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1  |  INTRODUC TION

Natural and human- induced global climate change undeniably im-
pacts the biodiversity of plants and animals and is expected to lead 
to large- scale range shifts (Dantas- Torres, 2015; Lovejoy, 2006; 
Mackey et al., 2008; Radchuk et al., 2019). A common response of 
species to global climate change is dispersal or range map shifting 
(Pecl et al., 2017) or range map contraction. Understanding the 

extent of potential ecological responses to a rapidly changing cli-
mate is essential to enact effective conservation policies (Hannah 
et al., 2013, 2020; Parry et al., 2007).

Forecasting species distributions or range maps under various 
scenarios of future climate provides a suite of potential outcomes 
(Burrows et al., 2014; Jones & Cheung, 2015; Molinos et al., 2016). 
Given a model for species range maps based on current climate, a 
suite of forecasts can be made using future climate projections such 
as those from the Coupled Model Intercomparison Project 6 (CMIP6). 
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Abstract
1. Predictions of biodiversity trajectories under climate change are crucial in order 

to act effectively in maintaining the diversity of species. In many ecological appli-
cations, future predictions are made under various global warming scenarios, as 
described by a range of different climate models. We propose a clustering meth-
odology to synthesize and interpret the outputs of these various predictions.

2. We propose an interpretable and flexible two- step methodology to measure the 
similarity between predicted species range maps and to cluster the future sce-
nario predictions utilizing a spectral clustering technique. We implement and pro-
vide code for this method.

3. We find that clustering based on predicted species range maps is mainly driven by 
the amount of warming rather than climate model or future scenario. We contrast 
this with clustering based only on predicted climate variables, which is driven 
primarily by climate models, that is, scenarios of the same climate model are clus-
tered together, even when the amount of warming input to the models is varied.

4. The differences between species- based and climate- based clusterings illustrate 
that it is crucial to incorporate ecological information to understand the relevant 
differences between climate models. Our findings can be used to better synthe-
size forecasts of biodiversity change under the wide spectrum of results that 
emerge when considering potential future scenarios.
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A comprehensive look at the forecasts under various scenarios for 
a large number of species can quickly become burdensome to sum-
marize both within and among species. Clustering methods provide a 
mechanism for extracting lower dimensional information; clustering 
species range maps across scenarios elicits patterns of responses to 
climate change within a species and across species.

Principal component analysis (PCA) is a widely used tool in eco-
logical applications to interpret high- dimensional data (Huettmann 
& Diamond, 2001; Janžekovič & Novak, 2012; Jolliffe, 1986; 
Pearson, 1901; Wu et al., 2019). However, PCA has significant draw-
backs in the nonlinear, multivariate setting of the current applica-
tion. PCA has a tight relationship with correlation, which classically 
fails to capture nonlinear relationships. Secondly, it is not clear how 
to incorporate information from multiple species into a PCA- based 
approach, since different species have different- sized range maps, 
and thus different species will naively vary in the principal compo-
nent contributions due to size alone, which may not be desired. In 
contrast, we present a flexible alternative, spectral clustering, al-
lowing for any similarity or distance between range maps. Spectral 
clustering is ideal for our dataset because of the high dimensional-
ity of range maps and the desire to amalgamate information from 
across species. Spectral clustering is a technique to cluster obser-
vations given only pairwise similarity or distance measures between 
the observations. It is well suited for this task because we can define 
a function that captures our desired notion of pairwise similarity 
measure between potential range maps, which will be discussed in 
Section 2.3.2.

A popular alternative summarization to clustering is a metric 
of change in species richness due to climate change known as cli-
mate velocity (Loarie et al., 2009), which can be used as a proxy 
for net effects on biodiversity change, particularly when detailed 
biodiversity information is not available (Burrows et al., 2014; 
Jones & Cheung, 2015; Molinos et al., 2016). However, these cli-
mate velocities rely entirely on climate information while ignor-
ing ecological data. Such ecological information, such as species' 
exposure to climate conditions not found in the species' current 
niches that are described by species range maps models, are im-
portant factors to project the species potential future range maps 
(Trisos et al., 2020). We propose to cluster the forecasted species 
range- map to interpret and investigate the similarities and dif-
ferences among projections across different warming scenarios, 
global climate models (GCMs), and species. We analyse a dataset 
of 1101 animals over 34 different future scenarios, for a total of 
over 37,000 range maps. Climatic variables such as temperature 
and annual rainfall informs the projected range maps, and thus the 
spectral clustering results will make full use of this species- climate 
interaction information through the use of these range maps. In 
order to assess the amount of information gained from the spe-
cies range map model, we additionally apply spectral clustering 
to the scenarios based only on the projected values of the climate 
variables. We hypothesize that clustering the scenarios based on 
these projected range maps will produce significantly different re-
sults than clustering based only on the climatic variables of the 

scenarios. The differences will emphasize the value of monitoring 
species- specific changes.

