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ABSTRACT
We introduce a new approach for decoupling trends (drift) and changepoints (shifts) in time series. Our
locally adaptive model-based approach for robustly decoupling combines Bayesian trend !ltering and
machine learning based regularization. An over-parameterized Bayesian dynamic linear model (DLM) is !rst
applied to characterize drift. Then a weighted penalized likelihood estimator is paired with the estimated
DLM posterior distribution to identify shifts. We show how Bayesian DLMs speci!ed with so-called shrinkage
priors can provide smooth estimates of underlying trends in the presence of complex noise components.
However, their inability to shrink exactly to zero inhibits direct changepoint detection. In contrast, penalized
likelihood methods are highly e"ective in locating changepoints. However, they require data with simple
patterns in both signal and noise. The proposed decoupling approach combines the strengths of both, that
is, the #exibility of Bayesian DLMs with the hard thresholding property of penalized likelihood estimators,
to provide changepoint analysis in complex, modern settings. The proposed framework is outlier robust
and can identify a variety of changes, including in mean and slope. It is also easily extended for analysis of
parameter shifts in time-varying parameter models like dynamic regressions. We illustrate the #exibility and
contrast the performance and robustness of our approach with several alternative methods across a wide
range of simulations and application examples.
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1. Introduction

Complex nonstationary dynamic systems o!en exhibit both
global (macro patterns) and local (micro "uctuations) features
of inferential interest. Herein, we focus on making distinctions
between dri!s and shi!s. Dri! describes the micro-level evo-
lution of a process and may appear as variation about gradual
trends. In contrast, shi!s represent macro-level changes in a
process perceived as sharp discontinuities, rapid changes, or
major breaks.

A commonly used approach for modeling dri! in time series
regression is the dynamic linear model (DLM). DLMs tend to
be overparameterized models with at least one parameter per
observation time. Therefore, we focus on Bayesian estimation
of DLMs (Chan and Eisenstat 2018) with priors for selection or
regularization. Continuous shrinkage priors regularize param-
eters to produce smoother and more reliable estimates for the
dynamic features by “shrinking” small values closer to zero (Car-
valho, Polson, and Scott 2009; Bitto and Fruhwirth-Schnatter
2019). Bayesian DLMs with shrinkage priors are excellent for
capturing changes that occur smoothly over time. However,
since the inference does not include exact zero values, charac-
terizing shi!s in the trend, such as changepoints, is not straight-
forward.

On the other hand, changepoint methods tend to be e#ective
at capturing sudden breaks (Aminikhanghahi and Cook 2017).
Common changepoint methods include likelihood ratio tests
with cumulative statistics (Jeske et al. 2009; Fryzlewicz 2014),
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penalized likelihood approaches (Killick, Fearnhead, and Eckley
2012; Maidstone et al. 2017) and nonparametric distanced based
metrics (Matteson and James 2014; James and Matteson 2014).
While these methods have shown to be e#ective on well-behaved
time series, they tend to struggle when we model systems char-
acterized by dri! and shi!.

Given the complementary strengths of Bayesian DLMs and
changepoint models, it is natural to explore an intersection of
these methods. In this article, we propose a two step Bayesian
method using a decoupled posterior summary that allows us to
identify changepoints in any Bayesian DLM. First, a Bayesian
DLM is $tted to $lter the signal of the data from the noise
components. We do not specify a particular structure for the
DLM but rather will show the approach works for a wide range
of structures. Second, a penalized loss on the posterior of the
model imposes a sparse summary of changepoint locations.

The decoupled approach as presented by Hahn and Car-
valho (2015) separated the processes of regression modeling
and discrete inference of variable selection. In a similar vein,
Florian Huber and Onorante (2021) applied the framework to
a time-varying parameter model with a speci$cation of the
decoupled loss as introduced by Ray and Bhattacharya (2018). In
this article, we extend the decoupled approach to nonstationary
time series analysis and changepoint detection.

The decoupled approach provides two key advantages. First,
the decoupled approach separates the estimation of the trend
from the changepoint locations. As a result, we can $t a highly
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"exible Bayesian model to deal with the intricacies of the data
such as outliers, heterogeneity and seasonality. Most existing
changepoint algorithms struggle to deal with these components
as they tend to signi$cantly skew the distribution of the data and
violate distributional assumptions. Second, by using a penalized
loss on the posterior, the decoupled approach is able to provide
uncertainty estimates for the number of changepoints selected.
In turn, the decoupled approach can provide more insights into
the selection process and the tradeo# between goodness-of-$t
and the number of changepoints.

The article proceeds as follows. In Section 2, we introduce the
decoupled approach for identifying changepoints in Bayesian
DLMs. Section 3 and 4 illustrates the e#ectiveness of the decou-
pled approach in diverse sets of simulation scenarios and real-
world datasets. We conclude with a discussion of key bene-
$ts. The supplementary materials details the loss derivation,
methodology extensions, extended simulation results, and more
real data applications.

