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The Dowling–Wilson conjecture is a fundamental inequal-
ity in combinatorial incidence geometry. The simplest spe-
cial case answers the following question: given � points in
the plane which do not all lie on a line, how many unique
lines can they determine? Since each pair of points deter-
mines a line, the number of lines is clearly at most (�2). A
lower bound is less obvious: a 1948 theorem of de Bruijn
and Erdős [dBE48] shows that theremust be at least � lines.
In fact, their proof is a clever counting argument that in-
volves no geometry at all: they show that, given subsets�1, … , �� of the � points with the property that each pair
of points is contained in exactly one of the subsets and no
subset contains all of the points, it is necessary that� ≥ �.

For a more general version of this problem, consider
a 昀椀nite subset ý of a vector space over a 昀椀eld �, and letý be the dimension of the vector space � that they span.
The �th Whitney number �� = ��(ý) is de昀椀ned as the
number of distinct �-dimensional linear subspaces of �
that can be obtained as the linear span of some subset of ý.
For example, we have �0 = �� = 1, corresponding to the
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zero subspace (spanned by the empty set) and � (spanned
by all of ý), respectively. In addition, note that �1(ý) ≤|ý|, with equality unless one of our vectors is a multiple
of another. In the case ý = 3, the nonzero elements of ý
determine�1 points in the projective plane �ℙ2. These�1
points span a total of �2 lines, and the de Bruijn–Erdős
theorem is equivalent to the statement that �1 ≤ �2.

Since then, a number of successively more general re-
sults have appeared with the theme “ý determines more
subspaces of large dimension than of small dimension.”
In 1951, Motzkin [Mot51] proved that �1 ≤ ��−1 in arbi-
trary ambient dimension ý. In 1968, Baster昀椀eld and Kelly
[BK68] gave a combinatorial proof of this fact which does
not use projective geometry. In 1975, Dowling andWilson
[DW75] showed that�0 +�1 +⋯+�� ≤ ��−� +⋯+�� (1)

whenever � ≤ ý/2, and in a related paper [DW74] they
made the following stronger conjecture.

Dowling–Wilson Conjecture. For any � ≤ ý/2, we have�� ≤ ��−�.
The Dowling–Wilson conjecture is also called the top

heavy conjecture, because it says that the poset ℒ = ℒ(ý)
of subspaces of � spanned by elements of ý, ranked by
dimension, has more elements of high rank than of low
rank. When ý = 3 the Dowling–Wilson conjecture, the
inequality (1), and the de Bruijn–Erdős theorem are all
equivalent.

Example 1. Suppose that |ý| = � ≥ ý, and that the vectors
in ý are in general position in their span � , meaning that
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any subset of cardinality at most ý is linearly independent.
In this case, we have ��(ý) = (��) for all � < ý, and the
inequality �� ≤ ��−� is easy to verify algebraically.

Example 2. Let �1, … , �� be the standard basis for ��, and
let ý = {�� − �� ∣ � < � ∈ [�]}. These vectors span the(� − 1)-dimensional subspace� ≔ {(�1, … , ��) ∈ ��||∑�� = 0} .
Subspaces of � spanned by subsets of ý are in bijection
with partitions of the set [�], where a subspace of dimen-
sion � corresponds to a partition with � − � parts. More
precisely, if � = {�1, … , ��} is an unordered collection of
disjoint nonempty subsets of [�] with [�] = �1 ⊔ ⋯ ⊔ ��,
then we may de昀椀ne

�� ≔ {(�1, … , ��) ∈ ��|| ∑�∈�� �� = 0 for all �} ,
which has dimension � − � and is spanned by the vectors{�� − �� ∣ �, � ∈ �� for some �}. Thus ��(ý) is equal to the
Stirling number �(�, � − �), which counts partitions of [�]
into � − � parts. Already here, the Dowling–Wilson con-
jecture is not obvious; the resulting inequality on Stirling
numbers was proved by Dobson and Rennie [RD69, The-
orem 2].

Matroids. In fact, Dowling and Wilson conjectured their
inequality in a more general setting than the vector con昀椀g-
urations we considered above. Just as the theorem of de
Bruijn and Erdős can be stated and proved without refer-
ence to linear geometry, the Dowling–Wilson conjecture
makes sense for arbitrary matroids, which give a combi-
natorial abstraction of linear independence and incidence
geometry. We point to [Oxl11] for a comprehensive treat-
ment of the theory of matroids. Matroids famously have
dozens of equivalent de昀椀nitions, one of which we give be-
low.