Our methodology can be used to cluster based on individual 
species, on all species together, or on subsets of species such as 
those species most at risk. Clustering the projected range maps 
for a single species across the suite of climate projections is im-
portant to understand the climatic response for the single spe-
cies, whereas clustering based on all species has the benefit of 
obtaining a broad understanding of the overarching patterns. 
Furthermore, clustering can be based only on a subset of the spe-
cies such as those considered most at risk; summarizing projec-
tions for species most at risk highlights climatic factors that drive 
high loss of biodiversity, although there are other non- climatic 
factors affecting biodiversity which are not taken into account 
in our model.

We first describe prior modelling work to project the future po-
tential range maps given climate information (Sections 2.1 and 2.2). 
Then, we discuss our methodology for clustering ecological and cli-
mate scenarios (Section 2.3); first, based on projected range maps, 
and second, based on projected climate variables. Additionally, we 
provide an illustrating example, and our code is available at github.
com/gobbl eturk. In Section 3, we discuss the scenario clusterings, 
with emphasis on the difference between the climate- based and 
ecological based clustering. We then demonstrate that we have 
detected meaningful clusters, with range maps within clusters sim-
ilar to each other, but different than range maps in other clusters. 
Finally, we make some concluding remarks in Section 4.

2  |  MATERIAL S AND METHODS

2.1  |  Data: Range map projections

We used inhomogeneous Poisson point process models (PPPM; 
Merow et al., 2017; Renner et al., 2015; Warton & Shepherd, 2010) 
to project the future range maps of 1101 terrestrial mammal spe-
cies for the period 2061– 2080 centred on 2070. The projections 
are based on current day presence data and climatic covariates. For 
current day climatic conditions, five climate variables with minimum 
pairwise correlation were chosen from a set of 19 commonly avail-
able Bioclim variables in the world climate database, WorldCLIM2 
(Fick & Hijmans, 2017).

The mean values from 1970– 2000 of the five chosen climate 
variables were used to fit a PPPM for the species occurrence. 
Occurrence data for each species were obtained from GBIF (2020), 
and PPPMs were fit for species with at least 10 unique presence cells 
on a global 10 km grid. The fitted model was used to project future 
potential distributions based on the CMIP6 predictions of the five 
climate variables. Predicted relative occurrence rate was converted 
to binary range maps of presence/absence with a chosen threshold 
based on the 5% quantile of predicted relative occurrence rate val-
ues of training presences. This approach was used to make predic-
tions for 1101 mammals with sufficient data using the 34 different 
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sets of predicted climate variables. An example of predicted range 
maps for the Australian sandy inland mouse Pseudomys hermanns-
burgensis is shown in Figure 1b.

2.2  |  Data: Climate models

Climate variables used for prediction are collected in the Coupled 
Model Intercomparison Project 6 (CMIP6). CMIP6 provides multi-
ple climate predictions which vary by the underlying global climate 
model (GCM) and the representative concentration pathway (RCP) 
used. RCPs describe a predicted timeline of greenhouse gas con-
centrations (Eyring et al., 2016). The CMIP6 RCP models are tied 
to a model of societal development (shared socio- economic path-
way), although we refer to the predictions of these models by their 
RCPs. Four RCPs are included in CMIP6, which vary in the quantity 
of greenhouse gas emissions to capture the uncertainty of future 
emissions. We refer to the RCP trajectory of least emission as the 
“low- emissions” trajectory, and refer to the most pessimistic tra-
jectory as the “high- emissions” trajectory. See also Table A1 in the 
Appendix for more information about the different climate models. 
In this work, we refer to a scenario as a (GCM, RCP) pair; a scenario 
represents uncertainty both in the evolution of climate, and in fu-
ture greenhouse gas emissions. There is a variety of publications 
which studied the climate predictions considered in this paper; see 
Eyring et al. (2016); Kageyama et al. (2018); Pascoe et al. (2020); Ma 
et al. (2020).

2.3  |  Clustering methodology

First, we introduce some notation regarding the range maps 
(Section 2.3.1) followed by a way to quantify similarity between 
range maps (Section 2.3.2). Furthermore, we utilize spectral cluster-
ing to cluster scenarios based on the proposed similarity measure 
(Section 2.3.3). We conclude this section with a procedure to cluster 
scenarios based on different climate variables (Section 2.3.4), which 
can be compared to clustering based on the ecologically informed 
range maps which highlights the importance of utilizing information 
regarding species' preferred climatic niches.

2.3.1  |  Range map notation

For notational simplicity we focus the presentation of the methodol-
ogy for a single species. Furthermore, we suppose our range maps are 
on a r by c regular grid represented as (r, c): r = 1, … , r; c = 1, … , c. 
We denote Bs as the binary (presence/absence) predicted range map 
according to scenario s, to be more precise Bs(r, c) = 1 if the cell at 
(r, c) represents a presence, and Bs(r, c) = 0 otherwise. It is important 
to consider how these range maps differ from the present day; for 
this reason, we denote by P the present day map. Similarly as for 
Bs(r, c), we define P(r, c) = 1 if the cell at (r, c) is presently occupied, 
and 0 otherwise. We define a candidate set A where presences and 
valid absences may occur, so that non- meaningful cells such as those 
in the ocean have no effect on quantifying similarity between range 
maps described in the next section. This binary candidate map A has 
size r by c, and could, for example, take the value 1 only when there 
is land, or alternatively the geographic area reachable by the spe-
cies considering physical constraints on dispersal such as mountain 
ranges. We have chosen to take A as the union of the original range 
map and all scenarios, thus A(r, c) = 1 if P(r, c) = 1, or there is at least 
one scenario s such that Bs(r, c) = 1. More generally, A is a mask for 
the r by c rectangular grid that is either occupied in the present or 
occupied in at least one future prediction.

