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Abstract
We propose Conditional Imputation GAN, an extended missing data imputation
method based on Generative Adversarial Networks (GANs). The motivating use case
is learning-to-rank, the cornerstone of modern search, recommendation system, and
information retrieval applications. Empirical ranking datasets do not always follow
standard Gaussian distributions or Missing Completely At Random (MCAR) mech-
anism, which are standard assumptions of classic missing data imputation methods.
Ourmethodology provides a simple solution that offers compatible imputation guaran-
tees while relaxing assumptions for missing mechanisms and sidesteps approximating
intractable distributions to improve imputation quality.We prove that the optimalGAN
imputation is achieved for Extended Missing At Random and Extended Always Miss-
ing At Random mechanisms, beyond the naive MCAR. Our method demonstrates the
highest imputation quality on the open-source Microsoft Research Ranking Dataset
and a synthetic ranking dataset compared to state-of-the-art benchmarks and across
various feature distributions. Using a proprietary Amazon Search ranking dataset, we
also demonstrate comparable ranking quality metrics for ranking models trained on
GAN-imputed data compared to ground-truth data.
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1 Introduction

Missing data is a prevalent data quality issue found in all aspects of data science and
machine learning. Modern data collection technology can often exhibit non-random
gaps in data due to a variety of reasons, e.g., non-response bias. At the same time,
many machine learning models require complete datasets for training, highlighting
the need for missing data imputation methods that are broadly applicable to different
types of datasets characterized by complex missing mechanisms.

1.1 Motivation

Our motivating application is the classic “learning-to-rank” problem for search, rec-
ommendation systems, and information retrieval (Li 2011; Burges 2010). The ranking
dataset has a unique structure compared to panel, time series, or image datasets. It is
characterized by query-groups, where individual results are associated with a query
and ordered by a ranking model, and composite features with non-standard distribu-
tions that will vary both on the query-group and query-result level. Training onmissing
data leads to biased ranking models (Marlin and Zemel 2009) and dropping individual
query-results with missing values is difficult given the ordered nature of ranking data.

A further challenge for imputation in ranking applications is violation of theMissing
Completely At Random (MCAR) (Heitjan and Basu 1996; Doretti et al. 2018) and
Gaussian distribution assumptions favored by classic imputation methods; see Fig. 1.
Ranking datasets can include columns that are always observed, which influences the
probability of missingness of other features, e.g., a product labeled “New” has more
missing feature values due to lack of data.Meanwhile, theMCARmechanism requires
the probability of missingness to be independent of all data values. Amore appropriate
mechanism for ranking datasets would be Missing At Random (MAR), which is less
restrictive and specifies thatmissingness only depends on observed components (Little
and Rubin 2019). Finally, the mechanism is called Missing Not At Random (MNAR)
if missingness depends on unobserved components.

Currently, standard imputation methods such as MICE and MissForest have strict
assumptions on underlyingmissingmechanisms and feature distributions (VanBuuren
andGroothuis-Oudshoorn 2011; Stekhoven andBühlmann 2012). Alternatively, using
prediction methods for missing values requires a custom model per feature as well
as a set of predictors that are never missing; this is near impossible to achieve with
real data. More recent methods (Yoon et al. 2018; Li et al. 2018; Luo et al. 2018),
involving generative models do not necessarily address more complex dataset struc-
tures or account for auxiliary information that influence the underlying data generating
process.

We propose a novel extended missing data imputation method by adapting Con-
ditional Generative Adversarial Networks (CGANs) (Goodfellow et al. 2014; Mirza
and Osindero 2014; Yoon et al. 2018). Our method aims to encompass more com-
plex data structures and missing mechanisms; empirical ranking datasets are a prime
example given its “ordered-grouping” characteristics and heterogeneous distributions
across different query-groups. Furthermore, we definemore realisticmissing scenarios
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Fig. 1 Missing data scenarios under EMAR versus MCAR mechanisms for an observed ranking dataset.
Empirical ranking dataset with always observed columns is an example of EMAR; EAMAR mechanism
generalizes EMAR to the population distribution. See Sect. 2.3.3 for formal definitions

Extended Missing At Random (EMAR) and Extended Always Missing At Random
(EAMAR) based on MAR and show that GAN-generated imputations satisfy condi-
tions for compatible imputations under these new mechanisms.

1.2 Relatedmethods

The GAN architecture is comprised of two competing deep neural nets; the genera-
tor and the discriminator. The generator produces synthetic data by mimicking the
underlying data distribution, and the discriminator tries to distinguish fake and real
data. Training GANs is a balancing act in that neither system should dominate the
other too quickly. A strong generator may lead to mode collapse (Thanh-Tung and
Tran 2020) by memorizing select samples, while a strong discriminator can lead to
near-zero gradients and non-convergence by perfectly classifying samples.