2. Methodology

2.1. Decoupled Modeling

To introduce the decoupled approach, we start by introducing
a standard Bayesian dynamic linear model (DLM). Suppose
we observe a univariate time series YYY = (y1, . . . , yn)′ and a
predictor series XXX = (x1, . . . , xn)′, a Bayesian DLM can be
formulated as follows:

yt = xtβt + εt , εt ∼ N(0, σ 2
ε,t),

#Dβt = ωt , ωt ∼ N(0, σ 2
ω),

(1)

where #D(·) is the degree D di#erencing operator with D = 0
de$ned as the identity function. In this setup, {βt} encodes the
time-varying relationship between the predictor series {xt} and
the response series {yt}. The process {εt} models noise; {σ 2

ε,t}
is modeled as potentially time varying; a heteroscedastic noise
process gives additional "exibility with low computational cost,
in practice. For now, we will assume only one predictor series.
Later on, we will extend the framework to deal with multiple
predictors.

Speci$cally, the random walk process, corresponding to D =
1, induces smooth estimates for {βt} when σ 2

ω is small. For well-
behaved time series, a globally smooth estimate for {βt} provides
su%cient inference. However, (1) does not include a mechanism
for discrete inference applicable to time series characterized
by shi!s. Rather than adjust the priors, we chose to take a
decoupled approach to summarize the posterior. The decoupled
approach summarizes a relatively smooth estimate of {βt} with
a penalized loss function that induces discrete inference. The
discrete inference explored by Hahn and Carvalho (2015) was
variable selection and we adapt the approach for discrete shi!
features such as abrupt changepoints. As we will show later on,
for more noisy series, locally adaptive shrinkage priors may be
necessary to induce su%ciently smooth estimation in time series
with variable degrees of wiggliness.

To illustrate the connection between variable selection and
changepoint detection, notice that the time-varying relationship
{βt} can be seen as a discrete integration over the estimated
increments {ωt} and the initial values of {βt}. In order for the

coe%cient function to be constant for some period of time, the
increments must be zero. Therefore, shi! detection is equivalent
to estimating the nonzero increments analogous to estimating
the nonzero coe%cients in variable selection inference. For the
decoupled approach, we $t the above model to the observed
data via Gibbs sampling with the MCMC sampling scheme
provided by the R package dsp from the methods in Kowal,
Matteson, and Ruppert (2019) to estimate the posteriors for
the coe%cients which are dense and nonzero everywhere by
model construction. Then, we choose a penalized loss function
to summarize the posterior. Due to heteroscedastic noise in (1),
we consider a weighted least squares loss function: L∗

λ(̃yyy, β̃ββ) =∑n
t=1[wt(ỹt − xtβ̃t)]2 + qλ(β̃ββ), where ỹyy = (̃y1, . . . , ỹn) is the

posterior prediction given (1), β̃ββ = (β̃1, . . . , β̃n) is the penalized
linear predictor, qλ(·) is a penalty function to induce sparsity
given a penalty parameter λ, and {wt} are the weights for each
time-step. Details on qλ() and {wt} will be given in Section 2.2.

As in Hahn and Carvalho (2015), we $rst integrate L∗
λ(̃yyy, β̃ββ)

over {ỹt} given {βt , σ 2
ε,t} then integrate over {βt , σ 2

ε,t} given {yt}.
This results in the decoupled loss as follows:

L∗
λ(β̃ββ t) =

n∑

t=1
wt(xtβ̄t − xtβ̃t)

2 + qλ(β̃ββt), (2)

where {β̄t} denotes the posterior mean of the trend estimate
from the Bayesian DLM (supplementary materials, Section C).
Equation (2) can be thought of as a second level shrinkage on
the underlying coe%cients to induce hard thresholding (Hahn
and Carvalho 2015). The loss function, parameterized by the
penalty parameter λ, will be used to select changepoints from
the posterior estimates of a Bayesian DLM.

2.2. Weights and Penalty Function

The choice of weighted least squares allows the approach to
use the estimated variance from the Bayesian DLM to induce
additional localized adaptivity. The weights adjust the penalty to
time-varying volatility inherent in the data, inducing a smaller
loss for time-steps with a larger variance and a larger loss for
time-steps with a smaller variance.

For the weights {wt}, the classic choice is inverse to the noise
(Kiers 1997). In our case, since we have posterior estimates of the
variance a!er sampling the Bayesian DLM, we set our weights
to be

wt = σ−2
ε,t , for t = 1, . . . , n,

where σ−2
ε,t is the posterior mean for the precision at time t. As

previously discussed, the weights induce additional robustness
for change detection in heteroscedastic data.

The penalty term qλ(β̃ββ) will penalize the number of time-
steps for which the Dth di#erence (i.e., D = 1 or 2) in β̃ββ is
nonzero. Table 1 shows three possible choices for the penalty
function. Ideally, the &0 penalty will be used to identify the opti-
mal subset of time-steps in which the Dth di#erence are nonzero.
However, the &0 penalty is di%cult to estimate e%ciently, making
it infeasible for long time-series. One solution is to relax the
&0 penalty to the &1 penalty. However, the &1 penalty induces
shrinkage which tends to bias the result. This is due to the fact
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Table 1. Choices of penalty function.