2.3.2  |  Quantifying similarity

We choose to quantify the similarity (or differences) among the cli-
mate scenarios, s, with respect to changes in presence/absence from 
the present day, P. For each scenario s, we construct a correspond-
ing weighted map, Ws, that indicates the nature of the changes. The 
value of Ws(r, c) is 0 if A(r, c) = 0, but when A(r, c) = 1, the value of 
Ws(r, c) depends on the intersection of the value for the present day 
map and the value under scenario s at location (r, c). The four pos-
sible values of Ws(r, c) are shown in Table 1.

The four possible cases represent unchanged (kept) presences, 
pkeep, new presences, pnew, new absences, anew, and unchanged ab-
sences, akeep, respectively, where “keep” and “new” are with respect 
to the present day range map, P. For example a grid cell (r, c) corre-
sponding to pkeep is a grid cell that is a presence in the current day 

F I G U R E  1  Map (a) shows the present day range map for the Australian sandy inland mouse Pseudomys hermannsburgensis. Map (b) is the 
predicted range map of inland mouse in 2070 under climate scenario bc with RCP 2.6. Map (c) is the corresponding weighted values for each 
pixel when we intersect (a) and (b): presences are shown in blue, absences in red. Darker colour values represent cell weights with greater 
conservation relevance because they correspond to present cells in (a).

(a) (b) (c)
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range map, P(r, c) = 1, and remains a presence according to scenario 
s, Bs(r, c) = 1.

The best choice of weightings, (pkeep, pnew, anew, akeep), is de-
pendent on the pairwise similarity metric used for clustering. 
We choose to compute the pairwise similarity between scenario 
range maps as the cosine similarity of their weighted range maps, 
CosineSimilarity

(
Ws ,Ws′

)
 or CS

(
Ws ,Ws′

)
 for short. We define the 

cosine similarity between two matrices Ws ,Ws′ of dimension r × c as

The product in the numerator in (1) suggests that when Ws(r, c) and 
Ws′ (r, c) are zero, there is no contribution to the measure of similarity 
suggesting that the weighting scheme, (pkeep, pnew, anew, akeep), should 
be constructed such that meaningful contributions to similarity have 
non- zero values.

In our weighting scheme, presences are given positive 
weights, absences are given negative weights, and we choose 
∣ anew ∣ > ∣ akeep ∣ , to emphasize those cells whose ecological 
suitability for this species is vanishing. These “lost” cells corre-
sponding to novel absences, 

{
(r, c):Ws(r, c) = anew

}
, are partic-

ularly important; they represent cells where according to the 
range map model, the geographic location is no longer suitable 
given the change in climate. In addition, these cells should be 
weighted higher to emphasize their importance for conserving a 
species as they are known to have been occupied at some time 
point. By contrast the cells corresponding to pnew represent regions 
that are predicted to become suitable, however such predictions 
do not imply that the locations will be occupied due to uncer-
tainty in dispersal, which is not directly taken into account by the 
PPPM. Thus, we also make the choice ∣ pkeep ∣ > ∣ pnew ∣ . We chose 
∣ anew ∣ = ∣ pkeep ∣ = 1, ∣ akeep ∣ = ∣ pnew ∣ = 0.5 to represent the 
fact we are more concerned about all cells in the region of pres-
ent day occurrences. However, we emphasize the flexibility of our 
method as alternative choices can be made depending on the goals. 
A visualization of this weighting scheme is shown in Figure 1.

Alternative weightings can be considered for various applications, 
for instance the choice of ∣ pkeep ∣ = ∣ pnew ∣ = ∣ anew ∣ = ∣ akeep ∣ = 1 
does not make use of the present day map, and does not differenti-
ate cells that underwent a change from the present day map to the 
predicted scenarios.

Alternative similarity metrics could have been considered. 
However, the cosine- similarity has certain advantages over other 
commonly used measures to quantify the similarities (or distances) 

between range maps. The Hellinger distance and Kullback– Leibler 
divergence (Hagen, 2002) rely on a probabilistic interpretation, 
and thus it is difficult to incorporate absences into these measures, 
however they might be useful when considering differences in 
range maps describing occurrence probability. The Kappa statistic 
(Hagen, 2002) can be used to measure similarities between cat-
egorical maps, however it is not as clear how to weight important 
cells, such as novel absences. In addition, the Kappa statistic does 
not directly incorporate the relative frequencies of absences and 
presences. For instance if two range maps both predict all pres-
ences except a single absence cell, these two range maps will have a 
negative Kappa statistic if their one absence cell differs in location. 
However, for our purposes we would like to consider such a pair of 
range maps to be very similar. The Wasserstein distance (Peyré & 
Cuturi, 2019) measures the distance a species moves, suggesting it is 
appropriate in our setting. However, the Wasserstein distance does 
not model the disappearance of regions, and attempts at computing 
the Wasserstein distance proved too slow or even non- convergent 
in all but the range maps with the smallest number of presence cells.