De昀椀nition. A matroid is a pair (ý, rk), where ý is a 昀椀nite
set and rk is a function from the power set of ý to the nat-
ural numbers satisfying the following conditions:• rk(∅) = 0.• For all � ⊂ ý and þ ∈ ý,rk(�) ≤ rk(� ∪ {þ}) ≤ rk(�) + 1.• If rk(� ∪ {þ}) = rk(� ∪ {ÿ}) = rk(�), thenrk(� ∪ {þ, ÿ}) = rk(�).
A subset þ ⊂ ý is called a 昀氀at if it is maximal in its rank,
meaning that rk(þ∪{þ}) > rk(þ) for all þ ∈ ý⧵þ. We de昀椀ne
the �th Whitney number ��(ý, rk) to be the number of
昀氀ats of rank �.

If ý is a 昀椀nite subset of a vector space � , then we may
de昀椀ne rk(�) to be the dimension of the linear span of �.

In this case, a 昀氀at is a subset of ý with the property that
no other element of ý is contained in its span. Thus 昀氀ats
of (ý, rk) correspond bijectively to subspaces of � spanned
by subsets of ý, and we have an equality��(ý, rk) = ��(ý)
relating the two different notions of Whitney numbers.

A matroid that arises from a set (or multiset) of vec-
tors is called realizable. Although it is somewhat dif昀椀cult
to come up with nonrealizable examples (the smallest is
called the Vámos matroid, which has |ý| = 8), a theorem
of Nelson [Nel18] says that almost all matroids are nonre-
alizable. More precisely, the percentage of matroids withý = [�] that are realizable goes to zero as � goes to in昀椀nity.

The Dowling–Wilson conjecture is now a theorem.
Huh and Wang [HW17] used techniques from algebraic
geometry to show that it holds for realizable matroids,
and more recently Huh, Wang, and the authors [BHM+]
showed that it holds for arbitrary matroids. June Huh’s
work on the Dowling–Wilson conjecture was one of the
many accomplishments highlighted in his 2022 Fields
Medal citation.
The Möbius algebra and the graded Möbius algebra.
Dowling and Wilson’s proof of the inequality (1) for arbi-
trary matroids can be expressed in an instructive way. For
a matroid � = (ý, rk), the poset of 昀氀ats ℒ is a ranked lat-
tice, and in particular it has a join operation sending 昀氀atsþ,ÿ to þ ∨ ÿ, the unique smallest 昀氀at containing both þ
and ÿ. It has the property thatrk(þ ∨ ÿ) ≤ rk(þ) + rk(ÿ). (2)

When the matroid is realized by a vector con昀椀guration,
this operation corresponds to taking the sum of vector sub-
spaces of � .

Consider the Möbius algebra of ℒ, which is the ℚ-
vector space with one basis element �þ for each 昀氀at þ ∈ ℒ,
and with the multiplication �þ ∗ �ÿ = �þ∨ÿ. De昀椀ne a pair-
ing by putting

⟨�þ , �ÿ⟩ = {1 if �þ ∗ �ÿ = �ý0 otherwise,

and extending linearly. Let ý = rk(ý). For any �, the in-
equality (2) implies that the subspace spanned by the el-
ements {�þ ∣ rk þ ≤ �} pairs trivially with the subspace
spanned by {�þ ∣ rk þ < ý − �}. Dowling and Wilson de-
duced their theorem from a result which is equivalent to
the statement that this pairing is nondegenerate, meaning
that every nonzero element pairs nontrivially with some-
thing. This implies that the pairing induces an injection
from the subspace spanned by {�þ ∣ rk þ ≤ �} to the linear
dual of the subspace spanned by {�þ ∣ rk þ ≥ ý−�}, which
implies the inequality (1).

In passing from the inequality (1) to the full conjecture,
it is natural to pass from the Möbius algebra to the graded
Möbius algebra H∗(�), which has the same underlying

1198 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 9



What is. . .

vector space, but with the modi昀椀ed multiplication

�þ ⋅ �ÿ = {�þ∨ÿ if rk(þ ∨ ÿ) = rk(þ) + rk(ÿ)0 otherwise.

