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ABSTRACT

Stochastic volatility, or variability that is well approximated as a random process, is widespread in
modern finance. While understanding that volatility is essential for sound decision making, the struc-
tural and data constraints associated with complex financial instruments limit the applicability of clas-
sical volatility modeling. This article investigates stochastic volatility in functional time series with the
goal of accurately modeling option surfaces. We begin by introducing a functional analogue of the
familiar stochastic volatility models employed in univariate and multivariate time series analysis. We
then describe how that functional specification can be reduced to a finite dimensional vector time
series model and discuss a strategy for Bayesian inference. Finally, we present a detailed application
of the functional stochastic volatility model to daily SPX option surfaces. We find that the functional
stochastic volatility model, by accounting for the heteroscedasticity endemic to option surface data,
leads to improved quantile estimates. More specifically, we demonstrate through backtesting that
Value-at-Risk estimates from the proposed functional stochastic volatility model exhibit correct cover-
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age more consistently than those of a constant volatility model.

1. Introduction

A functional time series {Y;(t)} is a time-ordered sequence
(t=1,2,...) of random functions often used to model the
time dynamics of random phenomena that live on a con-
tinuum (7 € 7). Functional time series models enable statis-
tical analysis and prediction of curves and surfaces evolving
over time. The study of functional time series has become
increasingly relevant as the collection of data in high reso-
lution or frequency has become commonplace.

Functional time series can offer key practical advantages
over multivariate or vector time series. By modeling random
phenomena on a continuum, functional time series meet the
needs of real world applications in which measurement loca-
tions are often sparse, changing over time, or irregularly
spaced. Applying multivariate time series methods in similar
settings would require that measurements lie on a regular
unchanging grid and demand special handling of missing
data. Furthermore, the number of parameters associated
with a vector time series model would grow with the num-
ber of measurement locations and quickly become unreason-
able, whereas the parametrization of a functional time series
model is independent of the measurement locations.

More fundamentally, functional time series methods
extend the domain of functional data analysis to time
dependent functional data. While the celebrated results of
Karhunen (1947) and Loeve (1945) imply that functional
principal component analysis (FPCA) provides an optimal

finite dimensional representation for ii.d. functional data,
that optimality no longer holds when observations exhibit
time dependence. However, FPCA provides a foundation for
the development of methods intended specifically for time
dependent functional data. Further background on the foun-
dations of functional data analysis and FPCA can be found
in Ramsay et al. (2005), Horvath and Kokoszka (2012), and
Hsing and Eubank (2015).

Functional time series methods have found application in
a wide variety of domains such as demographic forecasting
(Hyndman and Booth 2008; Shang et al. 2011; Hyndman
et al. 2013; Li et al. 2020), spatiotemporal modeling (Besse
et al. 2000; Ruiz-Medina et al. 2014; Cressie and Wikle 2015;
Jang and Matteson 2018; King et al. 2018), yield curve fore-
casting (Kowal et al. 2017; 2019; Sen and Kliippelberg 2019),
high frequency finance (Hormann et al. 2013; Aue et al. 2017;
Huang SF et al. 2020; Li et al. 2020), traffic flow modeling
(Klepsch et al. 2017), and electricity demand forecasting
(Shang 2013; Yasmeen and Sharif 2015; Chen and Li 2017).

Many important multivariate time series models have
been generalized to a functional setting. The functional ana-
logue of the autoregressive integrated moving average
(ARIMA) model has been developed by several authors.
Bosq (2000) developed the theoretical foundations of the
functional autoregression model on Hilbert and Banach
spaces, while Aue and Klepsch (2017) studied the functional
moving average model. Klepsch et al. (2017) derived suffi-
cient conditions for the wide-sense stationarity of a
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functional ARMA model on separable Hilbert spaces. Sen
and Klippelberg (2019) explored how a functional ARMA
model leads to a vector ARMA structure on the principal
component scores. Li et al. (2020) addressed long memory
in functional time series by developing fractionally differ-
enced functional ARIMA models. Developments related to
forecasting functional time series appear in Hyndman and
Shahid Ullah (2007), Bosq (2014), and Aue et al. (2015).
Kowal et al. (2017) and Kowal et al. (2019) introduced a
Bayesian framework for functional time series through a
dynamic linear model formulation.

Compared to the extensive literature on functional general-
izations of ARIMA and dynamic linear models, relatively little
has been written on the important problem of modeling het-
eroscedasticity in functional time series. In time series ana-
lysis, accounting for heteroscedasticity or time-varying
volatility is critical to accurate and reliable uncertainty quanti-
fication in forecasting problems. Heteroscedasticity is com-
monly addressed through autoregressive  conditional
heteroscedasticity (ARCH) models, generalized autoregressive
conditional heteroscedasticity (GARCH) models, or stochastic
volatility (SV) models. In univariate time series, the ARCH
model was proposed by Engle (1982) and the GARCH model
by Bollerslev (1986), while the univariate SV model was pro-
posed by Taylor (1982) and Taylor (1986), with further inves-
tigations and comparisons by Taylor (1994), Shephard (1996),
and Ghysels et al. (1996) among others. Multivariate GARCH
models were examined in Bollerslev et al. (1988) and
Bollerslev (1990), while multivariate SV models were consid-
ered in Harvey et al. (1994), Daniélsson (1998), and Asai
et al. (2006). Bayesian methods for multivariate GARCH and
SV models were proposed in Vrontos et al. (2003) and Yu
and Meyer (2006), respectively. To date, there have been sev-
eral important contributions on the topic of heteroscedastic
functional time series models. Hormann and Kokoszka (2010)
formalized the notion of weakly dependent functional time
series, while Hormann et al. (2015) addressed serial correl-
ation through a dynamic Karhunen-Loeve expansion, a func-
tional analogue of the dynamic principal component analysis
introduced for multivariate time series in Brillinger (1981).
Hormann et al. (2013) and Aue et al. (2017) proposed func-
tional ARCH and GARCH models, respectively.

This article investigates stochastic volatility in the func-
tional time series setting. In ARCH/GARCH models, the
conditional volatility process is a deterministic function of
past data, while in SV models the conditional volatility is
driven by its own stochastic process and is not measurable
with respect to past observable information. Although seem-
ingly less popular in applications, stochastic volatility models
have been observed to provide a better fit with fewer param-
eters when compared to GARCH models (Daniélsson 1998;
Kim et al. 1998). SV models also provide a natural discrete
analogue to the stochastic differential equations used in
option pricing, such as the stochastic volatility diffusion of
Hull and White (1987).

