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Abstract—Optical Coherence Tomography (OCT) is a non-
invasive technique for obtaining detailed, cross-sectional images
of coronary arteries. However, cost-effective OCT systems pro-
duce only low-resolution (LR) images. Unsupervised OCT super-
resolution (OCT-SR) presents a cost-effective solution, eliminat-
ing the need for high-resolution (HR) systems or co-registered
LR-HR image pairs. Existing unsupervised OCT-SR methods
formulate the SR task as an image-to-image translation problem,
and use CycleGAN as their backbone. However, CycleGAN is
known to lack translation identifiability that can result in incorrect
SR results. Existing methods often empirically combat this issue
by using multiple regularization terms to incorporate expert-
annotated side information, resulting in complicated learning
losses and extensive annotations. This work proposes a translation
identifiability-guided framework based on recent advances in
unsupervised domain translation. Employing a diversified distribu-
tion matching module, our approach guarantees OCT translation
identifiability under reasonable conditions using a simple and
succinct learning loss. Numerical results indicate that our frame-
work matches or surpasses the state-of-the-art (SOTA) baseline’s
performance while requiring considerably fewer resources, e.g.,
annotations, computation time, and memory.

Index Terms—Optical coherence tomography, Cross-platform
super-resolution, CycleGAN, Identifiability

I. INTRODUCTION

Optical Coherence Tomography (OCT) is widely used in
ophthalmology, cardiology, and dermatology. In particular,
OCT plays a critical role obtaining cross-sectional images
of coronary arteries (particularly for evaluating plaques and
understanding blood vessel responses to intervention [1]), due
to its non-invasive nature and fast data acquisition process.
A preferred imaging technique is the intravascular OCT
(IVOCT) due to portability, and ease of operation [2], [3].
However, the intrinsic hardware limitations of IVOCT systems
often lead to a low optical resolution (10-20µm), hindering the
precision required for detailed medical analysis. On the other
hand, high-resolution (HR) OCT systems such as benchtop
OCT can provide an optical resolution of (2µm). However, the
use of HR systems is limited due to its high cost (⇠$150,000)
and portability challenges [2]. Hence, super-resolving IVOCT
system-produced LR images is of great interest.

Many promising methods for super-resolution of LR OCT
images have been proposed based on supervised deep learning
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[4]–[9]. By “supervised”, it means that these methods require
paired and co-registered LR and HR images, where “co-
registration” means the LR and HR images describe exactly
the same spatial area. However, it is impractical to assume
availability of such pairs, since the two modalities are acquired
by different imaging devices that cannot be run simultaneously.
To circumvent this challenge, many existing supervised meth-
ods synthesize corresponding LR images from HR images by
several downsampling and degradation procedures (see, e.g.,
[4]–[6]). However, such artificial downsampling approaches
only reflect the true relationship between HR and LR images
to a limited extent [2].

A recent work [10] considered OCT super-resolution using
unpaired HR and LR images. The method there adopted the
popular CycleGAN [11] framework, which was proposed in
the context of unpaired image-to-image translation—as super-
resolution can be considered as translating LR images to
HR images. CycleGAN does not need paired or co-registered
images, as they match distributions of the source and target
domains. A notable challenge of CycleGAN-based frameworks
like that in [10] is the lack of “translation identifiability”
[12], [13]. Such a lack of translation identifiability could lead
to swapping of samples between the two domains—e.g., a
pathology present in image from one domain could be missing
in the translated image in the other domain [14]. The existing
works for unsupervised OCT super-resolution (OCT-SR), e.g.,
[10], [15], proposed adding multiple regularization terms on
top of CycleGAN to combat this effect. These terms make
use of human-annotations (e.g., labels for the presence of
layers and segmentation masks) for empirical performance
enhancement and showed promising super-resolution results.