The computation and resultant cosine similarity using these 
weighted range maps are readily interpretable; when two scenarios 
agree on the presence or absence of a cell, this cell has a positive 
contribution to the cosine similarity, whereas the cell has a nega-
tive contribution when the two scenarios disagree. For any choice of 
weights, the resulting similarity is always in the range 

[
− 1, 1

]
. If the 

weights are chosen such that ∣ anew ∣ = ∣ pkeep ∣ , ∣ akeep ∣ = ∣ pnew ∣ 
(as we have assumed), the cosine similarity is 1 when the two range 
maps are identical and − 1 if the two range maps completely disagree 
on presences. This interpretability allows for a simple method to 
combine information across species. Furthermore, cosine similarity 
can also be implemented very efficiently and quickly utilizing matrix 
multiplication.

2.3.3  |  Spectral clustering

For each species m = 1, … , 1101, we compute the pairwise sce-
nario similarity matrix by computing the cosine similarity (1) on 
each pair of scenario weighted range maps, (Wm

s
,Wm

s′
), where Wm

s
 is 

the weighted range map for species m under scenario s. That is for 
each mammal species, we construct the s by s matrix Sm with entries 
Sm

(
s, s′

)
= CS

(
Wm

s
,Wm

s′

)
, where s = 34 is the number of scenarios. 

We cluster scenarios by spectral clustering on the cosine similarity 
measure (Von Luxburg, 2007).

The properties of spectral clustering are understood from a 
graph theory perspective (Von Luxburg, 2007). The similarity ma-
trix Sm can be thought of as an undirected graph whose nodes are 
the scenarios and the edge weight between a pair of scenarios 
s and s′ is given by Sm

(
s, s′

)
. Spectral clustering has best perfor-

mance on sparse graphs, thus for the dense similarity matrix Sm

, the first step is to sparsify it by taking the k- nearest neighbour 
graph, that is retaining an edge from s to s′ only if s′ is within the 
top k neighbours of s (i.e. it is within the top k scenarios of maximal 

(1)
CS

(
Ws ,Ws′

)
=

Ws ⋅Ws′

∥Ws ∥2 ∥Ws′ ∥2
=

∑r

r=1

∑c

c=1
Ws(r, c)Ws′ (r, c)

∥Ws ∥2 ∥Ws′ ∥2

with ∥Ws ∥2=

(
r∑

r=1

c∑
c=1

Ws(r, c)
2

) 1

2

.

TA B L E  1  Cell weighting values for W(r, c) given A(r, c) = 1.

P (r, c) = 1 P (r, c) = 0

B(r, c) = 1 pkeep pnew

B(r, c) = 0 anew akeep
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similarity to s). When the graph is expressed as a matrix, sparsify-
ing the graph corresponds to setting entries of the matrix to zero. 
Retaining the top k neighbours leads to a directed graph as this 
definition of nearest neighbour is not symmetric. Thus, we retain 
the undirected edge from s to s′ if either s′ is within the top k neigh-
bours of s, or vice- versa (Figures 2A,B). The retained edges are 
weighted by the similarity of their endpoints. We denote by E this 
matrix of retained weights.

The main computational tool of spectral clustering is the graph 
Laplacian L = D − E, where D is a diagonal matrix of node degree, 
D(s, s) =

∑ns
s′=1

E
(
s, s′

)
 (i.e. the number of scenarios connected to 

scenario s). The graph Laplacian can be thought of as a matrix 
representation of a graph, with useful mathematical properties as 
will be discussed shortly. We used the random- walk normalized 
graph Laplacian, Lrw = D−1L, as suggested in Von Luxburg (2007), 
although this normalization choice is most significant when the 
node degrees vary significantly, which is not the case here. The 
normalization is used to prevent a single node from dominating 
the resulting spectral clustering when that node has many more 
connections, that is, it is a “central node”. However, such “central 
nodes” were not found in this application since each scenario is 
similar to only a few other scenarios (i.e. those with similar RCP 
and or GCM).

If the graph corresponding to the normalized Laplacian is discon-
nected (i.e. there is at least one group of nodes that do not have any 
edges outside that group, Figure 2a.C), then there is at least one ei-
genvector of Lrw which is sparse with non- zero entries only on nodes 
within that group, with an associated eigenvalue of 0. If instead the 
graph is “noisier” and fully connected as in our case, the first eigen-
vectors (corresponding to the smallest eigenvalues) are only approx-
imately sparse; they have large magnitude on groups of nodes that 
are tightly connected, and small magnitude on nodes outside such 
groups. Thus these eigenvectors can be used to identify clusters, 
which is discussed next.

The spectral embedding of the s by s matrix Lrw is related to the 
eigendecomposition of Lrw. The eigenvectors of Lrw arranged by de-
creasing order of the corresponding eigenvalues form the columns 
of a s by s matrix U. The rows of U represent the coordinates of the 
corresponding observational unit (in our case observational units are 
scenarios). This embedding (transformation from a graph, Lrw, to real 
valued coordinates, U) is meaningful because of the properties of 
spectral clustering disucssed above.

