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to act effectively in maintaining the diversity of species. In many ecological appli-
cations, future predictions are made under various global warming scenarios, as
described by a range of different climate models. We propose a clustering meth-

odology to synthesize and interpret the outputs of these various predictions.

. We propose an interpretable and flexible two-step methodology to measure the

similarity between predicted species range maps and to cluster the future sce-
nario predictions utilizing a spectral clustering technique. We implement and pro-

vide code for this method.

. We find that clustering based on predicted species range maps is mainly driven by

the amount of warming rather than climate model or future scenario. We contrast
this with clustering based only on predicted climate variables, which is driven
primarily by climate models, that is, scenarios of the same climate model are clus-
tered together, even when the amount of warming input to the models is varied.
The differences between species-based and climate-based clusterings illustrate
that it is crucial to incorporate ecological information to understand the relevant
differences between climate models. Our findings can be used to better synthe-
size forecasts of biodiversity change under the wide spectrum of results that
emerge when considering potential future scenarios.
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1 | INTRODUCTION

Natural and human-induced global climate change undeniably im-
pacts the biodiversity of plants and animals and is expected to lead
to large-scale range shifts (Dantas-Torres, 2015; Lovejoy, 2006;
Mackey et al., 2008; Radchuk et al., 2019). A common response of
species to global climate change is dispersal or range map shifting

(Pecl et al., 2017) or range map contraction. Understanding the

extent of potential ecological responses to a rapidly changing cli-
mate is essential to enact effective conservation policies (Hannah
etal., 2013, 2020; Parry et al., 2007).

Forecasting species distributions or range maps under various
scenarios of future climate provides a suite of potential outcomes
(Burrows et al., 2014; Jones & Cheung, 2015; Molinos et al., 2016).
Given a model for species range maps based on current climate, a
suite of forecasts can be made using future climate projections such
as those from the Coupled Model Intercomparison Project 6 (CMIP6).
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A comprehensive look at the forecasts under various scenarios for
a large number of species can quickly become burdensome to sum-
marize both within and among species. Clustering methods provide a
mechanism for extracting lower dimensional information; clustering
species range maps across scenarios elicits patterns of responses to
climate change within a species and across species.

Principal component analysis (PCA) is a widely used tool in eco-
logical applications to interpret high-dimensional data (Huettmann
& Diamond, 2001; Janzekovi¢ & Novak, 2012; Jolliffe, 1986;
Pearson, 1901; Wu et al., 2019). However, PCA has significant draw-
backs in the nonlinear, multivariate setting of the current applica-
tion. PCA has a tight relationship with correlation, which classically
fails to capture nonlinear relationships. Secondly, it is not clear how
to incorporate information from multiple species into a PCA-based
approach, since different species have different-sized range maps,
and thus different species will naively vary in the principal compo-
nent contributions due to size alone, which may not be desired. In
contrast, we present a flexible alternative, spectral clustering, al-
lowing for any similarity or distance between range maps. Spectral
clustering is ideal for our dataset because of the high dimensional-
ity of range maps and the desire to amalgamate information from
across species. Spectral clustering is a technique to cluster obser-
vations given only pairwise similarity or distance measures between
the observations. It is well suited for this task because we can define
a function that captures our desired notion of pairwise similarity
measure between potential range maps, which will be discussed in
Section 2.3.2.

A popular alternative summarization to clustering is a metric
of change in species richness due to climate change known as cli-
mate velocity (Loarie et al., 2009), which can be used as a proxy
for net effects on biodiversity change, particularly when detailed
biodiversity information is not available (Burrows et al., 2014;
Jones & Cheung, 2015; Molinos et al., 2016). However, these cli-
mate velocities rely entirely on climate information while ignor-
ing ecological data. Such ecological information, such as species'
exposure to climate conditions not found in the species' current
niches that are described by species range maps models, are im-
portant factors to project the species potential future range maps
(Trisos et al., 2020). We propose to cluster the forecasted species
range-map to interpret and investigate the similarities and dif-
ferences among projections across different warming scenarios,
global climate models (GCMs), and species. We analyse a dataset
of 1101 animals over 34 different future scenarios, for a total of
over 37,000 range maps. Climatic variables such as temperature
and annual rainfall informs the projected range maps, and thus the
spectral clustering results will make full use of this species-climate
interaction information through the use of these range maps. In
order to assess the amount of information gained from the spe-
cies range map model, we additionally apply spectral clustering
to the scenarios based only on the projected values of the climate
variables. We hypothesize that clustering the scenarios based on
these projected range maps will produce significantly different re-
sults than clustering based only on the climatic variables of the

scenarios. The differences will emphasize the value of monitoring
species-specific changes.

Our methodology can be used to cluster based on individual
species, on all species together, or on subsets of species such as
those species most at risk. Clustering the projected range maps
for a single species across the suite of climate projections is im-
portant to understand the climatic response for the single spe-
cies, whereas clustering based on all species has the benefit of
obtaining a broad understanding of the overarching patterns.
Furthermore, clustering can be based only on a subset of the spe-
cies such as those considered most at risk; summarizing projec-
tions for species most at risk highlights climatic factors that drive
high loss of biodiversity, although there are other non-climatic
factors affecting biodiversity which are not taken into account
in our model.

