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Abstract: Atomic-scale structures that account for the acceleration of reactivity by heterogeneous
catalysts often form only under reaction conditions of high temperatures and pressures, making
them impossible to observe with low-temperature, ultrahigh vacuum methods. We present veloc-
ity-resolved kinetics measurements for catalytic hydrogen oxidation on Pd over a wide range of
surface concentrations and at high temperatures. The rates exhibit a complex dependence on oxy-
gen coverage and step density that — using density functional and transition-state theories — can be
quantitatively explained by a kinetic model involving a cooperatively stabilized configuration of
at least three O-atoms at steps. Here, two O-atoms recruit a third O-atom to a nearby binding site
to produce an active configuration that is far more reactive than isolated O-atoms. Thus, hydrogen
oxidation on Pd reveals a clear example of how reactivity can be enhanced on a working catalyst.

One sentence summary: Hydrogen oxidation on Pd is catalyzed by an active configuration
involving cooperative binding of both O and Pd atoms.
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Since the early 1800’s, when Ddbereiner first amazed the public and fellow natural philosophers
by oxidizing hydrogen over a platinum sponge to create “fire without flint and tinder” (/, 2), het-
erogeneous catalysis has revolutionized chemistry. Platinum-group metal catalysts in particular
have proven to be some of the most important materials in modern industry (3). Applications in-
clude: the catalytic removal of pollutants from combustion (4, 5), hydrogen production and puri-
fication (6, 7), catalytic fuels cells (8-710), chemical catalysis (//-13) and, in particular, the pro-
duction of artificial fertilizers (74, 15). Despite its importance, we still lack a mechanistic under-
standing of most reactions in heterogeneous catalysis.

To appreciate the challenges involved, consider that gas-phase reactivity occurs within a homoge-
neous environment and depends only on the relative positions and velocities of the reacting atoms,
but in heterogeneous catalysis, reactivity also depends on the positions of the reactants with respect
to a catalytic surface. For example, even on single crystal surfaces — the most homogeneous cata-
lysts one can produce in the laboratory — reactions often occur selectively at a tiny minority of step
“defect” sites where low-valence metal atoms are present (/6, /7). The concept of active sites has
thus become central to our thinking about surface chemistry, and they can sometimes be identified
on pristine crystalline surfaces using low-temperature microscopy (/8).

Unfortunately, there is no general way to determine the nature of active sites at the high tempera-
tures and pressures typical of real catalysis. There is also evidence that barrier heights and the
energies of reaction intermediates can be influenced by so-called spectator adsorbates (19, 20).
Adding to the challenge, real catalytic surfaces operating at high temperatures and pressures are
hardly pristine and may exhibit reactive structures — what we call active configurations — that may
not even exist under nonreactive conditions. Hence, determining the properties of active configu-
rations present on dynamic catalysts (2/-24) operating under reacting conditions is an important
challenge in modern surface chemistry (235).

Here, we report high-precision velocity-resolved kinetics (VRK) (26, 27) measurements over a
wide range of coverages and temperatures, as well as results from theoretical kinetics involving
density functional theory (DFT) and transition-state theory (TST), that reveal the mechanism of
hydrogen oxidation on palladium catalysts. The reaction involves an active configuration of coop-
eratively-bound oxygen atoms that forms along a palladium step and only under conditions with
elevated oxygen concentrations. At reduced oxygen concentrations, the reaction slows dramati-
cally and the kinetic order changes. These results show how reactivity can be enhanced on a work-
ing catalyst operating under reacting conditions.

Background

We outline what has been known about the kinetics of this reaction prior to this study. The overall
reaction can be formally written as

Pd
Oz(g) + 2Hz(g) — 2H;0(y),

where activated forms of H, g and 0,4 are first produced by dissociative adsorption. Subse-

quently, the atoms recombine to form thermodynamically stable water (28-30). Only a few ele-
mentary reactions are possible.

k 1
Oyeq + 25— 20" W
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k,
Hyg + 2% = 2H* @)
-2
ks
H*+0° = OH"++ )
k_3
k.,
H* + OH" = H,0" + * )
k_4
ks
2 OH* = H,0" + 0 (5)
k_s

k 6

All prior studies suggest that reaction (3) is rate-limiting. However, the derived activation energies
differ widely from one another (0.3 to 0.8 eV) (37-33). A comparison to electronic structure cal-
culations, which predict a barrier to OH* formation of ~1 eV and that reaction (5) is barrier-less
on a defect-free Pd(111) surface (34, 35), suggests that the rate of reaction may depend strongly
on details of the experimental conditions such as the step density of the catalyst. Beyond this, the
relative importance of reactions (4) and (5) has remained unknown (317, 33, 36).