GANs have shown impressive performance in generative tasks, including high-
resolution image generation, text-to-image synthesis, image-to-image translation,
video synthesis, and audio generation/synthesis (Oza et al. 2020; Sheng et al. 2019). A
‘vanilla’ GAN has a tendency to suffer from non-convergence and mode collapse. The
introduction of Deep-Convolutional GANs (DC-GAN) with convolution layers (Rad-
ford et al. 2016) greatly improved the stability of GANs during training and showed
that the generator and discriminator learned a hierarchy of representations. Other tech-
niques for GAN training include featuremapping, batch normalization (Salimans et al.
2016), leaky-relu activation functions (Xu et al. 2015), and modifications of the objec-
tive loss functions, e.g., Wasserstein loss (Arjovsky et al. 2017). Conditional GANs
(Mirza and Osindero 2014) allow for greater control over the modes of generated data
by conditioning on auxiliary information such as class labels.

The Generative Adversarial Imputation Networks (GAIN) algorithm was first
proposed (Yoon et al. 2018) to address this problem under the naive MCAR assump-
tion. This algorithm generated better imputations benchmarked against distributive
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missing data methods such as MICE (Van Buuren and Groothuis-Oudshoorn 2011)
and MissForest (Stekhoven and Bühlmann 2012), and generative methods such as
Expectation-Maximization (EM). These methods are limited by assuming an underly-
ing parametric distribution formissing data (VanBuuren 2018), andMICE in particular
assumes MCAR. Imputation with GANs addresses the gaps in current imputation
methods where the generator strives to accurately impute missing data, and the dis-
criminator strives to distinguish between observed and imputed data while minimizing
the traditional minimax loss function. Applied to ranking, there are two drawbacks:
the restrictive assumption of MCAR missing mechanism and the inability to account
for heterogeneous subgroups with different data distributions.

Other methods are limited to images. Mis-GAN (Li et al. 2018) utilized two sepa-
rate GANs for data and mask (a matrix for indicating missing values) imputation for
images, under various data corruption scenarios. Colla-GAN (Lee et al. 2019) pro-
posed converting the image imputation problem to a multi-domain images-to-image
translation problem, resulting in imputationswith higher visual quality.GAMIN (Yoon
and Sull 2020) specifically targets high missingness levels (> 85%). Non-image data
use cases include imputation for sequential data such as multivariate time series (Luo
et al. 2018; Kim et al. 2020; Guo et al. 2019; Zhang et al. 2021).

1.3 Our approach and contributions

We propose an extended Conditional Imputation GAN with three key contributions:

1. We introduce two newmissing mechanisms, EMAR and EAMAR, that encompass
broader empirical dataset types and provide theoretical guarantees for compatible
imputations via GANs.

2. We propose a Conditional Imputation GAN that allows for flexible imputation
across (i) different data distributions, (ii) heterogeneous subgroups based on aux-
iliary information, and (iii) our new extended missing mechanisms.

3. We illustrate the superior imputation quality of our method against state-of-the-art
benchmarks using open-source Microsoft Research ranking dataset and a propri-
etary 1.8 million query-group Amazon Search dataset.

To our knowledge, there has been no prior work exploring GAN imputation for
machine-learned ranking (MLR) applications. Our method greatly expands the the-
oretical basis for GAN-based imputation methods for complex datasets and missing
mechanisms, and is the first to adapt Conditional GANs for imputation on industry-
scale ranking datasets.

Through empirical evaluations, we showcase the superior imputation quality of our
method against benchmarks using three ranking datasets: a publicMicrosoft Research1

ranking dataset with heterogeneous subgroups, a simulated ranking dataset with exten-
sive feature distributions, and a proprietary 1.8 million query-group Amazon Search
dataset. The Conditional Imputation GAN is particularly effective for imputing data
under non-MCAR scenarios with non-standard distributions, as well as being compu-
tationally efficient for large-scale datasets.

1 Data available at https://www.microsoft.com/en-us/research/project/mslr/.
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As an investigation to downstream application impact, we also train standard rank-
ing models on the imputed data versus the ground-truth data based on a shared target
(e.g., clicks or purchases). We then evaluate standard ranking quality measures such
as Normalized Discounted Cumulative Gain (NDCG) and Mean Reciprocal Rank
(MRR). Our results demonstrate standard ranking models trained on imputed data has
comparable performance to models trained on ground-truth complete data, indicating
potential broader applicability to other business applications that are also impacted by
pervasive data quality (missingness) problems.

2 Methodology

We briefly summarize Conditional GANs and how they can be adapted for imputation
that better reflects non-MCAR missingness and heterogeneous feature distributions
in ranking datasets. New missing mechanisms EMAR and EAMAR are introduced,
and a theoretical analysis is provided for compatible imputations via the Conditional
Imputation GAN.