We first describe prior modelling work to project the future po-
tential range maps given climate information (Sections 2.1 and 2.2).
Then, we discuss our methodology for clustering ecological and cli-
mate scenarios (Section 2.3); first, based on projected range maps,
and second, based on projected climate variables. Additionally, we
provide an illustrating example, and our code is available at github.
com/gobbleturk. In Section 3, we discuss the scenario clusterings,
with emphasis on the difference between the climate-based and
ecological based clustering. We then demonstrate that we have
detected meaningful clusters, with range maps within clusters sim-
ilar to each other, but different than range maps in other clusters.

Finally, we make some concluding remarks in Section 4.

2 | MATERIALS AND METHODS
2.1 | Data: Range map projections

We used inhomogeneous Poisson point process models (PPPM;
Merow et al., 2017; Renner et al., 2015; Warton & Shepherd, 2010)
to project the future range maps of 1101 terrestrial mammal spe-
cies for the period 2061-2080 centred on 2070. The projections
are based on current day presence data and climatic covariates. For
current day climatic conditions, five climate variables with minimum
pairwise correlation were chosen from a set of 19 commonly avail-
able Bioclim variables in the world climate database, WorldCLIM2
(Fick & Hijmans, 2017).

The mean values from 1970-2000 of the five chosen climate
variables were used to fit a PPPM for the species occurrence.
Occurrence data for each species were obtained from GBIF (2020),
and PPPMs were fit for species with at least 10 unique presence cells
on a global 10 km grid. The fitted model was used to project future
potential distributions based on the CMIP6 predictions of the five
climate variables. Predicted relative occurrence rate was converted
to binary range maps of presence/absence with a chosen threshold
based on the 5% quantile of predicted relative occurrence rate val-
ues of training presences. This approach was used to make predic-
tions for 1101 mammals with sufficient data using the 34 different

ASUDOIT SUOWIWO)) AANEAI) d[qeatjdde oYy £q PAUIAOS 2Iv SI[ONIE YO (SN JO SI[NI 10§ AIRIqIT QUIUQ AJ[IA UO (SUOTIPUOI-PUB-SULIDY/WOY K[1A KTRIqIouI[uo//:Sd1Y) SUONIPUOY) PUB SWIAT, 9Y) S *[SZ0T/F0/20] U0 AIRIqIT dutuQ AIM 08011 X01Z-140Z/1 1 11°01/10p/wod* K[im’ KIeiquourjuo’syeunofsaqy/:sdiy woij papeojumod s ‘€707 *X01Z1#07


http://github.com/gobbleturk
http://github.com/gobbleturk

1348 Methods in Ecology and Evolution

DAVIDOW ET AL.

Prgbsent Distribution Pseudomys hermannsburgensis

Latitude
_ Latitude

E 38
110 115 120 125 130 135 140 145 150 110 115 120 125

Longitude
(a) Present Day Range Map

Sgenario ca8570 Pseudomys hermannsburgensis

130

Longitude

(b) Scenario Range Map

Weigh&aﬁd Presence and ca8570 P her gt

WKep! Presence
mENovel Presence
EENovel Absence
Kept Absence

EN

5

~ Latitude

38
135 140 145 150 110 115 120 125 130 135 140 145 150

Longitude
(c) Overlap of Present Day and Scenario

FIGURE 1 Map (a) shows the present day range map for the Australian sandy inland mouse Pseudomys hermannsburgensis. Map (b) is the
predicted range map of inland mouse in 2070 under climate scenario bc with RCP 2.6. Map (c) is the corresponding weighted values for each
pixel when we intersect (a) and (b): presences are shown in blue, absences in red. Darker colour values represent cell weights with greater

conservation relevance because they correspond to present cells in (a).

sets of predicted climate variables. An example of predicted range
maps for the Australian sandy inland mouse Pseudomys hermanns-

burgensis is shown in Figure 1b.

2.2 | Data: Climate models

Climate variables used for prediction are collected in the Coupled
Model Intercomparison Project 6 (CMIP6). CMIP6 provides multi-
ple climate predictions which vary by the underlying global climate
model (GCM) and the representative concentration pathway (RCP)
used. RCPs describe a predicted timeline of greenhouse gas con-
centrations (Eyring et al., 2016). The CMIP6 RCP models are tied
to a model of societal development (shared socio-economic path-
way), although we refer to the predictions of these models by their
RCPs. Four RCPs are included in CMIP6, which vary in the quantity
of greenhouse gas emissions to capture the uncertainty of future
emissions. We refer to the RCP trajectory of least emission as the
“low-emissions” trajectory, and refer to the most pessimistic tra-
jectory as the “high-emissions” trajectory. See also Table Al in the
Appendix for more information about the different climate models.
In this work, we refer to a scenario as a (GCM, RCP) pair; a scenario
represents uncertainty both in the evolution of climate, and in fu-
ture greenhouse gas emissions. There is a variety of publications
which studied the climate predictions considered in this paper; see
Eyring et al. (2016); Kageyama et al. (2018); Pascoe et al. (2020); Ma
et al. (2020).

