REVIEW

A More Connected Future: How Social Connection, Interdisciplinary Approaches, and New Technology Will Shape the Affective Science of Loneliness, a Commentary on the Special Issue

Jordan E. Pierce^{1,2} · Valerie K. Jones³ · Maital Neta^{1,2}

Received: 5 June 2024 / Accepted: 12 August 2024 © The Society for Affective Science 2024

Abstract

The recent Special Issue of Affective Science considered "The Future of Affective Science," offering new directions for the field. One recurring theme was the need to consider the social nature of emotional experiences. In this article, we take an interdisciplinary approach toward studies of social connection that builds upon current theoretical foundations to address an important public health issue – loneliness. Loneliness is an affective state that is characterized by feelings of isolation and has widespread adverse effects on mental and physical health. Recent studies have established links between loneliness, social connection, and well-being, but most of this work has been siloed in separate fields. We bridge these themes, leveraging advances in technology, such as artificial intelligence-based voice assistants (e.g., Alexa), to illuminate new avenues for detecting and intervening against loneliness "in the wild." Recognizing the power of connection among individuals as social beings and among researchers with shared goals, affective science can advance our understanding of loneliness and provide tangible benefits to society at large.

Keywords Loneliness · Interpersonal emotion regulation · Social connection · Artificial intelligence

The recent Special Issue of Affective Science considered "The Future of Affective Science" as a discipline, with articles addressing topics such as our fundamental understanding of emotion and valence, interpersonal emotion regulation, and the need for real-world measurements and applications of affective theory. As acknowledged in the Introduction to the Special Issue (Shiota et al., 2023), one recurring theme is the need to recognize the social nature of emotional experience and to move beyond controlled laboratory experiments that study single individuals in isolation. There was also a strong case made for interdisciplinarity in our scientific approach. In this article, we take

an interdisciplinary approach toward studies of social connection that builds upon current theoretical foundations and recent technological advances, moving to more authentic and impactful research in affective science. The overarching framework, drawing from the fields of psychology, communications, public health, and computer science, will emphasize the importance of a research area that was touched on only briefly in the special issue—loneliness.

Loneliness is an affective state that is characterized by feelings of isolation—regardless of whether one is objectively isolated—that is often accompanied by a longing for greater social connection (Peplau & Perlman, 1982; Weiss, 1975). Much like the experience of physical pain, loneliness can serve as a signal that something is amiss, prompting individuals to seek out greater connection (Macdonald & Leary, 2005). Indeed, loneliness has evolutionary roots in that human survival has historically depended to some extent on cooperation with an interconnected social group (Cacioppo, Hughes et al., 2006). Despite our modern society, which arguably affords greater connectedness than ever before, loneliness has become a more urgent public health concern (Murthy, 2023); a survey conducted across 16 countries found that nearly 60% of young adults reported negative

Handling editor: Michelle Shiota.

Published online: 05 September 2024

- ✓ Jordan E. Pierce ipierce14@unl.edu
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Ollege of Journalism & Mass Communications, University of Nebraska-Lincoln, Lincoln, NE, USA

effects of feeling lonely (AXA, 2023). Loneliness also has widespread adverse effects on our mental and physical health (Erzen & Çikrikci, 2018; Hawkley & Cacioppo, 2010; Heinrich & Gullone, 2006; Quadt et al., 2020), including accelerating aging (Hawkley & Cacioppo, 2007) and increasing risk for depression (Cacioppo, Hawkley et al., 2006), dementia (Penninkilampi et al., 2018; Sutin et al., 2020), and allcause mortality (Holt-Lunstad et al., 2015; Luo et al., 2012; Rico-Uribe et al., 2018). Not surprisingly, the National Institutes of Health has listed research on loneliness and social connection among its funding priorities (Simmons et al., 2023). But to date, much of this work has been siloed within domains related to physical health, clinical psychology, aging and development, social psychology, etc. Bridging various domains using modern scientific approaches will advance the affective science of loneliness in a way that can effectively address this public health concern.