In this work, we propose to employ a recently emerged
unsupervised translation framework in [12] to offer an
identifiability-guided design for OCT-SR. The work [12] pro-
posed a provable remedy to CycleGAN’s non-identifiability
problem. The method there matches multiple distributions
from the source and target domains using auxiliary informa-
tion, instead of using a single distribution matching module as
in CycleGAN. To apply this idea to unpaired OCT-SR, we use
the presence of layered structure as a side information to define
multiple conditional distributions. Empirical evaluation shows
that the performance of the proposed approach is comparable
to that of the state-of-the-art (SOTA) method [10]—but a
number of notable advantages are obtained: First, the proposed



method enjoys provable translation identifiability, reminiscent
of the result in [12]. Second, the proposed approach features
a simpler implementation relative to existing works in [10],
[15]. This leads to substantially improved computational and
memory reduction compared to the SOTA method in [10].
Third, the proposed method requires less extra information
(i.e., the segmentation masks used [10]) to attain similar
performance.

II. BACKGROUND

A. OCT Super-resolution (OCT-SR)
Let L and H denote the space of LR and HR OCT images,

respectively. We use ` and h to denote the random vectors that
are drawn from the distributions of the LR and HR images,
respectively. Suppose that the paired and co-registered LR and
HR images are associated by a translation function f? such
that

h = f?(`). (1)

The function f? can be considered as the desired super-
resolution operator. The goal of the OCT super-resolution
(OCT-SR) task is to estimate f? so that given a test LR image,
`test, one can obtain the corresponding HR image bf(`test),
where bf denotes the estimate of f?.
Paired OCT-SR. In the paired setting, N pairs {`n,hn}

N
n=1

are assumed available. Then, the paired OCT-SR problem can
be tackled by a regression loss:

min
f

(1/N)
NX

n=1

kf(`n)� hnk
2
F ,

which is essentially the main idea in [4]–[9] (with various loss
metrics and regularization terms). However, paired LR-HR
samples are not practical to obtain for OCT images because
different devices are used to capture the LR and HR images.
Due to the hardware limitations, simultaneously capturing the
images of the same object in both HR and LR modalities is
infeasible [10].
Unpaired OCT-SR. In the unpaired setting, only separately
acquired samples {`i}Ii=1 and {hj}

J
j=1 are available. Existing

methods under this setting [10], [15] deal with this problem
by adopting the CycleGAN framework [11]. The CycleGAN-
based translation loss can be summarized as follows:

min
f ,g

max
d`,dh

LCycleGAN := (2)

LGAN(f ,dh, `,h) + LGAN(g,d`,h, `) + �Lcyc(f , g),

where d` and dh represent two discriminators in domains L

and H, respectively,

LGAN(f ,dh, `,h) = (3)
Eh[logdh(h)] + E`[log(1� dh(f(`)))],

LGAN(g,d`,h, `) is defined in the same way, and the cycle-
consistency term is defined as

Lcyc(f , g) = (4)
Eh [kf(g(h))� hk1] + E` [kg(f(`))� `k1] .

The CycleGAN loss obatins an bf such that

bf(`) (d)
=== h, (5)

i.e., an bf that matches the distribution of bf(`) and that of
h, and

(d)
=== is used to denote the equivalence between two

distributions. This bf is potentially of interest as f? also attains
the same distribution matching. However, a critical issue of
CycleGAN and its variants lies in the lack of translation iden-
tifiability. Mainly, besides f?, there are (an infinite number of)
other translation functions bf that can attain (5) [12], [13].
When CycleGAN outputs bf that is not f?, then a wrong
translation bf(`i) 6= f?(`i) may occur.

B. Existing Methods for Unpaired OCT-SR
The recent work Cross-Platform Structure-Aware GAN

(CSPA-GAN) [10] leveraged side information regarding pres-
ence/absence of layered structure and the subsequent decom-
position into individual layers (i.e., intima, media, and adven-
titia layers) to regularize the basic CycleGAN framework.