Stochastic volatility is ubiquitous in financial time series
modeling, as it is often observed empirically in the dynamics
of asset prices and returns (Hull and White 1987; Heston

DATA SCIENCE IN SCIENCE ‘ 7

1993; Heston and Nandi 2000; Gatheral 2006; Shephard and
Andersen 2009). Accordingly, we illustrate the benefits of
our functional stochastic volatility (FSV) model in a finan-
cial application and model the daily price movements of
SPX options contracts. SPX options have the Standard and
Poor’s 500 Index as the underlying asset. For each day from
January 1, 2010 to December 31, 2017, we have quotes of
hundreds to thousands of option contracts which differ by
their strike price and time to maturity. These contracts can
be understood as a discrete collection of points observed
from an underlying continuous option surface. Exploratory
analyses indicate that these SPX option surfaces exhibit sto-
chastic volatility. We demonstrate through a backtest that the
FSV model leads to more accurate estimates of the portfolio
Value-at-Risk (VaR) compared to a constant volatility model
as its quantile estimates consistently exhibit the correct cover-
age. Hence the FSV model can benefit portfolio managers,
risk managers, and other practitioners who need to monitor
risk metrics of portfolios containing futures, options, swap-
tions, and other derivatives whose price dynamics are deter-
mined by an underlying continuum. More broadly, the FSV
model can benefit any forecaster who is concerned not only
with prediction but also quantile estimation and uncertainty
quantification for functional time series data.

We now outline the remainder of the article. Section 2
describes the FSV and justifies the consideration of a finite-
dimensional form. Section 3 addresses Bayesian inference
for the FSV model. Section 4 presents the application of the
FSV model to SPX option portfolio risk management.

2. Method

In time series analysis, data often exhibit both time-varying
volatility and autocorrelation. Therefore, SV models are com-
monly used in conjunction with ARMA models by allowing
the innovations of the ARMA process to have time-varying
volatility. In this section, we formulate the FSV model in the
context and notation of a functional ARMA model. Then we
show how the FSV model can be reduced to a tractable finite
dimensional representation that facilitates inference with famil-
iar techniques from vector time series. Lastly, we describe the
basis functions used for dimension reduction.

2.1. Functional Stochastic Volatility

We define an FSV model as a sequence of random functions
that can be decomposed as the product of a volatility pro-
cess with a serially uncorrelated noise process. More pre-
cisely, let 7 C R? be compact and let L*(7) be the set of
square-integrable functions defined on 7. Suppose 7, is a
sequence of random functions in L*(7) that can be decom-
posed as the product

() = vi(1)z(1)

where

1. {z} is a sequence of ii.d. mean zero random functions
in L*(7) with a common correlation function
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ke(r,u) =
for all 7,

2. {w} is a sequence of non-negative random functions
in L*(7),

3. {z} and {v;} are independent.

Covlzi(1),z:(u)] for all ¢ so that k,(z,

=1

Then {#,} is a functional stochastic volatility process if, for
all ¢, the conditional volatility function v, is not measurable
with respect to the sigma field generated by {(v.n,)}.;.
This is in contrast to a functional ARCH or GARCH pro-
cess where v, is measurable with respect to the above sigma
field. The FSV process will drive the functional ARMA pro-
cess introduced in the next section.

2.2. Functional ARMA with Stochastic Volatility

We assume that the data of interest arise from an underly-
ing functional ARMA process {Y;} driven by an FSV pro-
cess as defined in the previous section. More precisely,
suppose for each time ¢ that Y; is observed at n; > 0 loca-
tions with measurement error as y;; = m(ty,;) + Yi(ts,:) +
&,; where T.1,..,T,,, €7 are the observation locations,
m(7) is the mean function, and &, NN (0,6?) is the measure-
ment error.
The functional ARMA(p,q) model for {Y;} satisfies

+ZJ

—ZJ ‘Eunt] u)du (1)

where {5,} is a sequence of mean zero random functions
with IE||n,||2 = E[ant(r)zdr] <oo and E[y,(t)n,(t)] =0

when t # s for all 7. In other words, the functions {#,} are
uncorrelated across time but not necessarily independent.
These conditions are satisfied by the FSV model in Section 2.1,
and hereafter we will suppose that {#,} is an FSV process. The
parameter kernel functions {y;} and {0;} are analogous to the
parameter matrices in a multivariate ARMA model and deter-
mine the time-varying conditional mean.

Previous work has established sufficient conditions for
the existence of a unique wide-sense stationary and causal
solution to Equation 1. Suppose the volatility process {v:} is
wide-sense stationary so that there exists a common func-
tion k,(t,u) = E[v(t)v(u)] for all ¢ implying that
ky(t,u) = E[n,(t)n,(u)] = ky(t, u)k,(t,u). It is shown in
Theorem 3.8 of Klepsch et al. (2017) and in Li et al. (2020)
that a unique wide-sense stationary and causal solution
exists provided that k, and {0;} are Hilbert-Schmidt kernels
so that foT (T u)’ drdu < oo and [, [, 0;(t.u)’drdu < oo
for each j, and {y,} satisfies the summablhty condltlon

i “TJT%(T, u)zdtdu} v <1

i=1

u)Y;_i(u)du

The functional ARMA model can be defined more generally
with bounded linear operators acting on separable Hilbert
spaces as in Klepsch et al. (2017).

For the sake of simplicity and computational tractability,
we will work with the functional AR(1) process and drop
the index on the kernel function /; so that

v = | vt

T

u) Y1 (u)du + n,(7).

2.3. Reducing a Functional Time Series to a Vector Time
Series

The functional ARMA model becomes more tractable upon

making a few assumptions. In particular, we suppose there

exist orthonormal deterministic functions fi,...,fx € L*(7)

such that the following conditions hold:

1. The functional ARMA process {Y;} lies in
Span(fi, ....fi). In that case, there exist random coeffi-
cient vectors B, =B Puc)’ and y, = (oo i)
with f =< Yy, fk > and y, =<y, fx > such that Y, =
Sy Bute and 1, = SO, 7ufi. Because the functions
fi> ... fx are orthogonal, the entries of each f, vector are
uncorrelated, as are the entries of each y, vector.

2. The kernel (z,u) € Span(fi, ..., fx) ® Span(fi, ..., fx), so
there exists a K x K coefficient matrix ¥ = [if;] such that

=3 Uh(Dfi(w)
k=1 j=1

where

Vg =< W00 D) > i) >= [ [ (o w)f (w)fe(x)dudz.

3. The coefficient vectors 7, are a time-dependent sequence
of random vectors with

V¢ | Feo1 ~ Nk (0, 2%)

and the conditional covariance function of n,(t) is
defined and satisfies

Covin(2)o () | Fir] = iy (5,

K
= Z e fe(t)fic(u)
where F; is the sigma field generated by {y,}., and
{h}'_, with by = (B, ... i) "

Under assumptions 1-3 above, the coefficients {ﬂt}t .
form a K-dimensional first order vector autoregressive, or
VAR(1), process satistying

B =Py + 1
Ve | Fro1 ~ Nkg(0, Ev,)

where X, is assumed diagonal and equal to diag(e®). The
coefﬁc1ent series {ﬁt}t | is a VAR(1) process with stochastic
volatility as the conditional covariance matrix of y, depends
on the random vector h; and thus is not F,_;-measurable.