One aspect of loneliness research that will benefit from a modern approach to affective theory is identifying the mechanistic link between social connection and affect. Emotion regulation research has historically focused on intrapersonal processes, but recent conceptualizations recognize the social nature of affect and increasingly emphasize interpersonal emotion regulation (IER; Petrova & Gross, 2023). IER is a strategy that relies on interactions with others to help cope with negative emotions (downregulation) or enhance positive emotions (upregulation). A better characterization of how an individual's frequency of and desire for social connection interact with their attempts at emotion regulation is likely to yield new insights into loneliness. Both having strong social connections and being able to effectively use them for emotion regulation are important factors in combating loneliness. This work could also be useful for predicting who is most vulnerable to the negative effects of loneliness, particularly during periods of shared adversity and reduced social connection (Bierman et al., 2021; Dhakal et al., 2023; Harp & Neta, 2023). For example, during the COVID-19 pandemic, we demonstrated that engaging in positive IER and having greater complexity in one's social networks (i.e., having multiple connections in varied domains of one's life—family, friends, coworkers, etc.) protected against increased negativity and loneliness (Haque et al., reviseresubmit; Harp & Neta, 2023). Thus, continuing research into the mechanisms linking IER and social connectedness may be particularly important in mitigating negative impacts

Another aspect of loneliness research that will benefit from modern approaches is the shift from lab-based measures to real-world outcomes. Most existing work on loneliness has relied on self-report measures, such as the UCLA Loneliness Scale (Russell, 1996; see Buecker et al., 2021 for a meta-analysis), which may fail to capture the full range or variability of lived experiences. Studying emotions "in the

wild" offers greater opportunities to examine how the myriad contexts of daily life influence experiences of emotion (Hoemann et al., 2023). Critically, recent advances in technology offer better means of capturing real-world affective experiences, including for experiences of loneliness. Smartphones allow for measurements of dynamic emotional states (i.e., ecological momentary assessments) that can be compared to lab-based measures of affect (e.g., Johnson et al., 2024; Kuczynski et al., 2024; Puccetti et al., 2023). The increasing use of other devices, such as artificial intelligence (AI) voice assistants (e.g., Alexa), also creates new opportunities for research on real-world affect. For example, improved loneliness detection in speech may soon be possible via vocal biomarkers that can be integrated with these at-home AI systems. Additionally, certain linguistic features (e.g., firstperson plural pronouns, sentiment, sentence complexity, and similarity) are associated with loneliness and social support and natural language processing techniques can be used on text data to predict loneliness (Badal, Graham et al., 2021; Badal, Nebeker et al., 2021). Automatically mapping the occurrence or intensity of loneliness in daily life in this manner could assist in identifying individuals who may be in need of additional social or emotional support that may be missed by self-report measures alone.

In addition to supporting loneliness detection in the real world, AI technology can also contribute to interventions that reduce or prevent the negative effects of loneliness. In an example from the field of health communication, we demonstrated that AI voice assistants can alleviate feelings of loneliness in older adults living alone via time spent on simple conversational interactions (Jones et al., 2021; Yan et al., 2024). This research suggests that interacting in specific ways with AI assistants can increase feelings of social support, and that engaging with video-based AI assistants has a greater effect on loneliness and social support than audio-based assistants (Jones et al., 2024). Such interactions may constitute a unique emotion regulation tactic that complements genuine IER in alleviating loneliness. Through collaborations with health communication, gerontology, audiology, computer science, and nursing, we are exploring how engaging with an ever-smarter Alexa may become a useful measure of loneliness detection, prediction, and intervention "in the wild" (Chen, 2024).

These examples of successful technology-driven real-world applications of affective science argue for more use-based interdisciplinary work (Wilson-Mendenhall & Holmes, 2023) that allows researchers to better connect with each other and with the public. Technology fosters collaborative approaches that promote innovative methods, and it offers opportunities to connect with harder-to-reach participants (e.g., rural communities) that are underrepresented in existing studies (Shiota et al., 2023). Taking advantage of the growing accessibility of internet-connected devices in

homes, researchers could remotely administer online affective tasks in parallel with enabling automatic emotion detection in daily life via Alexa. For example, our measure of valence bias (i.e., the tendency to appraise emotional ambiguity as positive or negative; Neta et al., 2009) could be combined with practical AI-based interventions that target feelings of loneliness and social connectedness. Given that valence bias is a stable but modifiable measure (Neta, 2024) and is associated with mental health symptoms (Harp et al., 2023; Neta & Brock, 2021), it could be used to better detect outcomes of loneliness interventions in a way that complements self-report. If AI proves useful for upregulating positive emotion and reducing loneliness, we would expect to see associated shifts toward a more positive valence bias and greater well-being. Leveraging established laboratory tasks of affect in conjunction with real-world AI applications for addressing loneliness in this manner would help link existing knowledge with new cutting-edge insights.