To be precise, the unpaired dataset is augmented
with expert annotations to obtain {(`i, u

(`)
i ,k(`)

i )}Ii=1 and
{(hj , u

(h)
j ,k(h)

j )}Jj=1, where u(`)
i and u(h) are binary labels

representing layer/non-layer structure and k(`)
i and k(h)

j are
the corresponding layer masks. The translation functions, f
and g, are decomposed into (fE, gE) and (fD, gD), which
are the encoders and decoders such that f = fD � fE and
g = gD �gE, respectively. Two additional neural networks are
introduced for each translation functions: the neural networks
cf , cg and sf , sg for classification of layer/non-layer structure
and segmentation of different layers, respectively. Their loss
function can be written as follows:

LCPSA = LCycleGAN + �2Lseg + �3Lcls + �4Lemb + �5Lid,

where, using CE to denote the cross-entropy loss, and Lseg,
Lcls, Lemb, and Lid are expressed as follows

Ek(`),`,k(h),h

h
CE(sf (fE(`),k

(`)) + CE(sg(gE(h),k
(h))

i
,

Eu(`),`,u(h),h

h
CE(cf (fE(`), u

(`)) + CE(cg(gE(h), u
(h))

i
,

Eh,` kgE(f(`))� fE(`)k1 + kfE(g(h))� gE(h)k1 ,

Eh,` kg(`)� `k1 + kf(h)� hk1,

respectively. The terms Lseg and Lcls encourage the latent
representations to encode the class and layer information,
respectively. The term Lembd makes the latent embeddings
similar for the source and translated images. Finally, the
term Lid is called the identity loss, and is widely used as a
regularization [11] that has been observed to improve training
stability [16].

The CSPA method in [10] enjoyed empirical success and
achieved state-of-the-art (SOTA) results for the unpaired OCT-
SR task. Nonetheless, a number of challenges remain. First,
in theory, the issue of translation non-identifiability could still
happen, as the regularization terms do not ensure provable
identifiability of f?. Second, Lseg relies on the availability of



the segmentation masks for layered images. Obtaining such
masks is a much more challenging annotation task compared to
obtaining the binary labels, u(`), u(h). The Coronary-GAN in
[15] also has similar challenges. To address these challenges,
in the next section, we propose a simple modification to
CycleGAN loss, which ensures that f? is correctly estimated
without using the segmentation masks.

III. PROPOSED APPROACH

A. Preliminaries

It was noticed in [12], that the reason for translation non-
identifiability of CycleGAN was due to the existence of the
so-called “measure preserving functions” (MPF) for the image
distributions, i.e., p(`) and p(h) in our case. A non-identity
function m` : L ! L is called a MPF for p(`) if m`(`)

has the same distribution as `, i.e., m`(`)
(d)
=== `. Under the

existence of such m`, a new function f can be constructed
as f := f?

�m`, where � represents composition, which can
also achieve minimum CycleGAN loss (2). Hence, optimizing
CycleGAN loss may result in estimating bf = f instead
of the true f?. A simple example is as follows: suppose
p(`) = N (µ,�2). Then the function m`(`) = �`+2µ would
be an MPF for p(`) since m`(`) has the same distribution
(N (0,�2)) as that of `.

The key idea in [12] is to consider multiple conditional
distributions {p(`|u = ut)}Tt=1 and {p(h|u = ut)}Tt=1, defined
over different assignments of the so-called auxiliary variable
u. In our running example of Gaussian distributions, consider
T = 2, and p(`|u = u1) = N (µ1,�2) and p(`|u =
u2) = N (µ2,�2). Then, although m(1)

` (`) = �` + 2µ1 and
m(2)

` (`) = �`+2µ2 are individual MPFs for p(`|u = u1) and
p(`|u = u2), respectively, we cannot find a unified function
m` that is the MPF for both conditional distributions. Based
on this observation, the work [12] proposed to match multiple
distributions of h|u=ut and f(`)|u=ut , 8t 2 {1, . . . , T},
instead of just matching the pair of p(h) and p(f(`)) as in
the original CycleGAN loss (2). The work [12] proved that if
the conditional distributions are “diverse” enough, bf is more
likely to be f?.

