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ABSTRACT
The US electrical grid has undergone substantial transformation with increased penetration of
wind and solar forms of variable renewable energy (VRE). Despite the benefits of VRE for decar-
bonization, it has garnered some controversy for inducing unwanted effects in regional electricity
markets. In this study, the role of VRE penetration is examined on the system electricity price and
price volatility based on hourly, real-time, historical data from six independent system operators
(ISOs) in the US using quantile and skew t-distribution regressions. After correcting for temporal
effects, we found an increase in VRE penetration is associated with a decrease in system electricity
price in all ISOs studied. The increase in VRE penetration is associated with a decrease in temporal
price volatility in five out of six ISOs studied. The relationships are nonlinear. These results are con-
sistent with the modern portfolio theory where diverse volatile assets may lead to more stable
and less risky portfolios.

ARTICLE HISTORY
Received 22 December 2021
Revised 22 November 2022
Accepted 29 November 2022

KEYWORDS
Electricity price; electricity
price volatility; variable
renewable energy; skew-t
regression; quantile
regression

1. Introduction

The US electrical grid is undergoing a transformation with
respect to the diversity of assets in its energy portfolio with
substantial integration of renewable energy technologies,
particularly variable renewable energy (VRE) technologies—
non-dispatchable technologies with changing output depend-
ent on renewable resource availability, such as solar and
wind power. Although the majority of energy generation
comes from fossil fuels, total energy generated from renew-
able resources (hydroelectric power included) accounted for
18% of total generation in the United States in 2020 with
variable sources—wind and solar energy—accounting for
10.7% of the total generation (U.S. Energy Information
Administration 2020). This is owing to increased build-out
of renewable energy projects facilitated by the ebbing cost of
installation and favorable policy initiatives (Bipartisan Policy
Center 2020). By 2021, an estimated 27.6GW of renewables
is planned to come online with 12.2GW from wind and 15.
4GW from utility-scale solar (U.S. Energy Information
Administration 2021). While the addition of renewable
energy will help accelerate the decarbonization of the power
sector, its optimal integration will require substantial
changes in power system design and market regulations to
accommodate the inherent variability of these resources on

the electric grid (U.S. Energy Information Administration
2021). To do this, it is important to elucidate an under-
standing of the role of VRE on electricity price and price
volatility (both with respect to time and VRE penetration)
because these impact the entire electricity value chain from
the energy producers to the consumers.

Several articles have explored the relationship between
electricity price and VRE penetration of wind (Woo et al.
2011, 2013; Brancucci Martinez-Anido et al. 2016; Zarnikau
et al. 2019; Gil and Lin 2013; Tsai and Eryilmaz 2018; Quint
and Dahlke 2019; Haratyk 2017; Zarnikau et al. 2020), solar
(Deetjen et al. 2016; Craig et al. 2018), or both (Bushnell
and Novan 2018; Wiser et al. 2017; Barbose et al. 2016;
Woo et al. 2016, 2014). Some of these articles have used
simulated data (Haratyk 2017; Deetjen et al. 2016; Barbose
et al. 2016), while others have used historical data (Zarnikau
et al. 2020; Bushnell and Novan 2018; Quint and Dahlke
2019; Tsai and Eryilmaz 2018; Craig et al. 2018; Gil and Lin
2013; Zarnikau et al. 2019; Woo et al. 2011, 2013, 2014,
2016). A few have combined simulated data with historical
data validation (Brancucci Martinez-Anido et al. 2016;
Wiser et al. 2017; Mills et al. 2020, 2021). The methods used
in these studies have primarily been multivariate linear
regressions (Zarnikau et al. 2020; Bushnell and Novan 2018;
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Haratyk 2017; Wiser et al. 2017; Quint and Dahlke 2019;
Tsai and Eryilmaz 2018; Craig et al. 2018; Zarnikau et al.
2019; Woo et al. 2011, 2013, 2014, 2016; Mwampashi et al.
2020; Gelabert et al. 2011) or visualizations with descriptive
statistics (Blazquez et al. 2018; Cutler et al. 2011). It is worth
noting that the optimization methods in production-cost
models for most of the scenario-type/simulation-based anal-
yses (Barbose et al. 2016; Brancucci Martinez-Anido et al.
2016; Deetjen et al. 2016; Seel et al. 2018) are often based
on linear assumptions. These methods are, however, limited
in that they assume a linear relationship between electricity
price and VRE with constant variance, but there are inher-
ent distributional changes in the electricity price with
respect to VRE requiring more robust modeling choices.
One alternative approach has been applied to a case study of
PJM (see Table 1 for acronym definitions) using the Robust
Linear Weighted Regression (Gil and Lin 2013); however,
the scope is limited to a single independent system operator
(ISO) and one year of data. In general, increasing penetra-
tion of VRE is associated with a lower average wholesale
price of electricity. This behavior has been found in both
domestic (Zarnikau et al. 2020; Bushnell and Novan 2018;

Haratyk 2017; Wiser et al. 2017; Quint and Dahlke 2019;
Tsai and Eryilmaz 2018; Craig et al. 2018; Barbose et al.
2016; Gil and Lin 2013; Zarnikau et al. 2020; Brancucci
Martinez-Anido et al. 2016; Deetjen et al. 2016; Woo et al.
2011, 2013, 2014, 2016; Seel et al. 2018) and some inter-
national (Blazquez et al. 2018; Cutler et al. 2011;
Mwampashi et al. 2020; Gelabert et al. 2011; J!onsson et al.
2010; S!aenz de Miera et al. 2008) electricity markets. A sum-
mary of the domestic studies can be found in Table 2. Using
the robust methods in this study, the results not only cor-
roborate the existing literature on increased VRE penetra-
tion leading to a reduction in electricity price, but also
illustrate that this effect is nonlinear, and the greatest impact
can be seen in the reductions in extremely high system elec-
tricity prices with increased VRE.

Negative system electricity price is also a characteristic of
the modern electricity market. Negative prices occur as a
result of generation-demand imbalance resulting in high
supply during times of low demand. Several factors contrib-
ute, including a substantial decrease in demand, limited
flexibility in power-plant operations (e.g. slow or expensive
ramping, limited energy storage), and limited transmission

Table 1. Temporal range, resolution, and VRE composition for ISO data.

