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ABSTRACT
This article proposes novel methods to test for simultaneous diagonalization of possibly asymmetric
matrices. Motivated by various applications, a two-sample test as well as a generalization for multiple
matrices are proposed. A partial version of the test is also studied to check whether a partial set of
eigenvectors is shared across samples. Additionally, a novel algorithm for the considered testing methods
is introduced. Simulation studies demonstrate favorable performance for all designs. Finally, the theoretical
results are used to decouple multiple vector autoregression models into univariate time series, and to test
for the same stationary distribution in recurrent Markov chains. These applications are demonstrated using
macroeconomic indices of eight countries and stream!ow data, respectively. Supplementary materials for
this article are available online.
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1. Introduction

Understanding the eigenvectors and the eigenspace of matrix-
valued objects is known to be of fundamental interest in various
disciplines including statistics, machine learning, and computer
science. Knowledge about the eigenvectors and the eigenspace
is particularly valuable in principal component analysis (PCA)
(Nadler 2008; Cai, Ma, and Wu 2013; Koltchinskii and Lounici
2017) , covariance matrix estimation (Fan, Liao, and Mincheva
2013; Fan, Rigollet, and Wang 2015; Fan, Wang, and Zhong
2018), spectral clustering (Von Luxburg 2007; Rohe, Chatterjee,
and Yu 2011; Lei and Rinaldo 2015), and network or graph
theory (Tang and Priebe 2018; Paul and Chen 2020). O!en times
it provides information for dimension reduction and clustering
procedures.

This article develops statistical tests and algorithms to check
whether a set of square matrices can be diagonalized simul-
taneously. We are particularly interested in asymmetric square
matrices with more general and "exible structural assumptions
compared to symmetric ones like covariance matrices. Our work
proceed from two-sample tests to multi-sample tests, and #nally
extends into partial cases where only a subset of eigenvectors
is of interest. Besides providing the theoretical foundation and
introducing practical algorithms, we motivate the usefulness of
our results in several examples.

Our setting is as follows. Suppose we have a sequence of
deterministic matrices {Mi}p

i=1 ⊂ Rd×d. Then the hypothesis
testing problem we are interested in can be expressed as: the
null hypothesis is H0: {Mi}p

i=1 can be jointly diagonalized, or
equivalently,

H0 : ∃V ∈ Rd×d, s.t. MiV = VDi,
∀i = 1, . . . , p, Di ∈ Mdiag(d),

(1)
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where Mdiag(d) denotes the set of diagonal matrices in Rd×d.
A modi#cation of the problem is to discuss whether a set of
matrices shares a partial set of eigenvectors. The null hypothesis
is then expressed as H∗

0 : {Mi}p
i=1 share k le! eigenvectors (k < d),

or equivalently,

H∗
0 : ∃V = (v1, . . . , vk) ∈ Rd×k full rank,

s.t. MiV = VDi, Di ∈ Mdiag(k).
(2)

In a series of contributions, Flury (1984, 1986) and Flury
and Gautschi (1986) introduced common principal component
analysis (CPCA) that deals with the test and calculation of simul-
taneous factorization among di$erent samples of positive de#-
nite symmetric matrices. Under the same assumptions, Schott
(1999) developed the terminology partial CPCA (PCPCA) with
veri#ed test methods for partially identical eigenvectors. In con-
trast, we do not need to impose any structural assumptions
on the pool of matrices like symmetry or positive semide#-
nitenss which are naturally provided by considering covariance
matrices.

Related to simultaneous diagonalization, previous stud-
ies mainly focused on testing whether the eigenvectors or
eigenspaces of the population covariance matrix are equal to
some given ones; see Tyler (1981), Koltchinskii and Lounici
(2017), Silin and Spokoiny (2018), Naumov, Spokoiny, and
Ulyanov (2019), and Silin and Fan (2020). Schwartzman, Mas-
carenhas, and Taylor (2008) studied some related statistical
tests about eigenvalues and eigenvectors of Gaussian random
symmetric matrices with some pre-#xed algebraic restrictions.
Especially, as stated in Schwartzman, Mascarenhas, and Taylor
(2008), the test for equality of eigenvectors with unknown eigen-
values between two sets of samples is rather di%cult since no
closed forms of estimations are available.
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From a computational perspective, optimization routines for
symmetric matrices were proposed by Fujioka (1993), Ghazi
et al. (2008), and Ghazi et al. (2014). For general asymmetric
matrices, some previous ideas, like sh-rt by Fu and Gao (2006),
JUST by Iferroudjene, Abed Meraim, and Belouchrani (2009),
JDTM by Luciani and Albera (2010), and (W)JDTE by André,
Luciani, and Moreau (2020) are shown to be numerically e$ec-
tive and ready for implementation. Colombo and Vlassis (2016b,
2016b) focused on the joint Schur-decomposition and pro-
vided theoretical properties of their proposed algorithms. Since
joint Schur-decomposability fails to be a su%cient condition
for simultaneous diagonalization, our work expands those ideas
and provides an algorithm which estimates partially common
eigenvectors across samples.

Possibly asymmetric matrix-valued statistics are broadly used
in estimating the mean of random matrices, the adjacency matri-
ces of weighted directed graphs, the coe%cient matrices in lin-
ear regressions, factor models and vector autoregression (VAR)
models, and transition probability matrices. However, most of
the analysis has focused on studying the eigenvalues of those
statistics. Analyses of eigenvalues include reduced rank estima-
tion (Robin and Smith 2000; Kleibergen and Paap 2006; Donald,
Fortuna, and Pipiras 2007), testing for cointegration (Engle and
Granger 1987; Johansen 1991; Vogelsang 2001; Zhang, Robin-
son, and Yao 2019) and the eigenvalues of adjacency matrices
(Restrepo, Ott, and Hunt 2007; Paul and Chen 2020). In contrast,
our applications (see Section 1.1) give a new perspective on the
usefulness of studying the eigenvectors in various models.

The literature review shows that existing work is based
on covariance matrices which are surely diagonalizable with
orthogonal eigenvectors. The eigenstructure problem lacks anal-
ysis in some more general cases like asymmetric matrices in
particular. The breakthrough point of our work is to design
and validate e%cient diagonalization test methods for possibly
asymmetric matrices. Due to nonlinearity of eigenproperties
and the lack of closed eigensolutions, our investigation about
the random eigenstructures with less restricted conditions is
algebraically di%cult, and our exploration is novel.