In this article, we use VAR(1) dynamics for h;, a choice
well-suited for modeling volatility clustering. More precisely,
we suppose

h[:ﬂ+(D(h[1_ )+CZ

iid
{,~Nk(0,X;).



For the sake of parsimony, we assume the matrices ® and X;
are diagonal and that the series {htj}thl is independent of the
series {hy},_, for all distinct pairs of indices j and k. Thus,
for K-dimensional parameter vectors ¢ and ¢;, we have

b= gt ¢ (o — )+,
C;ENK [0, diag(ag)}.

Letting y, = (yt)l,...,yt),,r)—r, m; = [m(t1), ...
(Ft)i,k :fk(ft,i)> B = (:Btl’ ""ﬂtK)T> & = (&1,
(W) = Wi e = (e, hi) ' 90 = (o) > 0=
(1o ti) s ¢ = (b1 i) > 00 = (01,..0x) ', and ¢, =
(# ...,CtK)T, we can succinctly summarize our hierarchical
model as follows:

Y, =m; +Fp, + &8 ~ Ny, (0> 0@1)’ (2)
B, =YB,_y+ vy | bt ~ Nx [0, diag(eh’)} , (3)

o=+ ¢ (hy — p) + 00l ~ N [o, diag(ag)], (4)

ok
e ¢?<>] ©

1. {&} and {{,} are independent across time and with
each other,

2. {&} is independent of {y,},

3.y, is conditionally independent of {y,}!_| given h;, and

4. By is independent of everything else.

. a1
h; ~ Nk |, diag 0 .
-

where

A functional ARMA(p,q) process can similarly be reduced
to a VARMA(p,q) process with stochastic volatility. The
assumptions that fi,...,fx are orthonormal and X, is diag-
onal could be relaxed through the use of a structural VAR
with stochastic volatility as in Chan (2021).

2.4. Basis Function Selection

A functional time series represents an infinite-dimensional ran-
dom process, but in practical implementations we seek a finite-
dimensional representation which, under suitable regularity con-
ditions, best approximates the underlying process with minimal
information loss. In our application, we use the first K func-
tional principal components, estimated from spline-smoothed
functional data, as our basis functions fi, ..., fx. Refer to Section
1 of the supplementary material for justification, and to Kneip
(1994), Hall and Vial (2006), Chakraborty and Panaretos (2019),
and Mohammadi and Panaretos (2021) for further foundations
on assessing the finite dimensionality of functional data.

3. Inference

This section describes Bayesian inference for the FSV model.
Subsection 3.1 briefly reviews Gibbs sampling, while
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Subsection 3.2 presents the prior specification and resulting
full conditional distributions.

3.1. Markov Chain Monte Carlo and Gibbs Sampling

Suppose our observed data yi,...,y, are sampled from a
joint density p(y1,....y, | @) where @ € © represents the
parameters of the model. Let p(0) be the prior density on 0.
The posterior density after observing yi, ..., y, is given by

_ PO -yn | 0)p(6)
p(o |y1’ ""yﬂ) J.p(J/la ”.’yn ‘ ol)p(ol)dal

< p(y15 - yn | 0)p(0).

See Gelman et al. (2013) for an overview of Bayesian data
analysis.

For many complex models, the posterior density cannot
be evaluated analytically because the integral in the denom-
inator is intractable. To address this problem, Markov Chain
Monte Carlo (MCMC) methods (Robert and Casella 2004)
construct a Markov chain on the parameter space that has
the posterior as its stationary distribution. The sample path
of the Markov chain can then be used to approximate pos-
terior summaries, functionals, or other quantities of interest.

The Gibbs sampling algorithm proceeds by partitioning
the parameter space into disjoint blocks such that © =
®; x---x 0Oy and then iteratively sampling from the
full  conditional ~distributions  p(01 | {yi}iiy, {0m} ) o
PO | {yi}i=1>{0m} ppar)- The full conditional distributions
are often analytically tractable even when the joint posterior
distribution is not. One advantage of the Gibbs sampling
approach is that it does not require any tuning parameters.
The Gibbs sampling algorithm is also modular, allowing one
to plug in existing techniques to sample from the full condi-
tional distributions when they are available. See Robert and
Casella (2004) for a more detailed description of the Gibbs
sampling algorithm, its theoretical properties, and its origins.

3.2. Prior Specification and Full Conditional
Distributions

This section presents the prior specification for the FSV
model and the resulting full conditional distributions. In
order to write these succinctly, we introduce matrix variate
notation to simplify Equations 2-5 in Section 2.3.

From the terms in Equations 3-5, we define the following KT-
dimension random vectors f = (B}, ...1) v = (¥7 ... v5)
and h = (h/,...h}.)". Then the random vectors satisfy

PB=y (6)
where
Ik (1] 0k ... O
-¥ IK OK OK
P — 01( —‘P IK OK
(1) 0k Ox ... Ig

and Ix and O denote the K x K identity and zero matrices
respectively.
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From the terms in Equation 2, we set n, = S°F, n; and define
the n,-dimensional random vectors y = (y/,...y5)", m=
(m],...mJ)", and e = (g],...eJ)", along with the block diag-
onal matrix F = diag(Fj, ..., Fr). Then we have

y=m+Fp+e¢.

Writing the SV parameters as 0, = (u, ¢,0¢), it follows
from Equation 2 that

y|Bh0,Y, 0> ~ N, (m + F, a2l
and

ly—m _F,,”z)

2
207

p(y| B0y, Y, 0%) = (2162) " exp (

For the log-variance process h and its associated SV
parameters 0, the priors are assigned as in Kim et al.
(1998) and Kastner and Frihwirth-Schnatter (2014). More
specifically, the conditional prior of h given @), factors as

p(h | 64) = p(h | 6) [ [ p(e | hir,6r)

t=2

where

h; | hy_1,0, ~ Nk [,u + ¢ (h_y — y),diag(aé)}

2 2
p, diag S R S >
1 —¢] 1—¢x

and the priors of the SV parameters ), are independent so that

h1|0hNNK

p(0) = [ [ 2w (d)p ()
k=1

with
K ~ N(bu’ Bu)
(1+ ¢y)/2 ~ Beta(ay, by)
1 1
2 ~By;- =B, -G =, —
0% s 1] » - Gamma (2 ZB(,>
for all k.

To the remaining parameters, we assign the following
priors, which yield closed form full conditional distributions:

B hY¥ ~ Nk |07k, P~ 'diag(e") P~ T],
Y ~ Matrix Normalg x(M, U, V),
6? ~ InvGamma(a,, b,),

where Matrix Normalg, x(M, U, V) indicates a K x K matrix
normal distribution with mean matrix M and scale matrices
U and V. The density function is given in Section 3 of the
supplementary material. The notation InvGamma(a,,b,)
indicates an inverse gamma distribution with shape param-
eter a, and scale parameter b,.

