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ABSTRACT
We examine the use of time series data, derived from Electric Cell-
substrate Impedance Sensing (ECIS), to differentiate between stan-
dardmammalian cell cultures and those infectedwith amycoplasma
organism. With the goal of easy visualization and interpretation,
we perform low-dimensional feature-based classification, extracting
application-relevant features from the ECIS time courses. We can
achieve very high classification accuracy using only two features,
which depend on the cell line under examination. Initial results also
show the existence of experimental variation between plates and
suggest types of features that may prove more robust to such vari-
ation. Our paper is the first to perform a broad examination of ECIS
time course features in the context of detecting contamination; to
combine different types of features to achieve classification accu-
racy while preserving interpretability; and to describe and suggest
possibilities for ameliorating plate-to-plate variation.
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1. Introduction

1.1. Data challenge: cell contamination

The study of cells in culture is a vital component of biological research, revealing cells’ phys-
ical morphology, their patterns of growth and progression through the life cycle, and their
responses to stimuli and the environment. Yet there is a reproducibility crisis in cell culture
research, in large part due tomisidenti!cation and contamination of cell samples (see [14]).
One common issue is the contamination of mammalian cells with other microorganisms
such as Mycoplasma, which can "ourish in the medium used to grow the cells and create
misleading results.

In this paper, we address the issue of contaminated cell cultures as a classi!cation prob-
lem, with two equally important goals: to achieve high classi!cation accuracy of cells as
infected or uninfected, but also to produce results that are easy to interpret, visualize, and
intuit in the context of the application.We draw on an automated, non-invasive data collec-
tionmethod, electric cell-substrate impedance sensing, to generate time series corresponding
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to individual cell cultures. Several typical methods for classifying high-dimensional data
– such as multivariate logistic regression, PCA, and any classi!cation process based on a
large number of features – are not appropriate since they are in con"ict with the goal of
easy interpretability and visualization. Instead, we constrain our classi!cation procedure
to only two dimensions, drawing on feature-based methods that use characteristic features
derived from these time series. We !nd that it is indeed possible to ful!ll both of our goals,
obtaining high classi!cation accuracy with relatively simple, low-dimensional methods.

The structure of the paper is as follows. In the current section, we introduce the data
collection method and the speci!c datasets used in this paper. Section 2 describes our
approach: the general methodology of low-dimensional feature-based time series clas-
si!cation, and the types of features we generate from the data, with references to the
previous studies that suggested these features. In Section 3 we classify individual cultures
as infected or uninfected and examine the performance of di#erent types of features, while
Subsection 3.4 extends the investigation to di#erent cell types and addresses the possi-
bility of experimental variation. Conclusions and suggestions for future research appear
in Section 4. The online supplementary materials provide more details on the methodol-
ogy of data collection, a complete list of features investigated, and additional classi!cation
performance results.

1.2. Relevant data

1.2.1. Electric cell-substrate impedance sensing
Electric cell-substrate impedance sensing, or ECIS®, is an established tool for measuring
the behavior and characteristics of cells over time. An introduction can be found in [11];
since then, the technique has been used in many studies in a variety of biological contexts.
Lukic and Wegener [18] contain a survey of many of these studies, while [13] provide an
overview of the use of ECIS in cancer studies.

In parallel to this, there has been considerable scholarship on using cell images for phe-
notype classi!cation; for example, [21] emphasize the importance of dimension reduction
in this context, while [8] extracts features based on the cell images’ texture. ECIS serves as
a useful alternative to optical or image-based assessment of cell cultures, as it requires no
chemical labels or markers to be applied to the cells and no image preparation process, but
can identify the same types of changes; for example, [7] demonstrate that ECIS-based and
optical determinations of cell con"uence coincide. Thus we investigate similar questions
of dimension reduction and feature-based classi!cation while focusing on ECIS-speci!c
features.

