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ABSTRACT

This paper introduces Stochastic RAG–a novel approach for end-
to-end optimization of retrieval-augmented generation (RAG) mod-
els that relaxes the simplifying assumptions of marginalization and
document independence, made in most prior work. Stochastic
RAG casts the retrieval process in RAG as a stochastic sampling
without replacement process. Through this formulation, we em-
ploy straight-through Gumbel-top-k that provides a differentiable
approximation for sampling without replacement and enables ef-
fective end-to-end optimization for RAG. We conduct extensive
experiments on seven diverse datasets on a wide range of tasks,
from open-domain question answering to fact verification to slot-
filling for relation extraction and to dialogue systems. By applying
this optimization method to a recent and effective RAG model, we
advance state-of-the-art results on six out of seven datasets.
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1 INTRODUCTION

Most machine learning systems, including large generative models,
are self-contained systems, with both knowledge and reasoning
encoded in model parameters. However, these models do not work
effectively for tasks that require knowledge grounding [46], es-
pecially in case of non-stationary data where new information is
actively being produced [47, 52]. As suggested by Zamani et al.
[52], this issue can be addressed when machine learning systems
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are being enhanced with the capability of retrieving stored content.
For example, in retrieval-augmented generation (RAG), as a special
case of retrieval-enhanced machine learning (REML) [52], systems
consume the responses provided by one or more retrieval models
for the purpose of (text) generation [21, 22]. RAG models demon-
strate substantial promise across various applications, including
open-domain question answering [16, 21, 53], fact verification [44],
dialogue systems [5, 42, 48], and personalized generation [36, 37].

Many prior studies on RAG use off-the-shelf retrieval models.
For instance, Nakano et al. [25] used APIs from a commercial search
engine for text generation. Glass et al. [9], on the other hand, used
a term matching retrieval model. Neural ranking models trained
based on human annotated data have also been used in the lit-
erature [12, 21]. There also exist methods that only optimize the
retrieval model and keep the language model parameters frozen
[40]. A research direction in this area argues that optimizing re-
trieval models in RAG should depend on the downstream language
model that consumes the retrieval results. This is also motivated by
the findings presented by Salemi and Zamani [38] on evaluating
retrieval quality in RAG systems. There exist solutions based on
knowledge distillation [13] or end-to-end optimization based on
some simplifying assumptions [35]. One of these assumptions is
marginalization via top 𝑘 approximation [10, 21]. In more details,
they first retrieve the top 𝑘 documents using off-the-shelf retrieval
models, e.g., BM25 [34], and optimize retrieval models by re-scoring
them, i.e., re-ranking, and feeding the documents to the downstream
language model one-by-one independently [21]. This is far from
reality as RAG models often consume multiple documents.

This paper introduces Expected Utility Maximization for
RAG–a novel framework for end-to-end RAG optimization by re-
laxing these simplifying assumptions. This approach takes a utility
function, which can be any arbitrary evaluation metric for the
downstream generation task, such as exact match, BLEU [26], and
ROUGE [23]. A major challenge in end-to-end optimization of RAG
systems is that ranking and top 𝑘 selection is a non-differentiable
process. Hence, this prevents us from using gradient descent-based
methods for optimization. We address this issue by casting retrieval
as a sampling without replacement process from the retrieval score
distribution, which is approximated using the straight-through
Gumbel-top-k approach. This stochastic approach—called Stochas-
tic RAG—adds a Gumbel noise to the unnormalized retrieval scores
and uses softmax to approximate argmax [17, 18].

Stochastic RAG can be applied to any RAG application. We
evaluate our models using seven datasets from awide range of appli-
cations, ranging from open-domain question answering to fact veri-
fication to slot-filling for relation extraction as well as dialogue sys-
tems. We apply our optimization method to FiD-Light [12], which
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is the best performing system on six out of these seven datasets,
according to the knowledge-intensive language tasks (KILT) leader-
board as of Feb. 1, 2024.1 Our results demonstrate significant im-
provements on all these datasets.

2 EXPECTED UTILITY MAXIMIZATION FOR

STOCHASTIC RAG

Each RAG system consists of two main components: a text gen-
eration model 𝐺𝜃 parameterized by 𝜃 and a retrieval model 𝑅𝜙
parameterized by 𝜙 that retrieves documents from a large docu-
ment collection𝐶 . The text generationmodel consumes the retrieval
results returned by the retrieval model. End-to-end optimization
of RAG systems is challenging. This is mainly because retrieving
top 𝑘 documents and feeding them to the generation model is not a
differentiable process [52], thus one cannot simply employ gradient-
based optimization algorithms for end-to-end optimization of these
models. In this section, we introduce stochastic expected utility
maximization for end-to-end optimization of retrieval-augmented
models.