The resulting loss function is a simple modification of
the CycleGAN loss where LGAN is replaced by LDGAN as
follows:

LDGAN(f ,dh, `,h) =
TX

t=1

Pr(u = ut)⇥
�
Eh|ut

[logdh(h, ut)]

+ E`|ut
[log(1� dh(f(`), ut))]

�
, (6)

where we re-defined dh(·, ut) to denote conditional discrimi-
nators that also take in ut as an argument. In practice, {ut}

T
t=1

could correspond to different attributes or categories/labels of
the samples. Hence, {p(`|u = ut)}Tt=1 and {p(h|u = ut)}Tt=1

could correspond to different (overlapped) subsets of data with
corresponding attributes/labels.

B. Application to OCT Super-resolution
In order to apply the loss function (6) to unpaired OCT-

SR, we need to define auxiliary variables {ut}
T
t=1, such that

they induce diverse conditional distributions. We also hope
that {ut}

T
t=1 are easy to obtain in practice. To that end, we use

the presence of layered structure as u, i.e., u1 =“layered”
and u2 =“non-layered”, with T = 2—which is already
available in the OCT dataset of [10]. With this, the overall
loss function L can be expressed as follows:

L = LDGAN(f ,dh, `,h) (7)
+ LDGAN(g,d`,h, `) + �Lcyc(f , g).

The most attractive feature of the proposed loss function (7) is
that the solution to (7) correctly identifies the f? under some
reasonable conditions:

Theorem 1 Assume that there exists a deterministic contin-
uous translation function f? between the LR and HR OCT
images as described in (1). Also assume that f? is invertible.
Let p(`|u = ut) > 0, 8` 2 L, t 2 {1, 2}. Assume that for any
disjoint and open sets A,B ✓ L, there exists u(A,B) 2 {1, 2}
such that

Z

A
p(`|u = u(A,B))d` 6=

Z

B
p(`|u = u(A,B))d`.

Then the solution of (7), bf , correctly identifies f?, i.e., bf = f?

almost everywhere. Same statements also hold for bh.

The proof of Theorem 1 directly follows that of [12, Theorem
1]. Theorem 1 asserts that when the distributions of layered
(u = u1) and non-layered (u = u2) OCT images are
diverse, i.e., at least one of {p(`|u = ut)}2t=1 assign different
probabilities to different subsets A and B of LR images, then
(7) correctly recovers the true f?. Note that for any two pairs,
(A,B) and (A0,B0), one could have u(A,B) 6= u(A0,B0). This
makes the condition easier to satisfy.

Remark 1 Besides the identifiability guarantees, a notable
advantage of the proposed loss lies in its relative simplicity:
It does not involve multiple regularization terms as in existing
works [cf. LCPSA]. Therefore, training and tuning could be
more efficient in practice. The proposed method also does
not require the information of masks (but it was used in Lseg

of LCPSA), which is much harder to acquire than the layer
annotations.

IV. NUMERICAL RESULTS

In this section, we demonstrate the efficacy of the proposed
approach for super-resolving real low-resolution OCT images.

A. Dataset
We use the HR and LR OCT coronary images collected by

[15] and [10]. There are a total of 104 LR images and 104
HR images that have 512 ⇥ 512 pixels. The HR images are
collected by a Thorlabs Ganymede commercial OCT system
(whose axial and lateral resolutions are 3µm and 8µm, all in



TABLE I
FID AND COMPUTE COST OF ALL METHODS.