In summary, all full conditional densities will be proportional
to the joint density of (y, B, h, 0, ¥, 62) which factors as

P B 1, 04,Y,07) = p(y | B.ol)p(B | b, ¥)p(h | 0)
p(0n)p(P)p(a?).

The full set of prior hyperparameters is (b, By, ag¢, b4, M,
U,V,a, b, B;).

The full conditional distributions of h and 6, along with
an associated sampler are presented in Kim et al. (1998) and
Kastner and Fruhwirth-Schnatter (2014). After Gibbs
updates to B and ¥, y is recalculated through Equation 6.
As each {y,}., is assumed to be independent of the others
with different k, each {ytk}thl is a univariate time series
with an associated stochastic volatility process {hy},_, as in
Kim et al. (1998). That article carries out Bayesian inference
for {hy},_, and its three associated parameters {1, ¢y, 0%}
through a mixture sampler applied to {y,k}thl. The R pack-
age stochvol developed by Kastner (2016) employs this
mixture sampler as well as the Ancillarity-Sufficiency
Interweaving Strategy in Kastner and Frihwirth-Schnatter
(2014) to achieve highly efficient Bayesian inference.

The remaining full conditional distributions are as follows:

B 13k, 00,02 ~ Ny 027

1
o2 | y,B.h,0,¥ ~ InvGamma(a8 + %, b, + 3 ly —m— FBHZ),
vec(¥) | y, B h, 6% ~ Niz(py, Zw),

where
Hpg = AEIFT(Y —m),
Ag = F'F + 2P diag(e )P,
X, = diag(e™),
T
py = Typvec <Z>:t1ﬁtﬁf_l + UIMV1>,
. t=2 .
Ty =Y (BB @)+ (VU
t=2

The full conditional distributions for B and o2 follow from
the well-known Bayesian linear regression with the normal-
inverse-gamma conjugate prior. A derivation can be found,
for example, in Gelman et al. (2013). Though the dimension
of B is potentially very large, we can exploit the block struc-
ture of its precision matrix. Section 2 of the supplementary
material describes how to sample efficiently from the full
conditional for f. Refer to Section 3 of the supplementary
material for a derivation of the full conditional for P.

We note that the above Bayesian inference can readily be
extended to the associated VAR(p) of a functional AR(p)
process using Minnesota-type priors as in (Doan et al. 1984;
Litterman 1986; Giannone et al. 2015; Chan 2021). For the
VARMA(p,q) case with >0, this extension is less
straightforward.

4, Value-at-Risk Estimation for Option Portfolios

In this section, we apply the FSV model to SPX option sur-
face data in order to estimate Value-at-Risk for option port-
folios. The results indicate that modeling stochastic volatility
can improve quantile estimates in this setting. Subsection
4.1 provides an overview of the application. Subsection 4.2
describes in detail the SPX option surface data set and its
representation as a functional time series {Y,(1)}.
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Subsection 4.3 motivates the application of an FSV model
through an exploratory analysis and visualizes the basis
functions chosen for the application. Subsection 4.4 dis-
cusses the construction of a forecast distribution for Y;(t)
from posterior samples and describes how the forecast dis-
tribution is used to estimate quantiles. Subsection 4.5 evalu-
ates the quality of the forecast against a benchmark constant
volatility model.

4.1. Overview of Application

The field of financial risk management is concerned with
estimating worst case outcomes (rather than mean out-
comes) in order to quantify the magnitude of potential
losses due to adverse movements in market prices or other
risk factors. Consequently, the problem of quantile estima-
tion is of key importance. Stochastic volatility models are
often employed in the field because they better represent the
empirical movements of financial time series and, as a
result, improve upon quantile estimates for univariate and
multivariate time series (Sadorsky 2005; Han et al. 2014;
Huang AY 2015; Bui Quang et al. 2018). This application
tests whether the same pattern holds for a functional time
series.

In the present application, the functional time series
{Y,(1)}_, represents a surface of option price quotes and is
modeled with the proposed FSV model. An option gives the
owner the choice to buy (if a call option) or sell (if a put
option) an underlying asset S, at some fixed strike price «k at
some future maturity date u >t For any single underlying
asset (such as the S&P 500 Index) there exists an entire sur-
face of options for that asset, because options can differ by
their strike price x and maturity date u. These two variables
define the dimensions of the domain variable 1 € 7 C R?.
The range variable Y;(7) can be thought of as a proxy for
the price of the option with contract terms 7, as there is a
one-to-one relationship between Y;(t) and the option price.
These variables are described in full detail in Subsection 4.2.

Consider a loss random variable L;.; = II;(Y;;) for
some functional I1, : L>(7) — R. The loss random variable
L;., represents the decrease in value of a portfolio of
options from time ¢ to time f-+1. The functional II; is
determined by the composition of the option portfolio held
at time t. Both L;;; and II, are constructed explicitly in
Subsection 4.4.

The next-day (1 —a)100% Value-at-Risk for L,; is
defined as

VaR(Liy1, 1 —a) =sup{x € R: P(Liy <x) <1—0a} (7)

=F'! (1—a) if Ly is a continuous R.V. (8)

In other words, Value-at-Risk is the quantile function for
the loss random variable L,y;. Estimating Value-at-Risk is a
key problem in financial risk management as it identifies the
potential magnitude of loss L; due to the random market
price movements of Y.

A natural approach for evaluating the quality of an esti-

mator \Tai(LtH,l —a) is to compare the proportion of
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observed exceedences of the quantile estimate to the true
level of the quantile. Define the exceedence indicator varia-

bles Xt: 1{L[+1 > @(L[+1,1 _OC)} for t= 1,...,T— 1
and set Ny_; = ZtT;II X;. If we assume the X, variables are
identically distributed, then Nr_; =

tT:]l X; ~ Binomial(T — 1, o). Kupiec (1995) proposes a
binomial hypothesis test of Hy : ay = o against H, : oy # o

independent and

in order to evaluate the whether the estimator @(Ltﬂ, 1-—
o) has the correct exceedence rate. This is done on a year-
by-year basis in Subsection 4.5.

4.2. SPX Option Surface Data Set as a Functional Time
Series

This section describes the SPX option data set and its rep-
resentation as a functional time series. It will provide full
descriptions of the domain and range variables, and motiv-
ate the use of a functional time series model.

A European option is a financial contract that, at some
fixed maturity date in the future, gives the owner the option
to purchase (if a call option) or sell (if a put option) a unit
of an underlying asset at a fixed strike price, regardless of
the actual market price of said asset. In the case of an SPX
option, the underlying asset is the Standard & Poors (S&P)
500 Index.

Our method is applied to daily SPX option surfaces
sourced from OptionMetrics’s IvyDB database (2017) from
January 1, 2010 to December 31, 2017. There are
T=2013days in total. Each daily option surface includes
between 1400 and 10,000 option contracts, which are differ-
entiated by their strike price, date of maturity, and whether
they are call options or put options. Option prices are
quoted based on their Black-Scholes implied volatility, the
log of which is the variable of interest Y;(t). There is a one-
to-one relationship between the option price and Y,;(t) (see
Equation 11). The unfamiliar reader can regard Y:(7) as a
proxy for option price.