Let 𝑇 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), · · · , (𝑥𝑛, 𝑦𝑛)} be a training set con-
taining 𝑛 pairs of 𝑥𝑖 (an input text) and 𝑦𝑖 (the ground truth output
text). Let𝑈 denote a utility function that takes the output generated
by the RAG system 𝑦̂ and the ground truth output 𝑦 and generates
a scalar value. The utility function can be any arbitrary metric,
including but is not limited to, exact match, term overlap F1, BLEU,
and ROUGE. We assume (1) the higher the utility value, the better,
(2) the utility function is bounded within the [0, 1] range, and (3)
𝑈 (𝑦,𝑦) = 1. We define RAG Expected Utility as follows:

RAG Expected Utility =
1
𝑛

∑︂
(𝑥,𝑦) ∈𝑇

∑︂
𝑦̂∈Y

𝑈 (𝑦, 𝑦̂)𝑝 (𝑦̂ |𝑥 ;𝐺𝜃 , 𝑅𝜙 )

(1)
where Y the output space, i.e., all possible output texts. In some
models, the output space is limited, for instance in fact verification,
the output space is often binary: the given candidate fact is often
true or false. In other situations, such as free-form text generation,
the output space is unlimited. To make sure that expected utility
calculation is tractable, we would need to approximate the above
equation by sampling from the unlimited space Y. We will explain
how such samples can be obtained at the end of this section.

The probability of generating any given output 𝑦̂ in a RAG system
can be modeled as:

𝑝 (𝑦̂ |𝑥 ;𝐺𝜃 , 𝑅𝜙 ) =
∑︂

d∈𝜋𝑘 (𝐶)
𝑝 (𝑦̂, d|𝑥 ;𝐺𝜃 , 𝑅𝜙 )

=
∑︂

d∈𝜋𝑘 (𝐶)
𝑝 (𝑦̂ |𝑥, d;𝐺𝜃 )𝑝 (d|𝑥 ;𝐺𝜃 , 𝑅𝜙 )

=
∑︂

d∈𝜋𝑘 (𝐶)
𝑝 (𝑦̂ |𝑥, d;𝐺𝜃 )𝑝 (d|𝑥 ;𝑅𝜙 ) (2)

where 𝜋𝑘 (𝐶) denotes all permutations of 𝑘 documents being se-
lected from the retrieval collection 𝐶 . The first step in the above
equation is obtained using the law of total probability, the second
step is obtained using the chain rule, and the third step is obtained
due to the fact that the probability of a result list d being retrieved
is independent of the text generation model 𝐺𝜃 .
1https://eval.ai/web/challenges/challenge-page/689/leaderboard.

Note that considering all permutations in 𝜋𝑘 (𝐶) is expensive
and impractical for large collections, thus we can compute an ap-
proximation of this equation. We do such approximation through a
stochastic process. We rewrite Equation (2) as follows:

𝑝 (𝑦̂ |𝑥 ;𝐺𝜃 , 𝑅𝜙 ) = Ed∼𝑝 (d |𝑥 ;𝑅𝜙 ) [𝑝 (𝑦̂ |𝑥, d;𝐺𝜃 )] (3)

where |d| = 𝑘 . Inspired by the seq2seq models [43], we compute
𝑝 (𝑦̂ |𝑥, d;𝐺𝜃 )—the component in Equation (2)—as follows:

𝑝 (𝑦̂ |𝑥, d;𝐺𝜃 ) =
|𝑦̂ |∏︂
𝑖=1

𝑝 (𝑦̂𝑖 |𝑦̂<𝑖 , 𝑥, d;𝐺𝜃 )

= exp ⎛⎜⎝
|𝑦̂ |∑︂
𝑖=1

log 𝑝 (𝑦̂𝑖 |𝑦̂<𝑖 , 𝑥, d;𝐺𝜃 )
⎞⎟⎠ (4)

where 𝑦̂𝑖 denotes the 𝑖th token in 𝑦̂ and 𝑦̂<𝑖 denotes all tokens
𝑦̂1, 𝑦̂2, · · · , 𝑦̂𝑖−1.