ISO Date range Original resolution VRE Reference

New England Independent System Operator, ISONE 2014–2020 hourly Solar and wind ISONE (2021)
New York Independent System Operator, NYISO 2015–2020 5 mins Wind NYISO (2020)
Pennsylvania, Jersey, Maryland Power Pool, PJM 2016–2018 hourly solar and wind PJM (2021)
Midcontinent Independent System Operator, MISO 2015–2019 hourly Wind MISO (2021)
Southwest Power Pool, SPP 2019–2020 5 mins Solar and wind SPP (2021)
California Independent System Operator, CAISO 2017–2020 5 mins Solar and wind California ISO (2017)

Table 2. Literature summary for US studies (domestic) on VRE impact on price. The specified VRE, solar or wind, is given in the rightmost column.

Author Region Time period
Decrease in system electricity price

per GWh of specified VRE

Zarnikau et al. (2020) MISO 2013–2017 Wind (DAM): $2.1–$6
Bushnell and Novan (2018) CAISO 2012–2016 Solar: $0.1
Haratyk (2017) Midwest, Mid Atlantic 2008–2015 Wind (Midwest): $0.612,

Wind (Mid-Atlantic): $ 0
Quint and Dahlke (2019) MISO 2008–2016 Wind: $1.4–$3.4
Tsai and Eryilmaz (2018) ERCOT 2014–2016 Wind: $1.45–$4.45
Zarnikau et al. (2019) ERCOT 2011–2017 Wind: $1.64
Woo et al. (2011) ERCOT 2007–2010 Wind (Houston): $3.9

Wind (north):$ 6.1
Wind (south): $3.2
Wind (west): $15.3

Woo et al. (2013) Mid-C Hub 2006–2012 Wind (day): $0.96
Wind (night): $0.72

Woo et al. (2014) CAISO 2010–2012 Solar (NP15): $12.4
Wind (NP15): $7.8
Solar (SP15): $12.2
Wind (SP15): $9.8
Solar (ZP26): $14.3
Wind (ZP26): $7.9

Woo et al. (2016) CAISO 2012–2015 RTM
Solar (NP15): $2.2
Wind (NP15): $2.8
Solar (SP15): $3.7
Wind (SP15): $1.5
DAM
Solar (NP15): $5.3
Wind (NP15): $3.3
Solar (SP15): $3.2
Wind (SP15): $1.4

Note: RTM¼ real time market; DAM¼ day ahead market.
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capacities. Studies of some electricity markets have attrib-
uted higher frequency of negative prices to high penetrations
of VRE (Cutler et al. 2011; De Vos 2015). One study found
that extreme negative prices—the result of electricity over-
supply—are highly correlated with periods of high wind
penetration (Cutler et al. 2011). However, there was no rela-
tionship observed between the frequency of negative electri-
city prices and VRE, with inconsistent behavior observed
across the ISOs studied.

While the literature on the average behavior of electricity
price and VRE penetration has been consistent, its price
volatility with respect to time (temporal price volatility)
effects have been a topic of controversy. Some studies find
evidence of an increase in temporal price volatility as VRE
penetration increases (Mwampashi et al. 2020; Astaneh and
Chen 2013; Woo et al. 2011; Seel et al. 2018), while others
are unable to show significant evidence that increasing the
share of VRE leads to high temporal price volatility (Rai and
Nunn 2020; Mulder and Scholtens 2013). A case study of
Germany and Denmark found that increasing penetration of
VRE could either increase or decrease the temporal price
volatility (Rintam€aki et al. 2017). While studies have often
found that high wind-energy penetration contributes to high
temporal price volatility (Woo et al. 2011; Brancucci
Martinez-Anido et al. 2016; Mwampashi et al. 2020), a study
in South Korea showed that temporal price-volatility
decreases as wind penetration increases up to 10% because
the wind profile matches the demand patterns at this pene-
tration (Shcherbakova et al. 2014). There are also instances
where solar-energy penetration has abated temporal price
volatility (Pereira da Silva and Horta 2018; Rintam€aki et al.
2017). The evidence from literature suggests that the rela-
tionship between temporal price volatility and VRE penetra-
tion can vary widely as a result of a confluence of several
factors, including patterns of demand (Shcherbakova et al.
2014), weather (Mwampashi et al. 2020), and the availability
of flexible generation (Rintam€aki et al. 2017). In five of the
six ISOs studied, the system temporal price volatility
decreased as the penetration of VRE increased across all
quantiles. The results are consistent with the modern port-
folio theory that posits that the portfolio of diverse and

uncorrelated (or low correlated) assets leads to price-volatil-
ity reduction (Markowitz 1952). Similar to the finance field,
we show that adding diverse and volatile assets can lead to a
less risky portfolio of such energy assets. For example, add-
ing solar and wind power to more traditional power gener-
ation sources, such as coal, natural gas, and nuclear, leads to
a more diverse portfolio. Adding different technologies to
the energy portfolio is beneficial and, as a result, an increase
in VRE penetration leads to a reduction of temporal price
volatility.

In this study, robust methods—quantile regression and
skew-t distribution regression—are used to evaluate the
impact of VRE penetration on the conditional electricity
price and price volatility. The analysis is done conditionally
on the seasonality in order to assess effects on the residual
price, i.e. we analyze the behavior of the price after remov-
ing what is expected given the time of day and year.
Volatility is defined both with respect to time (temporal
price volatility) and VRE penetration. Quantile regression
and skew-t distribution regression have been chosen since
they are well suited for handling outliers, nonlinearity, and
skewness. By quantifying the skewness of the conditional
price distribution, we aim to evaluate the frequency of
above- and below-average conditional prices at varying levels
of VRE. This analysis examines six of the seven ISO regions
in the United States shown in Figure 1 (excluding the
Electricity Reliability Council of Texas, ERCOT). The
ERCOT region has been excluded from this analysis due to
data constraints that make a comparable analysis infeasible.
Despite this, to the best of our knowledge this is the most
comprehensive study of the role of VRE on system electri-
city price and price volatility at the national scale for the
United States using robust, nonlinear methods.

Our robust, nonlinear methods for exploring the relation-
ship between VRE and system electricity price and price
volatility in several ISOs in the United States could be
applied in other markets and has applicability in the broader
international context. For example, international studies
have explored this relationship in Italy (Blazquez et al.
2018), Germany (Blazquez et al. 2018; Mwampashi et al.
2020), South Australia (Cutler et al. 2011), Spain (Blazquez

Figure 1. Map of independent system operators (ISOs) in the United States. ISOs are responsible for coordinating, controlling, and monitoring the electricity grid
within their region of control. There are seven ISOs in the United States, and the regions covered by these ISOs account for 67% of the total electricity demand in
the country. Adapted from Climate-XChange (2021).