As technology expands our scientific reach and the field progresses, new improvements to affective computing will increase the quality of how AI models and responds to human emotions (Kappas & Gratch, 2023), thus advancing its efficacy in numerous domains. For example, social media offers a rich context for exploring affective human interactions in the digital world—that researchers soon may be able to better quantify (Rocklin et al., 2023). Social media use has increased dramatically in recent years, offering new and varied means of connecting with peers. At the same time, feelings of loneliness are soaring and there are widespread concerns about the impact of social media on mental health, particularly for children and adolescents (Hollis et al., 2020; Keles et al., 2020). More research, perhaps using AI models of online emotional experiences, is needed to better understand how social media use may contribute to the loneliness epidemic, and how more authentic online engagement could create meaningful, positive social connection (e.g., IER upregulation). Utilizing AI models to understand how people use and are impacted by social media will allow researchers to advise the public on guidelines for healthy social media use in order to foster social connection and curb negative effects of loneliness.

While we focus here on the loneliness epidemic, these approaches can be extended to other public health concerns. For example, as with loneliness, automated detection of depression, suicidality, anxiety, or moral outrage from speech or online posts could help identify individuals that pose a risk to themselves or others (Babu & Kanaga, 2022; Carpenter et al., 2021; Deshpande & Rao, 2017; Surana et al., 2024) and offer appropriate AI-mediated responses or links to mental health resources. Advances in technology such as smart watches or similar wearable devices could also support the development of improved stress management tools that monitor physiological signals and assess the

efficacy of personalized stress reduction techniques (Jesmin et al., 2020; Mentis et al., 2023). Furthermore, creating new tools for identifying threats to affective well-being from online task-based measures could improve detection and intervention across diverse communities. For example, our valence bias task could be used to remotely assess implicit emotion appraisal problems that may be masked in self-reports. Working toward this type of improved detection and access to treatment for a broad range of mental health symptoms, assisted by AI technology and modern conceptualizations of affective dynamics, will lead to a better quality of life for affected individuals and a reduced burden on health care systems.

In conclusion, the articles in the Special Issue provide a useful map for venturing into the future of the affective science of loneliness. Many promising avenues emerge that highlight the importance of an interdisciplinary perspective that builds on modern approaches to affective theory, such as assessing interpersonal emotion regulation, and technological advancements, including real-world assessments of emotions and AI-driven interventions. Here, we bring together these important themes to demonstrate how they can be leveraged to address the growing public health concern of loneliness, as well as offering suggestions on how they may be extended to other domains. Recognizing the power of connection among individuals as social beings and among researchers with shared goals, affective science can continue advancing our understanding of emotions and providing tangible benefits to society at large.

Additional Information

Funding J.P. and M.N. were supported by a National Science Foundation CAREER grant (#1752848, PI: Neta). V.J. was supported by a University of Nebraska Collaboration Initiative Grant and by the National Institute of General Medical Sciences, U54 GM115458, which funds the Great Plains IDeA-CTR Network. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Competing Interests The authors declare no competing interests.

Availability of Data and Material No datasets were generated or analysed during the current study.

Code Availability Not applicable.

Authors' Contributions All authors contributed to writing and editing the manuscript.

Ethical Approval Not applicable.

Informed Consent Not applicable.