&0 &1 Adaptive &1

Penalty function λ
∑

t I#Dβ̃t &=0 λ
∑

t | #D β̃t| λ
∑

t
1

|ψt | | #D β̃t|
Motivation Selection Shrinkage and Selection Combination of &0 and &1

Table de!nes various penalty functions, qλ(·), for di"erenced coe#cient vectors and their associated motivation. For example, the &0 penalty can be used for selecting
nonzero increments of the di"erenced coe#cient vectors.

that the penalty term increases linearly in relation to {#Dβ̃t},
resulting in the penalty favoring changepoints of low magnitude.
As we will show in the simulations, using the &1 penalty directly
will lead to signi$cant over-estimation of changepoints.

A re$ned goal is then to identify a penalty function that
combines the computational e%ciency of the &1 penalty and the
optional subset selection ability of the &0 penalty. As a result, we
propose a version of the adaptive &1 penalty (Zou 2006) that
pushes the &1 penalty closer to the &0 penalty. The resulting
penalty can be written as follows:

qλ(β̃ββ) = λ
∑

t

1
|ψt|

| #D β̃t|, (3)

where ψt = #Dβt for all t. Motivated by similar re$nement
in Hahn and Carvalho (2015), ψt at time t is the posterior
mean of the Dth degree di#erence of βt . This term can function
as a normalizer which levels the impact of each changepoint
regardless of the magnitude of the change at that time-step. In a
time-step with a larger change in {βt}, ψt will tend to be higher
in magnitude, leading a changepoint to be penalized less. As a
result, this weight term corrects some of the bias in the &1 penalty
and gives better results for changepoint estimation. Optimiza-
tion of (3) simpli$es to using a standard penalized regression
function; we used glmnet in R (Tay, Narasimhan, and Hastie
2023). A computational special case of optimization without a
global penalty, λ, is discussed in (Ray and Bhattacharya 2018).

2.3. Selecting the Optimal Number of Changepoints

As seen in (2) and (3), we utilize a penalty function indexed by
a parameter λ. The value of λ plays a critical role in the $nal
selection of the number of changepoints. As λ approaches 0,
there would be no enforcement of sparsity and every point will
be treated as a changepoint. As λ approaches ∞, all {#Dβ̃t}
will be 0 and no changepoint will be detected. Typically, with
a penalized loss function, cross-validation is used to select the
penalty parameter. However, in the case for the proposed decou-
pled approach, since the loss is taken over the posterior estimate
for the latent parameter {βt}, the MCMC samples can be used in
identifying the optimal set of changepoints.

First, minimization of the loss in (2) with our recommended
penalty function can be solved via coordinate descent to pro-
duce a path of λ values corresponding to di#erent number of
changepoints. This path of solutions will express a direct tradeo#
between goodness-of-$t and the number of changepoints. As the
number of changepoints increases, the estimated solution β̃ββ will
be closer to the posterior mean across time.

Second, for each λ in the corresponding solution path, we
will compute the “projected posterior” (Woody, Carvalho, and
Murray 2021) to quantify its uncertainty. The key idea behind

the projected posterior is to project each MCMC draw from the
Bayesian model onto the summary space de$ned by locations of
changepoints. For a given value λ, let ( denote the time indices
which {#Dβ̃t &= 0} (i.e., the estimated changepoint locations).
Initial points 1, . . . , D are automatically included in every (

as they are unpenalized. Let βββ(i) denote the ith MCMC draw
from the Bayesian model and ZZZ denote the inverse of the Dth
di#erence matrix. Let ZZZ( denote the subset of columns of ZZZ
indexed by a given (. The ith projected posterior is then given by:

βββ(i)
( = (ZZZT

(ZZZ()
−1ZZZT

(βββ(i), (4)

where T is the transpose operator. This projects βββ(i) from each
MCMC draw onto the best $tted model given the changepoint
estimates. In summary, the “projected posterior” takes a set of
changepoint locations and produces the best estimate of βββ for
each of the MCMC draws given the changepoint locations. This,
in turn, allows us to visualize a tradeo# between the number
of changepoints and the corresponding $t for the posterior
estimates.

Third, a!er deriving the projected posterior, we use a diag-
nostic tool to calculate a goodness-of-$t metric commonly based
on amount of variation explained. Since we accounted for het-
eroscedasticity in the noise term of the Bayesian DLM, we
propose using the following metric as an estimate for the amount
of variation explained by the changepoints for the ith MCMC
draw:

R2,(i)
( ≡ 1 −

∑n
t=1 wt(xtβ

(i)
t − xtβ

(i)
(,t)

2

∑n
t=1 wt(xtβ

(i)
t − xtµβββ(i) )2

where µβββ(i) is the mean over t of the ith MCMC draw, βββ(i). This
metric is similar to R-squared in that it measures the amount
of variation explained by the projected posterior βββ( for each
of the MCMC draws. However, the error for each time-step is
multiplied by the corresponding weight value, giving time-steps
with higher variances lower weights. This makes sense as we
expect more uncertainty in regions of high noise volatility. In
turn, this metric provides an estimate of variation explained for
each of the MCMC draws. The higher the value of R2,(i)

( , the
better the $t of the “projected posterior” to the ith MCMC draw.
For selecting the optimal value of λ, we will select the lowest
number of changepoints which the upper 90% credible interval
for Ẽ[R2

(] exceeds a certain threshold. We $nd this simple selec-
tion criterion to be quite e#ective in empirical settings and easy
to visualize. Details on the threshold selection will be given in
Section 3.