Illustrations of spectral clustering on both a ‘clean’ (perfectly 
separable clusters) and ‘noisy’ (one cross edge) examples are shown 
in Figure 2a,b. The images illustrate the steps of the spectral cluster-
ing described above. The clean example is ‘cleanly’ disconnected: the 
first four nodes form a cluster which share no edges to the last four 
nodes (i.e. the symmetrized kNN matrix, Figure 2a.B, is a block ma-
trix). The spectral embedding process starting on the clean example 
can be summarized as follows: it starts with an input similarity ma-
trix (Subfigure (A)), where each row (and column) of the matrix rep-
resents an observation, and entry (i, j) of the matrix represents the 
similarity between observations i and j. The next step is to compute 

the nearest neighbour similarity matrix, which is shown in Subfigure 
(B). Here, we have chosen k = 3 (the number of nearest neighbours 
is 3), so we set an entry in the nearest neighbour matrix to 1 if it is 
within the top 3 values in its row or column, else we set it to 0. The 
next step is to compute the graph Laplacian L = D − E of the near-
est neighbour graph, should in Subfigure (C). Here, L is the graph 
Laplacian, D is a diagonal matrix of the node degrees (in this case 
every node has degree 3) and E is the nearest neighbour graph. This 
is then normalized to random walk flavour of the graph Laplacian, 
Lrw = D−1L. The final step is to compute the spectral embedding from 
the graph Laplacian, which is done by taking the smallest two eigen-
vectors of the random walk graph Laplacian, shown in Figure (D). 
The two columns serve, as the two coordinates: the first column is 
the x- coordinate in subplot (D), the second column the y- coordinate. 
We see that the spectral embedding in Figure (D) faithfully rep-
resents the original graph, there are still two clusters of four nodes 
each, but now represented in a two dimensional plane rather than 
the original similarity matrix.

The noisy example has a single cross edge entry of the matrix 
(i.e. there is one pair of scenarios from the original separate groups 
that are now considered neighbours, Figure 2b.B) that affects the 
final spectral embedding; the first and fifth point are closer together 
(Figure 2b.D). Our case of 34 scenarios is more complex than this il-
lustrated example of only 8 points, however the pattern that groups 
of scenarios which are all similar to each other will be near each 
other in the embedded space remains true.

Once observations (in our case, future climate scenarios) are 
transformed to real coordinates via spectral embedding as discussed 
above, a simple clustering algorithm can be applied such as k- means. 
However we chose the single- linkage clustering algorithm over k- 
means in this embedded space as it performs well according to the 
Davies- Bouldin criterion. The Davies- Bouldin criterion is a common 
clustering criterion quantifying the goodness of separation between 
clusters (Davies & Bouldin, 1979). The Davies- Bouldin criterion is 
interpreted as a ratio of the average intra- cluster distance and inter- 
cluster distance; a good clustering will have points that are close to-
gether within cluster (small intra- cluster distance), and points that 
are far apart in different clusters (large inter- cluster distance).

Spectral clustering can be performed for a single species using 
only Sm. Alternatively, one way to combine information across species 
is to capture group- wide trends in scenarios. We cluster similarity 
matrices based on two aggregations. First, we average the similar-
ity matrices across all m = 1101 species, as in S = (1∕m)

∑m

m=1
Sm. 

Second, we average over a subset of species whose fraction of area 
lost (the fraction of range lost between now and the prediction in 
future) is among the highest 10%. We average the similarity matrices 
across species in order to incorporate information from each species 
into a quantitative clustering approach, obtaining a broader under-
standing of the overarching patterns between species range maps 
and climate scenarios. Averaging similarities matrices tells us which 
pairs of scenarios are similar across many species instead of individ-
ual ones, however we also we will also discuss differences between 
analysis conducted on individual species.
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F I G U R E  2  (a) Spectral Clustering Clean Example: the two groups are separable in that there are no shared members. These four plots 
show the steps of spectral embedding: Subfigure (A) is the example input similarity matrix, where each row (or column) represents an 
observation. Subfigure (B) shows the nearest neighbour step with the choice of k = 3, Subfigure (C) shows the graph Laplacian (the random 
walk version of the Laplacian) of the nearest neighbour graph, and (D) shows the final spectral embedding. We see that in this ideal example 
the spectral embedding perfectly separates the two groups of columns (the first four and second four observations are in separate clusters). 
The results on this clean example can be compared to a noisier example in Figure 2b. (b) Spectral Clustering Noisy Example: the two groups 
are no longer separable in that there is one pair of members which are linked across groups, I and V. This linkage is faithfully represented 
in the spectral embedding by placing groups I and V closer together and separate from the other examples. Step- by- step illustrations of 
spectral clustering for (a) a ‘clean’ example and (b) a ‘noisy’ example. The noisy example perturbs the clean example to have one pair of 
neighbours across the original separate groups. For both examples, the original similarity matrix in Subfigure (A) defines the neighbours in 
the symmetrized kNN matrix with k = 3 in Subfigure (B). The Laplacian random walk matrix in Subfigure (C) is calculated from (B) and the two 
eigenvectors of (C) corresponding to the smallest non- zero eigenvalues correspond to the coordinates of the scenarios in Subfigure (D). Note 
in (D) there is some jittering for visualization purposes. The perturbation of the similarity matrix results in scenarios I and V being plotted 
more closely in the noisy example.
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2.3.4  |  Climate- based scenario clustering