References

- AXA. (2023). Percentage of people worldwide who reported negative effects on wellbeing from feelings of loneliness in 2022, by age group [Graph] (Statista). https://www.statista.com/statistics/14008 07/percentage-of-people-who-reported-feelings-of-loneliness-by-age-group-worldwide/
- Babu, N. V., & Kanaga, E. G. M. (2022). Sentiment analysis in social media data for depression detection using artificial intelligence: A review. SN Computer Science, 3(1), 74.
- Badal, V. D., Graham, S. A., Depp, C. A., Shinkawa, K., Yamada, Y., Palinkas, L. A., Kim, H.-C., Jeste, D. V., & Lee, E. E. (2021). Prediction of loneliness in older adults using natural language processing: Exploring sex differences in speech. *The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry*, 29(8), 853–866. https://doi.org/10.1016/j.jagp.2020.09.009
- Badal, V. D., Nebeker, C., Shinkawa, K., Yamada, Y., Rentscher, K. E., Kim, H. C., Lee E. E. (2021). Do words matter? Detecting social isolation and loneliness in older adults using natural language processing. Frontiers in Psychiatry, 12. https://doi.org/10.3389/ fpsyt.2021.728732
- Alex Bierman, Laura Upenieks, and Scott Schieman (2021). Socially distant? Social network confidants, loneliness, and health during the COVID-19 pandemic. Social Currents, 8(4), 299–313. https:// doi.org/10.1177/23294965211011591
- Susanne Buecker, Marcus Mund, Sandy Chwastek, Melina Sostmann, Maike Luhmann (2021). Is loneliness in emerging adults increasing over time? A preregistered cross-temporal meta-analysis and systematic review. *Psychological Bulletin*, 147(8), 787–805. https://doi.org/10.1037/bul0000332
- Cacioppo, J. T., Hughes, M. E., Waite, L. J., Hawkley, L. C., & Thisted, R. A. (2006). Loneliness as a specific risk factor for depressive symptoms: Cross-sectional and longitudinal analyses. *Psychology* and Aging, 21(1), 140–151. https://doi.org/10.1037/0882-7974. 21.1.140
- Cacioppo, J. T., Hawkley, L. C., Ernst, J. M., Burleson, M., Berntson, G. G., Nouriani, B., & Spiegel, D. (2006). Loneliness within a nomological net: An evolutionary perspective. *Journal of Research in Personality*, 40(6), 1054–1085. https://doi.org/10.1016/j.jrp.2005.11.007
- Carpenter, J., Brady, W., Crockett, M., Weber, R., & Sinnott-Armstrong, W. (2021). Political polarization and moral outrage on social media. *Connecticut Law Review*, 454. https://digitalcommons.lib.uconn.edu/law_review/454
- Chen, B. X. (2024, May 1). Hey, A.I. Let's Talk. The New York Times. https://www.nytimes.com/2024/05/01/technology/personaltech/ai-voice-assistants.html
- Deshpande, M., & Rao, V. (2017). Depression detection using emotion artificial intelligence. 858–862.
- Dhakal, U., Koumoutzis, A., & Vivoda, J. M. (2023). Better together: Social contact and loneliness among US older adults during COVID-19. *The Journals of Gerontology: Series B*, 78(2), 359–369. https://doi.org/10.1093/geronb/gbac136
- Erzen, E., & Çikrikci, Ö. (2018). The effect of loneliness on depression: A meta-analysis. *International Journal of Social Psychiatry*, 64(5), 427–435. https://doi.org/10.1177/0020764018776349
- Haque, E., Harp, N., & Neta, M. (revise-resubmit). Greater social network complexity mitigates pandemic-related negativity. *Journal of Social and Personal Relationships*.
- Harp, N. R., Blair, R. J. R., & Neta, M. (2023). Shift in valence bias associated with decrease in trait anxiety and depression symptoms. *Cognitive Therapy and Research*. https://doi.org/10.1007/ s10608-023-10437-x

