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Let ⌦ ⇢ R3 and consider the magnetic Laplace operator given by � (�) = (�8r � �(G ) )2,
where � : ⌦ ! R3 , subject to Dirichlet boundary conditions. For certain vector fields �, this
operator can have eigenfunctions, � (�)k = _k, that are highly localized in a small region
of ⌦. The main goal of this paper is to show that if |k | assumes its maximum at G0 2 ⌦, then
� behaves ‘almost’ like a conservative vector field in a 1/

p
_�neighborhood of G0 in a precise

sense. In particular, we expect localization in regions where |curl �| is small. The result is
illustrated with numerical examples.
Keywords: localization, eigenfunction, Schrödinger operator, regularization.

1. Introduction
Given a Schrödinger operator �, this paper concerns mechanisms by which one

can provide an a priori prediction, based directly on �, of where its eigenfunctions
may localize. Suppose that ⌦ ⇢ R3 is some bounded domain with smooth boundary
(this assumption is purely for convenience) and assume that + : ⌦ ! R�0 is some
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potential, and consider the operator
�k = ��k ++k.

It is known that if + is creating localized eigenfunctions and changes slowly over
large regions, then eigenfunctions of � having eigenvalues near the bottom of the
spectrum should localize near the local minima of + . However, if + oscillates
extremely rapidly, this heuristic fails. Filoche and Mayboroda [11] proposed to
instead solve the PDE

�D = 1
and proved that the solution of this equation satisfies

|k(G) |
kkk!1

 _ D(G) (1)

for any eigenpair (_,k) of �. In particular, an eigenfunction associated with _

can only localize in the region {G 2 ⌦ : _ D(G) � 1}. This has inspired a lot of
subsequent research [3–7, 16, 27, 38, 42] and raised the general question of how
to predict localization in rough environments. There are now a variety of methods
available, we refer to Altmann–Peterseim [4], the random inner product method [28]
(see also Nenashev–Baranovskii–Meerholz–Gebhard [33, 34]), the local landscape
function [30, 43], operator perturbation techniques [35], approaches motivated by
operator theory [32], and others. Another natural problem of physical relevance is
to consider general magnetic Schrödinger operator

� (�,+)k = (�8r � �(G))2
k ++k,

where � : ⌦ ! R3 is a vector field. This case is much less understood; early
theoretical results are due to Z. Shen [41]. A variant of the Filoche–Mayboroda
landscape was proposed by Poggi [37]. Hoskins, Quan and Steinerberger [23] proved
that the inequality (1) remains true – in particular, one can simply go ahead and
ignore the vector field � completely. This seems to lead to surprisingly good
predictions in a variety of cases. It seems as if, in practice, the potential + has a lot
more impact on localization than the vector field �. This, naturally, is in need of
further clarification: if k�k is very large or + is very small, then one would expect
the vector field to come into play. This was partially the motivation for the work
that lead to the result presented in this paper: in practice, the localization behavior
of (�8r � �(G))2 ++ is bound to be an interplay between the operators �� ++ and
(�8r � �(G))2, presumably with one dominating the other in the generic case. The
localization behavior of �� ++ is, at this point, reasonably well understood, so we
focus on the magnetic Laplacian (�8r � �(G))2.

2. Results
2.1. The problem

We study the magnetic Laplacian

� (�) = (�8r � �(G))2
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and the behavior of its eigenfunctions. The setting is as follows: we assume ⌦ ⇢ R3
to be a bounded domain with smooth boundary and we assume � : ⌦ ! R3 to
be a differentiable vector field. The assumptions on the regularity of m⌦ could be
relaxed or dropped. However, we are mainly interested in localization caused by
� as opposed to localization caused by boundary effects: boundary localization is
a problem interesting in its own right [10, 24], albeit of a completely different
nature. Our main problem is now easy to state.

P������. Predict whether and where eigenvectors of � (�) may localize
based on � and eigenvalues _ of � (�).

Before describing our main result, we start with a couple of observations. The first
is that the problem is, in some sense, much less constrained than, say, �� ++ . For
the pure Schrödinger case, we have (assuming the eigenfunction k to be normalized
in !

2) that
_ = h(�� ++)k,ki =

π
⌦
|rk |23G +

π
⌦
+ (G)k(G)2

3G,

which immediately implies that k is primarily localized in {G 2 ⌦ : + (G)  _}. This
is very well understood: we refer to the celebrated Agmon theorem [1] and some of
its recent variations [12, 25, 44, 45]. In the magnetic case, we have, again assuming
kkk

!
2 = 1, the identity

_ =
⌦
(�8r � �(G))2

k,k

↵
=

π
⌦
| (�8r � �(G)) k(G) |2 3G,

which does not lead to any natural a priori predictions of where localization
could occur. (There is an interesting special case in 3 = 2: if the magnetic field
⌫(G) = curl � is nonnegative, then an analogue of this inequality remains true; we
are grateful to Bernard Helffer for this remark).

In general, the identity tells us that, at least for eigenvalues lower in the spectrum,
rk(G) prefers to point in the direction �8�(G)k(G) as much as possible, which
does not lead to any obvious a priori restriction on where (or whether) k may be
localized within the domain ⌦. It does, however, suggest that �8�(G)k(G) should
behave as much as possible like the gradient of a function, at least for smaller
eigenvalues. This naturally suggests that subregions where � behaves ‘almost’ like
the gradient of a function should be of special interest. We will make this precise.