1.1. Applications

From a statistical perspective, joint diagonalizability provides
valuable information. Suppose one fails to reject the null hypoth-
esis of common eigenvectors, then, it is reasonable to only
analyze the eigenvalues, which reduces the problem’s complexity
signi#cantly. We will illustrate the usefulness of our results with
two relevant examples, namely the coe%cient matrices in VAR
models and the transition matrices of Markov chains.

The coe%cient matrices in VAR models appear to be general
matrices without restrictions like symmetry. For the same mul-
tivariate time series of comparable objects, simple VAR models
of order one may share common components in regression
which can be veri#ed by a joint eigendecomposition of coef-
#cient matrices. With successful veri#cation of simultaneous
diagonalizability, one can decouple multivariate time series into
multiple univariate ones and conduct comparison conveniently;
see Section 7.1 for more details.

Another motivating example for our tests are the transi-
tion matrices of Markov chains which are usually asymmetric.

Furthermore, the leading le! eigenvector of a transition matrix
corresponds to eigenvalue one and represents the stationary
distribution of the chain. Testing the equality of the leading
eigenvectors of the transition matrices from multiple Markov
chains gives information whether these chains share similar
properties though di$ering in their transition dynamics. For
instance, the Markov chains of the same object but with di$erent
time resolutions might exhibit a common stationary distribu-
tion; see also Section 7.2 for more details on this application.

1.2. Organization

The rest of this article is organized as follows. Section 2 estab-
lishes notation and gives some preliminary results. Our main
work starts in Section 3 from a two-sample test. In addition to
simultaneously conducting two-sample tests pairwise for multi-
sample cases, we design our test method based on the pooled
estimator of common eigenvectors; see Section 4. In Section 5 we
further extend our results to a partial version with a novel algo-
rithm to estimate the subset of eigenvectors that is shared across
samples. In Sections 6 and 7 we conduct a simulation study
and experiment with some real data examples, respectively. The
supplementary material provides an alternative approach for the
two sample test; see Appendix A. Furthermore, some empiri-
cal results are included in Appendix B complementary to the
numerical analysis presented in the main article. We also brie"y
show the compatibility of our test methods with the symmetric
setting in Appendix C. Finally, the proofs of the theoretical
results in Sections 3 to 5 and Appendix A can be found in the
supplementary material in Appendices D and E.

2. Preliminaries

2.1. Notation

Throughout this article, p is the number of matrices to be tested,
n denotes the sample size for estimation, and d is the dimension
of the square matrices. Notation D−→ represents convergence in
distribution, P−→ convergence in probability, and

D≈ an approx-
imation of random distributions. The operator ⊗ denotes the
Kronecker product between two matrices. For a matrix A, the
operator rk(A) denotes the rank of A, vec(A) transforms A into
a vector form by stacking all its columns, and A+ is the Moore-
Penrose general inverse of A. For a square matrix A of dimension
d, we write tr(A) for the trace function of A and the operator
matd(·) is the inverse of vec(·) such that matd

(
vec(A)

)
= A.

The matrix Id represents the d-dimensional identity matrix, and
the function blkdiag({Xi}p

i=1) returns a block-diagonal matrix
with the sub-matrices on the diagonal to be the input list of
matrices {Xi}p

i=1. We write N (µ, !) for the multivariate normal
distribution with mean vector µ and covariance matrix !, χ2(k)
for the Chi-squared distribution with k degrees of freedom, and
γ (α, β) for the Gamma distribution with shape parameter α and
rate parameter β .

2.2. Assumptions

In this section, we give the required assumptions for future proof
of the asymptotic results for our proposed test statistics.
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Assumption 1. The deterministic matrices {Mi}p
i=1 can be esti-

mated by mutually independent estimators {Ai,n}p
i=1 from n

samples, satisfying,

c(n) vec(Ai,n − Mi)
D−→ N (0, !i) for i = 1, . . . , p, (3)

with c(n) → + as n → +.

Assumption 2. The limiting covariance matrices !i in (3) can be
estimated consistently by !̂i,n, that is,

!̂i,n − !i = OP
(
σ (n)

)
for i = 1, . . . , p, (4)

with rate σ (n) → 0 as n → +.

Note that the estimators Ai,n and !̂i,n also depend on the
sample size n, but for notational simplicity we will omit it in
later expressions and simplify as Ai = Ai,n and !̂i = !̂i,n.
In addition, we assume the sequence c(n) to be the same for
all i = 1, . . . , p, in the following analysis but the extension to
the general case is straightforward. Furthermore, we assume the
following:

Assumption 3. Each Mi, i = 1, . . . , p is diagonalizable with real
eigenvalues.

The theoretical results of this article require no a priori
assumptions on the rank of the limiting covariance matrices in
Assumption 1. In particular, the matrices !i, i = 1, . . . , p, in (3)
may be less than full rank. On one hand, this allows for "exibility
in the choice of estimators Ai,n, on the other hand it elevates the
di%culties in deriving asymptotic results for our test statistics. In
particular, we aim to give tractable versions of our test statistics
in the sense that the covariance matrices can be estimated. While
Assumption 2 ensures the existence of a consistent estimator,
one still has to address a potential singularity. We refer to Sec-
tion 2.3 for a discussion and workaround.

2.3. Covariance Estimation

Our test statistics involve the inverses and ranks of the limit-
ing covariance matrices in Assumption 1. Ideally, given exact
covariance matrices, we can use the so-called Moore-Penrose
inverse to address possible singularity. In order to make the
statistics tractable in practice, we need to instead incorporate
their consistent estimates as given by Assumption 2. However,
neither the Moore-Penrose inverse nor the rank of a matrix are
continuous.

