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ABSTRACT

Simplex component analysis (SCA) aims to estimate the ver-
tices of the convex hull where data samples reside in. SCA finds
various applications in signal processing, e.g., hyperspectral un-
mixing and noisy label learning. Recent works proposed to tackle
SCA from a probabilistic viewpoint using variational inference (VI)
tools, which fends against noise more effectively relative to the de-
terministic counterparts. However, the computational efficiency of
VI for SCA hinges on the use of the Dirichlet variational posterior.
Such variational posterior appears to lack expressiveness—making
the SCA performance limited if the true posterior is complex. This
work proposes to employ a logistic-normal variational posterior,
which exhibits enhanced expressive power. To circumvent the
computational bottleneck, a neural representation-based inference
algorithm is proposed—which exploits a connection between the
logistic-normal distribution and variational auto-encoding. Numeri-
cal experiments using simulated and semi-real data are conducted to
showcase the effectiveness of our algorithm design.

Index Terms— Simplex component analysis, maximum likeli-
hood, variational auto-encoder, hyperspectral unmixing

1. INTRODUCTION

Simplex component analysis (SCA) aims to identify the latent factors
of a structured linear mixture model. There, the data samples reside
in a simplex whose vertices are the columns of the basis matrix. SCA
arises in a wide spectrum of applications, e.g., hyperspectral unmix-
ing [1, 2], spectrum sensing [3], and noisy label learning [4, 5]; see
more in [6,7].

Theories and methods of SCA have been heavily studied in
the literature. A large number of approaches take a determinis-
tic viewpoint—treating SCA as a structured matrix factorization
problem; see, e.g., [8—12]. Many of these methods have elegant
identifiability guarantees of the sought latent factors [6]. How-
ever, these approaches often require nontrivial care to handle noise
via regularization design and hyper-parameter tuning. Probabilis-
tic SCA was also considered in the literature; see, e.g., [13-18].
These methods are often more versatile in dealing with uncertainties
brought by noise—e.g., via choosing proper priors to avoid agnostic
regularization parameter tuning. However, many of the probabilistic
methods (e.g., [13, 14]) resort to Bayesian inference using compu-
tationally demanding algorithms (e.g., Markov chain Monte Carlo
(MCMC) methods) to accommodate the structural constraints of
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SCA. Identifiability of the target latent factors was also unclear in
early developments of probabilistic SCA.

Recently, an alternative probabilistic framework advocated us-
ing a maximum marginal likelihood (MML) viewpoint to tackle
SCA [16-18]. Unlike the early Bayesian SCA methods, the MML-
based approach was shown to admit asymptotic identifiability of
the latent factors of the SCA model [17]. More importantly, the
MML formulation allows to design a computationally lightweight
variational inference algorithm (VIA)—by carefully choosing the
Dirichlet distribution as the variational posterior. However, as a
trade-off, the use of such a Dirichlet variational posterior also ap-
pears to be the limiting factor of the approach’s modeling power.
The reason is that the Dirichlet distribution has limited tunable pa-
rameters and thus lacks expressiveness. Hence, the ground-truth
posterior may not be approximated well by the variational posterior,
which could degrade the VIA’s performance.

This work revisits the MML framework for SCA and proposes
to employ the logistic-normal (LN) distribution as the variational
posterior. Notably, the LN and Dirichlet distributions both model
random vectors whose supports are the probability simplex, but the
former admits more tunable parameters, leading to arguably stronger
expressiveness. Nonetheless, using the LN distribution makes the
algorithmic structure in [17] no longer valid—which relied on the
Dirichlet distribution for efficiency. To overcome this challenge,
we propose to exploit a connection between the LN distribution and
the variational auto-encoder (VAE) [19]. Using the reparameteriza-
tion trick and neural representations of the key parameters of the LN
model, we design an efficient algorithm to approximate the MML.
We show the effectiveness of our algorithm using numerical exam-
ples in hyperspectral unmixing.

2. BACKGROUND

SCA considers the following linear mixture model (LMM):
yt:A8t+Ut, t:L.,.,T, (1)

where s; € A := {s € RY|1Ts = 1}, A € RM*V s a full
column-rank basis matrix, and v; represents the noise. Geometri-
cally, Eq. (1) means that y; resides in a simplex whose vertices are
ai,...,an, if v, is absent. SCA aims to identify the unknown la-
tent factors A and {s;}i—, from the data samples {y }1—;.