The outline of the ECIS technique is as follows. First, an experimenter inoculates a
plate containing several wells with a cell culture. In the bottom of each well are elec-
trodes, smaller than the entire surface of the well. The plate is placed in a machine that
passes a weak AC current through the electrodes, at a chosen frequency, and measures the
impedance. With appropriate equipment, the impedance can also be decomposed into its
two complex components, resistance and capacitance. As the cells multiply andmove, they
covermore of the electrodes, and the nature of their attachment to themediumunderneath
themmay also change. Eventually they reach con"uence, when there is complete coverage
of cells across the entire well. All of these processes change the observed impedance and
its components at various frequencies.
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The ECIS process is non-invasive, and does not damage the cells or change their mor-
phology, allowing for sustained observation of the same culture. If desired, however, the
machine can wound the culture, by passing a high-voltage current through the electrodes.
This process kills most or all of the cells located on top of the electrodes. We can then
observe further changes in impedance as the dead cells are replaced by living cells moving
in from outside the edges of the electrodes. ECIS observations can be considered as time
series; these time series are high-dimensional if we consider each well to have measure-
ments on multiple frequencies linked by time point, or if we consider both components of
impedance at each time point.

Many studies have used ECIS data to distinguish between speci!ed cell types, or to
observe di#erences in a cell before and after it undergoes someprocess, such as electropora-
tion [27], damage [12], transformation into cancer cells [22], or progression to a new phase
of the cell cycle [31]. But quantitative discussion of the data has been sparse. Gelsinger et al.
[10] appear to be the !rst to examine quantitative features of ECIS data across multiple cell
lines, with the goal of identifying the cell types in unknown or potentially-mislabeled cul-
tures. Zhang et al. [33] examine contamination data as we do in this paper, comparing
long-memory behavior and the timing of the con"uence stage in infected and uninfected
cells.We build on this work by bringing inmany other types of features, with a quantitative
comparison of their e$cacy in identifying contamination in various cell types; this paper
expands on our conference presentation in [29].

1.2.2. The current dataset
In this paper, we use data provided by Applied BioPhysics, Inc., generated using the ECIS
Zθ machine. Here we describe the details of the datasets.

Cells are grown on arrays, or plates; each plate contains 96 wells, allowing the obser-
vation of multiple cell types and growth conditions within a single plate. At each time
point, the ECIS Zθ equipment generates four measurements: Z, impedance; R, the resistive
component; C, the capacitive component; and H, the time in hours corresponding to the
current time index. These measurements are obtained for each well using several di#erent
AC frequencies, from 500 to 32000Hz.

Note that these wells are fabricated with two electrodes which both supply the current
and measure the potential, so that the electrodes’ own impedance is included in the mea-
surement. This is a potential source of variation; but an examination of empty wells shows
that this electrode impedance does not vary greatly across wells even from di#erent plates.
The electrode impedance is also essentially constant over time, so that many of the features
described below will be una#ected.

The cultures in our dataset are of two types: the target cell line, and the same cell line con-
taminated with a mycoplasma organism. We !rst examine MDCK II cells, some of which
are contaminated withM. hominis. Cells are grown on one of two substrates: either with a
gelatin coating, or with an adsorbed layer of BSA (bovine serum albumin). Some wells of
each type are left empty, containing substrate but no cells, to provide a baseline.

As an extension to our original investigation, we also examine cultures from a di#erent
cell line, BSC-1, some of which are infected withM. hominis, and MDCK II cells infected
with a di#erent species of mycoplasma, M. hyorhinis. A description of these observations
can be found in Subsection 3.4.
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2. Methodology: feature-based classification

2.1. The feature-based approach

In feature-based classi!cation, instead of calculating similarity or distance ‘pointwise’
between individual time points in the time series, we reduce the e#ective dimension by gen-
erating a limited set of features from the original data. We may then perform classi!cation
or clustering using these features, or a subset of them. There is an extensive body of litera-
ture on feature generation and selection; an overview and typography of many approaches
appears in [6]. Maharaj et al. [20] provide a discussion of feature-based approaches specif-
ically for the classi!cation of time series data. One strength of the feature-based approach
is the reduction of dimensionality, as argued in [30], which can avoid many of the prob-
lems involved in high-dimensional clustering (for examples, see [1]). We also avoid the
problematic requirement that all the time series under consideration be exactly the same
length, as mentioned in [15].

The feature-based approach is designed to allow for visualization and interpretation,
since the user need only consider a few features to understand why an observation is clas-
si!ed in a particular way. In particular, we restrict the problem to two dimensions by using
pairs of features to perform classi!cation. The purpose of this constraint is to allow visu-
alization of the classi!cation regions in a two-dimensional feature space, along with the
distribution of feature values across observations.