The domain variable 7= (7!,7?) is two-dimensional
with ! € [1,1/1095] being the square root of number of
days to maturity, and > € [0,1] being the Black-Scholes
call option delta, which is the change in call option pre-
mium for a $1.00 change in the underlying asset price
holding all other parameters including implied volatility
fixed. The formula for 7 is given in Equation 13. The vari-
able 7! is set as such because the implied volatility of an
option is a function of its remaining time to maturity
instead of the preset date of maturity. The variable 72 is set
as the call option delta so that implied volatility is static
with respect to the ratio of the underlying asset price to
the strike price instead of the absolute strike price. The
functional domain 7 is the rectangle determined by the
two univariate domains:

=7 eT = [l,\/ 1095] X

We include both call and put options in our analysis.
They share the same implied volatility if their strike price
and maturity match, but their option deltas differ by a

[0,1].
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deterministic relationship. In order to keep domain variables
equivalent for the two types of options, we convert a put
option’s delta to its equivalent call option delta by adding
exp (—Dividend Yield x Time To Maturity) to its value.
Refer to Hull (2018) for an introduction to option pricing.
Since illiquid option prices have high measurement error,
options whose bid-ask spread is larger than 10% of the pre-
mium are excluded from the analysis.

On any given day ¢, the observation points 7 1,..., T, s, € 7
are determined by the options traded on the market that
day. The set of observation points changes every day, moti-
vating the use of a functional time series model for the SPX
option data set. The observation set changes each day
because the option contracts in the market are issued with
a fixed date of maturity. Hence, the remaining time to
maturity t! decreases with each passing day and all observa-
tion points shift towards the short maturity end of the
domain with observations dropping out the domain
when contracts mature (that is, when t' = 0). Furthermore,
new observations enter the domain whenever new sets of
option contracts are issued. Lastly, movements in the under-
lying S&P500 Index change the delta 7 of all options simul-
taneously, resulting in daily lateral shifts in observation
points.

4.3. Basis Function Estimation and Exploratory Analysis

This section motivates the use of an FSV model. We esti-
mate the functional basis {fi}r_, that will be passed into
subsequent Bayesian analysis using FPCA and present an
initial exploratory analysis. The sample time courses and
principal component scores suggest that the functional time
series exhibits stochastic volatility.

We used penalized spline smoothing, as implemented in
the R package mgcv by Wood (2011), to estimate the mean
function m(t) and functional principal components fi, ..., fx.
These are shown in Figure 1. The following knot sequences,
chosen based on empirical quantiles of the observation
points, were used in each dimension of the domain to define
the cubic tensor splines:

K= (1.4,1.4,1.4,1.4,8.1,12.7,19.3,33.1,33.1,33.1,33.1),

K?* = (0.10,0.10,0.10,0.10,0.37,0.57,0.71,0.79, 0.86, 0.90, 0.90, 0.90, 0.90).

The mean function m(t) demonstrates the characteristic
“volatility skew” endemic to equity option markets. The
Black-Scholes model assumes a Gaussian distribution for
market returns. If such an assumption were true, the
observed volatility surface would be flat. However, we see
that the S&P500 returns exhibit both heavy tails and a nega-
tive skewness, leading to convexity and skewness in the
mean function, respectively.

We have found that setting K=5 leads to interpretable
basis functions corresponding to local effects acting on spe-
cific regions of the domain. The first principal component
fi(1) is negative when time to maturity is small while posi-
tive when time to maturity is large, resulting in a tilt of the
surface with respect to maturity. The second principal com-
ponent f,(t) results in a bending effect with respect to

maturity. The third principal component f;(7) tilts the short
maturity end of the surface with respect to delta. The fourth
principal component f;(7) has a similar bending effect as
the second but pushes the edges upward in general. The
fifth principal component f5(t) pushes up one of the
corners.

In an exploratory analysis, we see evidence for stochastic
volatility. For five fixed sample domain points 7y,...,7s, the
differenced time courses {Y; (7)) — Yt(rj)}th_ll are shown
in Figure 2. The time-differenced principal component
scores are shown in Figure 3. Both sets of series exhibit sto-
chastic volatility and motivate the application of the FSV
model. Because the amount of stochastic volatility observed
in the previous section varies year-by-year, the model is fit
separately to each of the 8years of data.

4.4. Value-at-Risk Estimation for Option Portfolios

A forecast distribution for portfolio loss is required to esti-
mate quantiles and thus Value-at-Risk. This
describes how to use the posterior samples {0’}}21 pro-
duced by our MCMC algorithm to build a conditional fore-
cast distribution {LZ1}]]‘:1 for a next-day option portfolio
loss random variable L, ; = IT,(Y;,;) where II,: L*(7) —
R. The option portfolio pricing functional II; is explicitly
described by Equations 11-15. The forecast distribution
{Oi}]lzl is constructed from Equations 4.4-14. The key
quantity of interest in financial risk management is the
Value-at-Risk (VaR) which is defined by the quantile of a
loss distribution for a given time horizon and is defined in
Equation 7.

For this application, we complete the prior specification
as follows. For each k,

section

t ~ N(0, 1),
(¢ +1)/2 ~ Beta(20,1.5),
o} ~ 11
while

¥ ~ Matrix Normalg, (0, 10° - I, Ix),
62 ~ InvGamma(0.001, 0.001).

The prior for ¢, follows the example of Kim et al. (1998)
and implies a prior mean of 0.86 to reflect the volatility
clustering endemic to financial time series. We have
found that the results are not sensitive to the choice of
priors for u; and oy provided the series has a reasonable
length. The hyperparameters of the matrix normal prior
for ¥ and the inverse gamma prior for o2 were chosen so
that these prior distributions do not strongly influence the
results.

As we saw in our exploratory analysis (see Figures 2 and
3), the amount of stochastic volatility varies for each year.
Thus, we fit the FSV model separately to each year of data.
Figure 4 presents the 95% pointwise credible intervals for
each of the log-volatility processes hy against t. Years
2010-2011 and 2015-2017 exhibit a higher degree of rough-
ness in the random variation, indicating a higher presence
of stochastic volatility for these years. This is further



Figure 1. Mean Function m(z) and Functional Principal Components f; (1), ..., fs(t).

illustrated by the posterior histograms of the stochastic vola-
tility parameter o; appearing in Figure 5. The histograms
are bounded away from zero, especially in the vyears
2010-2011 and 2015-2017. The results are similar
for oy, ..., 0.