The next step is to estimate 𝑝 (d|𝑥 ;𝑅𝜙 ) in Equation (3), which
represents the probability of retrieving the result list d in response
to input 𝑥 using the retrieval model 𝑅𝜙 . Most retrieval models score
each query-document pair independently and then sort them with
respect to their relevance score in descending order. Therefore, the
probability of a document list being produced by 𝑅𝜙 can be modeled
as a sampling without replacement process. In other words, assume
that the retrieval model 𝑅𝜙 produces a retrieval score 𝑠𝜙

𝑥𝑑
∈ R for

any document 𝑑 ∈ 𝐶 . Sampling without replacement probability of
a document list is then computed as:

𝑝 (d|𝑥 ;𝑅𝜙 ) =
|d |∏︂
𝑖=1

𝑝 (𝑑𝑖 |𝑥 ;𝑅𝜙 )
1 −∑︁𝑖−1

𝑗=1 𝑝 (𝑑 𝑗 |𝑥 ;𝑅𝜙 )
(5)

where document-level probabilities 𝑝 (𝑑𝑖 |𝑥 ;𝑅𝜙 ) can be computed
using the softmax operation:

𝑝 (𝑑𝑖 |𝑥 ;𝑅𝜙 ) =
exp (𝑠𝜙

𝑥𝑑𝑖
)∑︁

𝑑∈𝐶 exp (𝑠𝜙
𝑥𝑑

)
(6)

This iterative process of document sampling is non-differentiable,
and thus cannot be simply used in gradient descent-based optimiza-
tion approaches. To address both of these problems, Kool et al.
[17, 18] recently introduced Ancestral Gumbel-Top-𝑘 sampling.
This approach creates a tree over all items in the sampling set and
extends the Gumbel-Softmax sampling approach [24] to sampling
without replacement. According to [17], independently perturbing
each individual document score with Gumbel noise and picking the
top 𝑘 documents with the largest perturbed values will generate a
valid sample from the Plackett-Luce distribution. Gumbel pertur-
bation itself can be done efficiently by simply drawing a sample
𝑈 ∼ Uniform(0, 1), as Gumbel(0, 𝛽) ∼ −𝛽 log(− log(𝑈 )) [24].

𝑝̃ (𝑑𝑖 |𝜙, 𝜃 ) =
exp(𝑠𝜙

𝑥𝑑𝑖
+𝐺𝑑𝑖 )∑︁

𝑑∈𝐶 exp(𝑠𝜙
𝑥𝑑

+𝐺𝑑 )
(7)

where 𝐺𝑑 denotes the gumbel noise added for scoring document 𝑑 .
We use straight-through gumbel-top-k, in which the top 𝑘 ele-

ments are selected from the above distribution using the argmax
operation in the forward path, however, the softmax distribution is
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used in the backward path for computing the gradients. For more
information on straight-through gumbel-softmax, refer to [14, 28].
Gumbel-top-k has been used in IR systems too. For instance, Za-
mani et al. [51] used the gumbel-top-k trick to optimize re-ranking
models conditioned on the first stage retrieval models.

Selecting Y. In Equation (1), Y denotes the output space, which
can be unlimited for free-form text generation tasks, hence com-
putationally intractable. In such cases, we need to estimate RAG
Expected Utility by sampling from the output space. A uniformly
random sample can give us an unbiased estimation, however, most
random samples are completely unrelated to the input, so they
can be easily discriminated from the ground truth output. Inspired
by work on hard negative sampling for training ranking models
[31, 49], at every 𝑁 = 10, 000 training steps, we run the RAG model
that is being trained on the training inputs that will be used in
the next 𝑁 steps and use beam search to return 100 most probable
outputs. We randomly sample𝑚 = 10 of these outputs to form Y.
We then made sure that for every pair (𝑥,𝑦) in the training set for
the next 𝑁 steps,𝑦 is included inY, otherwise we randomly replace
one of the sampled outputs in Y with 𝑦. The reason for doing this
is to make sure that our sample contains the ground truth output,
ensuring that the model learns to produce higher probability for
the ground truth output. Preparing Y for the next 𝑁 training steps
would also enable us to pre-compute utility values𝑈 (𝑦, 𝑦̂) : ∀𝑦̂ ∈ Y,
ensuring an efficient optimization process for RAG Expected Utility
Maximization (see Equation (1)).