It is a graded algebra: if H�(�) is the span of the �þ withrk þ = �, then H�(�) ⋅ H�(�) ⊂ H�+�(�). (In techni-
cal language, it is the associated graded algebra obtained
from a 昀椀ltration of the Möbius algebra.) One can de昀椀ne a
new pairing onH∗(�) in the same way as before, this time
using the modi昀椀ed multiplication. However, this pairing
cannot be nondegenerate becauseH�(�) andH�−�(�) do
not have the same dimension.

To prove the Dowling–Wilson conjecture it would be
enough to show that every nonzero element of H�(�)
pairs nontrivially with some element of H�−�(�) when-
ever � ≤ ý/2, or equivalently that the pairing induces an in-
jection ofH�(�) into the linear dual ofH�−�(�) for all � ≤ý/2. This was proved by Kung when � = 1 [Kun79, Corol-
lary 3.3], but the statement is false when � = 2 (via an
example communicated to us by Connor Simpson). In-
stead, [HW17] and [BHM+] deduce the Dowling–Wilson
conjecture from a different statement: if � ∈ H1(�) is a
positive combination of �þ over all rank 1 昀氀ats þ, then for
any � ≤ ý/2, the multiplication��−2� ∶ H�(�) → H�−�(�)
is injective.
The proof in the realizable case. In the realizable case,
this injectivity was proved by Huh and Wang by interpret-
ing the graded Möbius algebra H∗(�) as the cohomology
ring of an algebraic variety, which we now describe. We
assume for simplicity that our matroid is realizable by vec-
tors over the complex numbers ℂ; the case of arbitrary
昀椀elds can be obtained by replacing singular cohomology
with ℓ-adic étale cohomology.

Let � be a vector space over ℂ spanned by a 昀椀nite set of
vectors ý. Let �∗ be the linear dual of � , consisting of lin-
ear maps from � toℂ. We de昀椀ne a linear map � ∶ �∗ → ℂý
whose þth coordinate is given by evaluation on the elementþ ∈ ý ⊂ � . The fact that � is spanned by ý implies that � is
an injection. Consider the Riemann sphereℂℙ1 = ℂ∪{∞},
and let � be the closure of �(�∗) inside of (ℂℙ1)ý . The alge-
braic variety � is called the arrangement Schubert variety
of the pair (�, ý), in analogy with classical Schubert vari-
eties in Lie theory. The connection between the geometry
of � and the structure of the matroid � represented by ý
was 昀椀rst explored by Ardila and Boocher [AB16].

The additive action of �∗ on itself extends to an ac-
tion of �∗ on � . This action has 昀椀nitely many orbits, in-
dexed by the 昀氀ats of �, and each orbit is isomorphic to
an af昀椀ne space. More precisely, for any subset � ⊂ ý, let�� ∈ (ℂℙ1)ý be the point whose þth coordinate is equal to

0 if þ ∈ � and ∞ otherwise. Then:• The point �� lies in � if and only if � is a 昀氀at of
the matroid �.• If þ ⊂ ý is a 昀氀at, then the stabilizer of �þ in �∗
is equal to Span(þ)⟂, and therefore its orbit is iso-
morphic to �∗/ Span(þ)⟂ ≅ Span(þ)∗. In particu-
lar, it is an af昀椀ne space of dimension rk þ.• Every element of � lies in the orbit of exactly one
point �þ .

Here is a schematic picture of the orbits of � for the
vector arrangement of Example 2 with � = 3:

p{123}

b 1= b 2

b 1= b 3b 2 =b 3

p{1,2,3}

p{23,1} p{13,2}

p{12,3}

V ∗

(0,∞,∞)
(∞, 0,∞)

(∞,∞, 0)

(0, 0, 0)

(∞,∞,∞)

In this 昀椀gure, points are labeled by partitions of the set[3], which correspond to 昀氀ats. They are also labeled by
triples of elements of ℂℙ1 corresponding to the three vec-
tors �1 − �2, �1 − �3, �2 − �3 ∈ � . For example, the �1 − �2
and �2 − �3 coordinates of the point �{13,2} are equal to∞,
while the �1 − �3 coordinate is equal to 0 because 1 and 3
lie in the same block of the partition.