2.3 | Clustering methodology

First, we introduce some notation regarding the range maps
(Section 2.3.1) followed by a way to quantify similarity between
range maps (Section 2.3.2). Furthermore, we utilize spectral cluster-
ing to cluster scenarios based on the proposed similarity measure
(Section 2.3.3). We conclude this section with a procedure to cluster
scenarios based on different climate variables (Section 2.3.4), which
can be compared to clustering based on the ecologically informed
range maps which highlights the importance of utilizing information
regarding species' preferred climatic niches.

2.3.1 | Range map notation

For notational simplicity we focus the presentation of the methodol-
ogy for asingle species. Furthermore, we suppose our range maps are
on ar by cregular grid represented as (r,¢):r=1, ...,r; c=1, ... ,c.
We denote B, as the binary (presence/absence) predicted range map
according to scenario s, to be more precise B,(r,c) = 1 if the cell at
(r,c) represents a presence, and B,(r, c) = O otherwise. It is important
to consider how these range maps differ from the present day; for
this reason, we denote by P the present day map. Similarly as for
B,(r,c), we define P(r,c) = 1 if the cell at (r,c) is presently occupied,
and O otherwise. We define a candidate set A where presences and
valid absences may occur, so that non-meaningful cells such as those
in the ocean have no effect on quantifying similarity between range
maps described in the next section. This binary candidate map A has
size r by ¢, and could, for example, take the value 1 only when there
is land, or alternatively the geographic area reachable by the spe-
cies considering physical constraints on dispersal such as mountain
ranges. We have chosen to take A as the union of the original range
map and all scenarios, thus A(r,c) = 1if P(r,c) = 1, or there is at least
one scenario s such that By(r,c) = 1. More generally, A is a mask for
the r by c rectangular grid that is either occupied in the present or
occupied in at least one future prediction.

2.3.2 | Quantifying similarity

We choose to quantify the similarity (or differences) among the cli-
mate scenarios, s, with respect to changes in presence/absence from
the present day, P. For each scenario s, we construct a correspond-
ing weighted map, W,, that indicates the nature of the changes. The
value of W,(r,c) is O if A(r,c) =0, but when A(r,c) = 1, the value of
W,(r,c) depends on the intersection of the value for the present day
map and the value under scenario s at location (r,c). The four pos-
sible values of W,(r, c) are shown in Table 1.

The four possible cases represent unchanged (kept) presences,
Pkeerr NEW Presences, p,,, new absences, a,,, and unchanged ab-
SENCES, Gy Fespectively, where “keep” and “new” are with respect
to the present day range map, P. For example a grid cell (r, c) corre-
sponding to py.e, is a grid cell that is a presence in the current day
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TABLE 1 Cell weighting values for W(r, c) given A(r,c) = 1.

P(rc)=1 P(r,c)=0
B(r,0)=1 Pkeep Prew
B(r’ c) = 0 Onew akeep

range map, P(r,c) = 1, and remains a presence according to scenario
s,B,(r,c)=1.

The best choice of weightings, (Dyeep: Prews Gnews Tkeep)s IS de-
pendent on the pairwise similarity metric used for clustering.
We choose to compute the pairwise similarity between scenario
range maps as the cosine similarity of their weighted range maps,
CosineSimilarity (W,, W, ) or CS(W;, W,) for short. We define the

cosine similarity between two matrices W,, W,, of dimensionr x c as

CS(W W ) _ WS . Wsr _ Z::]_ 22:1 W5<rvc)Ws’ (rv C)
T IWL I T Wy Il W liz Il Wy I
o : (1
with |W, ||, = < > > w, c)2> .
r=1 c=1

The product in the numerator in (1) suggests that when W(r,c) and
W, (r, c) are zero, there is no contribution to the measure of similarity
suggesting that the weighting scheme, (pyeep, Prews Inew: Akeep) Should
be constructed such that meaningful contributions to similarity have
non-zero values.

In our weighting scheme, presences are given positive
weights, absences are given negative weights, and we choose
| Grew | > | Oyeep I, to emphasize those cells whose ecological
suitability for this species is vanishing. These “lost” cells corre-
sponding to novel absences, {(r,c):W,(r,c) =d,,}, are partic-
ularly important; they represent cells where according to the
range map model, the geographic location is no longer suitable
given the change in climate. In addition, these cells should be
weighted higher to emphasize their importance for conserving a
species as they are known to have been occupied at some time
point. By contrast the cells corresponding to p,..,, represent regions
that are predicted to become suitable, however such predictions
do not imply that the locations will be occupied due to uncer-
tainty in dispersal, which is not directly taken into account by the
PPPM. Thus, we also make the choice | pyee, | > | Ppew |- We chose
[Gnew | = | Preep | =1 | Ogeep | = | Prew | =0.5 to represent the
fact we are more concerned about all cells in the region of pres-
ent day occurrences. However, we emphasize the flexibility of our
method as alternative choices can be made depending on the goals.
A visualization of this weighting scheme is shown in Figure 1.

Alternative weightings can be considered for various applications,
forinstance the choice of | pyeep | = | Prew | = | Gnew | = | Okeep | =1
does not make use of the present day map, and does not differenti-
ate cells that underwent a change from the present day map to the
predicted scenarios.