To simplify the presentation of what follows, it should be
understood that a posterior draw corresponds to the fit
from the year containing t. For each posterior sample from
the  associated  year’s  model  parameters 0=
{BY, W, 67, {h Y, W, ), 67), we forecast the option surface
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at time t+ 1 from time t as follows:

' ¢, ~ Nglo, diag(azj)] '
h:{H :ﬂj‘f'(bﬁ(h’t _F‘]) +C:{H
wl, | b, ~ Nk {0, diag(eh:il)]

ﬂjil = ‘Pjﬁ]; + “;il
Y:-Js-l(f> = F(T)T Z—l

where F(t) = [fi (7). ... f(7)] .
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Daily Changes in Sample Time Courses
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Figure 2. Differenced time courses {V;.1(7;) — (%) }1_; for five sample locations 7, ..., s, which exhibit stochastic volatility.

Given this forecast of the implied volatility surface
Y;1,(t) and observation points {7, ;,;}1,, we can compute

t+1
the Black-Scholes log-implied volatilities {y;}, ;}1*, as
*] o *] ] xj did i
Yerr,i = M(Taini) + Yep (Teagei) + &, p 8040,~N (0, 07).

€

With their implied volatilities known, the options in the
portfolio can be priced with the Black-Scholes formula
(Black and Scholes 1973). If an option’s log-implied volatil-
ity at time ¢ is y,, then its price is given by

Prem [Mt, St, K, CP, rt(Mt)’qt)yt] _ (10)
cp [S’efth"D(CP x dy) — ke " MIMP(CP x df)} 11)
where
log (S:/x) + [ri(M;) — g = Le¥| M,
- (12)
&'/M;
and

o M, = M,(t") = (1')%/365 is the time to maturity in years
at time ¢,
S; is the spot price of S&P500 at time t,

K is the option strike price,
. CP— 1 for a call option,

—1 for a put option,
e /(M) is the risk-free rate at time t associated with time
to maturity M,

® g, is the dividend yield of S&P500 at time ¢,
o y, is the log of implied volatility at time ¢,
o O is the standard normal cumulative distribution function,

and the Black-Scholes call option delta 7 is computed from
the above inputs as

= "Md(d,). (13)

Suppose on day t the set of traded options are at loca-
tions {7,,;};";. Then the updated observation points
{Tes1,i}isy on day t+1 are calculated as follows:

1. Days to maturity 1, +1]s, 18 reduced by the number of trad-
ing days between time t and t4- 1. This is usually one day
but can be more because of weekends and holidays.

2. Option delta Ifﬂlm is assumed equal to the previous
day’s value 17 ;.

3. The other option parameters S;y|s, K, Fep1)e(Mry1)s Ger)e
are held equal to day f's values S, x,r(M;),q, to pre-
vent looking ahead to future data.

ne

Thus, for each posterior sample {y,}, ;},, we can produce

t

joint forecasts for the option prices {FP,/, ;}I, where
FP/,, ; = Prem [Mz+1, St, &, CP, (M), qz,yfil,,} .

These forecasted option prices can be compared to the
actual option prices {AP;;}, and {AP,,;};", on days t
and t+1, respectively, to assess the performance of the
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Daily Change in Principal Component Scores
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Figure 3. Differenced Principal Component Scores 8,1 , — Py, which exhibit stochastic volatility.

forecast. Given a portfolio with ¢; units of option i for i =
1,...n, we can compute the forecasted loss distribution
{L, ]1:1 and actual loss L;;; of the portfolio as

n

L, = Z Cti (Apt,i - FPr{Fl,i)
i=1

(14)

Ly = Z Ci(AP i — APyyyi). (15)

i=1
We can take sample quantile of the forecasted loss distribu-
tion as our estimate of the (1 — «)100% one-day Value-at-
Risk, setting

VaR(Lisy, 1 — o) = quantile({Lfil}]I:l, 1— zx) (16)
The next step is to assess whether the quantiles of the fore-
cast distribution match the quantiles of the true loss
distribution.

4.5. Backtesting Value-at-Risk

In order to evaluate the accuracy of our Value-at-Risk esti-
mates, we can test if the historically observed exceedence
rates of our quantile estimates are consistent with the true
quantile levels. This process of evaluation based on historical
data is known as backtesting. A 95% Value-at-Risk estimate
should be breached by approximately 5% of observed losses

if the observed trials are independent and the estimate is
accurate. We can test whether the estimator proposed in
Subsection 4.4 is accurate in this sense using the binomial
hypothesis test discussed in Subsection 4.1.

We focus on option portfolios whose values are most
sensitive to movements in volatility. An option strangle is a
portfolio consisting of an out-of-money call option (whose
strike is below the current S&P 500 level) and an out-of-
money put option (whose strike is above the current S&P
500 level) where the call and put strikes are roughly the
same distance apart from the current S&P 500 level. Such
portfolios are particularly sensitive to movements in implied
volatility e"(*), since a strangle profits from large moves in
the S&P but loses money on small moves. The profit dia-
gram of a strangle portfolio is illustrated in Figure 6.

The binomial test of Kupiec (1995) described in
Subsection 4.1 requires independent trials, so we use a dif-
ferent randomized option portfolio on each trading day in
order to decorrelate the trials. To construct these random-
ized portfolios, on each day t =1,...,T — 1, a set of random
out-of-money options are chosen from the subset of options
common to both days ¢ and t+ 1 so that the actual price
movement can be computed. These out-of-money options
are chosen in 25 unique pairs of calls and puts so that we
can form strangle positions. Hence, if a call option with
strike price x; > §; is selected, then the put option whose
strike is closest to x; = S, — (k1 — S;) is also chosen so that
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95% Pointwise Credible Intervals for Log-Volatility Process
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Figure 4. 95% pointwise credible bands for the latent log-volatility process with posterior median in bold. Dates range from start of 2010 to end of 2017. The
roughness of random variation in hy indicates a notable presence of stochastic volatility in years 2010-2011 and 2015-2017.
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Figure 5. Posterior distributions for a;, the volatility of hy. The histograms exhibit most of their probability mass away from 0 particularly in the years 2010-2011
and 2015-2017, indicating the presence of stochastic volatility.

the put and call options are roughly the same distance apart 1 or —1 with equal probability. These coefficients determine
from the current spot price with both options out-of-money. the portfolio pricing functionals {IT,} through Equations 14
For each t=1,..,2012, consider a simple randomized and 15. Since the actual price movements of these portfolios

portfolio {c;};°, on these 50 options where each ¢, is either ~are known, we can apply the binomial hypothesis test



described in Subsection 4.1 to the one-day Value-at-Risk
estimator in Equation 16. A separate binomial test is done
for each year. The 95% confidence intervals of the exceed-
ence rates of VaR95, VaR97.5, and VaR99 are shown in blue
in Figure 7.

For comparison, we also made forecasts based on a
benchmark model with constant volatility. The benchmark
model assumes each coefficient series {f;},_, has constant
volatility v¢. Setting v = (v,,...vk) ', the benchmark model
satisfies

& ~ N, (0,02I),
7 ~ Nk [0, diag(v)]

/SPSOO at

maturity

y,=m +Fp, +g,
B, ="YBy +

Profit at
maturity

N

Figure 6. Profit dlagram for an option strangle portfolio.