In this paper, we generate a variety of features from the ECIS time courses. We have
attempted to designate features that re"ect characteristics of ECIS data mentioned as use-
ful in previous studies – though these previous studies did not attempt to combine di#erent
types of features. We have also included some features based on time series analysis and
those aimed at capturing particular stages of the cells’ behavior. All computation was per-
formed using R [24] with tidyverse packages [32]; estimation details for individual
features are given in the supplementary materials.

2.2. Features derived from ECIS data

While the shape of the ECIS time series depends on the cell line, the substrate on which
it is grown, and any contamination, there are general patterns that inform our choice of
features. Immediately following the initial inoculation of the well, there is an attachment
phase as the cells attach themselves to the substrate, then a growth period as cells repro-
duce and move to cover the electrode. These correspond to increasing resistance values in
the data. Once the cells reach con"uence – possibly following a drop in resistance from an
initial peak – large-scale movement and spreading becomes impossible, and we see a long
period of more consistent values. During this phase, the cells exhibit micromotion, small
movements that cause "uctuations in the resistance, and may also show a gradual linear
trend. The exact time at which the cells reach con"uence, and the direction of the overall
trend in resistance during con"uence, depend on the cell type. Across cells, however, the
period between 24 and 36 hours can be safely considered a ‘con"uent window’. After con-
siderable time, usually beyond 72 hours, the cells may begin to senesce, leading to more
substantial changes in resistance.

The types of features we examine are listed below, along with references to the use of
similar features in existing literature.
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2.2.1. Level of resistance at a time point
Many analyses of ECIS data simply discuss the overall level of impedance (or one of its
components) as contrasted between cell types. Accordingly, we include several features that
re"ect the level of resistance at a particular time, measured separately at each frequency.

2.2.2. Rate of change
Park et al. [22] compare cell lines with their transformed (cancerous) versions, and observe
that resistance of the cancerous cells ‘increased more rapidly’ than that of their noncancer-
ous counterparts. A similar feature appears in [16]: they discuss the ‘initial increase in
resistance’ as distinguishing between control cells and cells that are treated with com-
pounds encouraging attachment. We de!ne two features to re"ect this rate of increase of
resistance early on. First, we simply record the resistance level at 2 hours after inoculation;
this time is during the early attachment and spreading stage, and the resistance at this point
gives ameasurement of howquickly the cells are spreading.We then calculate the di#erence
between the levels at 7 hours and 2 hours after inoculation, which e#ectively measures the
slope during the growth period but after the very early attachment phase. It is also evident
that the early growth in resistance is not linear. Accordingly, we !t a quadratic to the !rst 2
hours of values after inoculation, and extract the !rst- and second-degree coe$cients from
the !t. All these early measurements may be particularly useful in contexts where results
must be obtained quickly, as in [25], where practitioners have only a fewhours to determine
whether stem cells will be suitable for a recipient before the cells become non-viable.

2.2.3. Peaks and confluence
The con"uence level of resistance is used in [12,16], while a late-stage measurement of
capacitance appears in [2]. We measure the resistance level at 24 hours after inoculation,
which serves as an estimate of the level at con"uence. Park et al. [22] also note that can-
cerous cells ‘peaked higher’ than noncancerous cells: we adopt this feature by calculating
the maximum level of resistance over the !rst 24 hours, and over the !rst 48 hours. Using a
uniform time window is important, since some types of cells have upward trends in resis-
tance during con"uence and may reach their maximum value at the end of the observed
window. As an alternative that does not re"ect such behavior, we also measure the time
and value of the !rst peak following inoculation in a smoothed version of the time series.