Experimental results

Figure 1 shows representative water formation rates (left panels) obtained with VRK; here, two
pulsed molecular beams and a leak valve were available for pulsed and continuous reactant depo-
sition and a high power short pulsed laser was used for non-resonant multi-photon ionization of
desorbed products. Ion-imaging provided velocity-resolved product detection (26, 27). See sec. S1
for additional experimental details. Results are presented under oxygen rich (A, B, and C) and lean
(D, E, and F) conditions as well as for low (¢) and high (e) Pd step densities. The reaction is
unexpectedly complex. For oxygen-rich conditions, it proceeds much faster on a surface with high
step density (Fig. 1A), whereas for oxygen-lean conditions (Fig. 1D), the reaction was much
slower and depends only weakly on step density. Even the order of the reaction kinetics changed.
Second-order reactions were seen under oxygen rich conditions (Fig. 1B), whereas pseudo 1% order
kinetics were seen for oxygen-lean conditions (Fig. 1E). Based on these observations, second-
order reaction rate constants were derived from basic kinetics assumptions (Fig. 1C and F). For
oxygen rich conditions—where a pulse of H, impinges onto an O-covered surface—we assumed
that all H> molecules from the molecular beam undergo an A+A type second-order reaction to
yield the observed transient shape (see sec. S2 for more detail). For oxygen lean conditions—
where a pulse of Oz impinges on an H-covered surface—we applied pseudo first-order conditions
for the H-atom coverage to obtain reaction rate constants. See section S3 of the SI for additional
detail.

Comparison with DFT results

These observations suggested that the rate-limiting reaction changed with oxygen coverage. For
oxygen-rich conditions (Fig. 1C), the experimentally derived activation energies of 0.44 + 0.02
eV on Pd(111) and 0.50 + 0.01 eV on Pd(332) compared well with our DFT-computed barrier
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heights using two functionals (RPBE: 0.43 eV, PBE: 0.40 ¢V) for the OH*disproportionation — re-
action (5) — occurring at steps (see Table S8). This result also explained the second-order kinetics.

For oxygen-lean conditions, the experimentally derived activation energies of 0.80 + 0.01 eV on
Pd(111) and 0.80 + 0.01 eV on Pd(332) were similar to DFT predicted barrier heights (RPBE:
0.93 eV, PBE: 0.93eV) for OH* formation at steps, a reaction that we expected to exhibit pseudo-
first-order kinetics under our experimental conditions. We concluded that the rate-limiting step for
water formation under oxygen-lean conditions was OH* formation occurring at steps, whereas OH*
disproportionation occurring at steps was rate-limiting under oxygen-rich conditions.
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Fig. 1. The kinetics of catalytic hydrogen oxidation on Pd: Dependence on oxygen coverage, step density and
temperature. (A) Experimentally observed water formation rates for Pd (332) (e) and (111) (¢) at 473 K for
[0}ean] = 0.03 ML. We define 1 monolayer (ML) as the coverage corresponding to a one-to-one ratio of adsorbate
molecules to Pd surface atoms. The H-atom coverage [H*] is limited by the dose (0.002 ML) of the reaction initiating
H, pulsed beam. Inset (B) shows a 2" order linearization of the rate data — see also Fig. S3. (C) Arrhenius plots of the
rate constants obtained from data as shown in panel (A). (D) Same as panel (A) but [H*] = 0.026 ML and the [O}¢an]
is limited by the dose (0.001 ML) of the reaction initiating O, pulsed beam. Inset (E) shows a 1% order linearization
of the rate data. (F) Arrhenius plots of the rate constants obtained from data of panel (D).