2.1 Conditional GAN

Standard GANs consist of two adversarial models: a generator G that mimics the true
data distribution pdata and a discriminative model D that predicts the probability that
a sample comes from the true distribution or the generated distribution pG from G
(Goodfellow et al. 2014). The models G and D can theoretically be any non-linear
mapping function, such as deep neural nets, with a variety of tuning parameters and
configurations. This is set-up as a two-player min-max game with value function
V (D,G):

min
G

max
D

V (D,G) = EX∼pdata(X)[log D(X)]

+ EZ∼pZ (Z)[log(1 − D(G(Z)))]
(1)

Suppose that there is auxiliary information Y about the data X . Wemodify the stan-
dard GAN structure by conditioning on Y in both the discriminator and generator, and
combine the input noise pZ (Z) and Y as a joint hidden representation. The resulting
Conditional GAN (CGAN) (Mirza and Osindero 2014) value function then becomes:

min
G

max
D

V (D,G) = EX∼pdata(X) log(D(X |Y ))

+ EZ∼pZ (Z)(log(1 − D(G(Z |Y ))))
(2)

2.2 Conditional Imputation GAN

We introduce the Conditional Imputation GAN structure after briefly summarizing the
GAIN structure2 (Yoon et al. 2018). First we define X = (X1, . . . , Xd) as a random

2 Code available at https://github.com/jsyoon0823/GAIN.
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vector that could take on either continuous or discrete values (ranking features), and
our training data are realizations of X . We define the random vector M with the same
dimensions as X which takes on values in {0, 1}d ; this is the missingness indicator
matrix (Little and Rubin 2019), or mask matrix for short. Define a new random vector
for observed data X̃ as follows:

X̃i =
{
Xi , ifMi = 1
∗, otherwise

(3)

where ∗ represents an unobserved or missing value replaced by noise value Zi . Hence,
M explicitly indicates which values of X̃i are observed (Mi = 1) andwhich aremissing
(Mi = 0).

X̃ , M, and Z are now inputs into the generator G, which will generate an output
vector of imputations X̄ = G(X̃,M, (1 − M) $ Z) of the same dimension as X̃ .
The function $ denotes element-wise multiplication. Note that Z is independent of
all other variables; it can be Gaussian noise but can also be designated otherwise
depending on the dataset. X̄ is a GAN-generated estimate of the true data vector X ,
but we are only interested in the values of X̄ i for which M i = 0, that is, when the
value is unobserved. Hence, the GAN-completed data vector X̂ with imputations from
X̄ is

X̂ = M $ X̃ + (1 − M) $ X̄ (4)

The discriminator D then tries to recover the true M from the completed data vector X̂ ,
by predicting the probability of whether each X̂ i is real (observed) or fake (imputed).
The resulting vector of probabilities is denoted as M̂ = D(X̂). Hence, the goal of the
generator-discriminator pair is to minimize the distance between M and M̂.

Given an arbitrary loss function L, the value function is a two-player min-max
game. Using the cross-entropy loss function gives:

min
G

max
D

V (D,G) = E[L(M, M̂)]

= E[
n∑

i=1

(M i log(M̂ i )+ (1 − M i ) log(1 − M̂ i ))] (5)

However, this set-up is too naive and fails to account for heterogeneity across
different subsets or class labels within many real-world datasets; hence, we propose
adapting Conditional GANs to address these concerns.

Suppose we have auxiliary information Y that is always observed along with data
X̃ that is conditionally missing under EMAR; Y may influence the probability of
missingness or underlying data distribution in other features. We then condition on Y
by feeding X̃ , M, Z, and Y into the generatorG. This will generate an output vector of
imputations X̄ = G(X̃,M, (1−M)$ Z|Y), which we then use to form the completed
data vector X̂ in (4) and feed into the discriminator in order to recover M. The output
of probabilities is now M̂ = D(X̂|Y). Finally, we write the objective function of the
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Fig. 2 Conditional Imputation GAN overview

Conditional Imputation GAN as:

min
G

max
D

V (D,G) = E[L(M, M̂)] = E[L(M, D(X̂|Y))] (6)

Using (6), we expand GAN imputation for empirical ranking datasets by conditioning
on columns that are always observed during training and separating them from the
imputation loss function. See Fig. 2 and Algorithm 1 for details.

Algorithm 1 Psuedo-code for Conditional Imputation GAN
Given mini-batch size nmb
for number of training iterations do

Draw nmb samples (x̃,m, z, y) from X̃,M, Z, and Y
(1) Generator G
Generate imputation x̄ ← G(x̃,m, z, y)
Complete data x̂ ← m $ x̃ + (1 − m) $ x̄
Compute LG = − ∑

(1 − m) $ log(m̂) where m̂ = D(x̂, y)
Update G using Adam optimizer
(2) Discriminator D
Predict m̂ ← D(x̂, y)
Compute LD = −∑[m $ log(m̂)+ (1 − m) $ log(1 − m̂)]
Update G using Adam optimizer

end

2.3 Theoretical analysis

Prior works trying to extend or improve GAN imputation (Lee et al. 2019; Li et al.
2018; Camino et al. 2019; Kim et al. 2020) have all restricted theoretical guaran-
tees for the generated distributions to the Missing Completely At Random (MCAR)
assumption. In practice, this is too restrictive and rarely satisfied by real-world miss-
ing data. Empirically, we often find GAN imputations working quite well for missing
data under MAR or even MNAR, and there is a clear gap between theoretical guar-
antees and empirical results. Here, we aim to close this gap by investigating more
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general conditions on missing mechanisms and extend theories beyond the MCAR
assumption.