To circumvent those issues, we introduce the so-called trun-
cated singular value decomposition following Lütkepohl and
Burda (1997). For an arbitrary matrix ' ∈ Ra×b with ( =
min(a, b) > 1, its singular value decomposition (SVD) is
given by ' = U)W′ with orthogonal singular vectors
U and W, and nonincreasing, nonnegative singular values
) = diag(*1, . . . , *( ). We de#ne its truncated singular value
decomposition with respect to a threshold ε ≥ 0 as

'(ε) = U)(ε)W′ with
)(ε) = diag(*1I(*1 > ε), . . . , *( I(*( > ε))

(5)

with indicator function I(·). In addition, we denote the Moore-
Penrose general inverse as '+(ε) =

(
'(ε)

)+ and the rank
function rk(' ; ε) = rk

(
'(ε)

)
.

With the help of the truncated SVD (5), we introduce the
following lemma that gives consistent estimates for the Moore-
Penrose inverse and the rank of a consistently estimated matrix.

Lemma 2.1. Assume !̂ is a consistent estimator of a positive
semide#nite matrix ! ∈ R(×( , ε > 0 is a constant and not
an eigenvalue of !. Then, with !(ε) and !̂(ε) de#ned to be the
corresponding truncated SVDs (5),

!̂(ε)
P−→ !(ε), !̂+(ε)

P−→ !+(ε), rk(!̂; ε) P−→ rk(!; ε). (6)

The proof of Lemma 2.1 can be found in Appendix D. Results
in the manner of Lemma 2.1 are used to circumvent singularity
issues which usually occur under the usage of Wald type tests; see
Hadi and Wells (1990) and Ratsimalahelo (2001). The following
remark comments on the choice of the threshold ε in (6).

Remark 2.1. With the additional Assumption 2 that !̂ converges
with rate OP

(
σ (n)

)
, the threshold ε that satis#es ε = o(1) and

σ (n)/ε = o(1) as n → + can be chosen to optimize the
accuracy of the generalized inverse and rank estimators. See p.
320 in Lütkepohl and Burda (1997) for a discussion on the choice
of ε.

3. Two-Sample Test

We start from a two-sample test p = 2 and design a test
statistic based on the commutator of the two matrices under
consideration. Under Assumption 3, matrices commute if and
only if they can be diagonalized simultaneously; see Theorem
1.3.12 in Horn and Johnson (2012). Hence, one intuitive idea to
measure how far M1 and M2 are from being commutable is, to
calculate some form of metric of their commutator [M1, M2] :=
M1M2 −M2M1. The following proposition introduces a statistic
to test the hypothesis (1) and provides its asymptotic behavior.

Proposition 3.1. Suppose Assumptions 1 and 3 are satis#ed and
denote ηn = vec[A1, A2]. Then, under H0 in (1),

c(n)ηn
D−→ N (0, !η) (7)

with !η = !1,2 + !2,1, where !k,- = .(M-)!k.′(M-) for
k .= -, and .(X) = Id ⊗ X − X′ ⊗ Id is a function in X ∈ Rd×d.
Then,

/1 := c2(n)η′
n!

+
η ηn

D−→ χ2(r1), (8)

where r1 is the rank of !η.

The proof of Proposition 3.1 can be found in Appendix D.
In order to make Proposition 3.1 tractable in practice, we can
obtain a consistent estimator !̂η by substituting Mi, !i, i = 1, 2,
in the expression of !η with Ai, !̂i, i = 1, 2, in Assumptions 1
and 2, respectively. The consistency is veri#ed by the continuous
mapping theorem and Assumptions 1 and 2 as

!̂η − !η = .(A2)!̂1.
′(A2) + .(A1)!̂2.

′(A1) − !η
P−→ 0.
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Note that !η and !̂η are both singular matrices as there exists at
least one nontrivial vector v = vec(Id) such that !ηv = !̂ηv =
0, since

.(X)v = (Id ⊗ X)v − (X′ ⊗ Id)v = 0,

where the last equality follows by Theorem 2 in Magnus and
Neudecker (2019), p. 35. Hence, r1 and r̂1, the ranks of !η and
!̂η respectively, are always less than d2. Due to the singularity
issue in (8), we propose to use the truncated version (6) of !̂η.

Proposition 3.2. Suppose Assumptions 1, 2, and 3 are satis#ed.
Then, for a given threshold ε > 0 that is not an eigenvalue of !η

(de#ned through (7)), the test statistic is de#ned as and satis#es

/#
1(ε) := c2(n)η′

n!̂
+
η (ε)ηn

D−→ χ2(̂r1(ε)), (9)

where r̂1(ε) = rk(!̂η; ε).

4. Multi-Sample Test

An extension of the topic introduced in Section 3 is to conduct
the test on a larger pool of matrices (p ≥ 2). In addition to testing
simultaneously over all pairs of samples using the methods
based on the two-sample test introduced in Section 3, we are
more interested in whether the same hypothesis holds across the
whole pool of matrices. With that in mind, we propose to use
the estimated optimal common eigenvectors and test whether
they annihilate the o$-diagonal elements of the matrices a!er
transformation.

For the simultaneous test, with the commutator-based test
developed in Section 3, the approach and the test statistic are
straightforward. For instance, a matrix of test statistics (or p-
values) represents the pairwise test results and conclusions can
then be drawn. Hence, we will omit further details here and
focus on the more comprehensive approach regarding whether
the same hypothesis holds across the whole pool of matrices.
Speci#cally, we will refer to optimization algorithms for calcu-
lating the common eigenvectors that almost diagonalize a pool
of matrices (see Section 4.1) and then design a test statistic (see
Section 4.2).

4.1. Common Eigenvectors Finder

In this section, we brie"y introduce the setup of the optimiza-
tion problem of #nding the optimal diagonalizer for a pool of
matrices.

Recall our setup, with a pool of matrix-valued statistics A =
{Ai}p

i=1 estimating the matrices M = {Mi}p
i=1. We refer to the

(W)JDTE algorithm by André, Luciani, and Moreau (2020) due
to its performance in terms of speed and accepted accuracy.
The algorithm provides the common eigenvectors of a pool of
matrices by minimizing the objective function

o$(U; A) =
p∑

i=1
o$2(U−1AiU). (10)

Here, o$2(X) = ∑
i .=j |Xi,j|2 denotes the o$-diagonal sum-of-

squares for X ∈ Rd×d. For the details of the algorithm; see
André, Luciani, and Moreau (2020).