2.2. Setup
The purpose of this Subsection is to introduce and motivate the language in

which our main result will be phrased. We will first phrase it informally. This
informal formulation will soon be made precise, and will motivate the concepts that
we will introduce.

M��� R����� (informal). Let (_,k) be an eigenpair of � (�), i.e.
� (�)k = _k, and suppose that |k(G0) | = kkk!1 for some G0 2 ⌦. Then
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(a) � (b) | curl �|

(c) |k1 |, _1 ⇡ 120.52 (d) |k2 |, _2 ⇡ 139.80

(e) |k3 |, _3 ⇡ 170.62 (f) |k4 |, _4 ⇡ 211.07

Fig. 1. �, | curl �| and |k | for the smallest four eigenvalues. � is given in Example 1, with 0 = 1000, see
Subsection 2.9 for details.
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Fig. 2. Two pictures of two different Brownian motions (one blue, one brown) conditioned to l (0) = (0, 0)
and l (1) = (2, 2) .

the vector field � is ‘close’ to conservative in a _
�1/2�neighborhood

of G0.

A casual phrasing would be that localization happens in regions where the vector
field �(G) behaves ‘as much as possible’ like the gradient of a function. For
readers familiar with the Helmholtz decomposition, we refer to Section 2 for more
details. The hallmark of a conservative vector field � is the independence of the path
integral. If � = rq, then a path integral does not depend on the path W : [0, 1] ! ⌦,
since π

W

� · 3G = q(W(1)) � q(W(0)).

Let us now fix two points G, H 2 ⌦ and a parameter C > 0. We will consider
Brownian motion l(B) : [0, C] ! ⌦ conditioned on starting at G and being at H

at time C, meaning l(0) = G and l(C) = H. Examples of what such random walks
could look like are shown in Fig. 2.

Given a vector field �(G), the two points G, H 2 ⌦, and Brownian motion
conditioned on l(0) = G and l(C) = H, we can now consider, for each such
Brownian motion, the corresponding stochastic path integral in the sense of Itô

l !
π

C

0
�(l(B)) · 3l(B).

This random path integral can be considered as a (real-valued) random variable. If
the vector field is irrotational, (meaning � = rq), and solenoidal (meaning r ·� ⌘ 0),
then this path integral is independent of the random walk l and is deterministic
(meaning that it is a Dirac measure, when considered as a random variable). If
� = rq + � for some very small vector field �, then one might be inclined to



240 J. S. OVALL, H. QUAN, R. REID and S. STEINERBERGER

expect that the random path integral is presumably close to q(H) � q(G) but it will
probably fluctuate a little around that value, with random fluctuations induced by �

and the path. Loosely put, the more irrotational the vector field is, the more this
random variable is independent of the path. Conversely, if the vector field has a large
solenoidal component then the value of the path integral will presumably depend
very strongly on the path taken, and the random variable will be less concentrated
around a fixed value. The entire approach is fundamentally nonlocal: considering
the Aharonov–Bohm effect [2], it stands to reason that some form of nonlocality is
expected or maybe even required.

2.3. Main result
We can now state our main result. It implies, via Corollary 1, that, if (_,k) is an

eigenpair of � (�) and k assumes its maximum at G0, then the path integral from G0
to H cannot be ‘too’ random for most points H in a _

�1/2�neighborhood around G0.
Such path integrals must be somewhat concentrated around some fixed value. There
are two ways of achieving this: one such way is by having the vector field be close
to a conservative vector field; the other way is by having the integration path be
short (which will be equivalent to _ being large). We can now formulate our main
result for eigenfunctions with Dirichlet boundary conditions. The case of Neumann
boundary conditions is, at least in practice, virtually identical (see Subsection 2.7).

T������ 1. Let (_,k) be an eigenpair of � (�), where � is a vector field with
the Helmholtz decomposition

� = rq + � where div � = 0,
subject to the Dirichlet boundary condition k

��
m⌦ = 0. Suppose the eigenfunction

assumes its maximum, |k(G0) | = kkk!1 , for some G0 2 ⌦. Then, for every C > 0,π
⌦

����El (0)=G0 ,l (C )=H exp
✓
8

π
C

0
� · 3l(B)

◆���� 1
(4cC)3/2 exp

✓
� kG0 � Hk2

4C

◆
3H � 4

�_ C

.

The Helmholtz decomposition is required for the following reason: given any
vector field, one can always add the gradient of a function, � ! � + r6, without
changing localization properties of eigenfunctions (see Subsection 1.7). Thus, any
pointwise or localized statement has to respect this type of invariance. This result
may look involved at first sight but has a straightforward interpretation, which goes
as follows: for C ⇠ 1/_, the right-hand side is close to 1. It is easy to see, via
triangle inequality, that the integral is always  1, so it must be very close to 1.
Since the Gaussian weight is nonnegative, this forces the absolute value of the
expectation to be close to 1 for most H. This, in turn, forces the random path
integral to be close to a constant value (mod 2c) for most H. This constrains the
path integrals in a neighborhood of G0 to be ‘almost independent of the path’ and
‘close’ to conservative vector fields. In greater detail, the argument proceeds as
follows.
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1. If C ⇠ 2/_ for some small 0 < 2 < 1, then the right-hand side is 4
�_C ⇠ 4

�2 ⇠ 1�2,
which is a number very close to 1. The integral is always  1, which, combined
with the lower bound, forces the integral to be close to 1.