Alternative similarity metrics could have been considered.
However, the cosine-similarity has certain advantages over other
commonly used measures to quantify the similarities (or distances)

between range maps. The Hellinger distance and Kullback-Leibler
divergence (Hagen, 2002) rely on a probabilistic interpretation,
and thus it is difficult to incorporate absences into these measures,
however they might be useful when considering differences in
range maps describing occurrence probability. The Kappa statistic
(Hagen, 2002) can be used to measure similarities between cat-
egorical maps, however it is not as clear how to weight important
cells, such as novel absences. In addition, the Kappa statistic does
not directly incorporate the relative frequencies of absences and
presences. For instance if two range maps both predict all pres-
ences except a single absence cell, these two range maps will have a
negative Kappa statistic if their one absence cell differs in location.
However, for our purposes we would like to consider such a pair of
range maps to be very similar. The Wasserstein distance (Peyré &
Cuturi, 2019) measures the distance a species moves, suggesting it is
appropriate in our setting. However, the Wasserstein distance does
not model the disappearance of regions, and attempts at computing
the Wasserstein distance proved too slow or even non-convergent
in all but the range maps with the smallest number of presence cells.

The computation and resultant cosine similarity using these
weighted range maps are readily interpretable; when two scenarios
agree on the presence or absence of a cell, this cell has a positive
contribution to the cosine similarity, whereas the cell has a nega-
tive contribution when the two scenarios disagree. For any choice of
weights, the resulting similarity is always in the range [ -1, 1]. If the
weights are chosen such that | dey | = | Preep |5 | Gkeep | = | Prew |
(as we have assumed), the cosine similarity is 1 when the two range
maps are identical and — 1if the two range maps completely disagree
on presences. This interpretability allows for a simple method to
combine information across species. Furthermore, cosine similarity
can also be implemented very efficiently and quickly utilizing matrix

multiplication.

2.3.3 | Spectral clustering

For each species m=1, ...,1101, we compute the pairwise sce-
nario similarity matrix by computing the cosine similarity (1) on
each pair of scenario weighted range maps, (WS"“,WS'E’), where W is
the weighted range map for species m under scenario s. That is for
each mammal species, we construct the s by s matrix S™ with entries
Sm(s,s") = CS(W™, W), where s =34 is the number of scenarios.
We cluster scenarios by spectral clustering on the cosine similarity
measure (Von Luxburg, 2007).

The properties of spectral clustering are understood from a
graph theory perspective (Von Luxburg, 2007). The similarity ma-
trix S™ can be thought of as an undirected graph whose nodes are
the scenarios and the edge weight between a pair of scenarios
s and s’ is given by S'"(s,s’). Spectral clustering has best perfor-
mance on sparse graphs, thus for the dense similarity matrix S™
, the first step is to sparsify it by taking the k-nearest neighbour
graph, that is retaining an edge from s to s’ only if s’ is within the
top k neighbours of s (i.e. it is within the top k scenarios of maximal
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similarity to s). When the graph is expressed as a matrix, sparsify-
ing the graph corresponds to setting entries of the matrix to zero.
Retaining the top k neighbours leads to a directed graph as this
definition of nearest neighbour is not symmetric. Thus, we retain
the undirected edge from s to s if either s’ is within the top k neigh-
bours of s, or vice-versa (Figures 2A,B). The retained edges are
weighted by the similarity of their endpoints. We denote by E this
matrix of retained weights.

The main computational tool of spectral clustering is the graph
Laplacian L =D — E, where D is a diagonal matrix of node degree,
D(s,s) = Z:f:1 E(s,s’) (i.e. the number of scenarios connected to
scenario s). The graph Laplacian can be thought of as a matrix
representation of a graph, with useful mathematical properties as
will be discussed shortly. We used the random-walk normalized
graph Laplacian, L,,, = D~1L, as suggested in Von Luxburg (2007),
although this normalization choice is most significant when the
node degrees vary significantly, which is not the case here. The
normalization is used to prevent a single node from dominating
the resulting spectral clustering when that node has many more
connections, that is, it is a “central node”. However, such “central
nodes” were not found in this application since each scenario is
similar to only a few other scenarios (i.e. those with similar RCP
and or GCM).

If the graph corresponding to the normalized Laplacian is discon-
nected (i.e. there is at least one group of nodes that do not have any
edges outside that group, Figure 2a.C), then there is at least one ei-
genvector of L,,, which is sparse with non-zero entries only on nodes
within that group, with an associated eigenvalue of O. If instead the
graph is “noisier” and fully connected as in our case, the first eigen-
vectors (corresponding to the smallest eigenvalues) are only approx-
imately sparse; they have large magnitude on groups of nodes that
are tightly connected, and small magnitude on nodes outside such
groups. Thus these eigenvectors can be used to identify clusters,
which is discussed next.

The spectral embedding of the s by s matrix L, is related to the
eigendecomposition of L,,. The eigenvectors of L, arranged by de-
creasing order of the corresponding eigenvalues form the columns
of a s by s matrix U. The rows of U represent the coordinates of the
corresponding observational unit (in our case observational units are
scenarios). This embedding (transformation from a graph, L,,,, to real
valued coordinates, U) is meaningful because of the properties of
spectral clustering disucssed above.

