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the Dowling—Wilson

Conjecture?

Tom Braden, Jacob P. Matherne,

and Nicholas Proudfoot

The Dowling-Wilson conjecture is a fundamental inequal-
ity in combinatorial incidence geometry. The simplest spe-
cial case answers the following question: given n points in
the plane which do not all lie on a line, how many unique
lines can they determine? Since each pair of points deter-
mines a line, the number of lines is clearly at most ('2‘) A

lower bound is less obvious: a 1948 theorem of de Bruijn
and Erd6s [dBE48] shows that there must be at least n lines.
In fact, their proof is a clever counting argument that in-
volves no geometry at all: they show that, given subsets
Ay, ..., Ay, of the n points with the property that each pair
of points is contained in exactly one of the subsets and no
subset contains all of the points, it is necessary that m > n.

For a more general version of this problem, consider
a finite subset E of a vector space over a field F, and let
d be the dimension of the vector space V that they span.
The kth Whitney number W, = Wi (E) is defined as the
number of distinct k-dimensional linear subspaces of V
that can be obtained as the linear span of some subset of E.
For example, we have Wy = W, = 1, corresponding to the
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zero subspace (spanned by the empty set) and V (spanned
by all of E), respectively. In addition, note that W{(E) <
|E|, with equality unless one of our vectors is a multiple
of another. In the case d = 3, the nonzero elements of E
determine W, points in the projective plane FP?. These W
points span a total of W; lines, and the de Bruijn-Erdés
theorem is equivalent to the statement that W] < W5.

Since then, a number of successively more general re-
sults have appeared with the theme “E determines more
subspaces of large dimension than of small dimension.”
In 1951, Motzkin [Mot51] proved that W < W_; in arbi-
trary ambient dimension d. In 1968, Basterfield and Kelly
[BK68] gave a combinatorial proof of this fact which does
not use projective geometry. In 1975, Dowling and Wilson
[DW75] showed that

Wot Wit o+ W <WagtotWe (1)

whenever k < d/2, and in a related paper [DW74] they
made the following stronger conjecture.

Dowling-Wilson Conjecture. For any k < d/2, we have
Wie < W

The Dowling-Wilson conjecture is also called the top
heavy conjecture, because it says that the poset £ = L(E)
of subspaces of V spanned by elements of E, ranked by
dimension, has more elements of high rank than of low
rank. When d = 3 the Dowling-Wilson conjecture, the
inequality (1), and the de Bruijn-Erd6s theorem are all
equivalent.

Example 1. Suppose that |E| = n > d, and that the vectors
in E are in general position in their span V, meaning that
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any subset of cardinality at most d is linearly independent.
In this case, we have Wi (E) = (Z) for all k < d, and the

inequality W, < W,_j is easy to verify algebraically.

Example 2. Let by, ..., b, be the standard basis for F"*, and
let E = {b; —b; | i < j € [n]}. These vectors span the
(n — 1)-dimensional subspace

V= {(xl’--"x") € [F"(in - 0}'

Subspaces of V spanned by subsets of E are in bijection
with partitions of the set [n], where a subspace of dimen-
sion k corresponds to a partition with n — k parts. More
precisely, if S = {Si,...,S,} is an unordered collection of
disjoint nonempty subsets of [n] with [n] = S; L --- U S,
then we may define

Vo :=14(X1, ., Xp) € [F") Z x; =0forall j;,

iES;
which has dimension n — r and is spanned by the vectors
{bi—bj|i,j €S, for some m}. Thus Wi (E) is equal to the
Stirling number S(n, n — k), which counts partitions of [n]
into n — k parts. Already here, the Dowling-Wilson con-
jecture is not obvious; the resulting inequality on Stirling
numbers was proved by Dobson and Rennie [RD69, The-
orem 2].

Matroids. In fact, Dowling and Wilson conjectured their
inequality in a more general setting than the vector config-
urations we considered above. Just as the theorem of de
Bruijn and Erd6és can be stated and proved without refer-
ence to linear geometry, the Dowling-Wilson conjecture
makes sense for arbitrary matroids, which give a combi-
natorial abstraction of linear independence and incidence
geometry. We point to [OxlI11] for a comprehensive treat-
ment of the theory of matroids. Matroids famously have
dozens of equivalent definitions, one of which we give be-
low.

Definition. A matroid is a pair (E, rk), where E is a finite
set and rk is a function from the power set of E to the nat-
ural numbers satisfying the following conditions:

o k(@) = 0.
e« Forall SC Eande € E,

rk(S) < rk(S U {e}) < rk(S) + 1.
o Ifrk(S U {e}) = rk(S U {f}) = rk(S), then
rk(S U {e, f}) = rk(S).

A subset F C E is called a flat if it is maximal in its rank,
meaning that rk(Fu{e}) > rk(F) forall e € E\ F. We define
the kth Whitney number W, (E, rk) to be the number of
flats of rank k.