In the following analysis, we use small case letters to represent the n independent
realizations of X,M and X̃ as xi = (xi1,, . . . , xid), mi = (mi1,, . . . ,mid) and x̃i =
(x̃i1,, . . . , x̃id), i = 1, . . . , n. For a vector x of dimension d, we use the notation x|m to
represent the subvector of x that corresponds to the positions where the elements ofm
is 1, i.e., the observed data components. Curly brackets within conditional probability
statements are used for readability.

First we state the main theoretical result in Yoon et al. (2018) which we will utilize
to extend the theoretical analysis. A necessary and sufficient condition for X̂ being
generated by an ideal generator is

P
(
X̂ = x

∣∣∣ {H = h,Mi = t}
)
= P

(
X̂ = x

∣∣∣ H = h
)

(7)

for every i ∈ {1, . . . , d}, t ∈ {0, 1}, x ∈ X d and h ∈ H such that P(H = h | Mi =
t) > 0. Here H is a hint mechanism that takes value in the spaceH and it is a random
vector defined by us given M and X̃ . P is the underlying probability measure and to
keep notations simple, we assume, without loss of generality, all the random variables
involved are discrete. Note that this result holds without any assumptions on the joint
distribution of (X,M). Hence, we can utilize this to extend beyond the naive MCAR
assumption.

2.3.1 MAR and AMAR: Missing mechanism

A missing model is the specification of the conditional distribution M|X which gov-
erns the missing data generation process. Amissingmechanism is certain assumptions
made to M|X that can be satisfied by a set of missing models. Three classic types of
missing mechanisms are MCAR, MAR (Missing At Random) and MNAR (Missing
Not At Random) (Little and Rubin 2019). Roughly speaking, MCAR means whether
the data is missing or not is independent of the data, MAR requires the probability
of missingness only depends on the observed data and MNAR allows missingness to
depend on unobserved data. There are some subtleties in the definition of MAR. As
it involves the observed data, do we mean that the assumption is only being made
on our realized sample at hand (x̃i ,mi ), i = 1, ., n or on any future sample that we
may observe? Clearly the latter is a stronger assumption. This has been made clear
and discussed thoroughly in Seaman et al. (2013) and Mealli and Rubin (2015). We
follow Mealli and Rubin (2015) to define MAR as assuming probability of missing-
ness depends only on realized samples, and AMAR (Always Missing At Random) as
depending on any future sample. Formally, we say (X,M) isMAR given the realized
sample (x̃i ,mi ), i = 1, . . . , n if

P
(
M = mi

∣∣∣ {X|mi = x̃i |mi }
)
= P

(
M = mi

∣∣∣ X = x
)

(8)

for any i = 1, . . . , n and x such that x|mi = x̃i |mi .
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(X,M) is AMAR if

P(M = m | {X|m = x|m}) = P(M = m | X = x) (9)

for any m ∈ {0, 1}d and x ∈ X d . By the property of conditional probability and the
fact that {X = x} implies {X|m = x|m}, (8) and (9) are equivalent to

P(X = x | {X|mi = x̃i |mi ,M = mi })
= P(X = x | {X|mi = x̃i |mi })

(10)

and

P(X = x | {X|m = x|m,M = m})
= P(X = x | {X|m = x|m})

(11)

Given a fixed m0 ∈ {0, 1}d , we emphasize here that both conditions do not imply
the conditional independence of X and M given X|m0 which is a much stronger
assumption that requires

P(X = x | {X|m0 = x|m0 ,M = m})
= P(X = x | {X|m0 = x|m0})

(12)

for any m ∈ {0, 1}d and x ∈ X d . Many different missing mechanisms can be defined
through those conditional probability equations where different mechanisms corre-
spond to different restrictions on the set of variable values that satisfy the equations.
See Doretti et al. (2018) for more examples.

2.3.2 Compatible imputations

Prior work (Yoon et al. 2018) showed that, under the MCAR assumption, the ideal
imputation X̂ has the same distribution as the original data. This is perfect but may be
too stringent if we only care about the imputation quality for the missing data given
the observed data. Thus, we define two compatible conditions for imputation. We say
X̂ is a compatible imputation for the missing data (x̃i ,mi ), i = 1, . . . , n if

P(X̂ = x | {X|mi = x̃i |mi ,M = mi }) =
P(X = x | {X|mi = x̃i |mi ,M = mi })

(13)

for any i = 1, . . . , n and x such that x|mi = x̃i |mi . We say X̂ is always compatible
for imputing (X,M) if

P(X̂ = x | {X|m = x|m,M = m}) =
P(X = x | {X|m = x|m,M = m}) (14)
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for any m ∈ {0, 1}d and x ∈ X d . The compatible conditions are really what we desire
for imputations. We will show that the GAN imputation X̂ still enjoys compatibility
for many missing mechanisms beyond MCAR.

