron transporter in
yeast and plants, suggests that this gene may serve this role in green algae (86).

Ferritins are ubiquitous proteins that assemble into nanocages capable of storing relatively
high amounts of Fe(III) atoms (104). Diatom ferritins are generally distinct from other eukaryotic
ferritins and more similar to cyanobacterial ferritins where a role in long-term storage has been
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shown (59, 145); however, this role is not ubiquitous. Coupled to their unusually high iron storage
capacity, the diatom genus Pseudo-nitzschia thus far appears to uniquely express ferritin in response
to high iron availability, and some diatoms, such as 7T pseudonana, lack the gene completely (37, 81).
In other diatoms, ferritin likely supports iron recycling over diel cycles, as shown in the green alga
Ostreococcus (19); however, diel expression of ferritin has not yet been observed in diatoms (147).

The protein ISIP3 is another potentially related storage mechanism as it has a conserved
domain belonging to the ferritin superfamily (DUF305) (10). It has been found across a range
of phytoplankton lineages (10) and is strongly upregulated under iron stress in diatoms (1, 30),
P, calceolata (61), and the haptophytes G. huxleyi and P. antarctica (12, 80), indicating widespread
use among phytoplankton taxa. However, as high expression in low-iron conditions is inconsis-
tent with a typical storage function, ISIP3 is hypothesized to have a role in iron reallocation and
trafficking under low-iron conditions.

4. CELLULAR ADAPTATIONS TO COPE WITH IRON STRESS

In response to iron stress, phytoplankton simultaneously reduce their cellular iron requirements
and improve their nutrient uptake kinetics with strategies such as downregulating iron-containing
proteins and upregulating iron transporters (103). Thus, the cellular costs associated with iron-
containing proteins and membrane space available for iron uptake form the basis for iron
limitation in phytoplankton (111). Upregulation of iron transporters and downregulation of iron-
containing proteins such as those involved in photosynthesis and nitrate assimilation can be
observed in the transcriptomes and proteomes of phytoplankton in both laboratory (1, 36, 80, 90,
121) and field environments (35, 72, 105, 173). Reducing cellular iron requirements can be a tem-
porary response to low iron availability or permanent adaptation for phytoplankton existing within
chronically low iron areas, as demonstrated by chronically iron-limited oceanic phytoplankton
having lower iron quotas and higher iron use efficiencies compared with coastal phytoplankton
(103, 105).

In conjunction with the high iron requirement of photosynthetic proteins, a prominent man-
ifestation of iron stress is remodeling of the photosynthetic apparatus. As the iron requirements
of PSI and Cyt bef are higher than that of PSII (Figure 2b), iron-limited oceanic phytoplankton
have generally reduced their PSI and Cyt bef, resulting in higher PSIL:PSI ratios (152), but this
ratio may differ among species (151). Furthermore, coastal species may also preferentially down-
regulate PST and Cyt bsf under iron-limited conditions (152). A reduction in PSI relative to PSII
may increase a cell’s reliance on the plastoquinol oxidase (PTOX) that diverts electrons following
PSII (11) (Figure 2b). This pathway may allow ATP production to continue as a proton gradient
is created by PSII proton release during water splitting, with lower iron costs than linear electron
transport as PTOX only requires 2 iron atoms. Overall, phytoplankton become chlorotic under
iron stress—that is, pigment inventories and chlorophyll decrease (11, 51). However, phytoplank-
ton also increase photoprotective xanthophyll pigments and associated light-harvesting complex
(LHC) proteins, such as those in the Lhex and Lhez families (51, 75, 147). As a consequence of this
remodeling, iron-limited phytoplankton have reduced PSII photochemical efficiencies, commonly
measured as F,/F,, (11).

Another strategy to reduce iron requirements is by using functionally equivalent proteins that
do not rely on iron as cofactors. In the photosynthetic electron transport chain, plastocyanin (PC)
substitutes for cytochrome c; as the electron transfer agent between the cytochrome bgf complex
and PSII (Figure 2b) (124) and may be the sole protein serving this functional role (139), constitu-
tively expressed (105), or upregulated in response to iron availability (34). As previously described,
ferredoxin is used in the photosynthetic electron transport chain and nitrogen assimilation.
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Under iron limitation, ferredoxin can be substituted with flavodoxin, which is less efficient but
uses flavin mononucleotide rather than iron as a cofactor (78) (Figure 2b). While the ratio of ex-
pression between the ferredoxin and flavodoxin correlates well with iron in many phytoplankton,
it does not in diatoms (29). This difference is explained by the possession of two distinct flavo-
doxins by diatoms and certain dinoflagellates with plastids of diatom origin, or dinotoms (58).
Clade II flavodoxins are iron-responsive and substitute for ferredoxin, but Clade I flavodoxins are
not iron-responsive and appear to mitigate oxidate stress. As another substitution, phytoplankton
may exchange the iron-using SOD for other types of SODs that may be functionally equivalent
and use different metal cofactors: Mn, Cu-Zn, and Ni (59) (Figure 2).

To circumvent chlorophyll-based photosynthesis altogether, iron-limited phytoplankton may
use an alternative light-harvesting protein, xanthorhodopsin (149). As a microbial (type 1)
rhodopsin, xanthorhodopsins absorb light via the chromophore retinal and may transport protons
in the plastid. This proposed function would create a proton gradient driving chloroplast-localized
ATP synthase and increase cellular fitness under low-iron conditions (Figure 2b). Alterna-
tively, xanthorhodopsin was localized to vacuolar membranes in the polar diatom Pseudo-nitzschin
subcurvata, suggesting that it pumps protons to support vacuolar-type ATPases (4, 156).