2. The path integral is always real-valued. Using the triangle inequality, we have
|E exp(8-) |  E |exp(8-) | = 1.

Note that this inequality is usually strict. Equality is attained if and only if -

is constant modulo 2c. Near-equality is attained if and only if - varies little
around a fixed value (modulo 2c).

3. Applying the trivial inequality |E exp(8-) |  1, we are left with

4
�2 = 4

�_ C 
π
⌦

1
(4cC)3/2 exp

✓
� kG0 � Hk2

4C

◆
3H  1,

for C = 2/_.
4. This, in turn, means that the trivial inequality |E exp(8-) |  1 has to be close

to sharp for most H, which can only happen if the random variable is close to
a constant (modulo 2c) for most H.
This argument can be made precise in a variety of ways. One way of making

it precise (though, certainly not the only one) is by showing that localization near
G0 implies that the random path integral is tightly concentrated when going from
G0 to H for most points H close to G0. We note again the two main ways a random
path integral can be highly concentrated:
1. either the vector field � is close to conservative (meaning � is small), or
2. the integration path is relatively short (in which case the value is going to

concentrate around 0), which happens when C is small.
Naturally, any combination of the two factors can also occur. We also note that the
second factor shows that the presence of a very large solenoidal vector field implies
that the eigenvalues _ cannot be very small, because C ⇠ _

�1 cannot be very large.
C�������� 1. There exists a universal constant 0 < 2 < 1, depending only on

the spatial dimension 3, for which the following holds. Let (_,k) be an eigenpair
of � (�), subject to the Dirichlet boundary condition k

��
m⌦ = 0, with Helmholtz

decomposition � = rq + � where div � = 0. Suppose that |k(G0) | = kkk!1 for some
G0 2 ⌦. Let C = 2/_. We say that H 2 ⌦ is near-deterministic if any path integral
beginning at G0 and conditioned on l(C) = H is likely to end up close to some fixed
value (mod 2c), in the following sense,

sup
I2T
P

✓����
π

C

0
� · 3l(B) mod 2c � I

����  1
100

◆
� 99

100
.

It holds that a large fraction of points H in a
p
C�neighborhood of G0 are near-

deterministic, ���
H 2 ⌫

p
C
(G0) : H near-deterministic

 �� � 9
10

·
��
⌫
p
C
(G0)

��
.
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We emphasize again that this is only one of many possible ways of deducing
a rigorous concentration result from the main theorem; many others are possible.
We also note that the main theorem can be obtained by using the heat kernel
?C (G, H) of the bounded domain ⌦, instead of the Gaussian weight (the heat kernel
on R3). This slightly stronger result might be advantageous in certain settings.

2.4. Using curl as a proxy
For ease of exposition, we assume now that ⌦ ⇢ R2 throughout this subsection.

Given a vector field �, we perform again a Helmholtz decomposition and write it
as

�(G) = rq + � (G), where q 2 ⇠
1(⌦) and div � = 0.

The vector field rq is conservative, and has no impact on localization properties
(see Subsection 2.6 for a proof). This can also be seen as a gauge invariance, as
described in Subsection 2.6, which shows that the only effect of the quantity rq
is to modulate the eigenfunction, k ! 4

�8q
k. As discussed in the main result and

Corollary 1, one would expect localization to occur in regions where � (G) behaves
‘almost’ like a conservative vector field. These regions should be the ones where
|curl(�) | is relatively small. Numerical examples (Subsection 2.9) show that this
is a reasonable heuristic in practice. We recall that the curl of a 2D vector field
� = (�1, �2) is the scalar field curl(�) = m�2/mG1 � m�1/mG2.

Given G0 2 ⌦, let �lin(G) = �(G0)+� (G0) (G�G0) be the linearization of � about G0.
Here, � is the Jacobian matrix of �. We then define �nonlin = �� �lin. In anticipation
of the proof of Corollary 2, and to give an early indication of the importance of
the curl, we note that �lin = �1 + �2, where

�1(G) = �(G0) +
1
2

�
� (G0) + � (G0))

�
(G � G0) , ' =

 
0 �1
1 0

!
,

�2(G) =
1
2

�
� (G0) � � (G0))

�
(G � G0) =

curl �(G0)
2

'(G � G0).

(2)

It is clear that �1 is conservative and �2 is solenoidal.

C�������� 2. Let (_,k) be an eigenpair of � (�), subject to the Dirichlet
boundary condition k

��
m⌦ = 0, and suppose that |k(G0) | = kkk!1 for some G0 2 ⌦.

If �nonlin is sufficiently small in a 1/
p
_�neighborhood of G0 then

|curl �(G0) |  2 _
2
.

This result is proven via an asymptotic expansion of the random path integral up
to linear terms (hence also the restriction that the linear terms of the vector field
dominate). It is not a priori clear whether this type of decomposition is optimal, and
the problem of how to best utilize the main result for numerical prediction remains
an interesting problem. Nonetheless, as illustrated by various examples throughout
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(a) �. (b) | curl �|.

(c) _1 ⇡ 92.8. (d) _2 ⇡ 132.6. (e) _3 ⇡ 163.8.

(f) _4 ⇡ 167.2. (g) _5 ⇡ 167.2. (h) _6 ⇡ 185.5.

(i) _7 ⇡ 205.3. (j) _8 ⇡ 220.5. (k) _9 ⇡ 234.8.