2.3.3 EMAR and EAMAR: extendedmissing mechanisms

We formally define a new missing mechanism that we call EMAR (Extended Miss-
ing At Random). Formally, we say (X,M) is EMAR given the realized sample
(x̃i ,mi ), i = 1, . . . , n if

P
(
X = x

∣∣∣ {X|mi = x̃i |mi ,M = m}
)

= P
(
X = x

∣∣∣ {X|mi = x̃i |mi }
) (15)

for any i = 1, . . . , n, x such that x|mi = x̃i |mi and m = mi or 1. (X,M) is EAMAR
(Extended Always Missing At Random) if

P(X = x | {X|m = x|m,M = m′})
= P(X = x | {X|m = x|m})

(16)

for any x ∈ X d and m′ = m or 1. Examples of EMAR or EAMAR are much more
prevalent in real datasets instead of MCAR, e.g., a ranking dataset with query-group
columns that are always observed. For both missing mechanisms, we can then state:

Theorem 1 EMAR on (X,M) giventhe realized sample (x̃i ,mi ), i = 1, . . . , n is
a sufficient condition for X̂ being a compatible imputation for the missing data
(x̃i ,mi ), i = 1, . . . , n. EAMAR on (X,M) is a sufficient condition for X̂ being
always compatible for imputing (X,M).

Proof Let I be a uniform random subset of {1, 2, . . . , d} that is independent of
(X,M, X̂). Given I , define the random variable J that uniformly takes value in
{1, 2, . . . , d}\I . Given X̃,M, I, J , we define a pair of hint vectors (H, H̃) :

Hj =
{
X̃ j j ∈ I
# j /∈ I

, H̃ j =
{
Mj j (= J
0.5 j = J

(17)

where # /∈ X and it is different from the symbol ∗ that indicates missing.
We will see that the proof for EAMAR implies always compatible and EMAR for

realization implies compatible for realization is the same.We will focus on the former.
Take any x ∈ X d , m0 ∈ {0, 1}d and let I0 = { j : j ∈ {1, 2 . . . , d},m0 j = 1}. Also
take j0 ∈ {1, 2, . . . , d}\I0. Let h = (h1, . . . , hd) and h̃ = (h̃1, . . . , h̃d) to be

h j =
{
x̃ j j ∈ I0
# j /∈ I0

, h̃ j =
{
m0 j j (= j0
0.5 j = j0
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From (7), we have

P(X̂ = x| {H = h, H̃ = h̃,Mj0 = 0})
= P(X̂ = x | {H = h, H̃ = h̃,Mj0 = 1}).

(18)

Let mt
0 to be the vector that equals m0 component-wise except for mt

0 j0 = t . Note

that the event {H = h, H̃ = h̃,Mj0 = t} is equivalent to {I = I0, J = j0, X j =
x j ,∀ j ∈ I0,Mj ′ = m0 j ′,∀ j ′ (= j0,Mj0 = t}. So we have

P(X̂ = x | {H = h, H̃ = h̃,Mj0 = t})
= P(X̂ = x | {X j = x0 j ,∀ j ∈ I0,Mj ′ = m0 j ′,∀ j ′ (= j0,Mj0 = t})
= P(X̂ = x | {X|m0 = x|m0 ,M = mt

0})
(19)

where the first equality is because of I and J ’s independence with other random
variables. From (18)(19), we have

P(X̂ = x | {X|m0 = x|m0 ,M = m1
0})

= P(X̂ = x | {X|m0 = x|m0 ,M = m0
0})

(20)

By taking all the other j ′0 ∈ {1, 2, . . . , d}\I0 and follow the same procedure, we see
that for any m ∈ {0, 1}d such that m ≥ m0 (componentwise), we have

P(X̂ = x | {X|m0 = x|m0 ,M = m})
= P(X̂ = x | {X|m0 = x|m0 ,M = m0

0})
= P(X̂ = x | {X|m0 = x|m0 ,M = m0})

(21)

On the other hand, for the special case of m = 1, we have

P(X̂ = x | {X|m0 = x|m0 ,M = 1})
= P(X = x | {X|m0 = x|m0 ,M = 1})
= P(X = x | {X|m0 = x|m0 ,M = m0})

(22)

where the first equality holds because given M = 1, X̂ = X and the second one is due
to the EAMAR assumption (16). Thus combining (21), (22), we prove the theorem.