DATA SCIENCE IN SCIENCE 3



et al. 2018; S!aenz de Miera et al. 2008), Denmark
(Mwampashi et al. 2020; J!onsson et al. 2010), and South
Korea (Shcherbakova et al. 2014), and could be enriched by
our chosen methods. The approach captures nonlinearity
and distributional effects and can be applied to other electri-
city markets. Not only the methods but also the findings
have a broader context in relation to modern portfolio the-
ory with respect to the addition of a highly volatile asset,
VRE, and a corresponding reduction in electricity price and
volatility. However, it is important to note that though our
methodological approach can be extended to other electricity
markets to explore the relationship between VRE and system
electricity price or price volatility, the actual trend and rela-
tionship may inherently differ in each context owing to sev-
eral factors, such as the amount of VRE penetration, and
the policies and regulations that govern the local electricity
market.

This article aims to (i) apply robust, nonlinear methods
to the study of electricity price and price volatility, (ii) eluci-
date more generalizable conclusions by scaling the analysis
to explore multiple ISOs, and (iii) contextualize the results
based on modern portfolio theory.

2. Methods

2.1. Data Collection and Processing

Each independent system operator (ISO) collects data on the
system price of electricity and the amount of electricity that
was generated from various energy sources (e.g. solar, wind,
natural gas, coal, nuclear). These data are available on each
ISO’s respective website in various formats. For example,
some ISOs release files containing full years’ worth of data,
while others provide daily updates through widgets.
Therefore, a web scraper was built to collect the data for
each ISO. Note the different operators collect data at differ-
ent temporal frequencies, but the highest resolution that the
operator provides is always used. Furthermore, the time
periods covered for each operator do not match. As a result,
there are more data for some operators than others; how-
ever, this difference is not expected to impact the analysis
because each analysis is done independently (See Table 1 for
the temporal resolution and coverage period for each ISO).
From this price and supply information, we calculate two
variables at each time point: (i) the percentage of energy
generated using VRE and (ii) the system price per mega-
watt-hour of electricity.

2.1.1. Percentage of VRE
In calculating the percentage of VRE used throughout the
analysis, only electricity generated from solar and wind is
considered. However, each ISO provides slightly different
granularity on the energy sources in their electricity-gener-
ation mix. For example, if the relative generation from solar
is low, then this source may be bundled with other renew-
able energy sources. Because of the variability of solar adop-
tion and the differences in data reporting among ISOs, solar
electricity-generation data was not specifically reported in

the generation mix for NYISO and MISO, in which case
only the wind electricity-generation data was used to repre-
sent the VRE percentage (Table 1). Note, the effect of these
differences is small and should not impact the analysis. The
percentage of VRE is calculated as the sum of the generation
from solar and wind sources divided by the total amount of
generation from all sources.

2.1.2. System Price
Each ISO reports information on the price paid at specific
locations or hubs in their network. Due to transmission and
congestion costs, the price at different hubs can be different.
To ensure that the results are interpretable and comparable,
the transmission and traffic/congestion costs are removed to
compute a system price for each ISO.

For each ISO, this system price reflects the cost of gener-
ating one megawatt-hour of electricity. Again, since each
ISO has different reporting standards, there are slight differ-
ences in how the system price is computed for each ISO.
Full details for the relevant procedure for each ISO are given
in Appendix A1. As before, these differences are not
expected to impact the analysis.

2.2. Seasonal and Diurnal Adjustment

Changes in energy price are driven to a large extent by
changes in consumer demand. For example, energy prices
are higher during the day (when consumers are awake) than
at night and higher during the summer (when consumers
use air conditioning) than spring. To properly analyze the
impact of VRE penetration on energy prices, this expected
pattern is taken into account and used to detrend the price.
Before detrending prices at the temporal scales, it is not
clear whether the estimated associations between energy
price and VRE penetration are due to expected seasonal
fluctuations or changes in VRE penetration. By removing
the expected pattern, we can analyze the effect of VRE pene-
tration on the changes in energy price compared to what is
expected.

We define what is expected as a linear model with cat-
egorical variables used to estimate these temporal effects.
For the hourly data, categorical variables for hour of day,
season, and weekend are included. The model allows for
interaction effects between the hour of day and season, so
that each season has its own diurnal pattern. More formally,
for the hourly data the price at time t is given by

PriceðtÞ ¼ b1hourðtÞ þ b2seasonðtÞ þ b3hourðtÞ & seasonðtÞ

þ b4weekendðtÞ þ !t ,

(1)

where hour(t), season(t) give the hour of the day and sea-
son at time t respectively, weekend(t) is a binary variable
indicating whether time t occurs on a weekend and !t is
a residual term. There are four seasons which correspond
to the following calendar month groupings: winter ¼ 12,
1, 2, spring ¼ 3, 4, 5, summer ¼ 6, 7, 8, and autumn ¼
9, 10, 11. Note, in a standard linear model the residual
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term is noise. This is not the case in this setting because
the price (and temporal price volatility) is expected to be
driven by varying levels of VRE. Fitted values for the six
locations are shown in Figure 2. The estimated diurnal
pattern for CAISO (separated by season) is shown in
Figure 3. A more detailed figure is available in
Appendix A2.

The parameters were estimated using the base lm func-
tion within the R programming language. The residual
terms, !t, are used to explore the relationship between VRE
and price, and is referred to as the detrended system electri-
city price. The following analyses will make use of this
detrended system price to calculate temporal volatility as
well as examine the relationship with VRE penetration.

Figure 2. The energy price data for each ISO is detrended by the average price for hour, season, and weekend trends. The observed price data, shown with black
dots, is plotted by day of the year. The red line indicates the estimated trend. The resulting detrended price is the observed value minus the average. Note there
are repeated observations for multiple years and the y-axis is clipped to the range $10–150.

Figure 3. CAISO raw system prices by seasons and hour of day. The plot shows the estimated diurnal pattern (red line) by season. For plotting purposes, prices
greater than 150 are excluded. Orange dots depict negative prices and teal dots depict positive prices (all in USD).
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2.3. Temporal Price Volatility

We calculated the temporal volatility of detrended system
electricity price as a function of time (temporal price volatil-
ity), using the exponential weighted moving standard devi-
ation (EWMSD). Detrended price volatility is the
instantaneous standard deviation of the hourly detrended
electricity price. The exponentially weighted moving stand-
ard deviation improves on the sample standard deviation by
assigning weights to the periodic price. Specifically, EWMSD
gives more weight to the recent price and decreases the
weights exponentially as historical data points increases. The
equation is usually given as:

EWMSDi ¼ ð1' kÞU2
i þ ð1' kÞk2U2

i'1 þ :::

þ ð1' kÞknU2
i'n, (2)

where U2
i is the price variance in the current hour i and k is

the weight. We have used a weight of 0.94 because this a
standard weighting factor used in financial risk/volatility
analysis (Longerstaey and Spencer 1996). This method of
calculating volatility is based on the operation-stage volatility
(realized effects) and should not be confused with planning-
stage volatility that attempts to capture differences between
the predicted and observed real-time price variations (pre-
dicted effects; Astaneh and Chen 2013).