Figure 1 illustrates the decoupled approach on a simulated
series with two changepoints in mean. The $t from a Bayesian
DLM with random walk is very wiggly but captures the under-
lying trend for the most part (Figure 1 top-le!). However, the
model does not provide a clear identi$cation of changepoints.
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Figure 1. Illustrative Example of the Decoupled Approach with Random Walk: The top-left plot shows the resulting posterior mean of {βt} using a Bayesian DLM with
random walk. 90% credible bands are shown as a ribbon. The top-right plot shows the mean of the projected posterior for 0, 1, and 2 number of changepoints. The bottom-
left plots shows the distribution of R2

( as a function of the number of changepoints. The bottom-right plots shows the !nal resulting !t from the decoupled approach and
90% bands corresponding to the projection.

The projected posterior for varying number of changepoints is
shown in the top-right plot. For 0 changepoints, the projected
posterior $ts the global mean. For 1 changepoint, the projected
posterior $ts the $rst segment and combines the next 2 seg-
ments. For 2 changepoints, the projected posterior captures both
true changepoints. This is re"ected in the goodness-of-$t R2

(.
The metric shows large jumps from 0 to 1 changepoints and 1
to 2 changepoints, with marginal improvements a!erward. We
select 2 changepoints as the $nal result and plot the $nal pro-
jected posterior in the bottom-right plot. We additionally project
all the posterior samples according to (4) for 2 changepoints (i.e.,
3 nonzero values) and add the 90% credible bands. The narrow
uncertainty bands of the projection re"ect the shrinkage of the
penalization as compared to the uncertainty from the DLM. As
seen, we can turn a very wiggly $t of the Bayesian DLM to a clear
separation of dri!s and shi!s.

2.4. Locally Adaptive Trends with Global-Local Shrinkage
Priors

In the current model (1), we assume the coe%cients {βt} follow
a random walk with a constant variance σ 2

ω. While this setup can
be su%cient for data with strong signal, this model tends to over-
$t in datasets with low signal-to-noise ratios. Shrinkage priors
present a tradeo# between goodness-of-$t and smoothness of
the underlying process; more shrinkage will typically result in a
smoother underlying $t for the {βt} process. In this section, we
will introduce the shrinkage priors for the decoupled approach.

As previously discussed in Section 1, various forms of shrink-
age priors have shown to be e#ective in Bayesian DLMs. For
this section, we will focus on the class of so called “global-local
shrinkage priors” which have shown to be e#ective for Bayesian
modeling (Bhadra et al. 2016). The prior on ωt of (1) will
be modi$ed to ωt ∼ N(0, ) 2

ωγ 2
ω,t). This modi$cation induces

global-local shrinkage on the Dth di#erence of the coe%cients
for the predictor. The parameter ) 2

ω induces global shrinkage
across all time-steps and the process {γ 2

ω,t} induces time-speci$c
shrinkage for the coe%cients. The two parameters combined
shrink small deviations toward zero while allowing large signals
to remain unchanged. This provides localized adaptivity while
maintaining strong global shrinkage.

In time dependent data, an additional dependence in the
latent shrinkage or selection process has been shown to improve
estimation in a variety of techniques (Nakajima and West 2013;
Kowal, Matteson, and Ruppert 2019; Wu and Matteson 2020;
Rockova and McAlinn 2021). One example is the dynamic
shrinkage process detailed in Kowal, Matteson, and Ruppert
(2019). The shrinkage process uses an AR(1) structure on
{log() 2

ωγ 2
ω,t)} to induce localized smoothing of high/low noise

regions. The process is detailed as follows:

ht ≡ log() 2
ωγ 2

ω,t), ht = u + φ(ht−1 − u) + ξt ,

where φ is a univariate autocorrelation parameter, ξt
iid∼

Z(0.5, 0.5, 0, 1), in which Z(·) denotes the four parameter
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Z−distribution, Z(α, β , µz , σz), with density function

[z] = {σzB(α, β)}−1 exp{(z − µz)/σz}α

[1 + exp{(z − µz)/σz}]−(α+β), z ∈ R,

where B(·, ·) is the beta function. The distribution describes the
log of an inverted beta random variable with parameters α and
β . The parameters µz and σz allow for shi!ing and scaling. Due
to the previous e#ectiveness of the model, we use this model for
all simulations with $rst di#erences (D = 1) unless otherwise
speci$ed and refer to it as decoupled dynamic shrinkage (DC-
DS).