- Harp, N. R., & Neta, M. (2023). Tendency to share positive emotions buffers loneliness-related negativity in the context of shared adversity. *Journal of Research in Personality*, 102, 104333. https://doi.org/10.1016/j.jrp.2022.104333
- Hawkley, L. C., & Cacioppo, J. T. (2007). Aging and loneliness: Downhill quickly? *Current Directions in Psychological Science*, *16*(4), 187–191. https://doi.org/10.1111/j.1467-8721.2007.00501.x
- Hawkley, L. C., & Cacioppo, J. T. (2010). Loneliness matters: A theoretical and empirical review of consequences and mechanisms. Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine, 40(2), 218–227. https://doi.org/10.1007/ s12160-010-9210-8
- Heinrich, L. M., & Gullone, E. (2006). The clinical significance of loneliness: A literature review. *Clinical Psychology Review*, 26(6), 695–718. https://doi.org/10.1016/j.cpr.2006.04.002
- Hoemann, K., Wormwood, J. B., Barrett, L. F., & Quigley, K. S. (2023). Multimodal, idiographic ambulatory sensing will transform our understanding of emotion. *Affective Science*, 4(3), 480–486. https://doi.org/10.1007/s42761-023-00206-0
- Hollis, C., Livingstone, S., & Sonuga-Barke, E. (2020). Editorial: The role of digital technology in children and young people's mental health – A triple-edged sword? *Journal of Child Psychology and Psychiatry*, 61(8), 837–841. https://doi.org/10.1111/jcpp.13302
- Holt-Lunstad, J., Smith, T. B., Baker, M., Harris, T., & Stephenson, D. (2015). Loneliness and social isolation as risk factors for mortality: A meta-analytic review. *Perspectives on Psychological Science*, 10(2), 227–237. https://doi.org/10.1177/1745691614568352
- Jesmin, S., Kaiser, M. S., & Mahmud, M. (2020). Towards artificial intelligence driven stress monitoring for mental wellbeing tracking during COVID-19. 845–851.
- Johnson, K. T., Zawadzki, M. J., & Kho, C. (2024). Loneliness and sleep in everyday life: Using ecological momentary assessment to characterize the shape of daily loneliness experience. Sleep Health. https://doi.org/10.1016/j.sleh.2024.04.003
- Jones, V. K., Hanus, M., Yan, C., Shade, M. Y., Boron, J. B., & Bicudo, R. M. (2021). Reducing loneliness among aging adults: The roles of personal voice assistants and anthropomorphic interactions. Frontiers in Public Health, 9. https://www.frontiersin.org/journals/public-health/articles/https://doi.org/10.3389/fpubh.2021. 750736
- Jones, V. K., Yan, C., Shade, M. Y., Boron, J. B., Yan, Z., Heselton, H. J., Johnson, K., Dube, V. (2024). Reducing loneliness and improving social support among older adults through different modalities of personal voice assistants. *Geriatrics*, 9(2). https://doi.org/10.3390/geriatrics9020022
- Kappas, A., & Gratch, J. (2023). These aren't the droids you are looking for: Promises and challenges for the intersection of affective science and robotics/AI. Affective Science, 4(3), 580–585. https://doi.org/10.1007/s42761-023-00211-3
- Keles, B., McCrae, N., & Grealish, A. (2020). A systematic review: The influence of social media on depression, anxiety and psychological distress in adolescents. *International Journal of Adolescence and Youth*, 25(1), 79–93. https://doi.org/10.1080/02673843.2019.1590851
- Kuczynski, A. M., Piccirillo, M. L., Dora, J., Kuehn, K. S., Halvorson, M. A., King, K. M., & Kanter, J. W. (2024). Characterizing the momentary association between loneliness, depression, and social interactions: Insights from an ecological momentary assessment study. *Journal of Affective Disorders*, 360, 376–386. https://doi.org/10.1016/j.jad.2024.05.148
- Luo, Y., Hawkley, L. C., Waite, L. J., & Cacioppo, J. T. (2012). Lone-liness, health, and mortality in old age: A national longitudinal study. Social Science & Medicine, 74(6), 907–914. https://doi.org/10.1016/j.socscimed.2011.11.028