Example 3. Consider the vector con昀椀guration from Exam-
ple 2. We may regard �∗ as the space of ordered �-tuples
of points in ℂ up to simultaneous translation. Under this
identi昀椀cation, the element ��−�� ∈ ý is identi昀椀ed with the
linear functional that takes an �-tuple of complex numbers
to the difference between the �th and �th points, and the
compacti昀椀cation � of �∗ is obtained by allowing these dis-
tances to go to ∞. Recall from Example 2 that 昀氀ats are in
bijection with partitions of the set [�]. If þ is the 昀氀at corre-
sponding to the partition [�] = �1 ⊔⋯⊔��, then the orbit
containing �þ consists of all tuples for which the distance
between the �th and �th points is 昀椀nite if and only if � and� lie in the same part of the partition.

The decomposition of � into af昀椀ne spaces is a topolog-
ical cell decomposition with all cells of even dimension.
In particular, it implies that the cohomologyH∗(�;ℚ) van-
ishes in odd degrees, and that the dimension of H2�(�;ℚ)
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is the �th Whitney number ��(�). In fact, we have a
stronger statement: as a ring, H∗(�;ℚ) is isomorphic to
the graded Möbius algebra H∗(�), with degrees doubled.
(This is not needed to prove the Dowling–Wilson conjec-
ture in the realizable case, but it is key to generalizing it to
all matroids.)

Because the variety � is singular, it is natural to con-
sider its intersection cohomology IH∗(�;ℚ), which is a
graded module over H∗(�;ℚ). For smooth algebraic vari-
eties, intersection cohomology is isomorphic to ordinary
cohomology, while for singular varieties the intersection
cohomology retains many of the important properties of
the cohomology of smooth varieties. In particular, since� is a projective complex algebraic variety, it satis昀椀es the
hard Lefschetz property: If � ∈ H2(�;ℚ) is ample, then
for any � ≤ ý = dim� , the multiplication map��−� ∶ IH�(�;ℚ) → IH2�−�(�;ℚ) (3)

is an isomorphism.
Because � is a proper variety which has a decom-

position into af昀椀ne spaces, an argument of Björner
and Ekedahl [BE09] implies that the graded H∗(�;ℚ)-
module IH∗(�;ℚ) has a graded submodule isomorphic toH∗(�;ℚ), regarded as a module over itself. This is the last
ingredient that we needed to prove the Dowling–Wilson
conjecture! Indeed, let � be an ample class inH2(�;ℚ). Re-
stricting the isomorphism (3) to the submodule H∗(�;ℚ)
gives an injectionH2�(�;ℚ) → H2�−2�(�;ℚ).
Since the source and target have dimension ��(�) and��−�(�), respectively, we obtain the inequality ��(�) ≤��−�(�).
The proof for general matroids. The proof of the full
Dowling–Wilson conjecture in [BHM+] follows the same
basic plan as the proof in the realizable case. Although
there is no analogue of the variety � for general matroids,
we still have an analogue of its cohomology ring H∗(�;ℚ),
namely the gradedMöbius algebraH∗(�). What is needed
is to de昀椀ne a graded module IH∗(�) over the graded ringH∗(�), called the intersection cohomology module of
the matroid�, and to show that it satis昀椀es the conditions
needed for the argument in the previous section:• IH∗(�) has a submodule isomorphic to H∗(�).• IH∗(�) satis昀椀es the hard Lefschetz property.

The 昀椀rst condition is immediate from the de昀椀nition ofIH∗(�) (which we will not give here). The second con-
dition is proved via an elaborate induction in which the
hard Lefschetz property is one of 昀椀fteen different proper-
ties of the module IH∗(�) that are simultaneously proved
[BHM+, Theorem 3.16]. For a diagram depicting the struc-
ture of this induction, see [BHM+, Figure 1].

Many of the steps of the induction are motivated by
statements that are known geometrically in the realizable
case. There are also strong similarities with two other no-
table examples where “intersection cohomology” has been
de昀椀ned and Hodge-theoretic statements such as hard Lef-
schetz have been proved for a nonexistent variety: the inter-
section cohomology of nonrational fans of Karu [Kar04],
and Elias and Williamson’s Hodge theory of Soergel bi-
modules [EW14].
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