3 EXPERIMENTS

3.1 Data

We use the Natural Questions (NQ) [19], TriviaQA [15], HotpotQA
[50], FEVER [45], T-REx [7], zsRE [20], and Wizard of Wikipedia
(WoW) [6] datasets from the KILT [29] benchmark. Due to the
unavailability of ground truth labels for test set, our experiments
are conducted on the publicly accessible validation sets. As the
retrieval corpus, we employ the Wikipedia dump provided with the
KILT benchmark2 and adhere to the preprocessing steps outlined
by Karpukhin et al. [16], where each document is segmented into
passages, each constrained to a maximum length of 100 words.
The concatenation of the article title and passage text is used as a
document. Note that the KILT benchmark furnishes document-level
relevance labels (called Provenance) for its datasets, and these are
employed for evaluating retrieval performance. In line with our
preprocessing method outlined in this paper, we define all passages
within a positive document as positive passages for our evaluation.

For evaluating our models, we follow the standard KILT eval-
uation setup [29] by focusing on KILT-score metrics. KILT-scores
combine R-Precision (𝑅𝑃 ) obtained by the retrieval results and the
quality of the generated output text that is evaluated using any
arbitrary metric𝑀 (such as EM, Accuracy, or F1). For a query set
𝑄 , KILT-scores are computed as follows:

KILT-M =
1
|𝑄 |

∑︂
𝑞∈𝑄

{𝑅𝑃 (p, d) == 1} ∗𝑀 (𝑦, 𝑦̂) (8)

2Retrieval corpus: https://dl.fbaipublicfiles.com/ur/wikipedia_split/psgs_w100.tsv.gz

where d is the retrieval results produced by the retrieval model,
p is the provenance label set provided by KILT, 𝑦 is the ground
truth output, and 𝑦̂ is the generated text. Note that there is only
one provenance label per query in most KILT datasets. FEVER and
HotPotQA are the only exceptions. 12% of queries are associated
with more than one supporting document in FEVER and all queries
in HotPotQA (which focuses on multi-hop question answering) are
associated with two documents. KILT-scores only evaluates the
generated text if R-Precision is 1. This means that it does not solely
focus on the quality of the generated text, but also makes sure that
relevant supporting documents are provided. We adopt the metrics
recommended by the KILT benchmark, namely Exact Match (KILT-
EM) for NQ, TriviaQA, and HotpotQA, Accuracy (KILT-AC) for
FEVER, and F1-score (KILT-F1) for the WoW dataset.

3.2 Experimental Setup

We apply the proposed optimization framework to a state-of-the-art
RAG model on the KILT benchmark (i.e., FiD-Light, according to
the KILT leaderboard) [29]. Therefore, we follow the experimental
setup of Hofstätter et al. [12] for FiD-Light. That means we used
multi-task relevance sampled training set from the authors earlier
work in [11] and trained a dense retrieval model, which is pre-
trained on the MSMARCO passage retrieval data [2]. Given that
the datasets in our experiments focuses on relatively short-text
generation tasks, and since all passages are less than or equal to
100 tokens, we set the input token limit for both query and passage
combined at 384 tokens and for the output at 64 tokens. For training,
we use a batch size of 128 with up to 40 retrieved passages, and a
learning rate of 10−3 with the Adafactor optimizer [39]. We trained
our models for 50,000 steps. We cut the learning rate by half for the
large language models (i.e., T5-XL). During decoding, we use beam
search with a beam size of 4. All our experiments are based on the
T5X framework [33] on TPUs using T5v1.1 as the language model
backbone [32]. For each dataset, we use the official KILT-score
metric as the utility function for optimization (Equation (1)).

3.3 Results

To evaluate the effectiveness of the RAG Expected Utility Maximiza-
tion framework, we compare our model with the best performing
entries in the KILT leaderboard (as of February 1, 2024) according to
the official KILT-score metrics. These methods use a wide range of
techniques to address these issues including dense retrieval meth-
ods followed by BART or T5 for generation, generative retrieval
models, retrieval and reranking models, pre-trained large language
models without augmentation, etc. These methods and their corre-
sponding references are listed in Table 1. For the sake of space, we
do not list their underlying methods here. The performance of these
methods is obtained from the KILT leaderboard. We use FiD-Light
as the main baseline in this paper, as it produces state-of-the-art
results on six out of seven datasets and the proposed optimization
method is applied to FiD-Light. FiD-Light is a simple extension of
the Fusion-in-Decoder architecture that generates the document
identifier of relevant documents in addition to the output text and
uses then at inference for re-ranking the input result list. According
to the results presented in Table 1, employing stochastic expected
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Table 1: Comparing our models with top performing entries in the KILT leaderboard according to KILT-scores, as of February

1, 2024. The results are reported on the blind KILT test sets.