Fig. 3. �, | curl �| and |k | for the smallest nine eigenvalues. � is given in Example 2, with 0 = 50, see
Subsection 2.9.
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the paper, using sublevel sets of |curl(�) | leads to very reasonable predictions of
where eigenvectors early in the spectrum are likely to localize.

2.5. A landscape inequality
While all these arguments are presumably most powerful in the regime where C

is chosen to be small, C ⇠ 1/_, there are averaging arguments one could employ.
One such averaging argument leads to a refinement of the landscape inequality that
again illustrates our main point. Applying the landscape inequality [23], we deduce
that any eigenpair (_,k) of � (�) satisfies

|k(G) |  _kkk!1 {(G),
where { is the classical torsion function, ��{ = 1. Both k and { are assumed to
satisfy Dirichlet boundary conditions. This inequality does not involve the vector
field � (it only depends on the domain ⌦), so one would perhaps not expect it
to be very informative in general. A notable exception is when the vector field �

is irrotational, in which case the inequality should be very accurate in predicting
localization of the ground state, as seen in Lemma 1 below. We derive a small
refinement of this inequality. For the sake of simplicity of exposition, we shall
abbreviate the stochastic path integral as

EG,H (C) = El (0)=G0 ,l (C )=H exp
✓
8

π
C

0
� · 3l(B)

◆
2 {I 2 C : |I | = 1} .

The main result, by integrating over time, then leads to an improved landscape
inequality, which is always at least as good as the original result.

C�������� 3. Let ?C (G, H) denote the (Dirichlet) heat kernel on ⌦. We have

|k(G) |  _kkk!1 ·
✓π 1

0

π
⌦
|EG,H (C) |2 · ?C (G, H)3H 3C

◆1/2p
{(G)

�
,

where the integral can be bounded from above by✓π 1

0

π
⌦
|EG,H (C) |2?C (G, H)3H 3C

◆1/2


✓π 1

0

π
⌦
?C (G, H)3H 3C

◆1/2


p
{(G).

This inequality is more complicated, as it involves the heat kernel ?C (G, H). One
could, of course, again bound it from above by the Gaussian heat kernel in free
space. There is no reason to believe that Corollary 3 is particularly useful for
general � = rq + �. However, it is yet another way to illustrate our main point:
one can improve on the landscape inequality in regions where |EG,H (C) | ⌧ 1. These
are the regions where the vector field is far from path-independent.

2.6. The Helmholtz decomposition
The idea that rk(G) ⇠ �8�(G)k(G) should be true over most of the domain

does suggest a natural idea: some vector fields arise naturally as the gradient of
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a function (the conservative vector fields). This suggests performing a Helmholtz
decomposition

�(G) = rq + � (G), where q 2 ⇠
1(⌦) and div � = 0.

As it turns out, the Helmholtz decomposition leads to a natural symmetry of
the problem: the irrotational contribution rq to the vector field � does not
impact localization properties of the eigenfunction, it only leads to a modulation
(multiplication by complex numbers with modulus 1).

L���� 1. Given the Helmholtz decomposition �(G) = rq + � (G), define the
operator �̃6 = 4

�8q
� (48q6). It holds that �̃ = (�8r � �)2. Therefore, �k = _k if

and only if �̃ (4�8qk) = _4
�8q

k.

This lemma, whose proof follows by direct computation, has a number of
implications. The most immediate is perhaps that, if one cares about localization,
the contribution rq to the vector field is completely irrelevant. One can always
perform a Helmholtz decomposition and simply remove the contribution that is the
gradient of a function. This procedure has no impact on localization behavior of
eigenfunctions, though it does have an impact on their modulation via k ! 4

�8q
k.

This allows us to rephrase the question from above.
P������ (simplified). Given � satisfying div(�) = 0, predict whether
and where eigenfunctions of � (�) may localize, based on � and
eigenvalues _.

2.7. Neumann boundary conditions
The main result is formulated for eigenfunctions satisfying Dirichlet boundary

conditions. The case of Neumann boundary conditions is virtually identical and,
in practice, there is little difference between the two provided the eigenfunction
in question is localized inside the domain (and at least several wavelengths away
from the boundary). This can also be seen from the proof: the proof uses the
Feynman-Kac formula to yield a local reproducing identity of a parabolic nature.
Such an argument is, by default, not localized away from the boundary but has
the usual exponential decay at the scale of a wavelength. Thus, whatever actually
happens at the boundary is of little concern. This, of course, changes dramatically
when the eigenfunction is localized near the boundary, in which case a nontrivial
type of interaction can occur (see, for example, [10, 24]).

2.8. Gauge freedom and parallel transport
That several of these results have conclusions which are stated modulo 2cZ

should also not be surprising, and are in fact suggested by the gauge freedom of
the operator which Lemma 1 implies. The origin of this gauge freedom lies in the
fact that our magnetic Laplacian

� (�) = (�8r � �(G))2
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(a) <k, _ ⇡ 120.52. (b) =k, _ ⇡ 120.52.