Note that the decoupled approach is not restricted by the
Bayesian DLM speci$cation. A complex Bayesian model incor-
porating a variety of complexities such as covariates, het-
eroscedastic noise and nonstationary inputs can be $t to the
data. The main recommendation is to $t a model that estimates
fairly smooth coe%cients for the predictors of interest. Then,
the decoupled approach can adapt the inference part to identify
key changepoints. This level of "exibility grants the decoupled
approach the ability to work with more applications than pre-
vious existing changepoint algorithms. Extensions for dealing
with multiple predictors and static parameters are shown in the
supplementary materials, Section D.

3. Simulated Experiments

In this section, we illustrate the e#ectiveness and "exibility of the
decoupled approach. The competing methods are the Pruned
Exact Linear Time method (PELT, Killick, Fearnhead, and Eck-
ley 2012) and Robust FPOP algorithm (R-FPOP, Fearnhead and
Rigaill 2019). PELT identi$es changepoint based on penalized
cost function using a goodness-of-$t metric based on maximum
negative likelihood for each segment and a penalty parameter on
the number of changepoints. R-FPOP adapts the PELT penalty
function using a biweight-loss in order to deal with outliers by
establishing a maximum threshold for the impact of each time-
step. The $rst simulation setting does not include an outlier
process so therefore the R-FPOP method will not be considered
a comparative method.

These two methods are similar to the decoupled approach in
their utilization of a penalized cost function. However, unlike the
decoupled approach, they use the data rather than the posterior
of a Bayesian model. The comparisons will start on simple cases
of changes in mean with Gaussian noise, then extend to more
complicated scenarios adding in outliers and heterogeneity. For
both competing methods, we will use the default parameters as
used in the original papers. For the decoupled approach, we use
a cuto# threshold of 0.9 for the lowest number of changepoints
which the upper 90% credible interval for R2

( exceeds. Full details
of the parameters used for the Bayesian DLM and comparisons
for other simulation settings are shown in the supplementary
materials, Section D.

3.1. Comparison Metric Details

Five metrics are used to evaluate the results for simulations:
Rand index, adjusted Rand index, precision, recall and F1-score.
Rand index calculates a similarity score between the predicted

partition and the true partition; the score ranges between 0 and 1
with 1 being a perfect match (Hubert and Arabie 1985). Adjusted
Rand index provides an additional correction step to the Rand
Index by accounting for random chance of a correct partition.
Precision measures the proportion of true changepoints in the
number of predicted changepoints while recall measures the
proportion of all true changepoints detected by the models.
F1-score calculates the harmonic mean between precision and
recall. Since changepoints occur very rarely in the data, the F1-
score is a good indicator for the accuracy of predictions (van den
Burg and Williams 2020). We consider a predicted changepoint
to be a true positive if it is within ±5 of a true changepoint, with
the caveat that each true changepoint can only match to at most
one predicted changepoint.

3.2. Change in Mean with Gaussian Noise

For the $rst set of simulations, we start with a simple change in
mean with standard Gaussian noise. We simulate data of length
200, with a changepoint in the middle of the data at location
100. We adjust di#erent levels for the magnitude of change (MC)
to understand the e#ectiveness of the algorithms with varying
signal-to-noise ratios. We test 4 di#erent magnitudes of change
values of {1, 0.75, 0.5, 0.25}. We will compare the decoupled
approach with a random walk state equation (DC-RW, model
introduced in Section 2.1) and the decoupled approach with
dynamic shrinkage (DC-DS, model introduced in Section 2.4)
against PELT. PELT is a penalized likelihood changepoint algo-
rithm which is designed to identify changes in this setting, mak-
ing it a good baseline for comparison. We expect the decoupled
approach to perform slightly worse than PELT in this setting as
a tradeo# for increased "exibility. As we will show in the later
simulations, the "exibility of the decoupled approach allows it to
perform much better when the assumptions of homoscedasticity
and Gaussian noise are violated.

As seen in Table 2, the decoupled approach with dynamic
shrinkage performs slightly worse than PELT. With a signal-
to-noise ratio of 1 to 1 (magnitude of change 1), both DC-
DS and PELT perform similarly well with Rand average above
0.95, adjusted Rand average above 0.925 and F1-score above 0.8.
As the signal-to-noise ratio reaches a low of 1–4 (magnitude
of change 0.25), both changepoint algorithms can no longer
distinguish the correct changepoint. For the magnitude change
of 0.75 and 0.5, PELT performs slightly better in terms of F1-
score. However, we still see a tradeo# of precision and recall
between the two algorithms. For magnitude of change of 0.5,
PELT has a higher precision while DC-DS has a higher recall.
This shows that DC-DS has a tendency to slightly over-predict
in low signal-to-noise ratio while PELT has a tendency to under-
predict. A key note is that DC-DS maintains the highest Rand
and adjusted Rand average in this settings, showing that DC-DS
produces the partition closest to the true partition.

Comparing DC-RW against DC-DS, we can clearly see
that using shrinkage priors in the Bayesian DLM signi$cantly
improves the performance of the decoupled approach. This is
due to the fact that shrinkage priors induce smoother estimates
of the underlying trend resulting in easier changepoint infer-
ence. This further supports the discussion in Section 2.4 of the
advantages of the decoupled framework allowing for $tting of
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Table 2. Single change in mean.