2.2.4. Wounding and recovery
Several studies address cells’ responses to wounding, or ‘the ability of cells . . . to close an
experimental lesion,’ as [18] put it. In the same vein, Heijink et al. [12] observe resistance
levels when con"uence is regained after cells are damaged with cigarette smoke. Stolwijk
et al. [27] provide a similar example of examining cells’ recovery from an event, though
in this case the event is non-fatal electroporation. This study notes variation in time to
recovery ‘dependent on cell type and age of the culture.’ Time to recovery also appears in
[12], as does the reduction in resistance at one to two hours after wounding. In our dataset,
wounding is performed at approximately 48 hours after inoculation, and we de!ne several
features to re"ect post-wounding behavior. First, we record theminimum level of resistance
at (or just following) wounding, since the residual resistance from dead cells can provide
information about their morphology. To represent the rate of recovery after wounding, we
use the di#erence between the levels at 57 and 52 hours after inoculation. In addition, we
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take the ratio of this post-wounding slope to the slope during the initial growth stage. At
high frequencies, we observe a particular pattern in the post-wounding resistance levels:
after the sharp drop in resistance in response to wounding, there is a period of swift growth
to a local peak, followed by a drop to a more moderate level. Although the !nal resistance
levels of infected and uninfected cells may be similar, the characteristics of this !rst post-
wounding peak are di#erent. Accordingly, we include features corresponding to both the
value of this peak and the time when it occurs.

2.2.5. Post-confluencemicromotion
Several early papers byGiaever and others, such as [11], examine cells’micromotion behav-
ior, which can be observed in ECIS data as small "uctuations after a stable level has been
reached. Lukic and Wegener [18] mention examining micromotion on a 30-minute win-
dow, which helps account for any lingering overall trends in level. There appears to be no
consensus among researchers on the best way to quantifymicromotion.Wemeasure small-
scale variation during con"uence by looking at the variance and standard deviation of each
time course during the con"uent window (24 to 36 hours after inoculation), after di#er-
encing the values to remove trend. For comparison, we also include the estimated error
variance after !tting classical ARIMA models, discussed below.

2.2.6. Time seriesmodels
We investigate classical ARIMAmodels, focusing on the stable con"uent window between
24 and 36 hours. Using automated selection with AIC, we !nd the preferred ARIMA order
over this range for each time series separately; this procedure almost always suggests !rst-
order di#erencing, which agrees with our observation that the time series have a linear
trend over this window.We convert each "exible-order ARIMA to an approximate AR(∞)
representation, as seen in [23], and extract the !rst !ve coe$cients. (With the exception of
a few outliers, the coe$cients beyond this point become too small to be useful in classi!ca-
tion.) As a comparison, we also !t two simple !xed-order ARIMAmodels,ARIMA(1, 1, 0)
and ARIMA(0, 1, 1), to each series and extract their !tted coe$cients. The estimates of
error variance from all of these models can also be useful in re"ecting micromotion, as
introduced by Tong and Dabas [28]. Using model coe$cients and errors for clustering has
appeared in a variety of time series application areas (for example, [4,19]) and is discussed
more fully in [20].

2.2.7. Autocorrelationmeasures
To analyze the time series’ short-term memory without fully !tting a model, we !nd the
values of the ACF and PACF at small speci!c lags for the di#erenced series, as well as the
Box-Pierce and Ljung-Box statistics, which measure the overall amount of autocorrelation
in a time series. An ACF-based distance measure for time series clustering is described
fully in [9], and related examples and extensions can be found in [3,30] (introducing the
PACF as well as the ACF), and [5] (extending the method to fuzzy clustering). Though
these methods have been used in other time series areas, they appear to be new to the
speci!c context of ECIS.



1216 L. L. TUPPER ET AL.

2.2.8. Long-memory behavior
Multiple papers have noted potential long-memory behavior in ECIS time series. The DFA
(detrended "uctuation analysis) approach to quantifying micromotion appears in [17] in
examining cells’ response to a toxin, and in [26] when comparing cells before and after a
phenotypic transition. Recently, Zhang et al. [33] have performed a more involved analysis
of the regime change between early growth and con"uence. Their Growth-to-Con"uence
Detector assumes that early growth follows a nonlinear growth curve with heteroscedastic
noise, while the con"uence stage follows a long memory model. Following their method-
ology, we extract the estimated longmemory parameter from post-con"uence data, as well
as the estimated time of the change point from growth to con"uence behavior.

2.3. Variations of feature types

We calculate each of the features above on the time course of resistance. Basic feature types
(maxima, values at a set time, and features combining these) are found both for the raw time
courses and for a smoothed version, using a rolling windowed average over 5 consecutive
time points. This windowing is intended to make the feature values robust to momentary
noise in the data. For robustness to changes in laboratory conditions over time, we also
calculated normalized time series relative to the behavior of empty wells on the same plate:
details of this process can be found in the supplementary materials. After calculatingmany
features both on the original and normalized time courses, we have found that this normal-
ization has onlyminimal impact; thusmore advanced features are calculated only using the
original data.