4.2. Eigenvector Test

In this section, we propose a test for H0 in (1) allowing the
number of matrices p to be larger than two. The test is based on
the assumption that an invertible matrix V ∈ Rd×d is given as a
guess for the common eigenvector matrix. We acknowledge that
the assumption of knowing the matrix V is quite restrictive. For
all practical purposes, we refer to the optimization problem in
Section 4.1 which provides an optimal diagonalizer based on the
matrix estimators A = {Ai}p

i=1. From a theoretical perspective,
existing literature does not suggest any formal testing procedure
based on explicit estimators for V . In particular, there are no
asymptotic results, neither under the assumption that the matri-
ces to be tested are asymmetric nor symmetric. For this reason,
we see the below stated theoretical results under the assumption
that V is known as a starting point and leave a more rigorous
investigation for future work.

De#ne the function o$vecd : Rd×d → Rd(d−1),
o$vecd(X) = Sd vec(X), which stacks all o$-diagonal elements
of a square matrix X with dimension d columnwise. We will
always use Sd as the o$-diagonal selection matrix for square
matrices of dimension d. The test can then be designed as
follows.

Proposition 4.1. Suppose Assumptions 1 and 3, and V is given
as a guess for the common eigenvector matrix. Let

ζ i = o$vecd(V−1AiV), i = 1, . . . , p, and
SV ,d = Sd(V ′ ⊗ V−1).

(11)

Then, under H0 in (1), c(n)ζ i
D−→ N (0, 0i) with 0i =

SV ,d!iS′
V ,d for i = 1, . . . , p. The test statistic is de#ned as and

satis#es

/3 := c2(n)

p∑

i=1
ζ ′

i0
+
i ζ i

D−→ χ2(r3), (12)

where r3 = ∑p
i=1 rk(0i).

Note that in practice, the eigenvector matrix to be tested is
always obtained from optimization, and hence this idea highly
depends on the accuracy of such algorithms. In order to reduce
the in"uence of estimation errors, we develop the following anal-
ogous test that tolerates relatively larger errors while maintaining
acceptable e%ciency.

Corollary 4.1. Under the assumptions of Proposition 4.1, let
0 = blkdiag({0i}p

i=1) be a block-diagonal matrix, and ζ :=
(
ζ ′

1, . . . , ζ ′
p
)′ ∈ Rp(d2−d), with ζ i as in (11) such that c(n)ζ

D−→
N (0, 0). Then, the test statistic is de#ned as and satis#es

/∗
3 := c2(n)

p∑

i=1
‖ζ i‖2 D−→ ψ∗

3 :=
p(d2−d)∑

r=1
λr(0)χ2(1), (13)

where λr(0) denotes the rth eigenvalue of 0. Furthermore, the
p-value based on (13) can be approximated by

P(ψ∗
3 > /∗

3 | H0) ≈ P(γ ∗
3 > /∗

3 | H0),

where γ ∗
3 ∼ Gamma

( tr(0)2

2 tr(02)
, tr(0)

2 tr(02)

)
.

(14)
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The approximation in (14) between ψ∗
3 , a weighted sum of

Chi-squared distributed random variables, and γ ∗
3 , a gamma

distribution, was introduced in Box (1954, Theorem 3.1) based
on matching #rst- and second-order moments of the two dis-
tributions. For accuracy analysis, see Bodenham and Adams
(2016).

Note, that Proposition 4.1 requires to calculate the gener-
alized inverse of 0. In contrast, Corollary 4.1 only needs the
trace of 0. Calculating the trace of 0 is expected to be more
robust toward estimation errors of the eigenvector matrix V than
#nding the generalized inverse of 0.

In practice, only the estimated !̂i are accessible. Due to pos-
sible singularity issues with the general inverse 0+

i in Proposi-
tion 4.1, we use results in Appendix E to introduce the following
proposition.

Proposition 4.2. Suppose Assumptions 1, 2, and 3. Then, for a
given threshold ε > 0 that is not an eigenvalue of 0i for i =
1, . . . , p, the test statistic is de#ned as and satis#es

/#
3(ε) := c2(n)

p∑

i=1
ζ ′

i0̂
+
i (ε)ζ i

D−→ χ2(̂r3(ε)), (15)

where 0̂i = SV ,d!̂iSV ,d and r̂3(ε) = ∑p
i=1 rk(0̂i; ε).

5. Partial Test

In this section, we focus on the hypothesis H∗
0 in (2). We #rst

reformulate the hypothesis testing problem (Section 5.1) and
then design the corresponding test statistics and analyze their
asymptotic behavior (Section 5.2). Meanwhile, an optimization
algorithm is also proposed to approximate the matrix V in the
statement of H∗

0 (Section 5.3).

5.1. Problem Representation

Suppose {Mi}p
i=1 satisfy H∗

0 , then for V speci#ed in the hypoth-
esis, there exists an orthogonal d × k matrix Qk (i.e., Q′

kQk =
Ik), such that V = QkR, where R is a k × k upper-triangular
matrix. By orthogonally spanning Qk = (q1, . . . , qk) to Q =
(q1, . . . , qd) ∈ Rd×d, we have

Q′MiQ =
(

RDiR−1 ∗
0 ∗∗

)
=:

(
3i ∗
0 ∗∗

)
(16)

with Di, i = 1, . . . , p, as in (2). We use the symbols ∗ and ∗∗ to
denote nonzero block matrices with proper dimensions which
are not relevant. Note that the set of upper-triangular matrices
{3i}p

i=1 shares the common eigenvectors R. For the estimators
A = {Ai}p

i=1 given by Assumption 1, suppose a matrix Q̂ is given
as a guess for Q, such that

Q̂′AiQ̂ =
(

Bi ∗
Ci ∗∗

)
, (17)

where Bi ∈ Rk×k and Ci ∈ R(d−k)×k. The matrix Q̂ can either
be given by knowing the ground-truth Q or by estimation; see
Section 5.3 for an algorithm to estimate Q. The procedure of our
test starts from #nding the orthogonal matrix Q that contains
the #rst k columns as the common invariant subspace, and
designing tests on the transformed matrices {Bi, Ci}p

i=1. The test
is a combination of:

1. Whether the transformation by the orthogonal matrix Q̂
introduces the all-zero lower-le! block in (16) by testing on
{Ci}p

i=1.
2. Whether the k×k matrices {3i}p

i=1 de#ned in (16) satisfy H0
in (1) by testing on {Bi}p

i=1.