MC Algorithms Rand Avg. Adj. Rand Avg. Precision Recall F1-score

1 DC-RW 0.795(0.013) 0.590(0.027) 0.18 0.83 0.29
DC-DS 0.964(0.004) 0.929(0.009) 0.78 0.83 0.80
PELT 0.9680.9680.968(0.004) 0.9360.9360.936(0.007) 0.820.820.82 0.870.870.87 0.840.840.84

0.75 DC-RW 0.689(0.016) 0.379(0.031) 0.14 0.53 0.22
DC-DS 0.926(0.009) 0.851(0.018) 0.680.680.68 0.56 0.61
PELT 0.9300.9300.930(0.009) 0.8600.8600.860(0.021) 0.62 0.670.670.67 0.640.640.64

0.5 DC-RW 0.576(0.012) 0.156(0.024) 0.12 0.25 0.16
DC-DS 0.7910.7910.791(0.017) 0.5820.5820.582(0.035) 0.23 0.380.380.38 0.29
PELT 0.755(0.021) 0.512(0.041) 0.380.380.38 0.30 0.330.330.33

0.25 DC-RW 0.498(0.000) 0.000(0.000) 0.00 0.00 0.00
DC-DS 0.510(0.006) 0.025(0.013) 0.02 0.01 0.01
PELT 0.498(0.000) 0.000(0.000) 0.00 0.00 0.00

Table details results of the decoupled approach with random walk (DC-RW), decoupled approach with dynamic shrinkage (DC-DS), and PELT on simulated data with one
change in mean of varying magnitudes (MC) and standard Gaussian noise. Rand average and adjusted Rand average measures the similarity between predicted partition
and true partition. Standard error for Rand average and adjusted Rand average are given in subscripts. F1-score measures accuracy of changepoint detection through a
comparison of precision and recall. Bolded values indicate best results for the metric in the column.

Table 3. Change in mean with outliers.

MC Algorithms Rand Avg. Adj. Rand Avg. Precision Recall F1-score

2 DC-DS 0.9770.9770.977(0.003) 0.9540.9540.954(0.007) 0.880.880.88 0.910.910.91 0.890.890.89
PELT 0.681(0.006) 0.361(0.012) 0.06 0.82 0.11

R-FPOP 0.952(0.011) 0.904(0.022) 0.86 0.83 0.84
1.5 DC-DS 0.9670.9670.967(0.005) 0.9340.9340.934(0.009) 0.800.800.80 0.820.820.82 0.810.810.81

PELT 0.689(0.007) 0.376(0.014) 0.05 0.74 0.10
R-FPOP 0.860(0.020) 0.721(0.040) 0.800.800.80 0.63 0.70

1 DC-DS 0.9350.9350.935(0.007) 0.8700.8700.870(0.015) 0.680.680.68 0.60 0.630.630.63
PELT 0.680(0.007) 0.358(0.013) 0.04 0.59 0.08

R-FPOP 0.804(0.009) 0.638(0.019) 0.35 0.620.620.62 0.44
0.5 DC-DS 0.7420.7420.742(0.018) 0.4860.4860.486(0.036) 0.180.180.18 0.32 0.240.240.24

PELT 0.676(0.006) 0.350(0.013) 0.04 0.480.480.48 0.07
R-FPOP 0.741(0.017) 0.484(0.035) 0.15 0.25 0.19

Table details decoupled approach with dynamic shrinkage (DC-DS), PELT, and R-FPOP on simulated data with one change in mean of varying magnitudes (MC) and outliers.
Outliers are simulated using t-distributed noise with 2 degrees of freedom. Rand average and adjusted Rand average measures the similarity between the predicted
partition and true partition. Standard error for Rand average and adjusted Rand average across simulations are given in subscripts. F1-score measures accuracy of
changepoint detection through a comparison of precision and recall. Bolded values indicate best results for the metric in the column.

any appropriately complex Bayesian model. Due to the signif-
icant improvements of using shrinkage priors in the baseline
case, we will use DC-DS as our main method from this point
onward.

3.3. Change in Mean with Outliers

For the next set of simulations, we added outliers onto the
same problem as Section 3.2 to illustrate the robustness of the
methods. All other simulation settings will be kept the same
as Section 3.2. As this is a more di%cult problem, we increase
the magnitude of changes to {2, 1.5, 1, 0.5}. Instead of Gaussian
noise, we will use t-distributed noise with 2 degrees of freedom
to simulate data with outliers.