Method FID (#) Memory Run-time / epoch
(GB) (#) (seconds) (#)

CycleGAN 119.03 ± 8.00 14.30 13.84
Coronary-GAN 127.94 ± 2.50 23.72 21.59

CPSA-GAN 92.09 ± 6.64 37.70 37.77
Proposed 84.46 ± 3.31 25.84 21.17

air). The LR images are collected by a Lumedica OQ Labscope
OCT system (where the axial and lateral resolutions are 7µm
and 18µm, all in air). The numbers of layered and non-layered
LR and HR images are both 52. We randomly split the dataset
into 70 training images and 34 testing images. Additionally,
we randomly flip the images horizontally and vertically as data
augmentation strategy to mitigate potential over-fitting issue
due to small the sample size.

B. Setting
We follow a similar neural architecture and the hyperparam-

eter settings as suggested by [10]. Mainly, the generator archi-
tecture is the same as that in [10], except that we remove the
classifier and segmentation mask estimating neural networks.
We design our conditional discriminators by converting the
discriminator in [10] into a multi-task discriminator [17] by
modifying the last layer to have two output channels instead of
one. Specifically, let wh : H ! R2 denote the aforementioned
neural network with two output channels. We have

dh(h, u) =

(
[wh(h)]0 if u = u0

[wh(h)]1 if u = u1.

We use Adam [18] with an initial learning rate of 0.0001 with
a batch size of 2 for 3000 epochs. We also use the identity loss
Lid [11] as an additional regularization for enhanced stability.

C. Evaluation Metrics and Baselines
Since paired LR-HR images are not available for testing

super-resolved images with the expected high-resolution im-
ages, we use reference-free evaluation metrics to indirectly
assess the translation quality and validate our theoretical
claims. Mainly, we use the Fréchet Inception Distance (FID)
[19] to evaluate the quality of the super-resolved images.
FID measures the distribution divergence between the super-
resolved and HR images in the representation space of a pre-
trained neural network. In our context, a lower FID means
that the translated LR image is better matched with the
HR distribution—which is more preferred. Additionally, we
make qualitative observation of the super-resolved images to
assess the translation performance. Finally, we also observe the
computational resources used by all methods, as computational
efficiency is an important consideration for network training
in low-resource settings.

We use the unpaired OCT super-resolution methods,
namely, Coronary-GAN [15], and CPSA-GAN [10] as our

Fig. 1. A sample of super-resolution results from all methods.

main baselines. We also present the result of the plain-vanilla
CycleGAN [11] as a reference.

D. Results
We run three-fold cross validation and observe the average

result over the 3 test sets. Table I shows the quantitative results
for all methods. One can see that the proposed method attains
the smallest FID which suggests that the super-resolved images
are very similar to HR images. The SOTA method CPSA-GAN
also works well, with quite close FID scores. Nonetheless,
the proposed method consumes much less GPU memory and
has a smaller runtime relative to CPSA-GAN. Our method
uses 25.84GB memory, which is more than 30% reduction
from that of CPSA-GAN. The runtime for an epoch of our
method is 44% less than that of the SOTA method. These show
the advantage of our identifiability-guided design: It attains
comparable translation quality with the SOTA method but uses
considerably less computational resources.

Fig. 1 shows some qualitative results. One can see that
the proposed method maintains structural similarity of the
super-resolved images with the LR images. The results are
comparable to CPSA-GAN. Both our method and CPSA-
GAN perform better than CycleGAN and Coronary-GAN in
terms of visual quality. Notably, our method did not use the
segmentation masks as used in CPSA-GAN. This shows that
translation identifiability-guided designs can potentially reduce
the annotation efforts or the amount of extra information to
attain SOTA performance.

V. CONCLUSION

In this work, we proposed a translation identifiability-guided
method for super-resolution of OCT images. By matching mul-
tiple conditional distributions induced by the presence/absence
of the layered structure in coronary images, we build a
translation framework can provably identify the ground-truth
translation function under reasonable conditions. The resulting
method is a simple modification of the original CycleGAN
objective and only requires minimal side information (i.e.,
layered/non-layered attribute), which does not use excessive
masking annotations as in a SOTA baseline. Numerical and
qualitative results on real coronary images show that the
proposed method can match the performance of the SOTA
baseline—but uses much less side information and computa-
tional resources.
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