2.4. Nonparametric Quantile Regression

A nonparametric quantile regression model was fitted based
on B-splines basis function expansion of percentage VRE to
examine the possible nonlinear effects of the percentage
of VRE on the hourly electricity price and temporal price
volatility. This approach does not require us to assume a
specified distribution for the response and is robust with
heavy-tailed distributions as compared to linear regression.
By fitting quantile regression at different quantile levels, a
more comprehensive characterization of the effect of the
percentage of renewables on price and price volatility can be
obtained.

The sth (0 < s < 1) quantile of a random variable Y is
QYðsÞ ¼ infft : FYðtÞ ( sg where FY is the cumulative dis-
tribution function of Y. Quantiles in the context of regres-
sion had been first introduced in Koenker and Bassett
(1978). Given a dependent variable Y and independent vari-
able matrix X, linear regression estimates the conditional
mean of Y given X by assuming that the dependence rela-
tion Y ¼ X0b and that the cumulative distribution of Y
given X, FYjx, is a Gaussian distribution, among other
assumptions. Instead, quantile regression assumes that the
sth (0 < s < 1) conditional quantile of Y given X¼ x is
defined as QYðsjxÞ ¼ infft : FYjxðtÞ ( sg ¼ X0b, without
any further assumption on FYjx: The conditional median
corresponds to QYð0:5jxÞ: Interpretation of the conditional
quantile is straightforward. For example, given the predictor
value X¼ x and s ¼ 0:9, 90% of observations of Y with
associated x fall below QYjXð0:9Þ: Given s ¼ 0:9, an increase
in X by one unit would increase the 0.9 quantile of Y by b.

In general, assuming the linear functional form X0b of
the quantile QYðsjxÞ may lead to undesirable results when
the conditional quantile of Y given X, QYðsjxÞ, is not line
QYðsjxÞ ar in X and hence mis-specified. Splines can be
used as a curve-fitting technique for using piecewise polyno-
mials of X. Knots are values of the independent variable
which are used to partition the curve into pieces to fit a
final piecewise polynomial and the degree of each polyno-
mial defines the degree of the spline. The nonparametric
quantile regression models the conditional quantile using a
spline approximation instead of a specific functional form of
X. The B-splines (Schoenberg 1988; Curry and Schoenberg
1988) approximation is known to be flexible and computa-
tionally efficient. Specifically, let pðtÞ ¼ ðb1ðtÞ, :::, bknþlþ1ðtÞÞ0
denote a vector of normalized B-spline basis functions of
order lþ 1 and degree l. Then QYðsjxÞ is approximated by
b0 þ pðxÞ0b, where b0 is the intercept and b are a vector of
lþ 1 coefficients to be estimated from the data by minimiz-
ing a quantile loss function. The quantile regression is
implemented using the Quantreg package in R which can
incorporate splines. Splines can be calculated using the
Splines package in R.

When analyzing the hourly price, the nonparametric
quantile regression is applied to the detrended hourly price
(dependent variable) conditional on B-splines of percentage
of VRE (independent variables), as previously described.
When analyzing the hourly temporal price volatility, non-
parametric quantile regression is applied to the exponentially
weighted moving standard deviation (EWMSD) estimator of
hourly volatility (2)(dependent variable), computed using
the detrended price (1) with B-splines of percentage of VRE
as the independent variables. B-splines of degree 3 are used
with number of knots depending on visual inspection of the
data scatterplot of price or price volatility vs. VRE such that
the splines do not overfit at the boundaries.

We evaluate the subsequent nonlinear effects induced by
the B-spline basis by calculating an approximate derivative.
The approximate derivative of the spline basis functions,
p0ðtÞ ¼ ðb01ðtÞ, :::, bknþlþ1

0ðtÞÞ0, can be calculated using the
JM package in R. The derivative of QYðsjxÞ is then approxi-
mated by ðp0ðxÞÞ0b:

2.4.1. Skew t-Distribution Regression
It was clear from plots of price against VRE penetration
(Figure 4) that many features of the distribution of price
were changing as a function of VRE penetration. As an
alternative to the nonparametric quantile regression, we
chose to additionally model the distribution with the param-
eteric skew t-distribution. The skew t-distribution analysis
provides complementary interpretation of generalized linear
effects on the conditional distribution of detrended system
price given VRE penetration.

A generalized linear model was fitted for location, shape,
and scale of the conditional distribution of detrended price,
!t, given percentage VRE. We used the four parameter skew
t-distribution (ST) parameterized as in Fern!andez and Steel
(1998) with parameters '1 < l < 1, r > 0, " > 0, and
s > 0: The centrality and skewness (shape) parameters, l
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and " respectively, varied with percent VRE (xt) via a gener-
alized linear model:

lt ¼ bl0 þ bl1xt=100,
log ð"tÞ ¼ b"0 þ b"1xt=100,

where the log transformation ensures positivity of "t and the
scale and tail index parameters, r and s respectively, were
assumed to be constant:

log ðrÞ ¼ br0 ,
log ðsÞ ¼ bs0:

Therefore, the following conditional distribution is
obtained for the residual price: !tjxt ) STðlt , "t ,r, sÞ: All
parameters were estimated by maximum likelihood with the
RS algorithm as implemented in the R package Gamlss
(Stasinopoulos and Rigby 2007). For a given level of VRE,
xt, we evaluate the estimated distribution by quantile sum-
maries as the complete distribution is defined.

3. Vre Penetration and System Electricity Price

Renewable energy resources and the adoption of utility-scale
VRE technologies varies substantially throughout the United
States, as seen in the corresponding VRE generation shares
across ISOs in Figure 5. In order to accurately assess the
role of VRE on system electricity price, a comparative ana-
lysis across multiple ISOs was performed using regional data
from 2014 to 2020 when available. Details on the regional

data used for each ISO can be found in Table 1. The system
electricity price is based on the real-time wholesale price of
electricity excluding the congestion costs and transmission
losses. Corrections were also made for the diurnal, seasonal,
and weekend effects that may influence demand and
resource availability and ultimately impact price (shown in
Figure 3). Descriptive statistics for the electricity price and
temporal price volatility after applying these corrections, can
be found in Table 3. For each ISO studied, the mean system
electricity price is substantially larger than the median price,
indicating skewness and price outliers, suggesting that the
ordinary least squares approach applied in the majority of
the previous studies using multivariate linear regression
(Zarnikau et al. 2020; Bushnell and Novan 2018; Haratyk
2017; Wiser et al. 2017; Quint and Dahlke 2019; Tsai and
Eryilmaz 2018; Craig et al. 2018; Zarnikau et al. 2019; Woo
et al. 2011, 2013, 2014, 2016; Mwampashi et al. 2020;
Gelabert et al. 2011) may not have adequately captured the
dynamics of the existing relationship between VRE penetra-
tion and electricity price.