The results of the simulation can be seen in Table 3. With
the addition of outliers, the decoupled approach is able to
achieve the best performance across all settings. By using a
Bayesian DLM with dynamic shrinkage, the decoupled approach
is robust to the presence of extreme outliers. Unsurprisingly,
PELT, with no mechanism to deal with extreme values, is sig-
ni$cantly in"uenced by outliers. This lead to PELT signi$cantly
over-predicting the number of changepoints. In the setting of
magnitude of change of 2, DC-DS achieves an F1-score of
0.89 in comparison to 0.84 for R-FPOP. As the signal-to-noise
ratio decreases from 2 to 1, we can see an increasing gap
in adjusted Rand average and F1-score between DC-DS and

R-FPOP. This indicates that DC-DS can produce more pre-
cise changepoint estimations and more accurate partitions. The
advantage becomes more signi$cant in the setting of magnitude
of change of 1. DC-DS achieves an F1-score of 0.63 in com-
parison to 0.44 of R-FPOP. As magnitude of change approaches
0.5, the problem becomes too di%cult for all algorithms and
performance is comparable between DC-DS and R-FPOP.

3.4. Change in Mean in Presence of Heteroscedasticity

For the next set of simulations, we evaluate these algorithms in
presence of heterogeneity. We simulate 100 series of length 200,
with a changepoint in the middle of the data at location 100.
However, instead of standard Gaussian noise or t-distributed
noise, we generate noise using stochastic volatility of order 1
(Kim, Shephard, and Chib 1998) as follows:

log(σ 2
ε,t) = µε + φε[log(σ 2

ε,t−1) − µε] + ξε,t ,
ξε,t ∼ N(0, σ 2

( ). (5)

We set the following values: µε = 0, φε = 0.9, and σ 2
ε,t =

0.5. This creates high auto-correlation which causes regions of
high/low volatility which can occur frequently in real world
data. We used 4 magnitude of change values of {0.5, 1, 1.5, 2} to
evaluate the algorithms’ e#ectiveness in varying signal-to-noise
ratios. The results are reported in Table 4. To be fair to PELT
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Table 4. Change in mean with heterogeneity.

MC Algorithms Rand Avg. Adj. Rand Avg. Precision Recall F1-score

2 DC-DS 0.9820.9820.982(0.004) 0.9640.9640.964(0.008) 0.890.890.89 0.90 0.890.890.89
PELT 0.834(0.010) 0.667(0.019) 0.11 0.960.960.96 0.20

R-FPOP 0.944(0.009) 0.889(0.018) 0.73 0.85 0.79
1.5 DC-DS 0.9770.9770.977(0.004) 0.9550.9550.955(0.008) 0.870.870.87 0.900.900.90 0.880.880.88

PELT 0.827(0.010) 0.654(0.020) 0.10 0.89 0.19
R-FPOP 0.926(0.011) 0.852(0.022) 0.64 0.81 0.72

1 DC-DS 0.9310.9310.931(0.009) 0.8620.8620.862(0.020) 0.600.600.60 0.640.640.64 0.620.620.62
PELT 0.800(0.010) 0.599(0.020) 0.07 0.61 0.13

R-FPOP 0.835(0.019) 0.671(0.037) 0.39 0.50 0.44
0.5 DC-DS 0.8360.8360.836(0.015) 0.6730.6730.673(0.030) 0.290.290.29 0.380.380.38 0.330.330.33

PELT 0.686(0.013) 0.373(0.026) 0.03 0.25 0.05
R-FPOP 0.626(0.018) 0.254(0.036) 0.12 0.11 0.12

Table details decoupled approach with dynamic shrinkage (DC-DS), PELT, and R-FPOP on simulated data with one change in mean of varying magnitudes (MC) and stochastic
volatility. Stochastic volatility is simulated using highly autocorrelated SV(1) model. Rand average and adjusted Rand average measures the similarity between predicted
partition and true partition. Standard error for Rand average and adjusted Rand average are given in subscripts. F1-score measures accuracy of changepoint detection
through a comparison of precision and recall. Bolded values indicate best results for the metric in the column.

Figure 2. Change in Mean, comparison of F1-Scores. F1-score calculates the harmonic mean between precision and recall. The score ranges between 0 and 1 with 1 being
a perfect prediction. The left plot shows F1-score of DC-DS against PELT in simulated data with Gaussian noise from Section 3.2. The middle plot shows F1-score of DC-DS
against R-FPOP in simulated data with outliers from Section 3.3. The right plot shows F1-score of DC-DS against R-FPOP in simulated data with stochastic volatility from
Section 3.4.

and R-FPOP, the algorithms are not intended to work in this
setting. As a result, the performances are not re"ective of the
e#ectiveness of the algorithms.

Comparing results in Table 4 to Table 2 for magnitude of
change 1, we see that the performance of all changepoint algo-
rithms decreased in presence of stochastic volatility. This is to be
expected as stochastic volatility makes detection of changepoints
much more di%cult. With the addition of stochastic volatility,
DC-DS outperformed other competing changepoint methods
in all settings. DC-DS achieves an F1-score of 0.89 for setting
of magnitude of change of 2, an F1-score of 0.62 for setting of
magnitude of change of 1 and an F1-score of 0.33 for setting of
magnitude of change of 0.5. DC-DS achieves the most accurate
partitions by having the highest adjusted Rand average and the
best tradeo#s of precision/recall. This illustrates the robustness
of the decoupled approach in dealing with heterogeneity.