We contrast the clustering based on range maps with a clustering based 
only on predicted climate variables. This comparison will illustrate the 
importance of incorporating the species climatic niches information by 
contrasting clusters based only on climate to those using climate to first 
estimate species ranges before clustering. We discuss the process of 
clustering using only the five climate variables that were used to pre-
dict the range maps (see Section 2 for a description of the predictions). 
Each of these five globally distributed variables is predicted across the 

34 scenarios. In order to directly compare climate- based clustering to 
our ecologically based clustering, we utilized the climate variables to per-
form a clustering in a similar fashion to the ecologically based clustering. 
However, for continuous data, the cosine similarity is not appropriate, as 
two maps that are shifted versions of each other would be considered 
very similar to each other. For instance, if one scenario predicted two 
degrees Celsius warmer everywhere than another scenario, the cosine 
similarity between these two maps would be very high, which is not de-
sirable as these two maps represent significantly different predictions. 
Instead, we use the L2 distance between maps, which will effectively use 

F I G U R E  2   (Continued)
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both the difference between the means of maps and differences in the 
spatial variation. To incorporate all five climate variables, each variable 
was normalized before applying the L2 distance. This effectively weights 
each climatic variable equally. Although temperature is the most impor-
tant variable for predicting species niches, we weight them equally to 
demonstrate what a naive climate- only (without considering the ecologi-
cal effects) clustering of scenarios would look like. We additionally show 
cluster results based on individual climate variables including tempera-
ture in a later section. We denote Tf

s (r, c) as the value of variable f  accord-
ing to scenario s at location (r, c). The variable scaled L2 distance between 
a pair of scenarios s and s′ using all five variables is given by

where 𝜎f is the standard deviation of variable f  measured across all 
locations and scenarios, that is we calculate the mean of each variable 
across all locations and scenarios,

H
(
s, s′

)
=

5∑
f=1

r∑
r=1

c∑
c=1

[(
Tf
s (r, c)−Tf

s′
(r, c)

)
∕𝜎f

]2
,

𝜎
2
f
=

s∑
s=1

r∑
r=1

c∑
c=1

[
Tf
s (r, c)−𝜇f

]2
with 𝜇f = (s ⋅ r ⋅c)−1

s∑
s=1

r∑
r=1

c∑
c=1

Tf
s (r, c).

F I G U R E  3  Visualization of the mammal richness in the dataset over space. White cells correspond to locations with no predicted 
presences. (a) Present day mammal richness. (b) Predicted counts averaged over all scenarios. (c) Net change, that is, the difference between 
the predicted and the present count. (d) Fraction change, that is, the fraction between the net change and the present count. Our findings 
are consistent with those of Chen et al. (2011) who found that species are moving poleward and towards higher elevations: there is loss 
around the equator and some increase in diversity towards the northern pole.

(c) (d)

(a) (b)
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We create a similarity matrix, S, from the distances by using the mono-
tonically negative transformation S

(
s, s′

)
≔ 1∕H

(
s, s′

)
. Spectral clus-

tering can be performed on this climate- informed matrix S which can 
be compared to the ecologically driven spectral clustering.

2.4  |  Rand index

In order to quantitatively compare cluster assignments, we used 
the adjusted Rand index (Hubert & Arabie, 1985). The adjusted 
Rand index measures how similar two cluster assignments are to 
each other. We make use of the adjusted Rand index by measur-
ing the similarity of the clustering results to partition by either the 
representative concentration pathway (RCP) or global climate model 
(GCM), in order to quantitatively answer whether RCP or GCM dif-
ferences is the driving factor behind the clustering results.

Given two cluster assignments X =
{
X1, … ,Xn

}
 and 

Y =
{
Y1, … ,Ym

}
, where each Xi and Yj are clusters (sets of scenar-

ios). Define the cardinality of the set of overlaps between two clus-
ters as oij ≔ ∣ Xi ∩ Yj ∣. Also define oi⋅ ≔

∑m
j=1

oij and o
⋅j ≔

∑n
i=1

oij. The 
adjusted Rand index is given by

where 
⎛
⎜
⎜⎝

n

2

⎞
⎟
⎟⎠
 denotes the binomial coefficient and is calculated as 

⎛
⎜
⎜⎝

n

2

⎞
⎟
⎟⎠
= n(n− 1)

2
.

The adjusted Rand index measures how similar two cluster as-
signments are to each other compared to random assignments. 
Random assignments have an expected adjusted rand index of 0.

3  |  RESULTS AND DISCUSSION

3.1  |  Global diversity loss

One can get an overall sense of the changes predicted in the 
range maps from Figure 3, which shows how the diversity of 
mammals is spread spatially over the earth. We see from both 
Figure 3c,d that notable potential diversity losses are projected 
around the equator in South America and Africa, whereas there 
is some potential diversity increases further north, consistent 
with previous findings (Chen et al., 2011). We note that these 
‘losses’ do not necessarily imply a extirpation but rather that a 
species is exposed to climate beyond its current realized niche. 
Similarly species ‘gains’ do not necessarily imply that new spe-
cies will occur in a given cell, but rather that the cell is newly 
suitable for a species climatically. A species with newly suitable 
locations may still not occur there due to dispersal limitation, 
biotic interactions, etc.