The rate-limiting reaction changing with increasing oxygen coverage suggested that reactions of
isolated O* atoms that are important under oxygen-lean conditions could not explain reactivity at
higher coverage. Figure 2 shows results of DFT calculations carried out on a 4x1 unit cell with
periodic boundary conditions — computational details are presented in sec. S4 — that provided in-
sights into how the rate-limiting reaction could change with O coverage. Figure. 2 A depicts O*
structures on a Pd (332) surface in the isolated-atom limit. Here, O* binds most favorably above a
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face-centered cubic (fcc) hollow site next to a monatomic step, hereafter referred to as Op_step»

and somewhat less stably at the fcc hollow sites of the (111) terrace, hereafter referred to as Oterr
Binding at the fcc face of the (111) step, hereafter referred to as Oggyn—step> Was unstable with

respect to Oterr OF Oyp_step- However, as can be seen in Fig. 2B, ogown_step became stable in the
presence of two neighboring Oyp_gtep atoms.
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Fig. 2. Theoretical predictions of cooperative binding of O*on the stepped Pd(332) surface. (A) In the isolated
atom limit Ojp_gtep is bound most strongly. (B) At higher oxygen coverage, the Op_step OCCUpation rises, increasing
the probability to find O _step neighbours, which stabilize the binding of Ogoywn—step- (C) The cooperative stabiliza-
tion energy is reduced as the steps become saturated. The black lines show the unit cell defining the periodic boundary
conditions used in the DFT calculations. (D) Equilibrium populations of Of,_step and Ogown—step Versus mean [0°]
for Pd (332) and (111) at 473 K. The step densities of the (111) and (332) surfaces are 0.2% and 16.7%, respectively.
(E) Transition state of OH formation at Oy, _gtep and (F) at Ogqwn—step- Terrace Pd atoms are shown in grey, step Pd
atoms in blue, O atoms in red and H atoms in pink. Calculations were done using RPBE.

These cooperative interactions suggested that at increased oxygen coverage, a “zigzag” O-deco-
rated Pd step structure (Fig. 2 C) could form, similar to one that has been previously studied (37,
38). Of great consequence to the reactivity, the barrier for OH* formation was substantially lower
for reaction at Ogqyn-step (RPBE: 0.64 eV, PBE: 0.60 ¢V) compared to reaction at Oyp_step

(RPBE: 0.93 eV, PBE: 0.93 ¢V). We hypothesize that the OH disproportionation reaction became
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rate limiting under oxygen-rich conditions because the barrier to OH formation was reduced by
the presence of Ogguwn—step, formed through cooperative O-atom binding at Pd steps.

We next computed equilibrium populations of Ogown—step a1d Ojp_step as a function of [Ofean

and T using the kinetic model introduced below. Figure 2D shows that the population of
OZown-step Was important at all but the lowest mean coverages. It grew as [Ofean]” at low
[Omeanl, because two Ofp_step in close proximity to one another were needed to stabilize
Odown-—step- These results showed that Ogoywn—step €xhibited higher reactivity toward OH* for-

mation and was present in sufficient abundance, which made it a candidate for the cooperatively
formed active configuration hypothesized above.

Mechanism and Kinetic modelling

We next present a reaction mechanism involving cooperative O-atom binding to obtain TST rate
constants based on DFT energies and vibrational frequencies (see secs. S4-S8 for details). Figure
3 shows the potential energy diagram for water formation. The lowest energy pathway from reac-

*

tants to products for oxygen-lean conditions formed OH" through reaction of H* with Ofp_step,
whereas under oxygen-rich conditions, H* reacted with Ogqyn—step- In both cases, newly formed
OH™ was strongly bound at Pd steps and could undergo disproportionation to produce H>O.

-2.2- O¢+-H H--OH, + Oy |
—
—2.41 Ous++H I
H"'OHUS + Ous
—2.6- — _
OHy--OH;
Ogs+-H
;' -2.8 —
=
>
O -3.0r —
()
T
_3'2_Ot +H H,O4 + Ot |
_3.4_Ous +H Hzog + Ous_
Ods + H
OH 2 OH
—-3.61 us us _
\ | / H20us + Ous
~3.8k + OHus .