Figure 2 summarizes the results in term of F1-score for
Section 3. As seen in the plots, the decoupled approach is slightly
worse in standard Gaussian noise settings but performs signif-
icantly better when outliers or stochastic volatility are added.
This illustrates the tradeo# of the decoupled approach. By $tting
a Bayesian DLM to the data $rst, the decoupled approach can be
more locally adaptive to the complexities inherent in time series
data. Outliers and heterogeneity are just two examples of the
challenges that the decoupled approach can deal with. As long

as the posterior estimates for the {βt} process remains relatively
smooth, the decoupled loss can identify correct changepoint
locations in a variety of complex scenarios.

4. Global Land Surface Air Temperature Anomaly

For an illustrative application we consider monthly global land
surface air temperature anomaly with reference period 1951–
1980 in 0.01 degrees Celsius from 1880 to 2018 (https://data.
giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt). The urgency to
detect sudden shi!s in climate patterns has been growing amidst
ongoing human-induced change. As shown, there are clear long
term linear time trends underlying local annual trends in the
data. Overall global temperatures appear increasing over time;
however, three features make standard changepoint analysis
di%cult. First, there exists seasonal "uctuation in the data, and
these seem somewhat irregular. This implies the local trend
is not "at but rather a smooth curve "uctuating through the
months. Second, there is di#ering levels of variability over time.
Third, there may be anomalies throughout the data as a result of
certain global events.

As seen in the top-le! plot of Figure 3, the underlying signal
"uctuates over time as a result of irregular cyclical patterns over
the years; these patterns have less variability than the longer
term approximately linear time trends. This results in a wiggly

https://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt
https://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt
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Figure 3. Monthly Global Land Surface Air Temperature Anomaly: The top-left !gure shows the monthly average global land surface air temperature anomaly from 1880
to 2018 with 10 year moving average and Bayesian DLM !t. Additionally, the inner ribbon is 95% credible bands for {βt} and the outer ribbon is 95% credible bands for
{βt + εt} from the Bayesian DLM. The top-right !gure shows the mean of “projected posterior” for {0, 1, 2} changepoints. The predicted changepoint locations are shown
by the vertical lines. The bottom left plot illustrates the distribution R2

( for various number of changepoints. The bottom right plot shows the !nal result for the decoupled
approach.

$t from the Bayesian dynamic linear model with D = 2. Using
the decoupled approach, we can visualize di#erent $ts of the
projected posterior. The top-right plot of Figure 3 illustrates the
mean of the “projected posterior” for {0, 1, 2} number of change-
points. As the number of changepoints increase, the $t becomes
increasingly better. This is because increasing the number of
changepoints essentially increases the degrees of freedom for
the “projected posterior.” We select 1 as the optimal number
of changepoints as it’s the simplest $t in which the upper 90%
credible interval exceeds the 0.9 threshold. We estimate the
single changepoint at November, 1976, a!er which there is a
steeper long term slope. Our changepoint time aligns well with
a recognized regime shi! in the 1976–1977 winter originally
determined by climate scientists in the 1990s based on multiple
signals, but attributed to the North Paci$c (Hare and Mantua
2000). Several changepoint analyses of temperature anomalies
or multiple climate measures identify at least one shi! in the
1970s decade (Alley et al. 2003; Ivanov and Evtimov 2010;
Matyasovszky 2011; Yang and Song 2014). More real world
applications involving changes in dynamic regression are shown
in the supplementary materials, Section E.

5. Conclusion

In conclusion, this article proposes a decoupled approach for
changepoint analysis that separates the processing of model-
ing and inference. As seen throughout the simulations and
real world examples, the decoupled approach o#ers several key
advantages over the competing method. First, by separating
the process of modeling and inference, the decoupled approach

allows for $tting of a highly complex Bayesian model to the
underlying data while still allowing for reasonable inference of
changepoints. This allows the decoupled approach to deal with
many complexities inherent in time series. As the data becomes
increasingly complex, the decoupled approach can adapt the
Bayesian DLM to deal with these issues while maintaining the
same inference process for changepoints. Additionally, Bayesian
modeling frameworks for other challenging time series data
such as data with varying degrees of sparsity can be used in the
$rst stage of the decoupled approach as long as it gives estimates
of the trend at the desired inference times.

Second, the decoupled approach is "exible in its ability to
identify di#erent types of changepoints. From the examples
shown in the article and the supplementary materials, the decou-
pled approach has the ability to identify changes in mean,
changes in regression coe%cients and changes in higher order
trends. Most other changepoint algorithms can only be used for
one speci$c scenario. Lastly, the Bayesian decoupled approach
maintains the ability to quantify uncertainty of parameters and
derived quantities as compared to traditional changepoint algo-
rithms. The "exibility of the decoupled approach allows the
algorithm to be more adaptive to a wide variety of datasets and
scienti$c conclusions.

Supplementary Materials

Narrative Supplement: Online supplement containing an in-depth loss
derivation, various methodological extensions, a detailed explanation of
the Bayesian DLM framework and more simulation/real world results.

Code: Rmd $le containing the code for setting up and running the decou-
pled approach.
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