Current
SPSOO
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for all ¢ Each wv; is assigned an independent
InvGamma(ay, by) prior. The full conditional distribution
for v is standard, and all other full conditional distributions
remain the same with the substitution h; = log(v) for
each t.

The results in Figure 7 indicate that the exceedence rates
of the stochastic volatility-based VaR estimates are generally
closer to the true quantile levels than those of the constant
volatility-based VaR estimates. The binomial confidence
intervals associated with the stochastic volatility model’s
VaR estimates include the true level in almost all years,
while the intervals associated with the constant volatility
model’s VaR estimates miss far more frequently. These find-
ings indicate that incorporating stochastic volatility leads to
better quantile estimates.

5. Conclusion

To review, we introduced an analogue of the familiar sto-
chastic volatility model for functional time series, with the
goal of accurately modeling option surfaces. We reduced
that functional specification to a finite dimensional vector

Exceedence Rate of VaR85
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Figure 7. 95% confidence intervals for the exceedence rates of value-at-risk. CV indicates constant volatility while SV indicates stochastic volatility.
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time series model and discussed a strategy for Bayesian
inference that enables forecasting, quantile estimation, and
other uncertainty quantification. Motivated by an explora-
tory analysis that revealed evidence of stochastic volatility,
we applied the FSV model to SPX option surfaces and dem-
onstrated through backtesting that the FSV model leads to
improved quantile estimates and thus improved Value-at-
Risk estimates for option portfolios.

Funding

The authors gratefully acknowledge financial support from National
Science Foundation Awards 2114143, 1934985, 1940124, and 1940276.

ORCID

David S. Matteson ([5) http://orcid.org/0000-0002-2674-0387

References

Asai M, McAleer M, Yu J. 2006. Multivariate stochastic volatility:
review. Econom Rev. 25(2-3):145-175.

Aue A, Horvéth LF, Pellatt D. 2017. Functional generalized autoregres-
sive conditional heteroskedasticity. ] Time Ser Anal. 38(1):3-21.

Aue A, Klepsch J. 2017. Estimating functional time series by moving
average model fitting. arXiv:170100770.

Aue A, Norinho DD, Hormann S. 2015. On the prediction of station-
ary functional time series. ] Am Stat Assoc. 110(509):378-392.

Besse PC, Cardot H, Stephenson DB. 2000. Autoregressive forecasting
of some functional climatic variations. Scand J Stat. 27(4):673-687.
Black F, Scholes M. 1973. The pricing of options and corporate liabil-

ities. J Polit Econ. 81(3):637-654.

Bollerslev T. 1986. Generalized autoregressive conditional heteroskedas-
ticity. ] Econom. 31(3):307-327.

Bollerslev T. 1990. Modelling the coherence in short-run nominal
exchange rates: a multivariate generalized ARCH model. Rev
Econom Stat. 72(3):498-505.

Bollerslev T, Engle R, Wooldridge J. 1988. A capital asset pricing model
with time-varying covariances. J Polit Econ. 96(1):116-131.

Bosq D. 2000. Linear processes in function spaces: theory and applica-
tions. Lecture notes in statistics. New York: Springer.

Bosq D. 2014. Computing the best linear predictor in a Hilbert space.
applications to general ARMAH processes. ] Multivariate Anal. 124:
436-450.

Brillinger DR. 1981. Time series: data analysis and theory. Vol. 36.
Philadelphia (PA): SIAM.

Chakraborty A, Panaretos VM. 2019. Testing for the rank of a covari-
ance operator. The annals of statistics (forthcoming). https://arxiv.
org/pdf/1901.02333.pdf.

Chan JC. 2021. Minnesota-type adaptive hierarchical priors for large
Bayesian VARs. Int ] Forecasting. 37(3):1212-1226.

Chen Y, Li B. 2017. An adaptive functional autoregressive forecast
model to predict electricity price curves. ] Business Econ Stat. 35(3):
371-388.

Cressie N, Wikle C. 2015. Statistics for spatio-temporal data. New
York: Wiley.

Daniélsson J. 1998. Multivariate stochastic volatility models: estimation
and a comparison with VGARCH models. ] Empirical Finance. 5(2):
155-173.

Doan T, Litterman R, Sims C. 1984. Forecasting and conditional pro-
jection using realistic prior distributions. Econom Rev. 3(1):1-100.
Engle RF. 1982. Autoregressive conditional heteroscedasticity with esti-
mates of the variance of United Kingdom inflation. Econometrica.

50(4):987-1007.

Gatheral J. 2006. The volatility surface: a practitioner’s guide. Wiley
finance series. New York: John Wiley & Sons.

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D. 2013.
Bayesian data analysis. 3rd ed. Chapman & Hall/CRC Texts in stat-
istical science. Boca Raton (FL): Taylor & Francis.

Ghysels E, Harvey A, Renault E. 1996. Stochastic volatility. Montreal:
Centre Interuniversitaire de Recherche en Economie Quantitative,
CIREQ. Cahiers de recherche.

Giannone D, Lenza M, Primiceri GE. 2015. Prior selection for vector
autoregressions. Rev Econ Stat. 97(2):436-451.

Hall P, Vial C. 2006. Assessing the finite dimensionality of functional
data. J R Stat Soc B. 68(4):689-705.

Han CH, Liu WH, Chen TY. 2014. VaR/CVaR estimation under sto-
chastic volatility models. Int ] Theor Appl Finan. 17(02):1450009.
Harvey A, Ruiz E, Shephard N. 1994. Multivariate stochastic variance

models. Rev Econ Stud. 61(2):247-264.

Heston SL. 1993. A closed-form solution for options with stochastic
volatility with applications to bond and currency options. Rev
Finance Stud. 6(2):327-343.

Heston SL, Nandi S. 2000. A closed-form GARCH option valuation
model. Rev Finance Stud. 13(3):585-625.

Hormann S, Horvath L, Reeder R. 2013. A functional version of the
ARCH model. Econom Theory. 29(2):267-288.

Hormann S, Kidzinski L, Hallin M. 2015. Dynamic functional principal
components. ] R Stat Soc B. 77(2):319-348.

Hormann S, Kokoszka P. 2010. Weakly dependent functional data.
Ann Stat. 38(3):1845-1884.

Horvath L, Kokoszka P. 2012. Inference for functional data with appli-
cations. Springer series in statistics. New York: Springer.

Hsing T, Eubank R. 2015. Theoretical foundations of functional data
analysis, with an introduction to linear operators. Wiley series in
probability and statistics. Chichester: Wiley.

Huang AY. 2015. Value at risk estimation by threshold stochastic vola-
tility model. Appl Econ. 47(45):4884-4900.

Huang SF, Guo M, Chen MR. 2020. Stock market trend prediction
using a functional time series approach. Quant Finance. 20(1):
69-79.

Hull J. 2018. Options, futures, and other derivatives. London: Pearson.