All features are calculated for all frequencies available in the dataset, since measure-
ments at di#erent frequencies may re"ect di#erent components of cell behavior. This idea
is discussed in [18], and some studies make reference to particular frequencies of interest;
for example, [31] !nd 60 kHz to be most useful in their study of the cell cycle.

2.4. Classi!cation process

Just as we restrict the dimension of the problem for interpretability, we also require that the
classi!cation process yield simple, easy-to-visualize decision regions in the feature space,
like those in Figure 2. This requirement (along with the relatively small training dataset)
precludes many advanced learning methods. Instead, we use three classical methods: clas-
si!cation trees, linear discriminant analysis (LDA), and quadratic discriminant analysis
(QDA). A thorough discussion of these methods appears in [10], including an exploration
of di#erent parameters for discriminant analysis – which are found not to have a substan-
tial impact on the results. In our own analysis, we observe that LDA generally performs
the best of the three methods, or close to it; and in general LDAmay be preferred for these
fairly small samples since there are fewer parameters to estimate. Accordingly we present
detailed results based on LDA. Further notes on classi!cationmethods can be found in the
supplemental materials.

We perform classi!cation using each possible pair of features, in turn; from the 546 fea-
tures and feature variations, we obtain over 148,000 possible feature pairs. Given a feature
pair, we !nd the classi!cation accuracy as follows: !rst, we divide the observations ran-
domly into training and testing sets, each containing some infected and some uninfected
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Figure 1. Sample ECIS data: time courses of resistance for different cell types.

Figure 2. LDA classification regions based on one feature pair, with perfect classification of the test set.
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Figure 3. Histogram of classification accuracy values for each pair of features: many yield perfect
accuracy.

wells.We then train an LDAclassi!er based on the training observations’ feature values, use
it to classify the testing observations as infected or uninfected, and record the success rate
of these test-set classi!cations. We then repeat the process with a di#erent training/testing
split, a total of 10 times. The performance values discussed below use the average test-set
accuracy over all 10 splits.

3. Application and results

3.1. General classi!cation results

An example of the LDA classi!cation results is shown in Figure 2, using two simple fea-
tures: resistance at 2 hours after inoculation (measured at a frequency of 4000Hz) and the
maximum resistance during the !rst 24 hours after inoculation (at 32000Hz). The classi!er
uses the training observations (square points) to generate a posterior probability of con-
tamination for each point in the feature space, and a linear division of the feature space into
infected and uninfected regions. The test observations (round points) are all correctly clas-
si!ed based on their coordinates in this feature space, and we can see that there is very clear
separation between contaminated and uncontaminated cultures in terms of these feature
values.

In general, classi!cation accuracy is high. There is no ‘best pair’ of features: many dif-
ferent feature pairs o#er strong, and in many cases equal, performance. On BSA-treated
wells, about 24% of all feature pairs yield perfect classi!cation accuracy. The proportion
of perfect-accuracy pairs is about 21% on gel-treated wells, though there are more feature
pairs that yield near-perfect accuracy on gel, as shown in Figure 3.

The protein coat on which the cells are grown does appear to a#ect their behavior and
the di#erences between infected and uninfected cells: some features are more e#ective for
classi!cation of cells grown with BSA, while others are more e#ective on gel-treated wells.
Since it is a simplematter in practice to grow cells using one or the other substrate, high per-
formance in either case is equally useful; when giving performance values, we will indicate
on which substrate the performance is achieved.



JOURNAL OF APPLIED STATISTICS 1219

This is a promising indication of the e#ectiveness of ECIS measurements for distin-
guishing contaminated cultures, using simple features in a low-dimensional space that is
easy to visualize. It is worth noting, though, that the sample size is small, and the problem
becomes more di$cult once we introduce the possibility of experimental variation across
plates, as discussed in Subsection 3.4.