Model

Open Domain QA Fact Slot Filling Dialog

NQ HotpotQA TriviaQA FEVER T-REx zsRE WOW
KILT-EM KILT-EM KILT-EM KILT-AC KILT-AC KILT-AC KILT-F1

RAG [21] 32.7 3.2 38.1 53.5 23.1 36.8 8.8
DPR + FiD [30] 35.3 11.7 45.6 65.7 64.6 67.2 7.6
KGI [8] 36.4 – 42.9 64.4 69.1 72.3 11.8
Re2G [10] 43.6 – 57.9 78.5 75.8 – 12.9
Hindsight [27] – – – – – – 13.4
SEAL + FiD [4] 38.8 18.1 50.6 71.3 60.1 73.2 11.6
Re3val [41] 39.5 24.2 51.3 73.0 – – 13.5
GripRank [1] 43.6 – 58.1 – – 79.9 14.7

PLATO [3] – – – – – – 13.6
FiD-Light (T5-Base, 𝑘 = 64) 45.6 25.6 57.6 80.6 76.0 81.1 11.9
FiD-Light (T5-XL, 𝑘 = 8) 51.1 29.2 63.7 84.5 76.3 84.0 13.1

Stochastic RAG with FiD-Light (T5-Base, 𝑘 = 64) 46.2 27.3 59.7 81.3 76.9 82.8 12.8
Stochastic RAG with FiD-Light (T5-XL, 𝑘 = 8) 53.0 31.1 64.7 84.8 78.3 87.0 14.2

Figure 1: Sensitivity of Stochastic RAG with FiD-Light XL

to the number of samples for estimating Equation (3).

utility maximization leads to improvements in all datasets. Com-
paring against state-of-the-art baselines from the KILT leaderboard,
our approach presents the best performing result in all datasets
except for Wizard of Wikipedia, where only one method, named
GripRank, performs slightly better than our best performing system.
Note that in another dataset (i.e., zsRE), our methods outperform
GripRank by a large margin.

The last two rows in Table 1 present the results for the same
model with different sizes for the downstream language model. T5-
Base contains 220 million parameters, while T5-XL is a language
model with 3 billion parameters. We observe that both model sizes
benefit from applying stochastic expected utility maximization. As
expected, the larger model exhibits a better performance. That said,
the performance difference between the Base and XL size models is
not consistent across datasets. For instance, we observe substantial
relative improvements on Natural Questions (i.e., 14.5%), while
improvements on T-REx are smaller (i.e., 1.8%).

To provide a deeper analysis of the Stochastic RAG perfor-
mance, we vary the number of samples we take for estimating
Equation (3). For the sake of visualization, we only present the

results for a QA, a fact verification, and a slot-filling dataset in
Figure 1. We observe that the model is robust with respect to the
different number of samples. That said, sometimes we observe slight
improvement as we increase the sample size (e.g., on TriviaQA).

4 CONCLUSIONS AND FUTUREWORK

This paper presented a novel optimization framework for end-to-
end optimization of retrieval-augmented generation models. The
framework maximizes stochastic expected utility, where the utility
can be any arbitrary evaluation metric appropriate for the down-
stream generation task. Without loss of generality, we applied this
optimization approach to FiD-Light as an effective RAG model and
observed substantial improvements on seven diverse datasets from
the KILT benchmark. We demonstrate that the proposed approach
advances state-of-the-art results on six out of seven datasets on
the blind test sets provided by the benchmark. Our results suggest
that language models of different sizes (220M parameters and 3B
parameters) benefit from such end-to-end optimization.

This work solely focuses on relatively short text generation. In
the future, we aim at studying the impact of Stochastic RAG on
long text generation and exploring various utility functions that
can be defined in RAG optimization. Furthermore, the stochastic
nature of Stochastic RAG can be used to increase the diversity
of generated outputs in RAG systems. This is quite important in
scenarios where multiple outputs are generated by RAG systems
for collecting human feedback.
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