SCA naturally arises in many signal processing and machine
learning applications. For example, SCA has been widely used in
hyperspectral unmixing [1,2], wherein each pixel of a hyperspectral
image (i.e., y:) is modeled as a weighted combination of spectral
signatures (endmembers) of different materials (i.e., ai,...,an).
The elements of the combination coefficient vector s; correspond
to the abundances of the endmembers in pixel y;. In topic model-



ing [10,20], y:, a; and s; stand for the term-frequency represen-
tation of the tth document, the probability mass function of the ith
topic, and the proportions of the topics constituting the ¢th document,
respectively; see more applications in [6, 7].

2.1. Existing SCA Approaches

Many early SCA approaches took a deterministic viewpoint. This
viewpoint typically leads to exploitation of the convex geometry in
(1) and (implicit or explicit) matrix factorization (MF)-based for-
mulations and algorithms [1,2]. Some of these methods have al-
gebraically simple algorithmic structures and elegant identifiability
analysis, under relatively ideal conditions, e.g., that the so-called
pure pixels exist and that the noise is absent [21-24]. When more
critical scenarios are considered, a typical formulation is as follows:
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where S = [s1,...,sr], and r;(+) for i« = 1,2 are regularization
terms driven by different purposes (e.g., promoting model identifia-
bility and/or enhancing physical interpretability of the estimated A
and S). The regularization can take various forms; see, e.g., [9,
10, 25, 26]. Such MF methods can be effective, but often involve
nontrivial efforts to choose regularizers and to tune the associated
parameters.

Probabilistic SCA was also considered in the literature [13—-15].
The probabilistic approaches can flexibly incorporate noise. More
importantly, these methods can sidestep the agnostic pain of param-
eter tuning via choosing proper priors for the latent factors and the
noise. However, a notable downside of the classical probabilistic
SCA approaches lies in their heavy computational load, as they often
use resource—demanding Bayesian inference methods (e.g., MCMC)
to accommodate the structural constraints of SCA [13, 14]. More-
over, the early Bayesian inference based SCA developments rarely
consider identifiability—as the notion of identifiability is not clearly
defined in this line of work. The more recent probabilistic SCA ap-
proaches [16—18] took an MML perspective. This framework treats
A as a deterministic parameter and assigns priors to s; and vy, Le.,

Y :A81+’Ut, St ’\JD(]_)7 V¢ NN(O,U?)I) (3)

Here, D(1) = (N — 1)! - 1a(s) denotes the uniform Dirichlet dis-
tribution, in which 1A (+) is the indicator function of the probability
simplex. Under this setting, the SCA problem can be tackled via
solving the MML estimator:

T
_ 1
A = argmax ; log p(ys; A), @

where p(y:; A) = [ p(ys|se; A)p(st)ds: is the marginal likeli-
hood. Like the classical probabilistic SCA methods, the MML ap-
proaches spare the efforts of manually picking regularization terms
and hand-tuning the regularization parameters. In addition, it was
shown in [17] that solving (4) identifies the ground-truth A up to
column permutations, under the conditions that infinite observations
are available. This identifiability result is much desired in the context
of probabilistic SCA—as it attests to the soundness and consistency
of the estimator, even in the presence of noise.

2.2. Challenges

In [17], a VIA was designed to handle the MML in (4). The idea is
to find a “tractable” lower bound of log p(y:; A) by introducing a
surrogate posterior g:(s¢) (which is also called the variational pos-
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Fig. 1: Posterior matching using Dirichlet g; (left) and LN g (right)
in an N = 3 case for six different y;’s. HDA of the ground-truth
posterior: colored contour in solid lines. More settings are in Sec. 4.

terior). By the Jensen inequality, we have

log p(y:; A) = log Es, ~q, [P(yt|5:; A)p(st)/qi(st)]
> Esyng [logp(ye, si; A) —logqi(se)]  (5)

=L(A, q; Y)
Then, a lower-bounding surrogate function of the MML is
1 o
A,glg%,w Lr(A,{q:}) == T tzzlé(A, qt;Yt), (6)

where D is a chosen family of distributions with support A. In [17],
the variational posterior family D was chosen to be the Dirichlet
distribution. This way, ¢: has analytical moments, thereby making
the computation of (6) tractable.