3.2. Feature combinations

Figure 4 shows a heatmap of performance values for a subset of feature pairs, with the
brighter tiles representing feature pairs with higher accuracy. This subset illustrates the
high performance that can be achieved withmany di#erent features, but also suggests rules
for combining features, based on the ‘sub-diagonals’ of poorer performance that can be
seen throughout. Some of these low-performance areas correspond to pairs consisting of
a feature and a modi!ed version of the same feature: for example, at2hR32000 (resistance
at 2 hours, 32000Hz) paired with w5c2hR32000 (resistance averaged over a window at 2
hours, 32000Hz). These featuremodi!cations do not greatly change the information in the
feature, so that pairing a feature and its modi!ed version is essentially equivalent to using a
single feature for classi!cation. This behavior suggests that windowing is optional, though
it may still be desirable for robustness against recording errors. Other low-performance
cases appear when the pairing consists of the same feature calculated on two di#erent
versions of the data: the original time series and the version normalized to empty wells
(features beginning with ‘EN’). Again, this shows that normalizing the time series has only
a minimal e#ect on the features calculated from it.

To a lesser extent, we also see relatively weak performance when a feature is paired with
itself at a similar frequency, or with a modi!cation of the same feature at a similar fre-
quency. For example, at2hR32000 and at2hR16000 are not an e#ective pair, but each yields
perfect classi!cation accuracy if paired with at2hR500. This provides further evidence
that more divergent frequencies provide more useful information, by re"ecting di#erent
characteristics of the cells’ behavior.

3.3. Individual feature performance

We can obtain a simple measure of the e#ectiveness of individual features by averaging
the classi!cation accuracy over all pairs involving a given feature. A few notable points are
described below, and can be found in table format in the supplementary materials.

3.3.1. Early behavior
High classi!cation accuracy can be achieved with features that use only the !rst several
hours of data following inoculation. The !tted quadratic coe$cients for the !rst two hours
of the time series have excellent average accuracy for low frequencies (averaging above 0.99
on gel for frequencies up to 2000Hz),while a simple di#erence between the resistance levels
at 7 hours and 2 hours after inoculation is also e#ective (average accuracy 0.99 on gel at
2000Hz). Even the simple level at two hours performs fairly well in this case (for example,
0.98 on gel at 500Hz), though this early level can be sensitive to variation in equipment or
environmental conditions at inoculation.
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Figure 4. Heatmap of classification accuracy (on gel) for a few feature pairs, showing ‘sub-diagonals’
of feature pairs with poorer performance. The highest pair accuracy (bright yellow) is 1, while the sub-
diagonal low-performance pairs (dark green/blue) have accuracy rates around 0.7, ranging as low as
0.57.

3.3.2. Peak values
The value of the post-wounding peak in resistance is very e#ective, with an average accu-
racy above 0.99 on gel for all frequencies up to 2000Hz. The value of the initial peak after
inoculation can also be useful (0.99 on gel at 2000Hz). Identifying this !rst peak is slightly
more e#ective than using the maximum value over a !xed time period (the best perfor-
mance of this type is 0.98 on gel at 2000 Hz): in many cases these two features will identify
the same peak, but for cell types with a post-inoculation peak and drop followed by an
upward trend, using the maximum over a !xed windowmay inadvertently re"ect the later
post-con"uence behavior rather than the initial peak.

3.3.3. Time series features
The coe$cients from ARIMAmodels (!tted to the post-con"uence period when the time
series can be considered integrated of order 1) do not perform well in general. The cell
cultures do display some short-memory behavior, and their !tted ARIMAmodels are sub-
stantially di#erent from white noise and from models !tted to empty wells; but infected
and uninfected cells do not have reliably distinct model coe$cients. (Aside from the con-
stant coe$cients, which are arguably overly-complicated ways of describing the trend, the
best performer is the θ̂ coe$cient from a !xed ARIMA(0,1,1) model at 32000Hz, with
an average accuracy of 0.94 on gel. Among coe$cients when the order of the ARIMA is
not manually chosen, the best performer has an average accuracy of only 0.84.) Speci!c
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values of the ACF and PACF seem to be a more e#ective way of characterizing the short-
memory behavior; for example, the second lag of the PACF at 32000Hz has an accuracy
of 0.97 on gel. (Portmanteau test statistics are less useful, with a top performance of 0.88
on gel at 8000Hz.) Notably, although ARIMA coe$cients are not strong performers them-
selves, !tting ARIMAmodels can provide an alternative means of estimating local noise as
a measurement of cell micromotion after con"uence.