Fig. 3. Reaction paths involved in the Pd catalysed conversion of hydrogen and oxygen to water. The dominant

reaction flux on Pd(332) at elevated O-coverages (drawn in red) involves OH" formation at the Ogqyn—step Site, dif-
fusion of OH™ to terraces and subsequent trapping at steps, followed by disproportionation to form water. At low O-

coverages, OH" is formed at the Oyp_gtep site. The energy of an additional OHyp,_gep, adsorbate molecule has been

added to all energies along the OH* formation pathway to ensure mass balance in the subsequent disproportionation
reaction. See also Fig. S9. For comparison, the transition-state energies for the OH + H reaction are also shown. All
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structures used to construct this diagram can be found in Tables S5-S7. These results were obtained with the RPBE
functional — similar results for the PBE functional can be found in the SI. The zero of energy refers to gas phase
reactants and all energies are ZPE corrected. Note that down-step, up-step and terrace are abbreviated ds, us and t,
respectively.

Figures 4A (oxygen-rich) and 4B (oxygen-lean) show that the TST model’s predictions based on
both RPBE (—) and PBE (—) input data were similar to experiment (®) — comparisons to all
experimental data can be found in sec. S9 of the SI. Figure 4A also shows that neglect of OH"
formation at Oggywn—step (---) resulted in unrealistically slow water formation rates under oxygen-
rich conditions. Figure 4B shows OH* formation at Ogoyn_step Was unimportant under oxygen-
lean conditions. A systematic degree-of-rate-control (DRC) analysis (39, 40) of the DFT/TST
based mechanism (see sec. S10) showed that under oxygen-rich conditions, water production rates
were sensitive to the OH* formation rate at Ogqyn—step and the OH™ disproportionation rate at step

sites. Under oxygen-lean conditions, the water production rate was sensitive only to OH* formation
at Orlp— step-

This DRC analysis of the kinetic model informed us which energies in Fig. 3 most influenced the
experimental kinetic traces. As shown in Fig. 4, C and D, adjusting these energies by not more
than 0.15 eV led to quantitative agreement between the kinetic model (—) and experiment (@)
under both oxygen-rich and oxygen-lean conditions. Section S11 of the SI explains the fitting
procedure and shows comparisons of experimental and simulated kinetic traces of the optimized
model over a wide range of coverages (10~* ML < [0*] < 0.2 ML) and temperatures (353 K <
Ts < 873 K). Different adjustments were made for oxygen-lean (Table S14) and oxygen-rich
(Table S15) conditions to account for repulsive interactions between OH* and O* that are ne-
glected in the DFT energies of the kinetic model. Such interactions can be important under oxy-
gen-rich conditions and are assumed to be absent under oxygen lean conditions. These effects are
discussed at length in sec. S12.

Oxygen Rich Oxygen Lean Oxygen Rich Oxygen Lean
B

Peak Normalized Water Flux

0 1 2 30 5 10 15 0 1 2 30 5 10 15
Reaction Time [ms]

Fig. 4: Comparison of experimental and theoretical kinetic traces for water formation in hydrogen oxidation
on Pd (332): Velocity-resolved kinetics results (@), TST microkinetic model based on RPBE (——), PBE (——), and
the optimized model (——). For PBE and the optimized model, results are also shown neglecting reactivity at the
down-step O atom (-----). A) [Ojean] = 0.09 ML. B) [H*] = 0.003 ML. C) [0} ean] = 0.09 ML. D) [H*] = 0.026
(T =473 K), 0.003 (T =573 K), and 0.0007 ML (T = 673 K). For A and C, the H-coverage is limited by the dose
(0.002 ML) of the reaction initiating H pulsed beam. For B and D, the O-atom coverage is limited by the dose (0.001
ML) of the reaction initiating O, pulsed beam. We define one ML as the coverage corresponding to a one-to-one ratio
of adsorbate molecules to Pd surface atoms.
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A comprehensive comparison of the optimized model to experiment over all experimental condi-
tions is possible using effective rate constants (as explained in sec. S2 and S3) and is shown in
Fig. 5. Under oxygen lean conditions, the model reproduces the pseudo-first order values of

kef ¢ and their linear dependence on hydrogen coverage. Under oxygen-rich conditions, the pecu-
liar dependence of the second order k. r on O-atom coverage is captured by the optimized
model. The maximum rate constant on Pd(332) appears at somewhat higher O-coverages in the
model compared to experiment. Despite these modest differences, the optimized model captures
the peculiar step and O-coverage dependence seen in experiment.
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H Coverage [ML] O Coverage [ML]

Fig. 5: Behaviour of effective rate constants k. as a function of coverage (see sec. S2 and S3). Shown are oxy-

gen lean conditions as a function of H-atom coverage (left half) and oxygen rich conditions as a function of O-atom
coverage (right half). The upper row shows effective rate constants obtained from experimental traces which com-
pare well with effective rate constants obtained from traces of the optimized kinetic model, shown in the lower row.