However, the choice of D also brings challenges. As mentioned,
q: € D acts as the variational posterior, which is supposed to
tightly approximate the true posterior p(st|y:; A). This is because
the equality in (5) holds if and only if

qi(st) = p(stlys; A) X 0o, (Ye — As)Ia(se), @)

where ¢, denotes a zero-mean Gaussian distribution with vari-
ance o2, and 1a(s) is the indicator function as defined before.
Selecting D as the Dirichlet family faces challenges in attain-
ing/approximating (7). To explain, recall that for the Dirichlet
distribution D (), the mean and the covariance are both determined
by « [27]. Hence, the shape of the high-density area (HDA) of
the distribution (related to the covariance) and the mode location
(related to the mean) are dependent—both determined by a. As o
is the only tunable parameter, the variational posterior lacks flexi-
bility/expressiveness to effectively match the ground-truth posterior
in (7), especially when the HDA of p(s¢|y:; A) exhibits complex
shapes; see illustrations of the HDAs and mode locations of the
variational and ground-truth posteriors in Fig. 1(a). Such lack of ex-
pressiveness of D() turns out to be the major performance-limiting
factor of the VIA in [17].

3. PROPOSED APPROACH

Our interest lies in enhancing the performance of the MML-based
probabilistic SCA. To this end, we propose to replace the Dirichlet
variational posterior in [17] by the LN distribution [28,29]:

G €D = {q= LN (D)}, ®)
where LN (s;p,X) = mﬁ eXP(_%{log(S;NN) -

pr'zt {log(iﬁ—NN) — p}) is the PDF of the (p, X)-parameterized
LN distribution, with s_n being a subvector containing the first




N — 1 elements of s. Here, we use diagonal covariance ¥ =
Diag(o). The support of the LN distribution is the probability
simplex [28, 29]—which is the same as that of the Dirichlet distri-
bution. Unlike D(ex), which is controlled by a single parameter
vector a € RY, the LN distribution is parameterized by two sets
of parameters (i.e., p and 3). This helps represent the variational
posterior with various HDA shapes and mode locations in a flexible
way, as the mean and variance do not affect each other. Conse-
quently, ¢ € LN exhibits enhanced expressiveness and can better
approximate complex ground-truth posteriors; see Fig. 1(b). Such
enhanced expressiveness is expected to improve the performance of
the VIA in the presence of complex p(st|y:; A).

3.1. Computational Bottleneck

Recall that the VIA approach in [17] hinged on the structure of D (cx)
to come up with a lightweight algorithm for solving (6). This is
because using D = D() allows to express 7 (and thus Lr) in
(6) with an analytical form; see [17] for details. The use of D =
LN breaks down the nice algorithmic structure—and thus a different
algorithm for handling the MML is needed.

In [17], a brute-force method was also used to evaluate L1 in

the cases where D is not specified. There, the importance sampling

approximation (ISA) approach was employed. ISA approximates ¢
using a large amount of independent samples, i.e.,

R

1
= > (logp(ye, si; A) —logqu(s;)),  (9)
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where {s}}f*, is drawn from a distribution q;, typically q; o
Yo, (Yt — Ast)1a(st). This can be realized using rejection sam-
pling or the MCMC methods [30,31]. However, generating useful
samples under structural constraints of SCA is a highly nontrivial
task. For example, rejection sampling tends to reject more than
99.9% of the samples when N > 10 [17], making this approach in-
feasible even for a moderate V. In the next subsection, we will show
that using D = LN together with a trick from the VAE literature
allows us to approximate (9) in a sample-efficient way.

3.2. Probabilistic SCA via VAE

Our approach starts by noticing that the LA/ class is parameterized
by (p, 3); see (8). These are the same parameters as those of the
multivariate Gaussian distribution. This structure allows us to use the
reparameterization trick that originated from the VAE literature [19]
to simplify computation. To see this, recall that we aim to approxi-
mate /. by (9). Our idea is to use the following representation of the
samples of ¢;:

sl =g+ o 0e), e ~N(OI), (10)
Wl_ﬁﬁ[ez; 1] = softmax([z; 0]) denotes the
additive logistic transformation. Such a transformation of s from
an auxiliary variable € with simple distribution is termed as repa-
rameterization [19]. The benefit of doing so is twofold: First, the
reparameterized s; is a differentiable function w.r.t. all the key pa-
rameters p: and o+, which will be useful for designing simple gradi-
ent descent-type algorithms. Second, the reparameterization allows
us to sample s; via sampling the Gaussian variable €; —without vi-
olating the structural constraints on s;. That is, using such logistic
transformation g, the sampled s; still lies in the probability simplex
and follows the LN distribution [28]. This makes generating legiti-
mate samples within the probability simplex fairly easy.
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Fig. 2: Neural network-based implementation of VASCA.
Algorithm 1 VASCA