To summarize, we demonstrated the advantages of Conditional ImputationGANby
showing the compatibility of optimal imputations under extendedmissingmechanisms
EMAR and EAMAR. For the observed missing patterns, EMAR requires that the data
distribution conditional on the observed values is the same as if they were not missing.
EMAR is a stronger assumption compare to MAR, but it is much less restrictive than
MCAR. In Theorem 1, we proved that EMAR, which includes a collection of missing
models, is a sufficient condition for compatibility of optimal GAN imputation, and
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Table 1 Synthetic ranking data: feature distribution by category

Books Furniture Beauty Clothes Electronics

Gaussian N (µ, σ 2) N (0, 1) N (1, 1) N (2, 1) N (3, 1) N (4, 1)

LogNormal LN (µ, σ 2) LN (2, 1) LN (1.5, 1) LN (1, 1) LN (0.5, 1) LN (0, 1)

Exponential Exp(λ) Exp(0.5) Exp(1) Exp(1.5) Exp(2) Exp(2.5)

Poisson Poisson(λ) Pois(2) Pois(4) Pois(6) Pois(8) Pois(10)

Uniform Uni f (a, b) Uni f (0, 2) Uni f (0, 4) Uni f (0, 6) Uni f (0, 8) Uni f (0, 10)

Fig. 3 Synthetic—ranking feature dist. by category. Ranking features are simulated to follow both discrete
and continuous distributions commonly found in empirical ranking datasets

EAMAR is a sufficient condition for always compatibility. Whether the optimal GAN
imputation is compatible under MNAR remains open for future work.

3 Simulation: imputation quality by data distribution

3.1 Data andmethodology

To illustrate how our method performs across a variety of data distributions, we first
simulate a 10K query-group ranking dataset, with feature columns sampled from 5 dis-
tributions: Gaussian, LogNormal, Exponential, Poisson, Uniform. Each query-group
has 64 query-results and is associated with a hypothetical product type (“Category”)
that is always observed, in accordance with the EMAR and EAMAR assumption.
The 5 types are Books, Furniture, Beauty, Clothes, Electronics. The product category
determines the true distribution parameters from which the ranking features are sam-
pled; see Table 1 for details and Fig. 3 for how ranking feature distributions vary by
product type.
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Wewant to compare imputation quality asmeasured byRMSEacross fourmethods:
Conditional Imputation GAN, GAIN,MICE, andMissForest. Given that the Category
column will always be observed, we select four levels of missingness (5%, 10%, 20%,
30%) and randomlymask feature values in each query-group asmissing; this is aligned
with the EMAR missing mechanism.

For each method and missingness level, 10 imputations of the simulated ranking
dataset are generated. In TensorFlow3, each GAN replicate was trained for 50 epochs
with mini-batch size 256 after standardizing the data to zero mean and unit variance;
theAdam optimizer (Kingma andBa 2015) is usedwith default learning rate 0.001. No
dropout was used given the moderate data size. The generator and discriminator both
utilized a standard architecture of fully-connected layers with leaky-relu activation. In
R, default settings of MissForest and MICE are used, with only a 10% random sample
used for MissForest given the computational cost. We then compute average RMSE
and standard errors over imputations across all ranking features and also separately
(column-wise) for features from each distribution. See Table 2.

3.2 Simulation results

Conditional ImputationGANyields the best RMSEoverall and for each type of data
distribution, performing fairly consistently for each feature. Our method performed
particularly well for Gaussian, Poisson, and Uniform distributed features; the slightly
higher RMSE for Log Normal and Exponential distribution is due to sampling from
uniform initial starting values for the two right-skewed distributions, and is mitigated
with longer training time. In practice, initial values can also be sampled from the
distribution of observed values for each feature. In contrast, both of the non-GAN
benchmarks MICE and MissForest have reasonable RMSE for Gaussian and Expo-
nential distributions, but perform poorly with Log Normal and Uniform distributions.
Furthermore, these two benchmarks had higher standard errors across distributions, an
indication that GAN-based methods provide more robust imputations overall. These
results validate the flexibility of Conditional GAN-based imputations given the ground
truth of different underlying distribution by category. Conditioning on auxiliary infor-
mation greatly improved imputation quality under non-MCAR mechanisms.

4 MSR ranking data: imputation quality by heterogeneous subgroups

4.1 Data andmethodology

To demonstrate how the Conditional Imputation GAN accounts for heterogeneous
subgroups within ranking data, we utilize the 10K query-group ranking dataset
(MSLR-WEB10K) (Qin and Liu 2013) made available from Microsoft Research.
The Fold 1 dataset is split into roughly 80% training (∼724K rows) and 20% test-
ing (∼242K rows), with 136 features. Each query-group represents a search query
in Microsoft Bing, and each row represents one webpage url returned as a poten-

3 Code available at https://github.com/gdeng96/cond-imp-gan-ranking.
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Fig. 4 MSR—Ranking Feature 106 distribution by Query Class. Note that tail queries display a lower
concentrated peak between 0.05 and 0.1 and greater variance with more observations skewed to the right.
Conditioning on Query Class allows for imputation with respect to these subgroups

tial match. Here note that each query-group can be categorized as Head, Body, or Tail
queries depending on the number of urls found; this feature will be henceforth referred
to as “Query Class” and is also an always observed column in practice. Head and tail
queries usually indicate very different subgroups and ranking feature distributions; see
Table 4 for an example. Query Class also influences the probability of missingness.
For example, in an e-commerce setting, tail queries indicate rare or newly-launched
items with higher probability of missing values due to lack of data. This would vio-
late the naive MCAR setting and is an example of the extended EMAR and EAMAR
mechanisms. Imputation quality will again be measured by RMSE averaged across
multiple imputations (Fig. 4).