To introduce our test statistic, suppose Q̂ is given, and let

Q̂BC =
(

SB
SC

)
(Q̂′ ⊗ Q̂′) with SBvec(Q̂′AiQ̂) = vec(Bi),

SCvec(Q̂′AiQ̂) = vec(Ci),

where SB and SC are selection matrices de#ned according to
(17). Hence, the partially common eigenvectors of {Mi}p

i=1 can
be estimated as V̂ = Q̂kṼ , where Q̂k is a matrix of the #rst
k columns of Q̂ and Ṽ the estimated common eigenvectors
of {Bi}p

i=1. Referring to Section 4.1, Ṽ can be received from
’(W)JDTE’. So far, we have supposed that Q̂k is a guess. However,
it can be estimated by an algorithm proposed in Section 5.3.

5.2. Partial Eigenvector Test

In this section, we introduce our test statistic to test for partially
common eigenvectors and present their asymptotic behavior.

Proposition 5.1. Suppose Assumptions 1 and 3 are satis#ed and
let

wi = Pw vec(Ai) with Pw :=
(

SṼ ,k 0
0 Ik(d−k)

)
QBC, (18)

where SṼ ,k is de#ned as in (11) and QBC is analogous to Q̂BC
except replacing the guess Q̂ with true Q. Then, under H0 in (1),
c(n)wi

D−→ N (0, 4i) with 4i = Pw!iP′
w for i = 1, . . . , p. The

test statistic is de#ned as and satis#es

/4 := c2(n)

p∑

i=1
w′

i4
+
i wi

D−→ χ2(r4), (19)

where r4 = ∑p
i=1 rk(4i).

And similar to Corollary 4.1, we design the following test
statistic with p-value approximated by a gamma distribution.

Corollary 5.1. Under the assumptions in Proposition 5.1, let
4 = blkdiag({4i}p

i=1) be a block-diagonal matrix, and w :=
(
w′

1, . . . , w′
p
)′ ∈ Rpk(d−1), with wi as in (18) such that c(n)w D−→

N (0, 4). Then the test statistic is de#ned as and satis#es

/∗
4 := c2(n)‖w‖2 D−→ ψ∗

4 :=
pk(d−1)∑

r=1
λr(4)χ2(1), (20)

where λr(4) denotes the rth eigenvalue of 4. Furthermore, the
p-value based on (20) can be approximated by

P(ψ∗
4 > /∗

4 | H0) ≈ P(γ ∗
4 > /∗

4 | H0),

where γ ∗
4 ∼ Gamma

( tr(4)2

2 tr(42)
, tr(4)

2 tr(42)

)
.

(21)

Similar as Proposition 4.2, we use results in Appendix E for
the following tractable version of Proposition 5.1 that takes care
of possible singularity issues with 4+

i in (19).
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Proposition 5.2. Assume Assumptions 1, 2, and 3 are satis#ed.
Then, for a given threshold ε > 0 that is not an eigenvalue of 4i
for i = 1, . . . , p, the test statistic is de#ned as and satis#es

/#
4(ε) := c2(n)

p∑

i=1
w′

i4̂
+
i (ε)wi

D−→ χ2(̂r4(ε)), (22)

where 4̂i = Pw!̂iP′
w for i = 1, . . . , p, and r̂4(ε) =∑p

i=1 rk(4̂i; ε).

5.3. Optimization Algorithm

This section is dedicated to #nding an estimator Q̂ for Q in
(16). In implementation, Q̂ can be obtained by minimizing the
following objective function

f (Q; A, k) =
p∑

i=1

d∑

r=k+1

k∑

s=1
(q′

rAiqs)
2

subject to q′
rqs = δrs, ∀ r, s = 1, . . . , d,

where Q = (q1, . . . , qd) ∈ Rd×d. Colombo and Vlassis (2016b)
introduced a version of Gauss-Newton algorithm for the joint
Schur decomposition based on matrix exponential, and showed
its global minimum guarantees if the initial value is su%ciently
close to the ground-truth Q. In our work, we inherit the idea of
this algorithm with slight revision, where the major di$erence is
to substitute the selection matrix from lower-triangular indica-
tor to the (d − k) × k lower-le! block indicator.

We also introduce a warm-up algorithm to supply the ini-
tial values for this Gauss-Newton approach. Since the matrices
{3i}p

i=1 in (16) are upper-triangular, we can split the minimiza-
tion with respect to Q into sequentially optimizing each column
qr with r from 1 to k based on the following objective function

f ∗(Q; A, k) =
p∑

i=1

k∑

s=1

d∑

r=s+1
(q′

rAiqs)
2,

with Q = (q1, . . . , qd) ∈ Rd×d.

More precisely, we introduce the following Algorithm 1 as the
whole process for optimizing orthogonal Q̂, including the ini-
tialization warm-up before line 7.

Algorithm 1: Estimation of Q
Input: Estimators A = {Ai}p

i=1, number of common
eigenvectors k.

Output: Estimator Q̂ for Q.
1 Initialize O0 = Id as an identity matrix.
2 for j = 1 : k do
3 Optimize Oj = argminQ f (Q; A, 1) and write

Oj = (pj, Pj), where pj ∈ Rd−j+1 and
Pj ∈ R(d−j+1)×(d−j).

4 Update Oj−1 = Oj−1Oj.
5 Update A by Ai = P′

jAiPj for i = 1, . . . , p.
6 end
7 Input Ok into the modi#ed version of Gauss-Newton

approach by Colombo and Vlassis (2016b) as the initial
value and get the #nal output Q̂.

For realization of the optimization on Algorithm 1 line 3, we
refer to the FG-algorithm by Flury and Gautschi (1986).

6. Simulation Study

Simulation studies are run for two-sample, multi-sample, and
partial tests. The barplots of p-values from multiple replicates,
especially, the Type I and Type II errors which are readable
from the plots of histograms, are given as evidence for the
e$ectiveness of our test designs. Complementary to the plots
presented in this section, we refer the reader to Section B.1 in
the supplementary material for tables providing Type I and II
errors for all our simulation studies.