3.3.4. Post-confluence behavior
Wemeasure cells’ post-con"uence behavior in twomain ways: micromotion as re"ected in
the local variability of the time series, and long-memory behavior. Both seem to be an e#ec-
tive basis for classi!cation. We obtain average accuracy of 0.97 or better on gel with any of
several measures of local variability (the sample variance or standard deviation of the dif-
ferenced series; or the estimated σ̂ 2 from an ARIMAmodel, whether !xed as order (0,1,1),
!xed as order (1,1,0), or with the order chosen automatically for each series). Notably, all
of these local variability measures perform best at the highest frequency, 32000Hz. The
estimated long-memory parameter, meanwhile, gives an accuracy of 0.98 on gel at 2000Hz.

3.3.5. Post-wounding recovery
Features describing the cells’ recovery from a wounding pulse can be very e#ective. For
example, the level at 57 hours minus that at 52 hours represents the rate of recovery shortly
after wounding; this has an accuracy of 0.99 onBSA at 500Hz. It is also e#ective to compare
this post-wounding recovery rate to the initial growth rate: the ratio of (57 – 52 hours) to
(7 – 2 hours) has an average accuracy of 0.99 on gel for all frequencies up to 4000Hz.

3.4. Extensions of the problem

3.4.1. Cell and contaminant types
We extend our analysis by examining cultures taken from a di#erent cell line, as well as
those infected with a di#erent species of mycoplasma. For reasons of space, a detailed
description is not included here; we focus on comparison with the original results, which
used MDCK II cells with M. hominis. For a cell comparator, we use BSC-1 cells, some
infected with M. hominis. We also examine MDCK II cells infected with another type
of mycoplasma, M. hyorhinis. It is evident that the classi!cation problem depends on
both the type of cell and the species of mycoplasma; features that perform well for one
cell-contaminant combination may not do so for others.

To distinguish MDCK II cells from those infected with M. hyorhinis, among the
strongest-performing individual features are those focusing on the early peak behavior.
In this case, however, it is more e#ective to use the maximum level in the !rst 24 or 48
hours after inoculation, rather than attempting to !nd the !rst peak as with M. hominis;
this seems to be because the early growth period is noisier, leading to false local maxima
before the real post-inoculation peak occurs. The other notably e#ective feature type here
is the di#erence between the level at 57 and 52 hours after inoculation, a representation of
the rate at which the cells recover from wounding. Since this also appeared as an e#ective
feature for detectingM. hominis infection, wounding cells and monitoring their recovery
may be a particularly useful approach when it is not certain what kinds of contaminants
may be present.
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Figure 5. Histogram of classification accuracy values for each pair of features on BSC cells.

For the BSC-1 cells the problem is overall more di$cult: as shown in Figure 5, far fewer
feature pairs are able to give good classi!cation performance, and classi!cation appears
to be easier for BSA-treated cultures than for those grown on gel. BSC-1 cells have a dif-
ferent growth and con"uence pattern than MDCK II cells, notably without the large peak
prior to con"uence: as a result, the early levels and !rst-peak features that worked so well
for MDCK II cells are not e#ective here. Instead, the features with high average perfor-
mance for BSC-1 cells (above 0.91 on either protein coat) can be characterized as two
types: coe$cients from a quadratic !t to the !rst two hours of growth, or measurements
of local variation/micromotion after con"uence. These results underline the importance
of establishing the most e#ective and characteristic features for individual cell lines, and of
exploring a variety of possible feature types.

3.4.2. Experimental variation
In laboratory use, the cell cultures that require classi!cation may often be grown on a sep-
arate plate than the training set of cultures known to be infected or uninfected. The test
set may even be measured at a substantially di#erent time, or under di#erent conditions. It
is therefore desirable to examine the robustness of classi!cation to variation across plates,
equipment variation, and experimental variation in general.