- Macdonald, G., & Leary, M. R. (2005). Why does social exclusion hurt? The relationship between social and physical pain. *Psychological Bulletin*, 131(2), 202–223. https://doi.org/10.1037/0033-2909.131.2.202
- Mentis, A.-F. A., Lee, D., & Roussos, P. (2023). Applications of artificial intelligence–machine learning for detection of stress: A critical overview. *Molecular Psychiatry*. https://doi.org/10.1038/s41380-023-02047-6
- Murthy, V. H. (2023). Our epidemic of loneliness and isolation: The U.S. surgeon general's advisory on the healing effects of social connection and community.
- Neta, M. (2024). Valence bias: Individual differences in response to ambiguity. In J. Gross & B. Ford (Eds.), Handbook of emotion regulation (3rd ed.). The Guilford Press.
- Neta, M., & Brock, R. L. (2021). Social connectedness and negative affect uniquely explain individual differences in response to emotional ambiguity. *Scientific Reports*, 11(1), 3870. https://doi.org/ 10.1038/s41598-020-80471-2
- Neta, M., Norris, C. J., & Whalen, P. J. (2009). Corrugator muscle responses are associated with individual differences in positivitynegativity bias. *Emotion*, 9(5), 640. https://doi.org/10.1037/a0016 819
- Penninkilampi, R., Casey, A.-N., Singh, M. F., & Brodaty, H. (2018). The association between social engagement, loneliness, and risk of dementia: A systematic review and meta-analysis. *Journal of Alzheimer's Disease: JAD*, 66(4), 1619–1633. https://doi.org/10. 3233/JAD-180439
- Peplau, L. A., & Perlman, D. (1982). Perspectives on loneliness. In L. A. Peplau & D. Perlman (Eds.), *Loneliness: A sourcebook of current theory, research and therapy* (pp. 1–18). Wiley.
- Petrova, K., & Gross, J. J. (2023). The future of emotion regulation research: Broadening our field of view. *Affective Science*, 4(4), 609–616. https://doi.org/10.1007/s42761-023-00222-0
- Puccetti, N. A., Villano, W. J., Stamatis, C. A., Hall, K. A., Torrez, V. F., Neta, M., Timpano, K. R., & Heller, A. S. (2023). Negative interpretation bias connects to real-world daily affect: A multistudy approach. *Journal of Experimental Psychology: General*, 152, 1690–1704. https://doi.org/10.1037/xge0001351
- Quadt, L., Esposito, G., Critchley, H. D., & Garfinkel, S. N. (2020). Brain-body interactions underlying the association of loneliness with mental and physical health. *Neuroscience & Biobehavioral Reviews*, 116, 283–300. https://doi.org/10.1016/j.neubiorev.2020. 06.015
- Rico-Uribe, L. A., Caballero, F. F., Martín-María, N., Cabello, M., Ayuso-Mateos, J. L., & Miret, M. (2018). Association of

- loneliness with all-cause mortality: A meta-analysis. *PLoS ONE*, *13*(1), e0190033. https://doi.org/10.1371/journal.pone.0190033
- Rocklin, M. L., Garròn Torres, A. A., Reeves, B., Robinson, T. N., & Ram, N. (2023). The affective dynamics of everyday digital life: Opening computational possibility. *Affective Science*, 4(3), 529–540. https://doi.org/10.1007/s42761-023-00202-4
- Russell, D. W. (1996). UCLA Loneliness Scale (Version 3): Reliability, validity, and factor structure. *Journal of Personality Assessment*, 66(1), 20–40. https://doi.org/10.1207/s15327752jpa6601_2
- Shiota, M. N., Camras, L. A., & Adolphs, R. (2023). The future of affective science: Introduction to the special issue. Affective Science, 4(3), 429–442. https://doi.org/10.1007/s42761-023-00220-2
- Simmons, J. M., Breeden, A., Ferrer, R. A., Gillman, A. S., Moore, H., Green, P., Pariyadath, V., Quinlan, E. B., & Vicentic, A. (2023). Affective science research: Perspectives and priorities from the national institutes of health. *Affective Science*, 4(3), 600–607. https://doi.org/10.1007/s42761-023-00218-w
- Surana, A., Rathod, M., Gite, S., Patil, S., Kotecha, K., Selvachandran, G., Quek, S. G., & Abraham, A. (2024). An audio-based anger detection algorithm using a hybrid artificial neural network and fuzzy logic model. *Multimedia Tools and Applications*, 83(13), 38909–38929. https://doi.org/10.1007/s11042-023-16815-7
- Sutin, A. R., Stephan, Y., Luchetti, M., & Terracciano, A. (2020). Loneliness and risk of dementia. The Journals of Gerontology Series B, Psychological Sciences and Social Sciences, 75(7), 1414–1422. https://doi.org/10.1093/geronb/gby112
- Weiss, R. (1975). Loneliness: The experience of emotional and social isolation. MIT press.
- Wilson-Mendenhall, C. D., & Holmes, K. J. (2023). Lab meets world: The case for use-inspired basic research in affective science. Affective Science, 4(3), 591–599. https://doi.org/10.1007/ s42761-023-00200-6
- Yan, C., Johnson, K., & Jones, V. K. (2024). The impact of interaction time and verbal engagement with personal voice assistants on alleviating loneliness among older adults: An exploratory study. *International Journal of Environmental Research and Public Health*, 21(1). https://doi.org/10.3390/ijerph21010100

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