Illustrations of spectral clustering on both a ‘clean’ (perfectly
separable clusters) and ‘noisy’ (one cross edge) examples are shown
in Figure 2a,b. The images illustrate the steps of the spectral cluster-
ing described above. The clean example is ‘cleanly’ disconnected: the
first four nodes form a cluster which share no edges to the last four
nodes (i.e. the symmetrized kNN matrix, Figure 2a.B, is a block ma-
trix). The spectral embedding process starting on the clean example
can be summarized as follows: it starts with an input similarity ma-
trix (Subfigure (A)), where each row (and column) of the matrix rep-
resents an observation, and entry (i, j) of the matrix represents the
similarity between observations i and j. The next step is to compute

the nearest neighbour similarity matrix, which is shown in Subfigure
(B). Here, we have chosen k = 3 (the number of nearest neighbours
is 3), so we set an entry in the nearest neighbour matrix to 1 if it is
within the top 3 values in its row or column, else we set it to 0. The
next step is to compute the graph Laplacian L =D — E of the near-
est neighbour graph, should in Subfigure (C). Here, L is the graph
Laplacian, D is a diagonal matrix of the node degrees (in this case
every node has degree 3) and E is the nearest neighbour graph. This
is then normalized to random walk flavour of the graph Laplacian,
L,,, = D~'L. The final step is to compute the spectral embedding from
the graph Laplacian, which is done by taking the smallest two eigen-
vectors of the random walk graph Laplacian, shown in Figure (D).
The two columns serve, as the two coordinates: the first column is
the x-coordinate in subplot (D), the second column the y-coordinate.
We see that the spectral embedding in Figure (D) faithfully rep-
resents the original graph, there are still two clusters of four nodes
each, but now represented in a two dimensional plane rather than
the original similarity matrix.

The noisy example has a single cross edge entry of the matrix
(i.e. there is one pair of scenarios from the original separate groups
that are now considered neighbours, Figure 2b.B) that affects the
final spectral embedding; the first and fifth point are closer together
(Figure 2b.D). Our case of 34 scenarios is more complex than this il-
lustrated example of only 8 points, however the pattern that groups
of scenarios which are all similar to each other will be near each
other in the embedded space remains true.

Once observations (in our case, future climate scenarios) are
transformed to real coordinates via spectral embedding as discussed
above, a simple clustering algorithm can be applied such as k-means.
However we chose the single-linkage clustering algorithm over k-
means in this embedded space as it performs well according to the
Davies-Bouldin criterion. The Davies-Bouldin criterion is a common
clustering criterion quantifying the goodness of separation between
clusters (Davies & Bouldin, 1979). The Davies-Bouldin criterion is
interpreted as a ratio of the average intra-cluster distance and inter-
cluster distance; a good clustering will have points that are close to-
gether within cluster (small intra-cluster distance), and points that
are far apart in different clusters (large inter-cluster distance).

Spectral clustering can be performed for a single species using
only S™ Alternatively, one way to combine information across species
is to capture group-wide trends in scenarios. We cluster similarity
matrices based on two aggregations. First, we average the similar-
ity matrices across all m = 1101 species, as in S=(1/m) Zmzi sm,
Second, we average over a subset of species whose fraction of area
lost (the fraction of range lost between now and the prediction in
future) is among the highest 10%. We average the similarity matrices
across species in order to incorporate information from each species
into a quantitative clustering approach, obtaining a broader under-
standing of the overarching patterns between species range maps
and climate scenarios. Averaging similarities matrices tells us which
pairs of scenarios are similar across many species instead of individ-
ual ones, however we also we will also discuss differences between

analysis conducted on individual species.

ASUDOIT SUOWIWO)) AANEAI) d[qeatjdde oYy £q PAUIAOS 2Iv SI[ONIE YO (SN JO SI[NI 10§ AIRIqIT QUIUQ AJ[IA UO (SUOTIPUOI-PUB-SULIDY/WOY K[1A KTRIqIouI[uo//:Sd1Y) SUONIPUOY) PUB SWIAT, 9Y) S *[SZ0T/F0/20] U0 AIRIqIT dutuQ AIM 08011 X01Z-140Z/1 1 11°01/10p/wod* K[im’ KIeiquourjuo’syeunofsaqy/:sdiy woij papeojumod s ‘€707 *X01Z1#07



DAVIDOW ET AL. Methods in Ecology and Evolution 1351
(a)
A Original Similarity B Symmetrized kNN
Matrix Matrix
| - 1 1 1 0 0 0 0 | - 1 1 1 0 0 0 0
1l 1 1 1 0 0 0 0 Il 1 - 1 1 0 0 0 0
1] 1 1 . 1 0 0 0 0 1] 1 1 1 0 0 0 0
-8 v 1 1 1 - 0 0 0 0 -8 \Y} 1 1 1 - 0 0 0 0
© 3]
= =
3 \" 0 0 0 0 1 1 1 3 Vv 0 0 0 0 - 1 1 1
7] 7]
\Y| 0 0 0 0 1 - 1 1 \Y/] 0 0 0 0 1 1 1
Vil 0 0 0 0 1 1 - 1 Vil 0 0 0 0 1 1 ) 1
Vil 0 0 0 0 1 1 1 - VIl 0 0 0 0 1 1 1 -
| 1l m v v v v v | 1l m v v v vi v
Scenario Scenario
Neighbors
FALSE
TRUE
. D
ﬁp:ima" Random Spectral Embedding
a

| 1 -0.33 | -0.33 | -0.33 0 0 0 0

Il 033 1 -033 -033 0 0 0 0 0.50

1] 033 033 1 -033 0 0 0 0

N
o o
= IV 033 -033 -033 1 0 0 0 0 £
g S 0.25
] [
oV 0 0 0 0 1 1 -0.33 -0.33 -0.33 o
n £
w
\Y/| 0 0 0 0 -033 1 -0.33 -0.33
Vi 0 0 0 0 |-033/-033| 1 |-0.33 0.00+