Discussion

This work answers basic questions concerning the elementary reactions responsible for the cata-
lytic conversion of hydrogen and oxygen to water on Pd. It shows that at O-coverages of ~1073
ML, OH formation was the rate-limiting step to water formation, whereas at higher coverages, the
barrier to this reaction dropped and made OH disproportionation the rate-limiting reaction. This
peculiar change in kinetic mechanism resulted from the formation of an active configuration by
cooperative binding of multiple O-atoms at Pd steps. This active configuration dominated the re-
action under nearly all conditions; indeed, it is remarkable that conditions where it was unim-
portant arose only at very low O-coverages on the order of 0.001 ML.

The evidence for our conclusions came from a comparison of experimentally obtained and theo-
retically derived kinetics, which were in quantitative agreement with one another after DFT-com-
puted energies along the reaction path were adjusted by up to £0.15 eV. These adjustments are
justified given uncertainties related to the use of DFT. Specifically, computed energies may vary
by up to 0.2 eV depending on choice of functional (4/) and the choice of unit cell size enforces
specific and high adsorbate coverages. For example, the calculations of this work used to compute
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cooperative O-atom binding correspond to 0.125 and 0.167 ML — see Fig. 2 B and C — but were
used to construct a kinetic model for much lower coverages as well. A discussion of these issues
is provided in sec. S6, where we show that low coverage calculations yield similar results for the
formation of down-step O-atoms. Furthermore, our model is a simplified micro-kinetic model with
an equilibrium assumption to obtain the site-specific O-atom populations and neglects OH* inter-
actions with O*. Future work, using the kinetic Monte Carlo approach would allow us to go beyond
these approximations and provide an improved treatment of adsorbate-adsorbate interactions. It
would also be desirable to go beyond the harmonic approximation and to include tunneling in TST
calculations. Despite these limitations, our kinetic model achieved quantitative agreement with
observation over a wide range of conditions. Most importantly, the kinetic model described the
peculiar dependence of the observed kinetics on oxygen coverage, by means of a cooperatively
bound active configuration, whose abundance is strongly dependent on [Opean]-

results also provided a test of DFT implemented at the GGA level for calculating reaction
iers in catalysis, where few direct comparisons between experiment and theory have been pos-
sible. Although DFT-GGA involves intrinsic energy errors on the order of 0.2 eV, much larger
errors can arise from an incorrect hypothesis about the structures of active configurations. In this
work, finding the correct structures of the transition states of the rate limiting steps was much more
important than a “correct” choice of functional. This suggests that the field may use DFT-GGA
with guarded optimism, for example by developing new DFT-GGA based discovery-tools for ac-
tive configurations formed due to cooperative adsorbate interactions.

=Al

Cooperative adsorbate binding is seldom discussed in heterogeneous catalysis; but, it is well
known in other fields, for example in biochemistry, where the docking of one ligand enhances
affinity for a second ligand (42, 43). Such behavior was first recognized through the non-linear
dependence of binding site occupation on ligand concentration in Oz binding to hemoglobin (44).
It should not come then as a surprise that active configurations formed by cooperative adsorbate
binding like the zigzag O-decorated steps are present under the reacting conditions of catalysts and
that such effects can be recognized by their nonlinear dependence on adsorbate concentration.
There is also reason to believe that such active configurations are important in high pressure, high
temperature reactors. First-principles statistical mechanics calculations of equilibrium structures
have shown that O-decorated Pd step structures similar to those of this work are thermodynami-
cally stable at high temperatures and pressures (45). We speculate that such active configurations
caused by cooperative adsorbate interactions may play an essential role in many examples of real-
world catalysis.
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