The quantile regression results in Figure 6 show that an
increase in the penetration of VRE is associated with a
decrease in detrended system electricity price. While this
trend is generally true across all ISOs and quantiles (0.25th,
0.50th, and 0.75th), the relative system price reduction is
often greatest in the extreme prices, i.e. the 0.90th quantile.
Additionally, the change in the system price is not constant
across the percentage of VRE nor the quantiles and, once

Figure 4. Quantiles of skew t-distribution based on the estimated pointwise means of the parameters listed in Table A1. Points correspond to seasonally detrended
system price and the y-axis is trimmed to the inner 99% of detrended price; red points correspond to a negative price before seasonal detrending.
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again, this is typically more apparent at higher quantiles.
For example, in PJM, Figure 6(C), when the VRE percentage
changes from 0 to 1%, the median detrended system price
decreases by $1.6 USD in average absolute values and the
0.90th quantile of the detrended system price decrease by
$10 in average absolute values but, when the VRE percent-
age changes from 5 to 6%, the median detrended system
price decreases by $0.2 in average absolute values and the
0.90th quantile detrended price decreases by $0.8 in average
absolute values. The derivative of the detrended system price
with respect to the percentage of VRE is depicted in Figure
7 for PJM. It is evident that increasing penetration of VRE
lowers the frequency of occurrence of higher extremes of
system prices because Figure 6(A-B) suggest the value of the
0.90th quantile is decreasing with increasing VRE.

The results from the skew-t distribution regression in
Figure 8 also show the distributional effects of increasing
VRE on price. A decreasing trend in skewness with VRE is
estimated for all ISOs. The skewness approaches symmetry
("¼ 1) with increasing VRE for four of the ISOs, suggesting
that as VRE is increased there is a lower frequency of large
price extremes above the average price. Large price extremes
often happen when expensive energy generators need to be
dispatched, typically when low-cost electricity generators,
such as solar and wind, are unavailable or unable to meet
higher than expected demand. The magnitude and duration
of these price spikes are particularly harmful to electricity
retailers who cannot pass on price risk to customers
(Anderson et al. 2007). The main contribution to the pattern
toward symmetry is the decrease in large, positive

Figure 5. VRE (solar and wind) penetration. Shown here is the percentage of VRE generation to total generation in each of the six ISOs considered. Southwest
Power Pool (SPP) achieved the highest VRE penetration based on the data used and for the study period considered, followed by CAISO, MISO, ISONE, NYISO,
and PJM.

Table 3. Descriptive Statistics Summary. This shows the minimum, median, maximum, and mean statistics for the detrended system price
(in USD) and temporal price volatility (in USD).

CAISO ISONE MISO NYISO PJM SPP

min '76.29 '208.37 '33.51 '2504.87 '78.80 '49.36
median '5.14 '4.82 '1.74 '1.02 '2.79 '2.63
max 957.62 2,396.98 546.73 1,145.75 615.95 1,086.95
mean 0.00 0.00 0.00 0.00 0.00 0.00

Detrended price ($) st. dev. 41.34 34.26 14.73 36.26 20.28 27.27
min 0.19 0.15 0.13 0.18 0.11 0.23
median 1.83 1.67 1.17 1.59 1.36 1.72
max 24.92 33.79 18.69 37.21 19.30 27.50
mean 2.36 1.95 1.49 1.93 1.72 2.17

Price volatility ($) st. dev. 2.13 1.29 1.18 1.52 1.26 1.73
min 0.04 0.00 0.04 0.00 0.01 3.10
median 7.28 2.74 7.56 2.44 2.22 48.15
max 38.51 17.64 27.78 15.24 9.16 83.30
mean 10.04 3.37 8.47 3.27 2.62 46.38

Percentage of VRE (%) st. dev. 8.10 2.58 5.24 2.82 1.79 16.81
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fluctuations from the average price. A decrease in skewness
to negative is found for SPP and CAISO, which implies that
as VRE increases in these systems it is more likely to have
deviations of price below average. It is worth noting that
these two regions (SPP and CAISO) also have the highest
levels of VRE penetration.

One policy mechanism that has been used to reduce price
spikes is to implement price caps. Details of the price cap,
including the capped value, when the price cap is enforced,
and which technologies are restricted by the cap, vary with
time and across ISOs. Temporary price caps have been
implemented in times of extreme weather events or major
distortion in electricity markets (Sirin and Erten 2022). In
2016, the Federal Energy Regulatory Commission issued
Order 831, which generally created a price cap of $1,000/
MWh to be applied across all regional transmission organi-
zations and ISOs (U.S. Federal Energy Regulatory
Commission 2016). Please note that there are exceptions
indicated in the order that reflect a resource’s verified cost-
based incremental energy offer. To assess the impact of price
caps on our analysis, we calculated the fraction of electricity
prices at or above $1,000/MWh for each ISO. We found
that for all ISOs, the relative frequencies were all around or
less than 0.01%. Since the price cap has been set well above
the marginal and opportunity costs of all or nearly all
resources, this policy mechanism has rarely prevented volun-
tary market clearing that would otherwise occur (Wilson

2000). Therefore, the results found in our study are unlikely
to be a result of price caps.

The results for the system price reduction are consistent
with the merit-order effect of renewables where conventional
generation assets are unprofitable in the market when there
is a high penetration of VRE. This occurs because VREs
tend to have lower marginal operating costs and are, there-
fore, prioritized in satisfying demand. This effect has been
well studied and observed in electricity markets in several
countries (Sensfuß et al. 2008; Cludius et al. 2014;
W€urzburg et al. 2013; Cutler et al. 2011; B€ockers et al. 2013;
Forrest and MacGill 2013; Amor et al. 2014; Huisman et al.
2013; Swinand and O’Mahoney 2015; Klinge Jacobsen and
Zvingilaite 2010; Shcherbakova et al. 2014; Winkler et al.
2016). The lowering of electricity prices as VRE penetration
increases is advantageous for consumers but not necessarily
for the generators/suppliers because this causes a reduction
in the income from electricity sold in the market. However,
the lower cost electricity can attract energy-intensive indus-
tries, increasing electricity demand within the ISO, allowing
generators/suppliers to increase revenues from increased
production. Additionally, not all generators are affected
equally and some, particularly those with flexible generation
assets, may benefit from increased VRE penetration since
they can contribute flexible reserves to manage VRE vari-
ability (International Renewable Energy Agency 2019;
Akrami et al. 2019). Apart from attaining a sustainable price