ViV

Vil 0 0 0 0 |-0.33/-0.33|-0.33 1

| 1l m v v v vi Vi 0.00 0.25 0.50
Scenario Embedding 1

FIGURE 2 (a)Spectral Clustering Clean Example: the two groups are separable in that there are no shared members. These four plots
show the steps of spectral embedding: Subfigure (A) is the example input similarity matrix, where each row (or column) represents an
observation. Subfigure (B) shows the nearest neighbour step with the choice of k = 3, Subfigure (C) shows the graph Laplacian (the random
walk version of the Laplacian) of the nearest neighbour graph, and (D) shows the final spectral embedding. We see that in this ideal example
the spectral embedding perfectly separates the two groups of columns (the first four and second four observations are in separate clusters).
The results on this clean example can be compared to a noisier example in Figure 2b. (b) Spectral Clustering Noisy Example: the two groups
are no longer separable in that there is one pair of members which are linked across groups, | and V. This linkage is faithfully represented

in the spectral embedding by placing groups | and V closer together and separate from the other examples. Step-by-step illustrations of
spectral clustering for (a) a ‘clean’ example and (b) a ‘noisy’ example. The noisy example perturbs the clean example to have one pair of
neighbours across the original separate groups. For both examples, the original similarity matrix in Subfigure (A) defines the neighbours in
the symmetrized kNN matrix with k = 3 in Subfigure (B). The Laplacian random walk matrix in Subfigure (C) is calculated from (B) and the two
eigenvectors of (C) corresponding to the smallest non-zero eigenvalues correspond to the coordinates of the scenarios in Subfigure (D). Note
in (D) there is some jittering for visualization purposes. The perturbation of the similarity matrix results in scenarios | and V being plotted
more closely in the noisy example.
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FIGURE 2 (Continued)
2.3.4 | Climate-based scenario clustering 34 scenarios. In order to directly compare climate-based clustering to

We contrast the clustering based on range maps with a clustering based
only on predicted climate variables. This comparison will illustrate the
importance of incorporating the species climatic niches information by
contrasting clusters based only on climate to those using climate to first
estimate species ranges before clustering. We discuss the process of
clustering using only the five climate variables that were used to pre-
dict the range maps (see Section 2 for a description of the predictions).
Each of these five globally distributed variables is predicted across the

our ecologically based clustering, we utilized the climate variables to per-
form a clustering in a similar fashion to the ecologically based clustering.
However, for continuous data, the cosine similarity is not appropriate, as
two maps that are shifted versions of each other would be considered
very similar to each other. For instance, if one scenario predicted two
degrees Celsius warmer everywhere than another scenario, the cosine
similarity between these two maps would be very high, which is not de-
sirable as these two maps represent significantly different predictions.
Instead, we use the L, distance between maps, which will effectively use
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FIGURE 3 Visualization of the mammal richness in the dataset over space. White cells correspond to locations with no predicted
presences. (a) Present day mammal richness. (b) Predicted counts averaged over all scenarios. (c) Net change, that is, the difference between
the predicted and the present count. (d) Fraction change, that is, the fraction between the net change and the present count. Our findings
are consistent with those of Chen et al. (2011) who found that species are moving poleward and towards higher elevations: there is loss
around the equator and some increase in diversity towards the northern pole.

both the difference between the means of maps and differences in the
spatial variation. To incorporate all five climate variables, each variable
was normalized before applying the L, distance. This effectively weights
each climatic variable equally. Although temperature is the most impor-
tant variable for predicting species niches, we weight them equally to
demonstrate what a naive climate-only (without considering the ecologi-
cal effects) clustering of scenarios would look like. We additionally show
cluster results based on individual climate variables including tempera-
ture in a later section. We denote Tsf(r, c)as the value of variable f accord-
ing to scenario s at location (r, ¢). The variable scaled L, distance between

a pair of scenarios s and s’ using all five variables is given by

= i i i[(Tz(hC)—Tsf,(r,c))/gf]z,

f=1 r=1 c=1

where o; is the standard deviation of variable f measured across all
locations and scenarios, that is we calculate the mean of each variable

across all locations and scenarios,

i Zr: i Ti(r,0- /lf with =(s~r~c)’1i Zr: iTsf(r,c).
1

s=1 r=1 c= s=1 r=1 c=1
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We create a similarity matrix, S, from the distances by using the mono-
tonically negative transformation $(s,s’) = 1/H(s,s’). Spectral clus-
tering can be performed on this climate-informed matrix S which can

be compared to the ecologically driven spectral clustering.

2.4 | Randindex

In order to quantitatively compare cluster assignments, we used
the adjusted Rand index (Hubert & Arabie, 1985). The adjusted
Rand index measures how similar two cluster assignments are to
each other. We make use of the adjusted Rand index by measur-
ing the similarity of the clustering results to partition by either the
representative concentration pathway (RCP) or global climate model
(GCM), in order to quantitatively answer whether RCP or GCM dif-
ferences is the driving factor behind the clustering results.