Similar to the simulation experiment, we condition on Query Class and select four
levels of missingness (5%, 10%, 20%, 30%), with values from 5 ranking features
randomly masked as missing. In TensorFlow, we train each GAN replicate using
the same hyperparameters and generator-discriminator architecture as the previous
experiment. In R, we use default MissForest and MICE settings to implement the two
missing data imputation methods. 10 imputations of test ranking dataset are generated
for each method and missingness level.

4.2 MSR results

Conditional Imputation GAN yields the lowest RMSE across the board, especially
for higher missingness levels; it also learns ranking feature distributions with respect
to auxiliary information such as Query Class. See Table 3, which compares average
RMSE and standard errors against benchmarks.
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Table 3 MSR results—imputation quality (RMSE)

Method 5% Missing 10% Missing 20% Missing 30% Missing

Cond. Imp. GAN 0.232 0.237 0.239 0.239

(± 0.00001) (± 0.00001) (± 0.00001) (± 0.00003)

GAIN 0.234 0.240 0.240 0.248

(± 0.00002) (± 0.0001) (± 0.0001) (± 0.0001)

MICE 0.309 0.311 0.312 0.314

(± 0.0011) (± 0.00057) (± 0.00054) (± 0.00044)

MissForest 0.240 0.243 0.249 0.250

(± 0.00227) (± 0.0027) (± 0.00277) (± 0.00202)

Bold values indicate that the associated results (imputation as measured by RMSE, etc.) are the "best" out
of all benchmarks/method comparisons

In terms of non-GAN benchmarks, MissForest outperformed MICE. However, we
donot recommend implementingMissForest for a large ranking dataset in general from
a computational standpoint. Given that it is based on random forests, implementation
can be computationally expensive (Tang and Ishwaran 2017). On a standard Google
Colab notebook, both GAN imputations took only about 1 minute to train for the full
MSR ranking data, and similarly only about 1 minute to train for default settings of
MICE (5 iteration per multiple imputation). Meanwhile, it took more than 10 minutes
to run for default settings ofMissForest (10 iterations) on just a 10%MSRdata sample,
even though the data is low-dimensional.

5 Amazon Search ranking data

5.1 Data andmethodology

We now utilize an Amazon Search ranking dataset consisting of 1.8 million query-
groups.This large rankingdataset is used to conduct experiments in order to answer two
key questions: (1)What’s the highest missingness level where Conditional Imputation
GAN can still deliver good results? (2) How does imputation quality translate to
downstream applications, e.g., ranking quality?

A collection of 24 common features for ranking are chosen and fall under 3 groups:
behavioral, semantic, and product characteristics. Ranking features selected have vary-
ing ranges, units, and spread, which increases the difficulty of imputation. Each feature
is normalized by the mean and standard deviation, maintaining the same correlation
structure as the original features. Higher correlation is observed amongst ranking fea-
tures that belong to the same group. For confidentiality reasons, individual feature
names are masked and referenced as Feature A, B, C, etc.

Similar to previous experiments, the Amazon ranking dataset is also characterized
by descriptive columns that are always observed and ranking features with potentially
missing values. Descriptive columns includes a 21-class column of product categories,
which are quite imbalanced; conditional on these observed values, ranking features can
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Fig. 5 Amazon—ranking feature dist. by category. Conditional distributions are significantly different,
which motivates conditioning on product categories to improve imputation quality

display significantly disparate underlying distributions. For example, a histogram of
Feature Q across two product categories 1 and 2 is bi-modal and heavily right-skewed,
respectively; see Fig. 5 where conditional distributions are significantly different by
both t-test and Kolmogorov-Smirnov, p < 0.05. Hence, it is logical to condition on
these product categories as auxiliary information to improve imputation quality.

5.2 Imputation quality: RMSE bymissingness level

To evaluate imputation quality by missingness level, we sample 500K query-groups
for training and evaluate RMSE on a 300K query-group hold-out set. For eachmethod,
we specify product category columns that are always observed as auxiliary information
to condition upon, and randomly mask ranking feature values as missing from 10% to
90%. This is aligned with the more expansive EMAR missing mechanism, of which
MCAR is a special case.

10 imputations of the test set are generated for eachmissing percentage andmethod,
and RMSE is computed based on imputed vs. true feature values. On aml.m5.24xlarge
AWS instance, each GAN replicate is trained for 1000 epochs using default Adam
optimizer learning rate (0.001) and mini-batch size 256. Data is again standardized
to zero mean and unit variance. The generator-discriminator architecture follows a
standard CGAN architecture with 3 fully connected layers, batch normalization, and
leaky-relu activation. Imputation results generated byGAIN is included as a reference.