Figure 6. VRE penetration (in %) and detrended electricity price (in $). The six panels show the relationship between VRE penetration and detrended electricity
price for NYISO, MISO, PJM, CAISO, ISONE, and SPP, respectively. The continuous lines show the quantiles with the colors yellow, green, blue, and purple, represent-
ing the 0.25th, 0.50th (median), 0.75th, and the 0.90th quantiles, respectively. Each panel’s axis limits are adjusted separately in order to clearly show the quantiles’
trend direction.
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level (Winkler et al. 2016), which is good for end users, the
merit-order effect can also help to promote flexibility in the
market to incorporate flexible generation assets that can
ramp up and down in response to increasing VRE penetra-
tion. It can also incentivize storage and demand-response
technologies. Security of supply is another concern because
the merit-order effect may lead to the shutdown of baseload
conventional plants; however, this risk can be reduced with
the introduction of capacity markets (Winkler et al. 2016).
Lowering the system electricity price may increase the cost
of some sustainable energy policies, such as feed-in tariffs
(Huisman et al. 2013), and may lead to lower cost flexible
natural gas plants replacing nuclear plants and, conse-
quently, producing more emissions (Rothwell 2000). Careful
policy design will be needed to mitigate these effects.

Negative prices are the extreme end-products of oversup-
ply of electricity. It is most common in markets with large
amounts of nuclear, hydroelectric, and wind generation
(U.S. Energy Information Administration 2012). However,
conventional resources also play a role in driving down pri-
ces (at least in the short term) because generators from these

inflexible assets often prefer not to shut down or reduce
their output when there are high amounts of VRE due to
technical and economic costs related to output reduction
and regulation costs (in the case of hydroelectric power, for
compliance with environmental regulations for water flow to
maintain fish population; U.S. Energy Information
Administration 2012). The trend of negative system price
(based on the original raw data without correction for tem-
poral effects) with increasing VRE penetration varies for dif-
ferent ISOs (shown in the red-colored points in Figure 6
and Figure 4). However, the frequency of negative detrended
system price has no clear trend with percentage of VRE;
although it seems to be concentrated at high levels of VRE
penetration for SPP and CAISO, the two ISOs with the
highest range of VRE penetration.

This observation might suggest that at the current levels
of VRE penetration, among other factors, increased VRE
penetration is not solely responsible for increased frequency
of negative system electricity prices but rather due to a com-
bination of other factors such as seasonal, daily, and week-
end temporal effects as well as geographic, demographic,

Figure 7. The derivative of the detrended system price (in USD) and detrended system price volatility (temporal volatility in USD) with respect to the percentage of
VRE for the PJM independent system operator.
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climatic, and behavioral factors, which are inherently differ-
ent across each of the ISOs studied. In general, at very high
penetration of VRE, there needs to be increased flexibility of
the electrical grid in terms of availability of grid-scale energy
storage systems that can act as control reserves in times of
excess supply of VRE.

4. VRE Penetration and System Electricity Price
Volatility

The system electricity price varies as a function of both time
and VRE penetration. First, to calculate the volatility of the
detrended system electricity price as a function of time
(temporal price volatility), the exponential weighted moving
average (EWMSD) volatility is employed. Second, to assess
the variability of the detrended system electricity price as a
function of VRE penetration, the distributional characteris-
tics of the skew-t model are evaluated.

The results for the quantile regression on EWMSD price
volatility (temporal volatility), shown in Figure 9, indicate
that there is a reduction in temporal price volatility as the
penetration of VRE increases across all quantiles (0.50th,
0.75th and 0.90th) for 5 out of the 6 ISOs studied (ISONE,
MISO, PJM, CAISO, and NYISO). In the upper quantile
(0.90th quantile), it is evident that at higher quantiles there
is a larger reduction in temporal price volatility as VRE

penetration increases, indicating that there is a significant
drop in higher extremes of temporal price volatility with
VRE penetration. For SPP, an increase in VRE percentage
up to about 40% is associated with decreasing the temporal
price volatility; however, an increase in temporal price vola-
tility is observed as VRE penetration increases beyond 40%.
The difference in the effect of VRE penetration on temporal
price volatility for SPP can be attributed to times of high
penetration of wind when demand is low, causing oversup-
ply of electricity and, thus, increasing the frequency of nega-
tive prices. This effect observed in SPP corroborates some of
the literature on price volatility where high penetration of
wind can cause an increase in price volatility (Rintam€aki
et al. 2017).

The change in the system temporal price volatility is not
constant across the percentage of VRE or the quantiles and,
once again, this is typically more apparent at higher quan-
tiles. For example, in PJM, when the VRE percentage
changes from 0 to 1%, the median system temporal price
volatility decreases by $0.8 USD in average absolute values
and the 0.90th quantile of the system temporal price volatil-
ity decreases by $5 in average absolute values; but, when the
VRE percentage changes from 5 to 6%, the median system
temporal price volatility decreases by about $0.2 in average
absolute values and the 0.90th quantile temporal price vola-
tility decreases by about $0.4 in average absolute values.

Figure 8. Estimated effects of VRE percentage on the skewness (") parameter for a skew t-distribution for detrended price using a log link. Gray bands indicate the
95% confidence intervals. The red reference line at 1 denotes symmetry.
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The derivative (measure of change) of the system temporal
price volatility with respect to the percentage of VRE for
PJM is depicted in Figure 7.

The result of the skew-t regression elucidates the variabil-
ity of detrended system electricity price by estimating the
energy price distribution as a function of VRE penetration.
We evaluated the changes in the shape of the distribution as
VRE penetration increases by investigating the differences
among various quantiles. The difference between the 0.75th
and 0.25th quantile measures variability about the median of
detrended energy price and, as it decreases, we expect less
deviation from the median. The difference between the
0.75th and 0.50th quantile and between the 0.90th and
0.50th both show changes in above-average prices, whereas
the latter describes the frequency of more “extreme” prices.