Fig. 4. <k and =k for the smallest eigenvalue. � given by Example 1, with 0 = 1000, see Subsection 2.9.

arises as a connection Laplacian acting on sections of a complex line bundle ⇢ .
A complex line bundle over a simply-connected domain ⌦ has a trivialization
⇢ ' ⌦ ⇥ C, thus there is a nonvanishing smooth section B0 : ⌦ ! ⇢ . More
specifically, given a function 5 : ⌦ ! C, the product B0 5 now defines a section
of ⇢ , and every section arises this way. Similarly, the magnetic potential 8� (now
viewed as a complex-valued 1-form on ⌦), defines a connection on ⇢ , r�, by the
formula r�(B0 5 ) = B0 (3 + 8�) 5 , where 3 is the exterior derivative. The connection
Laplacian defined by r� is precisely our magnetic Laplacian operator,

�� := (r�)⇤r� = (�8r � �(G))2

acting on sections of ⇢ (equivalently on complex-valued functions). This formalism
can seem cumbersome, but it does clarify the relationship between the integralØ

C

0 �(l(C)) · 3l(B) and � (�). For each ? 2 ⌦ and closed loop W based at ?,
a choice of connection r� defines an endomorphism P�

W
: C ! C of the fiber of

⇢ at ?, known as the parallel transport map. For the connection r� = 3 + 8�, an
easy computation shows that

P�

W
= 4

8

≤
W
�

for the loop W. We note that any connection is also determined by its parallel
transport map evaluated on all smooth loops based at a point [26]. In particular,
this relates parallel transport to the gauge freedom Lemma 1 illustrates. Namely
our connections are gauge-equivalent, 4

�8q (3 + 8�1)48q = (3 + 8�2), if and only if
�1 � �2 = 3q. Now because �1 � �2 and 3q define the same connection, this is
equivalent to these connections defining the same parallel transport maps, thus

P�1��2
W

= P3q

W
= 4

8

≤
W
3q = 1,
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for all closed loops W, by Stokes theorem. In particular, we see that �1, �2 define
gauge equivalent connections in this setting if and only ifº

W

�1 � �2 2 2cZ.

Note that we have implicitly used the fact that our domain ⌦ is simply connected;
for nonsimply connected domains the connection may not take the form 3 + 8�

globally and the corresponding parallel transport map will change in turn.

2.9. Numerical illustrations
We illustrate the heuristic that eigenfunctions of � (�) corresponding to small

eigenvalues tend to localize in regions where the curl of � is relatively small. We
show a few such examples on the domain ⌦ = (�1, 1)2. Numerical experiments are
conducted using Pythonic FEAST [13], which builds on the general purpose finite
element software package NGSolve [39, 40]. Pythonic FEAST employs the FEAST
algorithm (cf. [14, 15, 36, 46]) for solving eigenvalue problems. Modifications of the
base algorithm allow for operators of the type considered here. The finite element
spaces we employ consist of continuous, piecewise cubic polynomials on regular
triangulations of ⌦ having characteristic edge length ⌘ = 0.01.

E������ 1. Let � = �0(G2 + H
2
, G

2 � H
2) with 0 being a real parameter. Then

curl � = �20(G � H).
A stream plot of �, together with plots of | curl �| and the modulus of a few
eigenvectors are given in Fig. 1, for the choice 0 = 1000. The eigenvectors exhibit
clear localization near the line H = G, where | curl �| is small. The real and imaginary
parts of k for _ ⇡ 120.52 are shown in Fig. 4, and illustrate how even the ground
state can be oscillatory in its components.

A recurring theme of the paper is that eigenfunctions localize in places where the
vector field behaves approximately like a conservative vector field over short scales
given by the wavelength. This naturally suggests that for typical vector fields �(G, H)
there is a predilection to localize in regions where k�(G, H)k is small (relative to
its size in other regions). This can be observed in practice. In order to be able
to better observe other more subtle effects (such as the impact of the curl), we
consider vector fields of the form

� = �0(cos( 5 (G, H)) , sin( 5 (G, H))),
where 0 > 0 is some constant and 5 (G, H) is an arbitrary real-valued function. We
have that k�k = 0 is of constant size throughout.

E������ 2. We take the vector field

� = �0(cos 5 (G, H) , sin 5 (G, H))
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(a) �. (b) | curl �|.

(c) _1 ⇡ 62.030. (d) _2 ⇡ 85.610. (e) _3 ⇡ 85.875.

(f) _4 ⇡ 86.150. (g) _5 ⇡ 89.936. (h) _6 ⇡ 89.949.

(i) _7 ⇡ 99.499. (j) _8 ⇡ 111.91. (k) _9 ⇡ 111.95.

Fig. 5. �, | curl �| and |k | for smallest nine eigenvalues. � given by Example 3, with 0 = 50, see Subsection 2.9.
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with 5 (G, H) = 5c sin(G2 + H
2) and 0 = 50, so k�k = 50. We plot � and | curl �|

together with the modulus of several eigenvectors, in Fig. 3. The curl of � is small
in the central region, the four corners of the domain, and along a (narrow) curve
that spirals outward from the center. We see that the first three eigenfunctions all
concentrate around the center. The fourth and fifth eigenfunctions localize in two
opposing corners of the domain where the curl is small. Note that _4 ⇡ _5, which
indicates that the symmetry of the vector field and domain may have generated an
eigenspace with multiplicity 2. Thus, other bases of this eigenspace—still localized
in these two corners—are conceivable. Eigenfunctions 6-9, though still localized
in the central portion of the domain, exhibit increasingly complex behavior that
corresponds with the spiraling nature of the region in which curl � is small.