Input: Y, 02, N
1: initialize A and ¢
2: for epoch =1,...,

num_epoch do

3: for i =1,..., num_batch do
4: YY" < i-th minibatch of Y’
5: draw R samples €} from N'(0, I), V¢
6: calculate loss L1, (A, ¢¢; Y")
7: update (A, ¢) using Adam optimizer
8: end for
9: end for
Output: A, ¢

To attain an efficient algorithm, we use a neural representation
for g, ie.,
@ = ap(yr) = LN (1o (1), o (yr)), (an

where ¢ collects all the network parameters, and 1 (y:), Xp(ye)
are two neural networks mapping y; to its “generating parameters”.
This mapping is often called the encoder in the literature. Using
neural networks to represent the encoder is considered reasonable, as
the neural networks are universal function representers. The encoder
enables network parameter-sharing across all y;’s, which reduces the
computational load and sample complexity.

With the reparameterization and neural representation, the ex-

pression of 7in (9) is as follows:

(A, qp;y1) RZ( IIyt

where y;i = Asi, Hy(s]) = ((.§:)T27 5 +1"logoy) /2 +
17 logs}: B, = Diag(2). & = log(5H=x) —

[EADY;
N=-Llog(2m) — & log(2mo?) + log I'(N) is a constant. This loss
function gives rise to a special neural network structure as shown
in Fig. 2. The structure is similar to the celebrated VAE in neural
representation learning [19]. Like VAE, our neural network archi-
tecture has an encoding part that maps y; to a latent distribution and
a decoding part that reconstructs y; from the latent domain. Un-
like the classical VAE, our latent embeddings (i.e., s}) are generated
using the LN distribution other than the Gaussian distribution—due
to the probability simplex constraint. More importantly, the classi-
cal VAE’s encoder and decoder are both represented by neural net-
works, but our decoder only has a linear operator A. This is because
in probabilistic SCA the decoder part corresponds to y; = Asj,
and is induced by the log p(y:, sf; A) term in (9).

The loss function (12) can be tackled using any off-the-shelf
neural network optimizers, e.g., the Adam optimizer [32], since the
first-order derivative (or sub-derivative, depending on the neural net-
work architecture) of the objective function exists under the repa-
rameterization and neural representation; see Algorithm 1, which is
referred to as the VAE-based SCA (VASCA) algorithm.

grll5 + H¢(s1)) +C, (12)

e, and C =



Table 1: Runtime (sec.) of the schemes in synthetic experiments.
[SNR@B) [ 10 [ 15 [ 20 [ 25 [ 30 [ 35 |
PRISM 623 | 69.1 | 77.6 | 84.1 | 86.3 | 86.8
VASCA 234 | 232 | 222 | 193 | 172 | 16.1

4. NUMERICAL RESULTS

Synthetic Data Experiment. We first consider a simulation of hy-
perspectral unmixing. The y¢’s (i.e., pixels) are generated follow-
ing (3), with (M, T) = (50,10000) and N = 3. The endmember
matrix A is randomly selected from the USGS library [33]. We
generate s; from the uniform Dirichlet distribution. We remove the
columns with elements larger than 0.8 to make the unmixing prob-
lem more challenging. Zero-mean white Gaussian noise is added.

We use SVMAX [34] and PRISM [17] as baselines. For PRISM,
we employ Adam optimizer with a learning rate 0.05. For VASCA,
we use five equal-size minibatches and set the learning rate of A, ¢
as 0.001 and 0.01, respectively. We use two separate neural networks
to actas e (y:) and X4 (y:). The two networks both have four fully
connected (FC) layers. The layers are all followed by batch normal-
ization. We use the ReLU activation function at the output of each
layer. The numbers of activation functions in the four encoder layers
are 32, 32, 16 and 8, respectively. The output of the last layer is then
reduced to N — 1 dimensions (i.e., the dimensions of p and o) using
a linear combination. To implement VASCA, we use R = 1, i.e., the
most sample-efficient setting. PRISM and VASCA are stopped if the
relative change of A is less than 10~ or the maximum numbers of
epochs exceed 300 and 500, respectively.! We initialize A of all al-
gorithms by SVMAX. To measure the accuracy of estimating A, we
adopt two metrics, namely, the spectral angle mapper (SAM) and the
mean square error (MSE); see [18].