Given two cluster assignments X ={X, ...,X,} and
Y ={Yy, ..., Yy}, where each X; and Y; are clusters (sets of scenar-
ios). Define the cardinality of the set of overlaps between two clus-
tersaso; = | X;nY; | Also define 0. := 3", oyand o, := ¥, o;. The

adjusted Rand index is given by

o8 z[ y ][2[ i ]E[ : ”/[ : ] ,
[z[ . ]+z[ y ]HZ[ j ]Z[ . H/[ : ]

n
where denotes the binomial coefficient and is calculated as
2

Adjusted Rand Index =

_ nin-1

2 2

The adjusted Rand index measures how similar two cluster as-
signments are to each other compared to random assignments.

Random assignments have an expected adjusted rand index of O.

3 | RESULTS AND DISCUSSION
3.1 | Globaldiversity loss

One can get an overall sense of the changes predicted in the
range maps from Figure 3, which shows how the diversity of
mammals is spread spatially over the earth. We see from both
Figure 3c,d that notable potential diversity losses are projected
around the equator in South America and Africa, whereas there
is some potential diversity increases further north, consistent
with previous findings (Chen et al., 2011). We note that these
‘losses’ do not necessarily imply a extirpation but rather that a
species is exposed to climate beyond its current realized niche.
Similarly species ‘gains’ do not necessarily imply that new spe-
cies will occur in a given cell, but rather that the cell is newly
suitable for a species climatically. A species with newly suitable
locations may still not occur there due to dispersal limitation,
biotic interactions, etc.

3.2 | Potential range shifts

By comparing the fraction of cells corresponding to a,,, and ppe,,, we
get a sense of potential range map shifts compared to present day
range maps. This is shown in Figure 4, which shows potential range
map shifts, as opposed to range map expansions or contractions; the
number of new presences and new absences grow together, which
would occur as range map shifts, instead of say absences growing as
presences shrink, which would be indicative of a decrease in overall
range size.

However, although novel absences and novel presences tend
to occur together as shown in Figure 4, on average there are more
novel absences (average 38% +28% SD of current range map) than

novel presences (average 25%+26% SD), which implies that the

Fraction New vs Lost Cells Averaged over Animals
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FIGURE 4 Shows that predicted range
maps tend to be shifted, that is, lost and
new cells grow together, with losses being
larger than gains, as the scenarios are
above the 45 degree dashed black line.
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Scenario Clustering Of Pseudomys hermannsburgensis
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Scenario Clustering using Tupaia gracilis
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(d)  Tupaia gracilis (treeshew)
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FIGURE 5 Spectral clustering of scenarios using individual species. We see mainly grouping by RCP for the first three (a-c), but a starkly
different GCM-driven clustering for the treeshew (d). This variety was found among species, most species clusterings are strongly driven
by RCP, but some are more reflective of GCM. These differences between species further demonstrates that ecological information is

important to interpret the differences between scenarios.

species ranges are both shifting and decreasing in size (average 13%

net loss, +31% SD) due to the changing climate.

3.3 | Clustering plots

The spectral clustering results using the species-specific similarity
matrix, S™, is shown in Figure 5 for four species, illustrating the main
types of patterns observed across all 1101 species. We found an
interesting mixture of RCP and GCM dependence. RCP is a major
driving factor of cluster composition; in most of the species-specific
clusterings, the far left (“low-emissions”) cluster contains mainly sce-
narios with low-emissions RCP, and the far right (“high-emissions”)
cluster only scenarios with high-emissions RCP (Figures 5a,c).
However, the clustering for the slender treeshew Tupaia gracilis
(Figure 5d) predicted ranges is driven mainly by GCM. This cluster-
ing mainly by GCM was found in many species (30% species' cluster

results had a higher Rand index with a GCM clustering than an RCP
clustering), probably because these species niches had relatively
weak dependence on mean annual temperature compared to other
climate variables. However, the most common trend is RCP de-
pendence (70% of species). This variability among species is further
evidence supporting the importance of the climate-ecology relation-
ship; the most important difference between climate models (GCM
or RCP) varies depending on the individual species.

The spectral cluster results from using the similarity matrix av-
eraged over all 1101 mammals considered, S, is shown in Figure 6a.
We see in the bottom cluster of Figure 19 a mix of RCP and GCM.
Similar to the individual species results, this suggests that RCP alone
does not account for the variation, and the GCM is also important.

We also performed clustering for only the species most at
risk, defined by those species whose fraction of area lost is
among the highest 10%. This loss in area can be used to approx-
imate a loss in population abundance using the techniques in
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Scenario Clustering using Acinonyx jubatus
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FIGURE 6 (a): Scenario embedding and clustering for similarity matrix averaged over all 1101 mammals, S. The clusters are mainly driven
by RCP. However, there are still some relationships among the GCMs, for instance the red ‘ca’ GCM predicts more extreme outcomes (right-
most cluster), and at each level of a RCP the green, black, and yellow (‘cc’,'ce’ip’), climate models are nearby in the spectral embedding space.
(b): In the climate-based clustering, the clusters are mainly determined by GCM. This clustering is significantly different from the ecological
based one (a), which demonstrates the importance of incorporating information about species' climatic niches.
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He (2012) and Che-Castaldo and Neel (2016). Performing spec-
tral clustering by using the average of similarity matrices of this
subset of species at risk is shown in Figure 7. This clustering puts
a strong emphasis on RCP, that is, the species most at risk are

more sensitive to RCP.