3.2  |  Potential range shifts

By comparing the fraction of cells corresponding to anew and pnew, we 
get a sense of potential range map shifts compared to present day 
range maps. This is shown in Figure 4, which shows potential range 
map shifts, as opposed to range map expansions or contractions; the 
number of new presences and new absences grow together, which 
would occur as range map shifts, instead of say absences growing as 
presences shrink, which would be indicative of a decrease in overall 
range size.

However, although novel absences and novel presences tend 
to occur together as shown in Figure 4, on average there are more 
novel absences (average 38% ± 28% SD of current range map) than 
novel presences (average 25% ± 26% SD), which implies that the 

AdjustedRand Index =

∑n
i=1

∑m
j=1

⎛
⎜
⎜⎝

oij

2

⎞
⎟
⎟⎠
−
⎡
⎢
⎢⎣
∑n

i=1

⎛
⎜
⎜⎝

oi⋅

2

⎞
⎟
⎟⎠
∑m

j=1

⎛
⎜
⎜⎝

o
⋅j

2

⎞
⎟
⎟⎠

⎤
⎥
⎥⎦
∕
⎛
⎜
⎜⎝

n

2

⎞
⎟
⎟⎠

1

2

⎡
⎢
⎢⎣
∑n

i=1

⎛
⎜
⎜⎝

oi⋅

2

⎞
⎟
⎟⎠
+
∑m

j=1

⎛
⎜
⎜⎝

o
⋅j

2

⎞
⎟
⎟⎠

⎤
⎥
⎥⎦
−
⎡
⎢
⎢⎣
∑n

i=1

⎛
⎜
⎜⎝

oi⋅

2

⎞
⎟
⎟⎠
∑m

j=1

⎛
⎜
⎜⎝

o
⋅j

2

⎞
⎟
⎟⎠

⎤
⎥
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∕
⎛
⎜
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n

2

⎞
⎟
⎟⎠

,

F I G U R E  4  Shows that predicted range 
maps tend to be shifted, that is, lost and 
new cells grow together, with losses being 
larger than gains, as the scenarios are 
above the 45 degree dashed black line.
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species ranges are both shifting and decreasing in size (average 13% 
net loss, ±31% SD) due to the changing climate.

3.3  |  Clustering plots

The spectral clustering results using the species- specific similarity 
matrix, Sm, is shown in Figure 5 for four species, illustrating the main 
types of patterns observed across all 1101 species. We found an 
interesting mixture of RCP and GCM dependence. RCP is a major 
driving factor of cluster composition; in most of the species- specific 
clusterings, the far left (“low- emissions”) cluster contains mainly sce-
narios with low- emissions RCP, and the far right (“high- emissions”) 
cluster only scenarios with high- emissions RCP (Figures 5a,c). 
However, the clustering for the slender treeshew Tupaia gracilis 
(Figure 5d) predicted ranges is driven mainly by GCM. This cluster-
ing mainly by GCM was found in many species (30% species' cluster 

results had a higher Rand index with a GCM clustering than an RCP 
clustering), probably because these species niches had relatively 
weak dependence on mean annual temperature compared to other 
climate variables. However, the most common trend is RCP de-
pendence (70% of species). This variability among species is further 
evidence supporting the importance of the climate- ecology relation-
ship; the most important difference between climate models (GCM 
or RCP) varies depending on the individual species.

The spectral cluster results from using the similarity matrix av-
eraged over all 1101 mammals considered, S, is shown in Figure 6a. 
We see in the bottom cluster of Figure 19 a mix of RCP and GCM. 
Similar to the individual species results, this suggests that RCP alone 
does not account for the variation, and the GCM is also important.

We also performed clustering for only the species most at 
risk, defined by those species whose fraction of area lost is 
among the highest 10%. This loss in area can be used to approx-
imate a loss in population abundance using the techniques in 

F I G U R E  5  Spectral clustering of scenarios using individual species. We see mainly grouping by RCP for the first three (a– c), but a starkly 
different GCM- driven clustering for the treeshew (d). This variety was found among species, most species clusterings are strongly driven 
by RCP, but some are more reflective of GCM. These differences between species further demonstrates that ecological information is 
important to interpret the differences between scenarios.

(a) (b)

(c)
(d)
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He (2012) and Che- Castaldo and Neel (2016). Performing spec-
tral clustering by using the average of similarity matrices of this 
subset of species at risk is shown in Figure 7. This clustering puts 
a strong emphasis on RCP, that is, the species most at risk are 
more sensitive to RCP.

3.4  |  Cluster quality analysis

One way to qualitatively measure the performance of the clustering 
is to look at the spatial overlap of presences for each scenario within 
the clusters, d. That is, we define the frequency map Fm

d
 for species 

m in cluster d based on the range maps as Fm
d
(r, c) ≔

∑
s∈dB

m
s
(r, c). This 

frequency analysis provides qualitative evidence for the quality of 
the cluster results. A clustering of high quality should have similar 
members in the same cluster, and dissimilar members in different 
clusters. In this spatial application, similar members should have high 
overlap of presence cells.