If E is a finite subset of a vector space V, then we may
define rk(S) to be the dimension of the linear span of S.
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In this case, a flat is a subset of E with the property that
no other element of E is contained in its span. Thus flats
of (E, rk) correspond bijectively to subspaces of V spanned
by subsets of E, and we have an equality Wi (E, rk) = Wi(E)
relating the two different notions of Whitney numbers.

A matroid that arises from a set (or multiset) of vec-
tors is called realizable. Although it is somewhat difficult
to come up with nonrealizable examples (the smallest is
called the Vamos matroid, which has |E| = 8), a theorem
of Nelson [Nel18] says that almost all matroids are nonre-
alizable. More precisely, the percentage of matroids with
E = [n] that are realizable goes to zero as n goes to infinity.

The Dowling-Wilson conjecture is now a theorem.
Huh and Wang [HW17] used techniques from algebraic
geometry to show that it holds for realizable matroids,
and more recently Huh, Wang, and the authors [BHM*]
showed that it holds for arbitrary matroids. June Huh's
work on the Dowling-Wilson conjecture was one of the
many accomplishments highlighted in his 2022 Fields
Medal citation.

The Mobius algebra and the graded Mobius algebra.
Dowling and Wilson's proof of the inequality (1) for arbi-
trary matroids can be expressed in an instructive way. For
a matroid M = (E, rk), the poset of flats £ is a ranked lat-
tice, and in particular it has a join operation sending flats
F,G to F Vv G, the unique smallest flat containing both F
and G. It has the property that

rk(F v G) < rk(F) + rk(G). (2)

When the matroid is realized by a vector configuration,
this operation corresponds to taking the sum of vector sub-
spaces of V.

Consider the Mobius algebra of £, which is the Q-
vector space with one basis element yr for each flat F € £,
and with the multiplication yr * yg = ypyg. Define a pair-
ing by putting

|1 ifyrxyg =Yg
OrY6) = %O otherwise,

and extending linearly. Let d = rk(E). For any k, the in-
equality (2) implies that the subspace spanned by the el-
ements {yr | Tk F < k} pairs trivially with the subspace
spanned by {yr | tkF < d — k}. Dowling and Wilson de-
duced their theorem from a result which is equivalent to
the statement that this pairing is nondegenerate, meaning
that every nonzero element pairs nontrivially with some-
thing. This implies that the pairing induces an injection
from the subspace spanned by {yr | rk F < k} to the linear
dual of the subspace spanned by {yr | tk F > d —k}, which
implies the inequality (1).

In passing from the inequality (1) to the full conjecture,
it is natural to pass from the Mobius algebra to the graded
Mébius algebra H*(M), which has the same underlying
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vector space, but with the modified multiplication

Yeve if TK(F V G) = rk(F) + tk(G)
YF-Ye = .

0 otherwise.

It is a graded algebra: if H*(M) is the span of the yr with
tkF = k, then H/(M) - H*(M) ¢ H/**(M). (In techni-
cal language, it is the associated graded algebra obtained
from a filtration of the M6bius algebra.) One can define a
new pairing on H*(M) in the same way as before, this time
using the modified multiplication. However, this pairing
cannot be nondegenerate because Hk(M )and Hd_k(M )do
not have the same dimension.

To prove the Dowling-Wilson conjecture it would be
enough to show that every nonzero element of Hk(M)
pairs nontrivially with some element of Hd_k(M) when-
ever k < d/2, or equivalently that the pairing induces an in-
jection of H*(M) into the linear dual of H* ~*(M) forall k <
d/2. This was proved by Kung when k = 1 [Kun79, Corol-
lary 3.3], but the statement is false when k = 2 (via an
example communicated to us by Connor Simpson). In-
stead, [HW17] and [BHM*| deduce the Dowling-Wilson
conjecture from a different statement: if L € Hl(M) is a
positive combination of yr over all rank 1 flats F, then for
any k < d/2, the multiplication

9-2k . g5 - 14

is injective.

The proof in the realizable case. In the realizable case,
this injectivity was proved by Huh and Wang by interpret-
ing the graded Mobius algebra H*(M) as the cohomology
ring of an algebraic variety, which we now describe. We
assume for simplicity that our matroid is realizable by vec-
tors over the complex numbers C; the case of arbitrary
fields can be obtained by replacing singular cohomology
with ¢-adic étale cohomology.

Let V be a vector space over C spanned by a finite set of
vectors E. Let V* be the linear dual of V, consisting of lin-
ear maps from V to C. We define a linear mapi: V* — CF
whose eth coordinate is given by evaluation on the element
e € E C V. The fact that V is spanned by E implies that i is
an injection. Consider the Riemann sphere CcP' = CuU{oo},
and let Y be the closure of i(V*) inside of(CPl)E. The alge-
braic variety Y is called the arrangement Schubert variety
of the pair (V, E), in analogy with classical Schubert vari-
eties in Lie theory. The connection between the geometry
of Y and the structure of the matroid M represented by E
was first explored by Ardila and Boocher [AB16].