E������ 3. We use the same type of vector field as in Example 2, but with
5 (G, H) = c sin(cG) cos(cH) and 0 = 50, so k�k = 50. We plot � and | curl �|
together with the modulus of several eigenvectors in Fig. 5. As before, we see how
eigenfunctions localize where curl � is small, but this region has a more complex
structure than in Example 2. Again, symmetries in the domain and vector field
likely induce degenerate eigenvalues, e.g. _5 ⇡ _6 and _8 ⇡ _9.

2.10. The full magnetic Schrödinger operator
Although not emphasized in the paper, our main arguments extend to the full

magnetic Schrödinger operator

� (�,+)k = (�8r � �(G))2
k(G) ++ (G)k(G).

This operator also admits a Feynman–Kac formula (see [8])⇥
4
�C� (�,+ )

q

⇤
(G) = El

⇣
4
�(C (�,+ |l)

j⌦(l, C)q(l(C))
⌘
,

where the expectation is taken over all Brownian motion l started at G, and where

j⌦(l, C) =
⇢
1 if 8 0  B  C : l(B) 2 ⌦,
0 otherwise

measures whether the Brownian motion has left the domain. The quantity (C (�,+ |l)
is defined via the formula

(C (�,+ |l) = 8

π
C

0
�(l(B)) · 3l(B) + 8

2

π
C

0
(r · �) (l(B))3B +

π
C

0
+ (l(B))3B.

The same formula applies in our setting where it simplifies: r ·� vanishes through the
Helmholtz decomposition and + ⌘ 0. The general case admits a similar inequality as
the main theorem. However, there is a significant increase in complexity coming from
the additional interplay between the vector field � and the potential + . Nonetheless,
we emphasize that any type of numerical method based on this path integral
localization for magnetic Laplacians may admit, via this more general Feynman–Kac
formula, a natural extension to the full magnetic Schrödinger operator; we consider
this a promising avenue for future work.
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2.11. Related results
To the best of our knowledge, these results are these first of their type. However,

there are a number of existing results in the literature that share philosophical
similarities. We especially emphasize the results of B. Poggi [37] and Z. Shen [41]:
in both papers, the curl of the magnetic field plays a significant role. While the curl
also arises in our approach, it does so implicitly as a first order approximation – in
particular, we note that the nonlocal nature of our formulation is consistent with the
Aharonov–Bohm effect. There is also a rich semiclassical literature concerned with
the magnetic Laplacian; we refer to Dimassi–Sjöstrand [9], Helffer [17], Helffer–
Sjöstrand [20, 21]. In particular, the curl appears naturally in the semiclassical limit
[18, 19, 22, 29, 31].

3. Proof of Theorem 1
Proof of Theorem 1: We are given the operator

� (�)k = (�8r � �(G))2
k,

and consider eigenfunctions subject to Dirichlet boundary conditions k

��
m⌦ = 0. � (�)

is a self-adjoint operator with a real spectrum. We note that

h� (�)k,ki =
π
⌦
| (�8r � �(G)) k |2 3G � 0,

so all eigenvalues are nonnegative. Under minimal assumptions on � there is
a Feynman–Kac formula (see Broderix, Hundertmark, Leschke [8]). Such assumptions
are that r · � and � · � are in the Kato class, so all differentiable vector fields are
allowed. This allows to rewrite the evolution operator as⇥

4
�C� (�)

k

⇤
(G) = E

⇣
4
�(C (�|l)

j⌦(l, C)k(l(C))
⌘
,

where the expectation is taken over all Brownian motion started at G. Here,

j⌦(l, C) =
⇢
1 if 8 0  B  C : l(B) 2 ⌦,
0 otherwise

measures whether the Brownian motion has left the domain, and

(C (�|l) = 8

π
C

0
�(l(B)) · 3l(B) + 8

2

π
C

0
(r · �) (l(B))3B.

This representation will be very useful: since k is an eigenfunction, the evolution
operator is very simple and ⇥

4
�C� (�)

k

⇤
(G) = 4

�_C
k(G).

At this point, we perform a Helmholtz decomposition
�(G) = rq + � (G), where q 2 ⇠

1(⌦) and div � = 0
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and apply Lemma 1 to instead consider the operator � (�) = (�8r � � (G))2. This
operator has an eigenfunction k2 = 4

�8q
k corresponding to the same eigenvalue _,

� (�)k2 = _k2. In particular, |k(G) | = |k2(G) | and they both localize in the same
spot G0 2 ⌦. The stochastic integral for this divergence-free vector field simplifies to

(C (� |l) = 8

π
C

0
� (l(B)) · 3l(B).

Note that this expression is purely imaginary because the integral is always real.
At this point, the representation formula has been simplified to

k2(G) = 4
_C

⇥
4
�C� (� )

k2
⇤
(G) = 4

_C · E
⇣
4
�(C (� |l)

j⌦(l, C)k2(l(C))
⌘
.

We will now apply this formula at the point G0 2 ⌦ where the eigenfunction attains
its maximum, |k2(G0) | = |k(G0) | = kkk!1 = kk2k!1 . We condition the expectation on
l(C) = H. We have complete control over the likelihood of the probability distribution
of Brownian particles starting at G0 and running for C units of time without ever
leaving the domain: this is the heat kernel, H ! ?C (G0, H). Thus,

E
⇣
4
�(C (� |l)

j⌦(l, C)k2(l(C))
⌘
=

π
⌦

⇣
El (0)=G0 ,l (C )=H4

�(C (� |l)
⌘
k2(H)?C (G0, H)3H.