For example, the overlap of all 34 scenario predictions for the 
Australian mouse is shown in Figure 8a. We see that the cluster asso-
ciated with the lowest RCP scenarios (“low- emissions” scenarios) ac-
counts for most of the presences in the discrepant regions, whereas 
the cluster associated with the highest RCP (“high- emissions” scenar-
ios) accounts for many of the absences (Figure 8). This demonstrates 
that we have discovered meaningful clusters; there is agreement 
within clusters but disagreements across clusters.

F I G U R E  6  (a): Scenario embedding and clustering for similarity matrix averaged over all 1101 mammals, S. The clusters are mainly driven 
by RCP. However, there are still some relationships among the GCMs, for instance the red ‘ca’ GCM predicts more extreme outcomes (right- 
most cluster), and at each level of a RCP the green, black, and yellow (‘cc’,‘ce’,‘ip’), climate models are nearby in the spectral embedding space. 
(b): In the climate- based clustering, the clusters are mainly determined by GCM. This clustering is significantly different from the ecological 
based one (a), which demonstrates the importance of incorporating information about species' climatic niches.

(a) (b)

F I G U R E  7  Scenario embedding and 
clustering using only species whose 
fraction of area lost is among the highest 
10%. Clustering based only on these 
species most at risks puts an even higher 
emphasis on RCP than the clustering in 
Figure 6a. This further demonstrates the 
importance of accounting for ecological 
information, different subsets of 
ecological populations emphasis RCP even 
more strongly.
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3.5  |  Individual climate variable clustering

We see that the climate- based clustering is meaningfully different than 
the ecological one, and the clustering is driven mainly by GCM instead 
of by RCP in the ecological based clustering. The climate- based clus-
tering and ecological one have an adjusted Rand index of only 0.26, 
demonstrating their dissimilarity. This is evidence for the importance 
of considering the specific climate niche occupied by a species in rela-
tion to how those conditions are projected to change. Although these 
same five variables are used to predict the species' ranges, these pre-
dicted ranges paint a different picture of the scenario clustering be-
cause of how the species are influenced by the climate variables. In 
fact, we can get a sense of variable importance by clustering based 
on individual climate variables as opposed to their weighted average, 
shown in Figure 9. We see that clustering using only the annual tem-
perature creates the most similar clustering to the ecologically driven 
one (Figure 6a), suggesting that annual temperature is the most impor-
tant variable of these five. The adjusted Rand index of the ecological 
clustering with the five climate variables of annual mean temperature, 
temperature seasonality, annual precipitation, precipitation seasonal-
ity and precipitation of the driest quarter are 0.34, 0.15, 0.21, − 0.04, 
and − 0.02 respectively, confirming the visual similarities of the tem-
perature clustering in Figure 9 with the ecological one in Figure 6a.

4  |  CONCLUSIONS

We have proposed a novel framework for clustering future scenar-
ios of species range maps. The presented approach is interpretable, 
flexible and computationally efficient. We have demonstrated dif-
ferent patterns of clustering depending on the subsets of species: in-
dividual species, a subset of species most at risk, and all species. The 
differences between the climate-  and ecological- based clustering 
highlights the importance of considering species niches; recognizing 
the species’ sensitivity to different climate variables is essential to 
understand the most important differences between future scenario 
predictions.

An interesting direction to explore further is to uncover sub-
sets of species that respond differently than others. For instance, 
it may be the case that rodents tend to fare worse under a specific 
climate model, compared to other mammals. A similar area of future 
research is to determine why some species like the slender treeshew 
cluster more by GCM instead of the more common pattern of RCP. 
Another extension is to consider how to combine information across 
species in a more holistic manner as opposed to the simple average. 
For instance, Dong et al. (2013) presents a methodology to cluster 
according to many graphs, which could be applied to the set of sce-
nario graphs from each species.

F I G U R E  8  (a) Relative frequency of presences over all scenarios for Australian sandy mouse. A meaningful clustering should have strong 
similarities within cluster, and differences across cluster. The circled regions show that indeed we have discovered meaningful clusters; there 
is agreement within clusters in these regions, but differences across clusters. Relative frequency of presences over (b) the “low- emissions 
cluster” and (c) “high- emissions” cluster in Figure 5a.

(a) (b)

(c)
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F I G U R E  9  Spectral clustering of scenarios using individual climate variables (one of the five is not shown due to space). The annual 
temperature clustering (a) is most similar to the ecological clustering of Figure 6a, clustering mainly by RCP. The other variables temperature 
seasonality in (b), annual precipitation in (c), and precipitation seasonality in (d) mainly cluster by GCM. This is why the climate driven 
clustering of Figure 6b is driven mainly by GCM, most of the individual variables cluster by GCM except for temperature. The ecological 
clustering is important to discern which of these variables are most ecologically relevant, these plots show that annual temperature contains 
the most ecologically relevant differences between climate models, and has the highest adjusted Rand index of 0.34 with the ecological 
clustering, compared with only 0.21 for annual precipitation which is the next most similar clustering.

(a) (b)

(c) (d)
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