Hull J, White A. 1987. The pricing of options on assets with stochastic
volatilities. ] Finance. 42(2):281-300.

Hyndman R, Booth H. 2008. Stochastic population forecasts using
functional data models for mortality, fertility and migration. Int J
Forecasting. 24(3):323-342.

Hyndman RJ, Shahid Ullah M. 2007. Robust Forecasting of mortality
and fertility rates: a functional data approach. Comput Stat Data
Anal. 51(10):4942-4956.

Hyndman R], Booth H, Yasmeen F. 2013. Coherent mortality forecast-
ing: the product-ratio method with functional time series models.
Demography. 50(1):261-283.

Jang PA, Matteson DS. 2018. Spatial correlation in weather forecast
accuracy: a functional time series approach. JSM 2018 Proceedings,
Statistical Computing Sectign, 2776-2784.

Karhunen K. 1947. Uber lineare
Wabhrscheinlichkeitsrechnung.  Annales
Fennicae. 37:1-79.

Kastner G. 2016. Dealing with stochastic volatility in time series using
the R package stochvol. ] Stat Software Art. 69(5):1-30.

Kastner G, Frithwirth-Schnatter S. 2014. Ancillarity-sufficiency inter-
weaving strategy (ASIS) for boosting MCMC estimation of stochas-
tic volatility models. Comput Stat Data Anal. 76:408-423.
CFEnetwork: the annals of computational and financial
econometrics.

Kim S, Shepherd N, Chib S. 1998. Stochastic volatility: likelihood infer-
ence and comparison with ARCH models. Rev Econ Stud. 65(3):
361-393.

King MC, Staicu AM, Davis JM, Reich BJ, Eder B. 2018. A functional
data analysis of spatiotemporal trends and variation in fine particu-
late matter. Atmos Environ. 184:233-243.

Klepsch J, Kliippelberg C, Wei T. 2017. Prediction of functional
ARMA processes with an application to traffic data. Econom Stat.
1(C):128-149.

Methoden in  der
Academiae Scientiarum


https://arxiv.org/pdf/1901.02333.pdf
https://arxiv.org/pdf/1901.02333.pdf

Kneip A. 1994. Nonparametric estimation of common regressors for
similar curve data. Ann Statist. 22(3):1386- 1427.

Kowal DR, Matteson DS, Ruppert D. 2017. A Bayesian multivariate
functional dynamic linear model. ] Am Stat Assoc. 112(518):
733-744.

Kowal DR, Matteson DS, Ruppert D. 2019. Functional autoregression
for sparsely sampled data. ] Business Econ Stat. 37(1):97-109.

Kupiec PH. 1995. Techniques for verifying the accuracy of risk meas-
urement models. JOD. 3(2):73-84.

Li D, Robinson PM, Shang HL. 2020. Long-range dependent curve
time series. ] Am Stat Assoc. 115(530):957-971.

Litterman RB. 1986. Forecasting with Bayesian vector autoregressions —
five years of experience. ] Business Econ Stat. 4(1):25-38.

Loeve M. 1945. Fonctions Aléatoires de Second Ordre. Comptes
Rendus de '’Académie des Sciences. Série I: Mathématique. 220:469.

Mohammadi N, Panaretos VM. 2021. Detecting whether a stochastic
process is finitely expressed in a basis. https://arxiv.org/abs/2111.
01542

OptionMetrics. 2017. IvyDB US file and data reference manual, version
3.1, Rev. 1/17/2017. New York (NY): OptionMetrics; p. 10019.

Quang P, Klein T, Nguyen N, Walther T. 2018. Value-at-risk for
south-east Asian stock markets: stochastic volatility vs. GARCH.
JRFM. 11(2):18.

Ramsay J, Ramsay J, Silverman B, Media SS, Silverman H. 2005.
Functional data analysis. Springer series in statistics. Cham:
Springer.

Robert CP, Casella G. 2004. Monte Carlo statistical methods. Springer
texts in statistics. Cham: Springer.

Ruiz-Medina M, Espejo R, Ugarte M, Militino A. 2014. Functional
time series analysis of spatio-temporal epidemiological data. Stoch
Environ Res Risk Assess. 28(4):943-954.

DATA SCIENCE IN SCIENCE . 19

Sadorsky P. 2005. Stochastic volatility forecasting and risk manage-
ment. Appl Financ Econ. 15(2):121-135.

Sen R, Kliippelberg C. 2019. Time series of functional data with appli-
cation to yield curves. Appl Stochastic Models Bus Ind. 35(4):
1028-1043.

Shang HL. 2013. Functional time series approach for forecasting very
short-term electricity demand. Appl Stat. 40(1):152-168.

Shang HL, Booth H, Hyndman R. 2011. Point and interval forecasts of
mortality rates and life expectancy: a comparison of ten principal
component methods. DemRes. 25:173-214.

Shephard N. 1996. Statistical aspects of ARCH and stochastic volatility.
London: Chapman & Hall; p. 1-67. Reprinted in the Survey of
Applied and Industrial Mathematics, Issue on Financial and
Insurance Mathematics, 3, 764-826, Scientific Publisher TVP,
Moscow, 1996 (in Russian).

Shephard N, Andersen TG. 2009. Stochastic volatility: origins and over-
view. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 233-254.
Taylor S. 1982. Financial returns modelled by the product of two sto-
chastic processes-a study of the daily sugar prices 1961-75. Time Ser

Anal Theory Pract. 1:203-226.

Taylor S. 1986. Modelling financial time series. New York: Wiley.

Taylor S. 1994. Modelling stochastic volatility: a review and compara-
tive study. Math Finance. 4(2):183-204.

Vrontos ID, Dellaportas P, Politis DN. 2003. A full-factor multivariate
GARCH model. Econom J. 6(2):312-334.

Wood SN. 2011. Fast stable restricted maximum likelihood and mar-
ginal likelihood estimation of semiparametric generalized linear
models. ] R Stat Soc B. 73(1):3-36.

Yasmeen F, Sharif M. 2015. Functional time series (FTS) forecasting of
electricity consumption in Pakistan. IJCA. 124(7):15-19.

Yu J, Meyer R. 2006. Multivariate stochastic volatility models: Bayesian
estimation and model comparison. Econom Rev. 25(2-3):361-384.


https://arxiv.org/abs/2111.01542
https://arxiv.org/abs/2111.01542

	Abstract
	Introduction
	Method
	Functional Stochastic Volatility
	Functional ARMA with Stochastic Volatility
	Reducing a Functional Time Series to a Vector Time Series
	Basis Function Selection

	Inference
	Markov Chain Monte Carlo and Gibbs Sampling
	Prior Specification and Full Conditional Distributions

	Value-at-Risk Estimation for Option Portfolios
	Overview of Application
	SPX Option Surface Data Set as a Functional Time Series
	Basis Function Estimation and Exploratory Analysis
	Value-at-Risk Estimation for Option Portfolios
	Backtesting Value-at-Risk

	Conclusion
	Funding
	Orcid
	References