This identity will be useful in the proof of Corollary 3. Altogether, recalling that
|k2(G0) | = kkk!1 , we have

4
�_C kkk!1 =

���E ⇣
4
�(C (� |l)

j⌦(l, C)k2(l(C))
⌘��� ,

and we bound its absolute value from above by

4
�_C kkk!1 =

����
π
⌦

⇣
El (0)=G0 ,l (C )=H4

�(C (� |l)
⌘
k2(H)?C (G0, H)3H

����
 kk2k!1

π
⌦

�� ⇥El (0)=G0 ,l (C )=H4
�(C (� |l) ⇤ ��

?C (G0, H)3H.

This implies π
⌦

�� ⇥El (0)=G0 ,l (C )=H4
�(C (� |l) ⇤ ��

?C (G0, H)3H � 4
�_C

.

As a final step, we can remove the dependency on the heat kernel by using the
comparison bound with the Euclidean heat kernel,

0  ?C (G0, H) 
1

(4cC)3/2 4
� kG0�H k2

4C ,

which is valid for any ⌦ ⇢ R3 . This proves the main result. ⇤

We note that the last step of the argument, replacing the heat kernel by the
free heat kernel is extremely accurate for small values of C, where small means
C ⌧ 3 (G, m⌦)2 and ‘extremely accurate’ means that the errors are exponentially small.
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4. Proof of Corollary 1
L���� 2. Let - be a real-valued random variable and suppose that

sup
I2T
P

✓
|- mod 2c � I |  1

100

◆
� 99

100
.

Then, for some universal constant 0  21 < 1,

|E exp(8-) |  21.

Proof: This follows from the convexity of S1. ⇤

Proof of Corollary 1: We negate the statement and let 2 ! 0. Negating the
statement means that for any 2 > 0 there is an example of an eigenfunction
� (�)k = _k in some domain that is localized at G0 and where, for C = 2/_, the
measure of points in

p
2/_�neighborhood of G0 that is near-deterministic is only

9/10�th of the measure. The proof of the main result implies, for C = 2/_,

4
�2 

π
⌦

�� ⇥El (C )=H4
�(C (� |l) ⇤ ��

?C (G, H)3H.

We introduce the set

⌦1 =
�
H 2 ⌦ \ ⌫

p
C
(G0) : H not near-deterministic

 
and decompose ⌦ = ⌦1 [ (⌦ \⌦1). Then, appealing to Lemma 2,π

⌦

�� ⇥El (C )=H4
�(C (� |l) ⇤ ��

?C (G, H)3H 
π
⌦1

�� ⇥El (C )=H4
�(C (� |l) ⇤ ��

?C (G, H)3H

+
π
⌦\⌦1

�� ⇥El (C )=H4
�(C (� |l) ⇤ ��

?C (G, H)3H

 21

π
⌦1

?C (G, H)3H +
π
⌦\⌦1

?C (G, H)3H.

Since ⌦1 contains a positive proportion of the measure in the
p
C-neighborhood and

?C (G, ·) contains a positive proportion of measure in the same neighborhood, we
have

21

π
⌦1

?C (G, H)3H +
π
⌦\⌦1

?C (G, H)3H  1 � 22

for some absolute constant 22. This then leads to a contradiction when 2 ! 0. ⇤

R�����. This argument clearly has some wiggle room. One could, for example,
let one of the parameters go to 0 (or 1) at a certain rate depending on 2. However,
since Corollary 1 is mainly intended to be an illustrative example of the more
important general underlying principle, we leave such variations to the interested
reader.
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5. Proof of Corollary 2
Proof: Using Lemma 1 we may assume without loss of generality that we have

conjugated � (�) by some 4
�8q to remove the conservative part of �, i.e. that

r · � ⌘ 0. We start with a Taylor expansion of the vector field, � = �lin + �nonlin,
followed by a corresponding Taylor expansion of the path integral. Recall from (2),
that �lin = �1 + �2, where

�1(G) = �(G0) +
1
2

�
� (G0) + � (G0))

�
(G � G0) , �2(G) =

curl �(G0)
2

'(G � G0).

It is clear that �1 = r 5 , where

5 (G) = �(G0) · (G � G0) +
1
2
(G � G0))� (G0) (G � G0).

It follows that
r · �(G0) = r · �lin(G) = r · �1(G) = � 5 (G),

curl �(G0) = curl �lin(G) = curl �2(G).
By assumption, � 5 = r · �(G0) = 0, so we have, by appealing to Itô’s lemma,π

C

0
�1 · 3l(B) = 5 (l(C)) � 1

2

π
C

0
� 5 (l(B))3B = 5 (l(C)).

It follows thatπ
C

0
�lin(G, H) · 3l(B) = 5 (l(C)) + curl �(G0)

2

π
C

0
'(G � G0) · 3l(B),

where the first term, 5 (l(C)), is completely deterministic (since l(C) = H). It remains
to understand the random variableπ

C

0
'(G � G0) · 3l(B),

conditioned on l(0) = G0 and l(C) = H. This random variable is not deterministic,
as it will depend on the actual path the Brownian motion takes. At this point, we
assume, without loss of generality, that G0 = 0. We first note that both Brownian
motion and the vector field are invariant under rotation. Therefore, the random
variable can only depend on kl(C)k = kHk and C. There is an additional scaling
symmetry. Note that, for any parameter U > 0, the Brownian motion satisfies

l(U C) ⌘
p
U · l(C)

in the sense of both random processes being identical. This leads to a parabolic
scaling. The likelihood of a fixed Brownian particle traveling along a fixed path
from l(0) = 0 to l(C) = H is the same as the likelihood of the rescaled particle
l(0) = 0 traveling to l(1) = HC

�1/2. Therefore, after a change of variables,π
C

0
'G · 3l(B) = C

π 1

0
'G · 3l(C · B) = C

2
π 1

0
'G · 3l(B).
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However, for C = 1 and kHk ⇠ 1, this is simply a random variable with some
deterministic mean value depending only on the endpoint, and with some nonzero
standard deviation spread over an interval of size ⇠ 1. Therefore, by scaling,

curl �(G0)
2

π
C

0
'G · 3l(B) is a random variable spread over

| curl �(G0) |
2

C
2
.