To this end, we examine four separate plates of MDCK II cells, each plate containing
some uninfected and some infected cultures (withM. hominis) taken from the same frozen
source, but grown and measured at a separate time. We can immediately see that plate-
to-plate variation exists, and makes the classi!cation problem substantially more di$cult.
Figure 6 shows the same set of features and classi!cation procedure as Figure 2, but here,
all observations on one plate are used as the training set, while the test observations come
from a di#erent plate. The LDA classi!er is able to achieve perfect classi!cation accuracy
within a single plate, but cannot do so when working with two separate plates.

In the cross-plate classi!cation problem, the accuracy rates are markedly lower than for
the single-plate analyses above. Some results are consistent with those discussed above:
ARIMA coe$cients still do not perform well, and pairing a feature with its own modi!ed
version (at the same frequency) is ine#ective.
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Figure 6. LDA classification regions, with training set from one plate and test set from a second plate.

Figure 7. Histogram of classification accuracy values for each pair of features, with training and test
observations from different plates. Performance is generally muchworse than for within-plate classifica-
tion.

A noticeable standout is the ‘7 hours minus 2 hours’ family of features, which re"ect
the rate of the initial cell growth after inoculation. Though simple, this feature type per-
forms well when paired with several other types of features, or even with itself at two
distinct frequencies; for example, it yields an average accuracy of 0.94 on gel-treated cul-
tures at 4000Hz. Such a feature draws on the information provided by the early growth
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stage while accounting for the level reached during the !rst two hours, making the feature
more robust to the initial conditions of each cell culture. This may provide greater robust-
ness to experimental di#erences such as the initial number of cells at inoculation or the
starting temperature of the cells. Features that involve di#erencing or comparison across
multiple time points in a given well can also control for possible level di#erences between
wells due to equipment variation.

In general, features focusing on later-stage behavior also appear to be more robust
to plate-to-plate variation. The process of each culture reaching con"uence, or being
wounded with the same high-voltage current, appears to equalize the e#ects of initial con-
ditions. Indeed, features measuring local variability after con"uence are among the top
overall performers (such as σ̂ 2 from various ARIMAmodels, with accuracy rates of about
0.92 on BSA at 500Hz). These are promising indicators of useful features, though more
data will be needed to characterize plate-to-plate variationmore fully and determine which
features are most robust to it.

4. Conclusion and discussion

This paper demonstrates a methodology for di#erentiating between standard cell cultures
and those infected with a mycoplasma organism, by comparing features of their ECIS time
courses. Detecting contamination in this way is particularly desirable since the ECIS data
gathered during the process can also be used to investigate other scienti!c questions about
cell morphology, without requiring a separate tool, or labeling or destroying cells.

We have determined that high classi!cation accuracy can be achieved in combination
with easy visualization and interpretation, by using a two-dimensional feature space and a
straightforward classi!cation algorithm such as LDA. In the basic problem, we achieve
very high accuracy rates using any of a variety of feature pairs. E#ective pairs usually
combine features measured at di#erent frequencies, which re"ect di#erent characteris-
tics of the cells. Several di#erent types of features can be of use, including those re"ecting
initial growth rates, peak resistance levels, post-con"uence micromotion, recovery from
wounding, and long-memory behavior. We have also seen, however, that the classi!cation
e$cacy of speci!c features depends on the type of cell and the type of contaminant under
investigation.

Based on our current dataset, we can also see that there is substantial variation across
plates. We have already shown that certain features appear to be more robust to this ‘plate
e#ect’ than others. Especially promising are features that reduce the e#ect of initial condi-
tions: either by ignoring initial impedance levels, by waiting for the con"uence stage to be
achieved, or by wounding all the cultures and observing their recovery. Since experimen-
tal variation is to be expected in practice – where cultures will be grown using di#erent
equipment, at di#erent times, and in multiple laboratories – this is an important topic for
further investigation.

While few features show clear separation between all infected cells (across multiple
plates) and all uninfected cells, we see that some features show separation within each
plate and a consistent direction of di#erence across plates. If it is possible to normalize
the data for each plate, such features would be e#ective for cross-plate classi!cation. In a
situation where several suspect sources of cells are being compared at once, this could be
done by inoculating some wells on each plate with “baseline” cells from a single source
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already known to be uninfected. But where experiments are being performed over a long
time, or baseline cells are not locally available, some other methodology would be neces-
sary to standardize the plates. In future, we intend to acquire a larger dataset in order to be
able to study this plate e#ect more fully.
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