In addition, instead of implementing Propositions 3.1, 4.1,
and 5.1, we always turn to their truncated versions (Propo-
sitions 3.2, 4.2, and 5.2, respectively) in Sections 6 and 7, in
order to take care of possibly singular covariance matrices.
Furthermore, since the following examples with sample size
n all have the same rate of convergence σ (n) = n−1/2 for
their limiting covariance matrix estimators, we will not further
specify but choose ε = n−1/3 by default whenever applicable in
implementations. This choice of ε is also in accordance with the
discussion in Remark 2.1 and maintains the test power.

6.1. Data Generating Process (DGP)

Prior to our testing analysis, we #rst introduce the data gener-
ating process (DGP) for our targeted matrices Mp(ρ, k; d) =
{Mi(ρ, k; d)}p

i=1 with parameters ρ accounting for the signal-to-
noise variance ratio (SNR := 1

ρ2 ) and k the number of common
eigenvectors.

Algorithm 2: DGP for Mp(ρ, k; d)

Input: Number of matrices p ∈ N, matrix dimension
d ∈ N, number of common eigenvectors
k ∈ {1, . . . , d}, noise measure ρ ≥ 0.

Output: Pool of matrices Mp(ρ, k; d) with common
eigenvectors.

1 Randomly generate an eigenvector matrix
V(k; d) ∈ Rd×k (k ≤ d).

2 Set Vi(k; d) = V(k; d) if k = d, otherwise span
Vi(k; d) = (V(k; d), Ṽi) ∈ Rd×d with random but
su%ciently distinct Ṽi ∈ Rd×(d−k) for i = 1, . . . , p.

3 for i = 1, . . . , p do
4 perturb the ith eigenvector matrix Vi(k; d) as

Vi(ρ, k; d) = Vi(k; d) + ρEi with noise Ei to be
independent and standard normal, element-wise.

5 end
6 Randomly generate nonsingular diagonal matrices

Di ∈ Rd×d for i = 1, . . . , p.
7 Generate the target matrices

Mp(ρ, k; d) = {Vi(ρ, k; d)DiV−1
i (ρ, k; d)}p

i=1.

With the set of target matrices Mp(ρ, k; d), we can then pro-
ceed to design di$erent sampling setup for their corresponding
consistent estimators Ap(ρ) = {Ai(ρ)}p

i=1. Note that we de#ne



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1519

SNR = 1
ρ2 to quantify the similarity among the underlying

eigenvectors {Vi(ρ, k; d)}p
i=1 (see line 4 of Algorithm 2) rather

than the estimation accuracy for Ap(ρ), that is, if ideally SNR =
+ or ρ = 0, the matrices in Mp(ρ, k; d) can be perfectly
diagonalized with common eigenvectors (partially when k < d),
while the randomness of our test statistics still exists due to the
subsequent estimation for Ap(ρ).

6.2. Two-Sample Test

With M2(ρ, d; d) = {M1(ρ, d; d), M2(ρ, d; d)} generated fol-
lowing Algorithm 2 in Section 6.1, we treat them as the mean
matrices for two pools of n normally distributed observations
and propose the averages of samples as the corresponding esti-
mators A2(ρ). The covariance matrices are consistently esti-
mated as well. According to the central limit theorem (CLT), the
convergence rate in Assumption 1 satis#es c(n) = √

n. If not
further speci#ed, we stick to the classical p-value test framework
and always reject the null H0 (or H∗

0 ) when the p-value is below
a 0.05 signi#cance level.

We set the dimension of the matrices as d = 5, SNR ∈
{10, 1000, +}, and the sample size n ∈ {50, 250, 1000}. For
each data-generating setting determined by (SNR, n), the Algo-
rithm 2 is repeated 500 times independently to get the data
of 500 pairs of estimators for the commutator-based test; see
Figure 1 for performance. Note that the #rst bar in these #gures
represents the proportion of the 500 p-values lower than the
critical threshold 0.05, that is, the proportion of simulations
that one rejects the null hypothesis H0 based on the test design.
Ideally for SNR = +, this proportion, also known as Type I
error rate, should be close to 0.05, which is a typical choice of
signi#cance level. For SNR .= +, the proportion of p-values
outside the #rst bar, also known as Type II error rate, should
approach 0 if the test has high power.

For the commutator-based test Proposition 3.2, we see from
Figure 1 that with sample size increasing, the p-values of samples
from null space (SNR = +) tend to be uniformly distributed on
the interval [0, 1], and the p-values of samples from alternative

spaces start to concentrate in the interval [0, 0.05). When the
sample size n exceeds a certain level, 200 for instance, the test
performs well with acceptable Type I error and excellent Type II
error.

6.3. Multi-Sample Test

For the simulation study of the multi-sample test introduced in
Section 4, we follow Algorithm 2 to set the mean matrices of
normally distributed observations as Mp(ρ, d; d). We consider
here the setting that dimension d = 4, p = 8, SNR = 1

ρ2 ∈
{10, 100, 1000, +}, and sample size n ∈ {102, 103, 104, 105}.
Each consistent estimate in A(ρ) is the empirical average from
the n observations, hence, c(n) = √

n by the CLT. Note that
when ρ = 0, equivalently SNR = +, the matrices in Ap(ρ)

satisfy H0, that is, share common eigenvectors.
To verify the testing e%ciency, we (i) use the exact V =

V(d; d) (see line 1 of Algorithm 2) to test on Ap(0) according
to Proposition 4.2, and (ii) use the optimized V̂ from algorithm
’(W)JDTE’ and implement both Proposition 4.2 and Corol-
lary 4.1. We present the test power versus SNR and sample size
n through histogram plots; see Figure 2.

With evidence that the p-values are almost uniformly dis-
tributed by using exact V , the test of Proposition 4.2 is shown
to be e$ective when the supplied common eigenvectors are
su%ciently accurate. However, for estimated V , one can observe
that for small p-values the proportion of rejections exceeds the
nominal test size of 0.05 for the Chi-squared test in Proposi-
tion 4.2. While the gamma test in Corollary 4.1 admits almost
the opposite behavior subceeding the nominal test level. From
a theoretical perspective that might also be due to the singular
sensitivities when inverting the estimated covariance matrices to
calculate the test statistic in Proposition 4.2.