In Figure 4, the range of the estimated skew-t distribu-
tion quantiles for detrended system price decreases as per-
centage of VRE increases. The tightening of the distribution
around the median detrended price as the percentage of
VRE increases is a result of the decrease in estimated skew-
ness parameter as VRE increases. To illustrate more clearly,
select differences in the detrended system price quantiles are
shown in Figure 10. In all ISOs studied, the detrended sys-
tem electricity price difference between the 0.75th and
0.50th quantile (teal) and between the 0.90th and 0.50th
quantile (purple) decrease as the percentage of VRE

increases. In all but two ISOs (SPP and CAISO), a reduction
in the detrended system price difference between the 0.75th
and 0.25th quantile (yellow) is observed as the percentage of
VRE increases. From Figure 8, high VRE penetration leads
to negative skewness in SPP and CAISO. This negative
skewness effect can also be seen in Figure 4 for the 0.25th
quantile (yellow) with negative deviation from the median at
high VRE penetrations in SPP and CAISO. The effect is
most apparent in SPP where there is high frequency of
negative prices at VRE penetrations above 40%.

Overall, the reductions in these multiple measures of
price volatility with respect to VRE indicate that generally
increased VRE penetration reduces detrended system electri-
city price variability, particularly through reducing extremely
high electricity prices. This trend is observed in all ISOs
studied for detrended system prices above the median. The
exception to this trend occurs in SPP and CAISO at high
penetration of VRE for detrended system prices below the
median, where there is an increased frequency of negative
system prices.

5. Conclusion

In this study, the relationship between detrended system
electricity price, price volatility, and VRE penetration
was analyzed using a robust approach to account for

Figure 9. VRE penetration (in %) and temporal price volatility (in USD). The panels show the relationship between VRE penetration and temporal detrended system
price volatility for NYISO, MISO, PJM, CAISO, ISONE, and SPP, respectively. The continuous lines show the quantiles with the colors yellow, green, and purple, repre-
senting the 0.50th (median), 0.75th and the 0.90th quantiles.
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non-linearities and skewness. While several studies have
investigated the relationship between VRE and electricity
price using multivariate linear regressions, these are insuffi-
cient at adequately capturing the underlying relationships in
the highly skewed data. The results not only corroborate the
existing literature on the merit-order effect of VRE, which
causes a reduction in electricity price with increased VRE
penetration, but also illustrates that the merit order effect is
nonlinear, and the greatest effect can be seen in the reduc-
tions in extremely high detrended system electricity prices
(0.90th quantile) with increased VRE. In all ISOs studied,
the spread in extreme high system prices, as measured by
the price difference between the 0.90th and 0.50th quantiles
and the 0.75th and 0.50th quantiles, reduces as the percent-
age of VRE increases. In all but one ISO studied, system
temporal price volatility (calculated based on the time-
dependent EWMA price volatility) decreased as the penetra-
tion of VRE increased across all quantiles (0.50th, 0.75th,
and 0.90th).

While this study has examined the relationship between
VRE penetration and the detrended system electricity price
and volatility using robust techniques, it is important to
comment on the bounds of validity of the study findings.
The results presented in this work are valid within the
studied temporal range (shown in Table 1) and VRE pene-
tration levels (shown in Figure 5). Given global and regional

ambitious renewable-energy targets, future VRE penetration
is likely to change to match these targets and therefore the
relationship between VRE penetration may differ from the
levels observed in the study result. Also, there are geograph-
ical, policy, and demographic factors at play within each of
the ISOs studied. Direct application of the study findings
should consider these interacting factors. However, the cur-
rent study provides a robust holistic understanding of the
relationship between VRE penetration and the system elec-
tricity price and volatility at a national scope (six out of
seven US ISOs) and based on historical data, which can be
adapted to future analyses of this relationship and poten-
tially serve to inform electricity-market policy and decision
making.

The results are consistent with the modern portfolio the-
ory that shows that adding diverse and uncorrelated (or
low-correlated) assets to a portfolio is associated with a
reduction of total price volatility. This is a particularly pref-
erable outcome when individual assets are highly risky (i.e.
individual volatilities are large), resulting in more stable and
less risky portfolios of such assets. “Diversity” is used here
as a way to connect the study finding with a theoretical
framework in finance, where diversity is synonymous to the
increase in penetration of VRE. Also, it is important to note
that the bounds of validity in relationship to diversity are
based on the current VRE penetration levels and should not

Figure 10. Difference between 0.75th and 0.25th quantile (yellow), 0.75th and 0.50th (teal), and 0.90th and 0.50th (purple) as plotted with approximate 95% cred-
ible intervals. It is important to note that for several of the ISOs, a decrease in the spread of the distribution (volatility with respect to VRE) is observed in the quan-
tiles as measured by all three differences, but SPP and CAISO have curvilinear trends in the difference between 0.75th and 0.25th, which is caused by the skewness
changing from positive to negative with increasing VRE penetration.

DATA SCIENCE IN SCIENCE 13



be extrapolated to future data. Even at that, we find that
some ISOs (SPP and CAISO) show an increasing volatility
at high penetration levels of VRE (relative to other regions)
depending on the observed quantiles. This underscores the
importance of grid-scale energy storage systems which may
help to seamlessly integrate high levels of VRE, thus improv-
ing grid flexibility while allowing for reserves that can bal-
ance supply in times of high availability of stochastically
variable VRE resources.

With increasing generation from VRE on the electrical
grid, the use of a robust approach helps to expose the
nonlinear relationships that are useful in developing an
accurate understanding of behavior of system electricity
price and its volatility. However, it is important to recog-
nize that the power grid is highly dynamic and, therefore,
this study should not be construed as an argument for
reaching a threshold VRE penetration. The technologies,
policies, and markets associated with the grid are rapidly
changing. Most regions have ambitious VRE targets that
will need adequate energy-storage capabilities to reduce
energy curtailment and negative electricity prices, innova-
tive markets to appropriately value demand response
and auxiliary services, and mindful policies to ensure
that long-term infrastructure building meets global sus-
tainability goals.
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Appendix 1. ISO-Specific Procedures

From each ISO, we collected historical data on the following
information:

1. Electricity prices: this includes locational marginal price, conges-
tion price and losses

2. Generation-mix data: this includes electricity generation, separated
by energy source, used to satisfy demand.

This data-collection process was different for each of the ISOs
because the ISOs differ in their methods of reporting market data on
energy prices and operational data on their generation mix. A step-by-
step of the data collection procedure for each of the ISOs is as follows:

1. ISONE: The ISONE data was obtained from the ISONE API web
services API v.1.1 ISONE (2021) that gives a range of public mar-
ket and energy data. The generation data was obtained for the
entire system in resolutions ranging from 5 to 15minutes and
queried using [/genfuelmix] and was then aggregated to hourly
resolution. The locational marginal price data was obtained for
the single hub location in hourly resolutions alongside the losses
and congestion cost and queried using [/hourlylmp/rt/final/day/
daylocation/locationId]. The system price, referred to here as the
marginal energy cost, is then obtained as:

MEC ¼ LMP'MCC'MLC, (3)

where: LMP ¼ locational marginal price
MEC ¼ marginal energy costMCC ¼ marginal congestion
costMLC ¼ marginal loss cost

2. NYISO: NYISO provides a repository for market report and infor-
mation via its public management-information system NYISO
(2020). The scraper was built to obtain CSV files for the 5-minute,
real-time system generation in NYISO and queried using [/csv/
rtfuelmix/{date}rtfuelmix_csv.zip]. The location-based marginal

price, congestion cost, and loss cost were also obtained for each of
the 11 hub locations in 5-minute resolutions and queried using
[/csv/realtime/{date}realtime_zone_csv.zip]. We found that the four
interface locations in the NYISO have significant price variations
from the internal locations and were thus excluded. We then
obtain the system price, referred to here as the marginal energy
cost, as:

MEC ¼ LBMPþMCC'MLC, (4)

where: LBMP ¼ Locational Based Marginal Price
It is important to note that price calculations in New York ISO
(2020) is slightly different from all the other ISOs. The 5-minute
resolution data was then mean aggregated to an hourly resolution
which was used in the analysis.

3. PJM: PJM has an interactive data platform, Data Miner 2 PJM
(2021), where market and operational data is stored. The platform
provides hourly locational marginal price, marginal loss price, and
congestion price, which can be queried [/feed/rt_da_monthly_
lmps]. The system real-time price was also provided directly but
can also be obtained using (Eq. 1) above. The generation-mix data
was obtained in hourly resolution for the entire PJM ISO and
queried using [/feed/gen_by_fuel].

4. MISO: MISO provides a market and operational report repository
MISO (2021) which we directly scraped. The generation-mix data
was obtained from this repository in hourly resolution and
queried using [/marketreports/{day}_sr_gfm.xls]. The locational
marginal, congestion, and loss prices were also obtained for each
of the hub and queried using [/marketreports/{day}_rt_lmp_final_
csv.zip]. Similarly, a unique system price was calculated using (Eq.
1) above.

5. SPP: SPP provides an integrated marketplace SPP (2021) in the
form of a file browser API platform for downloading market
reports. The scraper was then built to download the provided
5-minute resolution generation data and queried using [/gener-
ation-mix-historical]. The same procedure was used to obtain the
5-minute locational marginal prices, congestion price, and the loss
price and queried using [rtbm-lmp-by-location] for specified hub
locations, after which a unique system price was obtained (using
Eq. 1).

6. CAISO: The scraper was built to obtain data from the California
ISO Open Access Same-Time Information System (OASIS) API
via schema California ISO (2017) that use structured query
parameters to fetch data from the system. The data collected
include: 5-minute, real-time renewables (solar and wind) forecast
by trading hub; 5-minute, real-time total generation by the entire
CAISO area; and 5-minute interval local marginal price, marginal
loss price, and the congestion price by trading hub. Similarly, a
unique system price was calculated using (Eq. 1) above. The
renewable-generation data were then sum-aggregated for all hub
locations in order to obtain a representation for the total CAISO
region.
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Appendix 2. Detrending Example

Figure A1. The three panels show an illustration of the detrending procedure for a snapshot of data from CAISO in the second half of July 2019. In (A) the raw
system price is shown (dots) along with the estimated seasonal trend (red line). We detrend the raw system price by subtracting the trend to obtain the detrended
system price (B). The detrended system price represents how much the system price differs from the seasonal average; note that most of the time it is near 0. From
(B), we calculated the exponentially weighted moving average standard deviation (C) that is a temporal measure of the variability of the detrended system price- in
other words, How much does the detrended price vary from the detrended prices in the recent past?

Table A1. Parameter values for the generalized skew t-distribution hourly detrended price. An example of interpret-
ation of the effect of VRE on the centrality and skewness of the distribution of hourly price is an increase in VRE
decreases both centrality and skewness of hourly price in CAISO (bl1 < 0 and b"1 < 0). The interpretation also holds
for ISONE, NYISO and SPP.

Parameter Estimate Std. Error

ISO bl0 , centrality intercept –5.74 0.18

bl1 , change in centrality for a change in VRE –5.14 1.59

br0 , log-scale estimate 2.10 0.01

b"0 , skewness intercept 0.25 0.01

b"1 , change in skewness for a change in VRE –1.58 0.11

CAISO bs0, log-tail index estimate 0.52 0.01

bl0 , centrality intercept –7.48 0.18

bl1 , change in centrality for a change in VRE –62.56 4.17

br0 , log-scale estimate 2.42 0.01

b"0 , skewness intercept 0.33 0.01

b"1 , change in skewness for a change in VRE –1.75 0.22

ISONE bs0, log-tail index estimate 0.72 0.01

bl0 , centrality intercept –4.04 0.12

bl1 , change in centrality for a change in VRE 7.57 1.10
(continued)
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Table A1. Continued.

Parameter Estimate Std. Error

br0 , log-scale estimate 1.47 0.01

b"0 , skewness intercept 0.30 0.02

b"1 , change in skewness for a change in VRE –1.07 0.14

MISO bs0, log-tail index estimate 0.78 0.01

bl0 , centrality intercept –0.38 0.14

bl1 , change in centrality for a change in VRE –98.38 3.58

br0 , log-scale estimate 2.05 0.01

b"0 , skewness intercept 0.23 0.01

b"1 , change in skewness for a change in VRE –1.44 0.26

NYISO bs0, log-tail index estimate 0.89 0.01

bl0 , centrality intercept –4.15 0.17

bl1 , change in centrality for a change in VRE –79.23 5.13

br0 , log-scale estimate 1.74 0.01

b"0 , skewness intercept 0.33 0.02

b"1 , change in skewness for a change in VRE –0.49 0.51

PJM bs0, log-tail index estimate 0.75 0.02

bl0 , centrality intercept –2.88 0.28

bl1 , change in centrality for a change in VRE –5.18 0.87

br0 , log-scale estimate 1.86 0.01

b"0 , skewness intercept 0.64 0.03

b"1 , change in skewness for a change in VRE –1.63 0.08

SPP bs0, log-tail index estimate 0.77 0.02

18 O. O. OWOLABI ET AL.


	Abstract
	Introduction
	Methods
	Data Collection and Processing
	Percentage of VRE
	System Price

	Seasonal and Diurnal Adjustment
	Temporal Price Volatility
	Nonparametric Quantile Regression
	Skew t-Distribution Regression


	Vre Penetration and System Electricity Price
	VRE Penetration and System Electricity Price Volatility
	Conclusion
	Author Contributions
	Disclosure Statement
	Funding
	Data availability statement 
	References
	mkchapUDSS_S0009_sec