Fig. 1 on Page 2 visualizes posterior approximation by PRISM
and VASCA, respectively. Here, SNR=15dB. Six y:’s posterior dis-
tributions are chosen for illustration. One can see that LN offers a
visually much more accurate estimation of the ground-truth poste-
rior, especially for the covariance (i.e., the ellipsoidal shapes in the
figures). This is consistent with our postulate that the LN distribution
is more expressive than the Dirichlet variational posterior.

Fig. 3 shows the average MSE and SAM of the estimated A
over 100 Monte Carlo trials. The proposed algorithm exhibits the
most favorable performance in terms of estimating A. Specifically,
VASCA outperforms PRISM by visible margins in both metrics un-
der all SNRs under test. This shows the benefit of enhanced express-
ing power in our model.

Table 1 shows the runtime performance of PRISM and VASCA
in various SNR cases. One can see that VASCA is about 3~5 times
faster than PRISM, showing the efficiency brought by using the repa-
rameterization and neural representation.

Semi-Real Data Experiment. Next, we consider a semi-real data
experiment. Our setting follows that in [35]. Specifically, we take
the five endmembers and abundance map extracted from a real hy-
perspectral image, Urban data, as the ground truth A and S. As in
the simulations, we truncate the elements of S so that every entry is
smaller than or equal to 0.8. Then, we convolve each abundance map
using a 9 x 9 Gaussian blurring kernel with variance 22 to enhance
visual realism. The SNR is set to be 25dB via adding zero-mean
Gaussian noise. The data size is (M, T) = (162, 307%). The algo-

Note that running 300 epochs of PRISM costs much more computational
resource than that of running 500 epochs of VASCA, as PRISM performs at
least 30 inner-updates for its variational parameters using a subroutine.

-25 3

SVMAX
PRISM
-26 o5 VASCA
27 SVMAX
B PRISM z .,
z VASCA )
15
-29
-30 1
10 15 20 25 30 35 10 15 20 25 30 35
SNR,(dB) SNR,(dB)

Fig. 3: Synthetic data experiment. The average MSEs (left) and
SAMs (right) of the estimated A by the algorithms.

FCLS  Ground-Truth

PRISM

VASCA

Fig. 4: The ground-truth and estimated abundance maps of the semi-
real Urban image.

Table 2: The performance of the schemes on semi-real data.

| Algorithm H VCA+FCLS [ PRISM [ VASCA ‘
MSEaA | -22.48 -26.32 -32.54
RMSE; | 0.127 0.078 0.053
Time (sec.) | 2.3 115.5 24.0

rithm settings are mostly identical to those in the simulations. The
learning rates are set as (0.01,0.005) for (A, ¢) in VASCA. The
numbers of activation functions of the encoder of VASCA are set
to be 128, 64, 32, 16 for the four layers, respectively. Moreover, we
combine FCLS [36] with SVMAX to estimate .S. For the probabilis-
tic methods PRISM and VASCA, we use the variational posterior
mean as the estimation 8.

Fig. 4 shows the ground-truth and estimated abundance maps of
the five materials. Table 2 shows the quantitative evaluation using
MSE and RMSE (root MSE, defined as = 3"/, \/|[s: — 5:[3/N
after fixing permutation) of the estimated A and S, respectively. We
see that VASCA gives better estimations of both A and S compared
with PRISM. In terms of runtime, VASCA is again about 5 times
faster than PRISM.

5. CONCLUSION

In this work, we proposed a new method to enhance the expressive-
ness of the MML-based SCA approach. To be specific, we advocated
using the LN distribution (instead of the Dirichlet distribution) based
variational posterior to attain more degrees of freedom. Leveraging
a connection between the LN distribution and VAE, we proposed a
reparameterization and neural representation based implementation
to carry out the computation in a sample-efficient way. Numerical
results suggested that the proposed scheme is promising for tackling
the SCA problem in terms of both accuracy and runtime.
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