With altered photosynthetic activity under iron stress, light-independent Calvin—Benson cycle
genes at times are upregulated (1, 11). Perhaps most consistently, phytoplankton upregulate class
I fructose 1,6-bisphosphate aldolase (FBA) (32). Phytoplankton possess multiple FBAs that likely
serve different functions, and in the case of class  FBA, may be useful in producing glyceraldehyde-
3-phosphate from fructose bisphosphate to temporarily fuel glycolysis (32). Respiration is also
impacted by iron stress, as shown by decreased respiration rates and downregulation of associated
transcripts (1, 41).

5. IRON-RELATED SIGNALING AND REGULATION

Iron deficiency stimulates changes in the abundance of a relatively large number of transcripts and
proteins, including some of the aforementioned genes related to uptake, storage, and iron-sparing
measures. Additionally, iron stress has been shown to trigger programmed cell death linked to
the activity of certain metacaspases (16). Therefore, eukaryotic phytoplankton likely possess a
sensing mechanism and associated signaling pathways in relation to their iron status (64). As in
photosynthetic organisms at large, this putative sensing mechanism remains unknown, and only a
relatively small number of potential regulatory elements have been proposed.

Cis-regulatory elements related to iron have been identified via genomic analyses of the diatoms
P, tricornutum, . oceanica, and Fragilariopsis cylindrus. Among these diatoms, there is a conserved
palindromic motif upstream of the iron-responsive genes ISIP1, FLDA, and a class I FBA (FBA3)
(95) that is homologous to an iron-responsive cis-element in the model freshwater green alga
Chlamydomonas reinbardtii (42, 174). In conjunction with another motif in P. tricornutum, ge-
netic substitution disrupted activity of FLDA and FBPI1, while ISIPI was disrupted with solely
by one (174). Perhaps not coincidentally, three pairs of iron-responsive genes in P, tricornutum
have been found to be colocated in the genome: FRE2 and FBP1, CREGI and ISIP2B, and TYRI
and ISIPI (1). As previously described, FRE2 and FBPI functionally interact to perform hydrox-
amate siderophore uptake (33). The timing of expression of these genes was also similar under
acclimation to low-iron conditions further suggesting that expression of these gene clusters is
controlled by shared cis-elements (174).

CREG (cellular repressor of E1A-stimulated genes) proteins have further been found to be
iron-responsive in diatoms (9, 79, 95) and the chlorarachniophyte B. natans (76). The related hu-
man CREG] protein is a secreted glycoprotein that mediates endocytosis of a specific growth
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factor (63). As diatom CREG proteins have been found to colocalize with pTF, CREG is hypoth-
esized to positively regulate pTF-mediated endocytosis during iron-limited conditions (167).

The increased expression of certain transcription factors (TFs) under low iron suggests that
they may regulate other iron-responsive genes. In P. tricornutum, 15 TFs of diverse families were
found to be induced by low iron (147). Two of the fifteen are sigma factors that likely are localized
to the chloroplast and regulate genes in the chloroplast genome. In contrast, T. pseudonana and
T oceanica had fewer differentially expressed TFs under iron limitation (9, 56).

Post-translational regulation via protein phosphorylation, which may activate or deactivate
proteins during iron stress, has also been studied in the diatom P, tricornutum (164). Approximately
100 proteins showed phosphorylation associated with low-iron conditions; 12 of these proteins
were also found to transcriptionally increase under low iron. Of note, clade II flavodoxins were
phosphorylated under low-iron conditions, suggesting phosphorylation-based activation of these
proteins. pT'F also displayed different phosphorylation patterns depending on time of day and
iron status, suggesting that phosphorylation has a regulatory role for pTF activity.

1. Laboratory and environmental omic studies continue to highlight the diverse and unique
adaptations used by phytoplankton in response to iron availability; however, functional
characterization of genes is still in its infancy, with a large number of proteins that are
not well studied or are of unknown function, necessitating continued development or
use of forward and reverse genetic systems with model phytoplankton species.

2. Eukaryotic phytoplankton certainly access diverse iron species, including iron bound to
both known and unknown organic ligands, yet gaps in knowledge remain with respect
to the molecular bases for uptake of both inorganic and organically complexed iron,
including endocytosis.

3. The identification of endocytosis as a prominent mechanism for iron acquisition
demands a reevaluation of localizations of iron transporters and reductase activity.
Furthermore, there are likely trade-offs to consider between high-affinity receptor-
mediated endocytosis and low-affinity transporters, such as increased susceptibility to
viral infection via endocytosis.

4. Not only are future iron supplies uncertain, but the interactive effects of iron with other
potential stressors that can influence iron bioavailability and demand, such as ocean acid-
ification and warming, require further examination. Furthermore, existing colimitation
scenarios continue to emerge, but the interactive effects of iron limitation with other
nutrients are relatively unknown.

5. What are the cellular mechanisms for sensing and signaling iron bioavailability and
stress? Furthermore, what regulatory mechanisms, such as TFs and noncoding RNAs,
govern cellular responses to altered iron status?

6. Phytoplankton—-bacterial interactions in the context of iron availability remain unclear.
For example, is there competition for iron, or is the relationship mutualistic or com-
mensal, particularly with respect to bacterially produced siderophores? For symbiotic
relationships such as eukaryotic phytoplankton and endosymbiotic diazotrophs that re-
quire high amounts of iron for nitrogenase, are there coordinated responses to iron
availability?
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