As for Corollary 4.1, it is a reasonably e%cient test method
as the false positive rate (Type I error) remains at a relatively
low level regardless of the sample size n, while the false negative
rate (Type II error) is following a reasonable pattern that with
higher SNR, that is, less perturbations to the shared eigenvectors,

Figure 1. The histograms of p-values for the commutator-based test in Proposition 3.2 with simulated data.
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Figure 2. The histograms of p-values for the multi-sample test. We randomly sampled 200 independent replicates for each data-generating setting of (SNR, n). The !rst
row of plots are the test results of Proposition 4.2 on Ap(0) supposing the exact common eigenvectors matrix V is known, hence p-values are only available with SNR = +.
The simulations of the next two rows use the estimated V̂ from ’(W)JDTE’ as input for Proposition 4.2 and Corollary 4.1, respectively.

the test is ultimately able to reject the H0 as the sample size n
increases to be su%ciently large.

6.4. Partial Test

For the simulations regarding the partial test in Section 5, we
#x k < d, and generate the mean matrices as Mp(ρ, k; d)

following Algorithm 2. Consistent estimates Ap(ρ) are obtained
similarly from the average of the random observations to follow
ordinary CLT. We set d = 4, p = 8, k = 2, SNR = 1

ρ2 ∈
{10, 100, 1000, +}, and sample size n ∈ {102, 103, 104}.

The histograms in Figure 3 show that both Proposition 5.2
and Corollary 5.1 have similar testing power. In addition, even
if SNR increases, that is, the perturbation on common eigenvec-
tors V becomes subtle, the Type II error can maintain at almost
zero even with small sample size n.

As pointed out in Section 5, we assume that the number of
partial common eigenvectors is known. Since this assumption

is not feasible in practice, we propose a sequential testing proce-
dure. We refer to Section B.2 in the supplementary material for a
detailed description of the testing procedure and a correspond-
ing simulation study to access its performance.

7. Applications

In Section 7.1 we consider VAR models and analyze their
dynamic structure in terms of our test methods. In Section 7.2,
we introduce the application of our partial test on identical
stationary distributions of di$erent Markov chains.

7.1. VAR Models

We consider gross domestic product (GDP), money supply
(M2), and real e$ective exchange rate (REER) for eight of
the most in"uential countries distributed across three di$er-
ent continents; see Figure 4. GDP and M2 data are available
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Figure 3. The histograms of p-values for the partial test. 200 independent replicates are sampled for each data-generating setting of (SNR, n). Testing with estimated V̂ ,
the !rst and second rows are results from Proposition 5.2 and Corollary 5.1, respectively.

Figure 4. The time plots of the macro-economic indices of eight countries from the !rst quarter of 1992 to the !rst quarter of 2020. The dataset is collected from CEIC (1992)
and OECD (2015).

through CEIC (1992), and REER data through OECD (2015).
The Bayesian information criterion (BIC) favors VAR models of
order one for all eight countries. Therefore, for each country, we
#t

yc
t = µc + 3cyc

t−1 + ec
t , t = 1, . . . , n + 1,

to the three di$erent economic indices (GDP, M2, REER), where
the superscript c distinguishes the eight countries. We may

compare the growth tendency among subjects if the eigende-
composition guarantees common components. If our test fails
to reject the null hypothesis for the matrices 3c, it provides us
con#dence to conduct the transformation zc

t = Vyc
t , µc

∗ = Vµc

with V3cV−1 = Dc diagonal. The lagged cross-dependence
cancels out for each coordinate of zc

t , that is, E[zc
t ] = µc

∗ +
DcE[zc

t−1]. Hence, with zc
t as the new set of variables, com-

parison between countries can then be done on each variable
separately.
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The quarterly data of seasonally adjusted time series span
from the #rst quarter of 1992 to the #rst quarter of 2020, with
length n + 1 = 113, and are pre-processed by taking the
log-di$erence and standardization. The least square estimators
of the coe%cient matrices are then obtained, and they follow
asymptotic normal distributions with rate n−1/2; see Chapter 3
in Lütkepohl (2005) for more details on estimating VAR models.
We conduct our multi-sample tests Corollary 4.1 and Proposi-
tion 4.2 on those coe%cient matrices.

Implementing Corollary 4.1, we get a p-value 0.991 which
indicates that we fail to reject H0 concerning all eight countries.
Meanwhile Proposition 4.2 yields a p-value of 0.045 at the mar-
gin of rejection level. These results are not surprising based on
our simulation study in Section 6.3. Figure 2 indicates that under
the null space, the Chi-squared test (Proposition 4.2) tends to
reject the hypothesis more o!en than suggested by the nominal
test size and the gamma test (Corollary 4.1) tends to reject the
hypothesis less o!en.

In addition, if we look at the p-value table (Figure 5) for
simultaneous commutator-based tests according to Proposi-
tion 3.2, we see that the United States and China both share
quite evident similarities with all other countries, and there are
reasonable similarity structures within each continental group,
except between Korea and Japan. Splitting the eight countries
into three continental groups and repeating our test based on
Corollary 4.1 group-wisely, we successfully get the conclusion
that H0 holds within the continental groups. The correspond-
ing p-values are, 0.530 for North America (United States and
Canada), 0.978 for Europe (France, Germany, and United King-
dom), and 0.900 for Asia (China, Japan, and Korea). In addition,
even the unstable Proposition 4.2 gives p-values 0.076 and 0.657
for North America and Europe, respectively.

Since the test statistic in Corollary 4.1 gives a relatively large
p-value and taking into consideration the test results of our
pairwise test as well as the test performances in the simula-
tion study, we may conclude that one fails to reject H0. Our
test results provide evidence that it is reasonable to assume

Figure 5. The heatmap of the p-values of the pairwise commutator-based test.

that the coe%cient matrices share the same eigenvectors. The
approximated common le! eigenvectors V and the new shared
variables are

zt = V




GDPt
M2t

REERt



 =




0.66 0.41 −0.10
0.62 0.04 −0.81
0.72 −1.03 −0.10








GDPt
M2t

REERt



 .