3.4 | Cluster quality analysis

One way to qualitatively measure the performance of the clustering
is to look at the spatial overlap of presences for each scenario within
the clusters, d. That is, we define the frequency map F} for species

min cluster d based on the range maps as Fg'(r, 0) = Y eyBr(r,0). This

/i 15 '1:RCP = 26

FIGURE 7 Scenario embedding and
clustering using only species whose
fraction of area lost is among the highest
10%. Clustering based only on these
species most at risks puts an even higher
emphasis on RCP than the clustering in
Figure 6a. This further demonstrates the
importance of accounting for ecological

*be information, different subsets of

*ca ecological populations emphasis RCP even

*cc
more strongly.
‘cce gly.
Warming || - gf
Intensity ip
2:RCP=45 M
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0.15 0.2

frequency analysis provides qualitative evidence for the quality of
the cluster results. A clustering of high quality should have similar
members in the same cluster, and dissimilar members in different
clusters. In this spatial application, similar members should have high
overlap of presence cells.

For example, the overlap of all 34 scenario predictions for the
Australian mouse is shown in Figure 8a. We see that the cluster asso-
ciated with the lowest RCP scenarios (“low-emissions” scenarios) ac-
counts for most of the presences in the discrepant regions, whereas
the cluster associated with the highest RCP (“high-emissions” scenar-
ios) accounts for many of the absences (Figure 8). This demonstrates
that we have discovered meaningful clusters; there is agreement

within clusters but disagreements across clusters.
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FIGURE 8 (a)Relative frequency of presences over all scenarios for Australian sandy mouse. A meaningful clustering should have strong
similarities within cluster, and differences across cluster. The circled regions show that indeed we have discovered meaningful clusters; there
is agreement within clusters in these regions, but differences across clusters. Relative frequency of presences over (b) the “low-emissions

cluster” and (c) “high-emissions” cluster in Figure 5a.

3.5 | Individual climate variable clustering

We see that the climate-based clustering is meaningfully different than
the ecological one, and the clustering is driven mainly by GCM instead
of by RCP in the ecological based clustering. The climate-based clus-
tering and ecological one have an adjusted Rand index of only 0.26,
demonstrating their dissimilarity. This is evidence for the importance
of considering the specific climate niche occupied by a species in rela-
tion to how those conditions are projected to change. Although these
same five variables are used to predict the species' ranges, these pre-
dicted ranges paint a different picture of the scenario clustering be-
cause of how the species are influenced by the climate variables. In
fact, we can get a sense of variable importance by clustering based
on individual climate variables as opposed to their weighted average,
shown in Figure 9. We see that clustering using only the annual tem-
perature creates the most similar clustering to the ecologically driven
one (Figure 6a), suggesting that annual temperature is the most impor-
tant variable of these five. The adjusted Rand index of the ecological
clustering with the five climate variables of annual mean temperature,
temperature seasonality, annual precipitation, precipitation seasonal-
ity and precipitation of the driest quarter are 0.34, 0.15, 0.21, — 0.04,
and — 0.02 respectively, confirming the visual similarities of the tem-

perature clustering in Figure 9 with the ecological one in Figure 6a.

4 | CONCLUSIONS

We have proposed a novel framework for clustering future scenar-
ios of species range maps. The presented approach is interpretable,
flexible and computationally efficient. We have demonstrated dif-
ferent patterns of clustering depending on the subsets of species: in-
dividual species, a subset of species most at risk, and all species. The
differences between the climate- and ecological-based clustering
highlights the importance of considering species niches; recognizing
the species’ sensitivity to different climate variables is essential to
understand the most important differences between future scenario
predictions.

An interesting direction to explore further is to uncover sub-
sets of species that respond differently than others. For instance,
it may be the case that rodents tend to fare worse under a specific
climate model, compared to other mammals. A similar area of future
research is to determine why some species like the slender treeshew
cluster more by GCM instead of the more common pattern of RCP.
Another extension is to consider how to combine information across
species in a more holistic manner as opposed to the simple average.
For instance, Dong et al. (2013) presents a methodology to cluster
according to many graphs, which could be applied to the set of sce-

nario graphs from each species.
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FIGURE 9 Spectral clustering of scenarios using individual climate variables (one of the five is not shown due to space). The annual
temperature clustering (a) is most similar to the ecological clustering of Figure 6a, clustering mainly by RCP. The other variables temperature
seasonality in (b), annual precipitation in (c), and precipitation seasonality in (d) mainly cluster by GCM. This is why the climate driven
clustering of Figure 6b is driven mainly by GCM, most of the individual variables cluster by GCM except for temperature. The ecological
clustering is important to discern which of these variables are most ecologically relevant, these plots show that annual temperature contains
the most ecologically relevant differences between climate models, and has the highest adjusted Rand index of 0.34 with the ecological
clustering, compared with only 0.21 for annual precipitation which is the next most similar clustering.
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