Suppose now that (_,k) is an eigenpair of � (�), with |k(G0) | = kkk!1 . Thenπ
⌦

�� ⇥E 4
�(C (�|l) ��

l(0) = G0 ^ l(C) = H

⇤ ��
?C (G, H)3H � 4

�_C
.

For C = 0.01/_, we deduce thatπ
⌦

�� ⇥E 4
�(C (�|l) ��

l(0) = G0 ^ l(C) = H

⇤ ��
?C (G, H)3H � 0.95.

Ignoring the nonlinear part of the vector field, this inequality by itself requires that
the path integral is highly concentrated over most points and, for some universal
constant 2 > 0, | curl �(G0) |

2
0.12

_
2  2.

We deduce |curl �(G0) |  2002 · _2
.

We conclude by noting that, in order for this argument to be correct, we require
that the higher-order contributions are locally small and����

π
C

0
�nonlin(G, H) · 3l(B)

���� ⌧ | (curl �) (G0) | ·
1
_

2 .

⇤

6. Proof of Corollary 3
Proof: Going through the proof of the main result, we can skip the step of

bounding the heat kernel in terms of the Gaussian and will arrive at the inequalityπ
⌦

����El (0)=G,l (C )=H exp
✓
8

π
C

0
� · 3l(B)

◆���� ?C (G, H)3H � 4
�_·C |k(G) |

kkk!1
.

We integrate both sides of the inequality over R�0 with respect to C to get
1
_

|k(G) |
kkk!1


π 1

0

π
⌦

����El (0)=G,l (C )=H exp
✓
8

π
C

0
� · 3l(B)

◆���� ?C (G, H)3H3C.
If we denote by E the expected value of the stochastic integral and use the
Cauchy–Schwarz inequality, we obtain

1
_

|k(G) |
kkk!1


✓π 1

0

π
⌦
|E|2 · ?C (G, H)3H 3C

◆1/2 ✓π 1

0

π
⌦
?C (G, H)3H 3C

◆1/2
.
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The second integral has a simple closed-form expression: recall that

?C (G, H) =
=’

:=1
4
�_

:
C

q: (G)q: (H),

from which we deduce thatπ
⌦

π 1

0
?C (G, H)3C3H =

=’
:=1

1
_:

q: (G)
✓π

⌦
q: (H)3H

◆
.

Now we solve the PDE ��{ = 1 by expanding the solution { into the eigenfunctions
of the Laplacian ��q: = _:q: . Taking inner products on both sides leads toπ

⌦
q:3G = h1, q:i = h��{, q:i = h{,��q:i = _: h{, q:i ,

from which we deduce thatπ
⌦

π 1

0
?C (G, H)3C3H = {(G), where � �{(G) = 1

with Dirichlet boundary conditions. ⇤

7. Conclusions
The magnetic Schrödinger eigenvalue problem

(�8r � �(G))2
k = _k

may or may not, depending on �, admit eigenfunctions k for which |k | is localized
in a small subregion. The same is true for the classical Schrödinger problem
(��++)k = _k for which a lot of classical theory exists. The problem is much less
understood for (�8r � �(G))2

k = _k and even less understood for the more general
problem (�8r � �(G))2

k + +k = _k. Our main contribution is to show that some
of the existing theory surrounding the Filoche–Mayboroda landscape function for
(��++)k = _k can be adapted to cover the case (�8r � �(G))2

k = _k. We observe
that k�k tends to be good predictor: if low-frequency localized eigenfunctions exist,
one tends to find them in regions where k�k is small. Numerical experiments show
that, considering vector fields � for which k�k = const, the next order term of
relevance is | curl �|. This is a well-known heuristic and one of our main results
gives a specific form making this heuristic precise. These last two observations
should be compared with an asymptotic approximation of the Feynman–Kac formula
in the case without magnetic field. For �� ++ we have

4
C (��+ )

5 (G) = El
⇣
4
�

Ø
C

0 + (l (B) )3B
j⌦(l, C) 5 (l(C))

⌘
and the exponential quantity satisfies

El
⇣
4
�

Ø
C

0 + (l (B) )3B
⌘
= 1 �+ (G)C + C

2

2
(+ (G)2 � �+ (G)) + >(C2),
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see e.g. [42]. This asymptotic expansion is closely related to classical localization
phenomena for (�� + +), where a positive sign for + (G), and local convexity
(�+ > 0) yield strong and respectively stronger decay of the expectation in the
Feynman–Kac, and hence imply stronger localization near G. Our results suggest
a similar asymptotic for E

�
4
�(C (�) � should be true with k�k and | curl(�) | arising

at the linear and quadratic orders respectively.
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