The additive action of V* on itself extends to an ac-
tion of V* on Y. This action has finitely many orbits, in-
dexed by the flats of M, and each orbit is isomorphic to
an affine space. More precisely, for any subset S C E, let
ps € (CPYE be the point whose eth coordinate is equal to
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0if e € S and co otherwise. Then:

« The point pg lies in Y if and only if S is a flat of
the matroid M.

« If F C E is a flat, then the stabilizer of pg in V*
is equal to Span(F)*, and therefore its orbit is iso-
morphic to V*/Span(F)! = Span(F)*. In particu-
lar, it is an affine space of dimension rk F.

+ Every element of Y lies in the orbit of exactly one
point pg.

Here is a schematic picture of the orbits of Y for the
vector arrangement of Example 2 with n = 3:

P{123} el g
/)lf /)-_)

00, 00,0) ¢ P{12,3}

(00, 00, 0)

[ ]
P{1,2,3}

In this figure, points are labeled by partitions of the set
[3], which correspond to flats. They are also labeled by
triples of elements of CP! corresponding to the three vec-
tors b; — by, b; — bs, b, — b; € V. For example, the b; — b,
and b, — b; coordinates of the point py; 5 are equal to oo,
while the b; — b; coordinate is equal to 0 because 1 and 3
lie in the same block of the partition.

Example 3. Consider the vector configuration from Exam-
ple 2. We may regard V* as the space of ordered n-tuples
of points in C up to simultaneous translation. Under this
identification, the element b; — b€ Eis identified with the
linear functional that takes an n-tuple of complex numbers
to the difference between the ith and jth points, and the
compactification Y of V* is obtained by allowing these dis-
tances to go to oo. Recall from Example 2 that flats are in
bijection with partitions of the set [n]. If F is the flat corre-
sponding to the partition [n] = S; LI --- U S,, then the orbit
containing pr consists of all tuples for which the distance
between the ith and jth points is finite if and only if i and
j lie in the same part of the partition.

The decomposition of Y into affine spaces is a topolog-
ical cell decomposition with all cells of even dimension.
In particular, it implies that the cohomology H*(Y; Q) van-
ishes in odd degrees, and that the dimension of HZk(Y; Q)
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is the kth Whitney number W (M). In fact, we have a
stronger statement: as a ring, H*(Y; Q) is isomorphic to
the graded Mobius algebra H*(M), with degrees doubled.
(This is not needed to prove the Dowling-Wilson conjec-
ture in the realizable case, but it is key to generalizing it to
all matroids.)

Because the variety Y is singular, it is natural to con-
sider its intersection cohomology IH*(Y;Q), which is a
graded module over H*(Y; Q). For smooth algebraic vari-
eties, intersection cohomology is isomorphic to ordinary
cohomology, while for singular varieties the intersection
cohomology retains many of the important properties of
the cohomology of smooth varieties. In particular, since
Y is a projective complex algebraic variety, it satisfies the
hard Lefschetz property: If L € H*(Y;Q) is ample, then
forany j <d = dimY, the multiplication map

41 /(v;0) - 17 (v;0) 3)
is an isomorphism.

Because Y is a proper variety which has a decom-
position into affine spaces, an argument of Bjorner
and Ekedahl [BE09] implies that the graded H"(Y;Q)-
module IH*(Y; Q) has a graded submodule isomorphic to
H*(Y;Q), regarded as a module over itself. This is the last
ingredient that we needed to prove the Dowling-Wilson
conjecture! Indeed, let L be an ample class in HZ(Y; Q). Re-
stricting the isomorphism (3) to the submodule H*(Y; Q)
gives an injection

2d-2k

H*(Y;Q) - H (Y;0Q).

Since the source and target have dimension W; (M) and
W;_x(M), respectively, we obtain the inequality W;.(M) <
Wa—k(M).

The proof for general matroids. The proof of the full
Dowling-Wilson conjecture in [BHM*] follows the same
basic plan as the proof in the realizable case. Although
there is no analogue of the variety Y for general matroids,
we still have an analogue of its cohomology ring H*(Y; Q),
namely the graded Mobius algebra H*(M). What is needed
is to define a graded module IH*(M) over the graded ring
H*(M), called the intersection cohomology module of
the matroid M, and to show that it satisfies the conditions
needed for the argument in the previous section:

« IH*(M) has a submodule isomorphic to H*(M).
« IH"(M) satisfies the hard Lefschetz property.

The first condition is immediate from the definition of
IH*(M) (which we will not give here). The second con-
dition is proved via an elaborate induction in which the
hard Lefschetz property is one of fifteen different proper-
ties of the module IH*(M) that are simultaneously proved
[BHM™, Theorem 3.16]. For a diagram depicting the struc-
ture of this induction, see [BHM™*, Figure 1].
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Many of the steps of the induction are motivated by
statements that are known geometrically in the realizable
case. There are also strong similarities with two other no-
table examples where “intersection cohomology” has been
defined and Hodge-theoretic statements such as hard Lef-
schetz have been proved for a nonexistent variety: the inter-
section cohomology of nonrational fans of Karu [Kar04],
and Elias and Williamson’s Hodge theory of Soergel bi-
modules [EW14].
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