(23)
In addition, we conduct the partial test for one common

eigenvector (k = 1) on all eight coe%cient matrices, and get
that the p-values equal 0.737 from the Chi-squared test (19)
and 0.964 from the gamma approximation (21). In addition,
when considering k = 2, (21) gives the p-value 0.948. Recall
that the transformed variables have the following notation zc

t =
(zt[1], zt[2], zc

t [3]), where the #rst two variables (without super-
script c) are shared across all eight countries. The two common
variables zt[1] and zt[2] that only depend on itself in expectation
are

zt[1] = 0.67 ∗ GDPt + 0.34 ∗ M2t − 0.68 ∗ REERt ,
zt[2] = 0.58 ∗ GDPt − 0.93 ∗ M2t − 0.03 ∗ REERt .

Note that zt[1] and zt[2] correspond to the #rst and third row of
V in (23), respectively, with a bit rescaling and "uctuations.

7.2. Stationary Distribution of Markov Chains

Consider p recurrent Markov chains {Xi = {Xi,t}n+1
t=1 }p

i=1 with
time length n+1 and labels Xi,t from a #nite discrete state space
{1, . . . , d}. Within each chain the transition probability matrix
Pi can be estimated consistently to follow asymptotic normality.
For example, Pi can be estimated by

P̂i =
(̂
Pi,rs

)
d×d, P̂i,rs =

∑n
t=1 I(Xi,t = r)I(Xi,t+1 = s)∑n

t=1 I(Xi,t = r)
; (24)

see (3) in Barsotti et al. (2014). The estimates P̂i in (24) can be
deduced to follow asymptotic normality in the sense of Assump-
tion 1 with limiting covariance !i given by

lim
n→+ n cov(̂Pi,rs, P̂i,uv) =






Pi,rs(1 − Pi,rs)/π i,r , r = u, s = v,
−Pi,rsPi,uv/π i,r , r = u, s .= v,
0, otherwise,

(25)
where π i = (π i,1, . . . , π i,d) ∈ Rd is the stationary distribution
of chain Xi; see Lemma 3.1 in Barsotti et al. (2014). Note that π i,r
is strictly positive for any i and r since all chains are recurrent.
In practice, π i can be estimated either from P̂i or directly from
chain Xi.

Applying the Perron-Frobenius theorem (Horn and Johnson
2012, Theorem 8.4.4), it is possible to conduct our partial test
to check identical stationary distributions if we could #nd a
common nonnegative eigenvector. Using the fact that each Pi
(and P̂i) has stationary distribution as an eigenvector corre-
sponding to eigenvalue 1, we can optimize the common nonneg-
ative eigenvector associated with #xed eigenvalue 1, which must
be proportional to the common distribution vector if it exists.
We aim to #nd the nonnegative vector π̂ which optimizes the
problem
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Figure 6. The discharge dataset for Hudson river with di"erent time resolutions and disjoint time coverage. The unit is ft3/s. The discharges are classi!ed as “drought” if in
the lower region (below 25 percentile), as “#ooding” if in the upper region (above 75 percentile), and as “normal” if in the middle. In the plot, the (colored) crosses represent
the classi!ed states, with axis on the right.

minimize f (x) =
p∑

i=1
x′(̂Pi − Id)(̂P′

i − Id)x,

subject to
d∑

i=1
xi = 1, and xi ≥ 0, ∀i = 1, . . . , d. (26)

It can be solved via quadratic programming with explicitly given
constraints.

We consider the stream"ow discharge data of Hudson river
collected at Fort Edward, NY; see Figure 6. The dataset is
available at U.S. Geological Survey (2016). We use the histor-
ical weekly data (from October 1st 1979 to September 30th
2014) and the more recent daily data (from October 1st 2015
to September 30th 2020). Both series have the same length
n = 1827. We classify the discharge records to three levels
according to the percentile statistics based on data from October
1st 1977 to September 30th 2019. An observation is referred to as
“drought” if it is below the 25th percentile, as “"ooding” if above
the 75th percentile, and as “normal” otherwise. We assume
that this three-state sequence satis#es the Markov property, and
estimate the transition probability matrices (see Figure 7) for our
partial test. Note that the two time series are disjoint, hence it is
reasonable to view these estimators as independent.

We implement the partial test according to both Proposi-
tion 5.2 and Corollary 5.1, with parameter k = 1 and V =
π̂ i given by optimization (26). The two tests give the p-values
of 0.106 and 0.102, respectively, which indicate that one fails
to reject H∗

0 in (2) and may conclude the two series share
the same stationary distribution. The estimated common sta-
tionary distribution is P(Drought) = 0.230, P(Normal) =
0.519, P(Flooding) = 0.251. The results indicate that for time
series with di$erent time resolutions, even though the transition

probability matrices can be di$erent, the stationary distribution
might still be veri#ed to be statistically equivalent.

8. Conclusions

In this work, we focused on general asymmetric matrix-valued
population quantities and developed e$ective tests on simul-
taneous diagonalizability under both two-sample and multi-
sample settings. We also generalized our designs to test on
partially shared eigenvectors, with introduction of a supple-
mental optimization algorithm that retrieves those common
eigenvectors. Finally, we applied our test to real data examples
and successfully revealed interesting structural properties of the
underlying models.

In this work, we considered the classical “#xed d, large n”
regime. However, many contemporary data go beyond the low
dimensional setting and require the dimension d to be of the
same order as, or possibly even larger than, the sample size
n. While the high-dimensional setting goes beyond the scope
of this work, we added a discussion and simulation study in
Section B.3 of the supplementary material to emphasize that the
methodology in this article is not su%cient to do testing on high-
dimensional data.

Other possible future directions include adjacency matrices
of weighted directed networks which are possibly asymmetric
square matrices. Our partial test could be of special interest
to test on their leading eigenvectors. Combined with the high-
dimensional setting, one could even study expanding networks.

In our multi-sample (Section 4) and partial tests (Section 5),
the estimated V̂ is treated as given and deterministic in the test
statistics. It might be possible to pursue more rigorous results by
deriving the stochastic properties of the optimizer V̂ .
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Figure 7. The two transition matrices are estimated according to (24) and they are statistically di"erent according to asymptotic Wald test. Numerically speaking, at least
the diagonal entries of the two matrices are obviously unequal.

Supplementary Materials

The supplementary material includes all appendices. In particular, it
includes an alternative approach for the two-sample test, all proofs, and
some additional discussions.
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