Figure 6 charts the increase in RMSE as missingness level is increased from 10%;
a good initial missing proportion would be 30% or lower. The Conditional Imputation
GAN results in lower RMSE across the board by better learning the disparate underly-
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Fig. 6 Amazon results—imputation quality (RMSE) by missingness level. Conditional Imputation GAN
imputations have lower errors than GAIN on average at all missingness levels

ing distributions conditional on auxiliary columns, and is a testimony to the flexibility
of GAN-generated imputations overall. In addition, our method also demonstrates
comparable performance at higher missingness levels; the RMSE for 50% missing is
equivalent to that of GAIN at just 30% missing.

5.3 Ranking quality: rankingmodels with imputed data

To illustrate the downstream effect of imputed training data on ranking quality, we
compare NDCG and MRR for standard ranking models trained on imputed versus
baseline ground-truthmodels.We sample 500Kquery-groups each for training, testing,
and validation sets. A standard model choice is the pairwise LambdaMart (Burges
2010) model trained through LightGBM (Ke et al. 2017), a computationally efficient
gradient boosting framework.

For the training set, we fix always observed columns and randomly mask 20% of
feature values as missing. 30 imputations of the ranking dataset are generated using
the Conditional Imputation GAN with the same hyperparameters (learning rate is
0.001, mini-batch size is 256, etc.) and generator-discriminator set-up as the previous
experiment; 30 imputations are generated via GAIN as a reference point. We generate
30 imputations in order to ensure sufficient sample size for independent two-sample
t-tests that will later be used to compare ranking quality metrics NDCG and MRR.
Given the large-scale dataset and longer training time, we also optionally included
dropout layers for regularization purposes. Other methods such as MissForest do not
scale in this case due to computational cost; a 500K query-group dataset with 200+
results per group easily exceeds 100 million rows of data.
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The imputed ranking datasets are then used to train a standard ranking model using
LightGBM, a total of 60 models with 30 for each GAN architecture. All models share
the same binary target with the same testing and validation ranking set. Final ranking
model metrics are directly comparable; specific computations of NDCG andMRR are
discussed below.

5.3.1 NDCG andMRR

Ranking quality will bemeasured by twometrics, Normalized Discounted Cumulative
Gain and Mean Reciprocal Rank. As a key information retrieval metric, Normalized
Discounted Cumulative Gain (NDCG) (Valizadegan et al. 2009) measures ranking
quality by summarizing the gains from a particular ranking order. It is standardized
by position and is between [0, 1]. We first define Discounted Cumulative Gain (DCG)
at position p, that is, for the top p results returned by a ranking model as:

DCGp =
p∑

i=1

2reli − 1
log2(i + 1)

where reli is the ranking score of result at position i for query q, as predicted by
an arbitrary ranking model. Greater penalty is given for relevant results ranked in
lower positions. DCG is divided by Ideal Discounted Cumulative Gain (IDCG), the
maximum possible DCG through position p. If ranking model orders a set of results
in the optimal order possible, the NDCG will be equal to 1. That is,

NDCGp =
DCGp

I DCGp
, IDCGp =

|rel p |∑

i=1

2reli − 1
log2(i + 1)

and |relp| represents the optimal order of search results up to position p. This optimal
order is usually known via the target column. The final NDCG given by a specific
ranking model or search engine algorithm can be computed as the average of the
NDCG for each query-group in the testing ranking dataset, and is directly comparable
across different models or algorithms.

The second metric, Mean Reciprocal Rank (MRR) (Radev et al. 2002), measure
ranking quality by evaluating the probability of the first correct answer for a given
query. Specifically

MRR = 1
|Q|

|Q|∑

q=1

1
rankq

where ranki is the rank position of the first relevant result for query q in a dataset with
Q query-groups.
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Table 4 Amazon
results—imputation quality
(RMSE)

GAN structure Test RMSE Std. Err.

Cond. Imp. GAN w/Dropout 0.881 0.00004

Cond. Imp. GAN 0.930 0.00004

GAIN w/Dropout 0.963 0.00004

GAIN 0.985 0.00003

Bold value indicates that the associated results (imputation as mea-
sured by RMSE, etc.) are the "best" out of all benchmarks/method
comparisons

Table 5 Amazon
results—ranking model metrics:
conditional imputation GAN
versus GAIN w/Dropout

Mean diff t-stat df* p-val

NDCG10 0.001 5.967 39.769 0

NDCG Gain 0.172 5.970 39.800 0

MRR10 0.001 5.336 40.091 0

MRR Gain 0.185 5.340 40.100 0

*Satterthwaite approximation for degrees of freedom

5.3.2 Results

From Table 4, imputations generated by a Conditional Imputation GAN with dropout
layers resulted in the lowest RMSE on average and is 8.5% lower (p < 0.05) than the
benchmark GAIN equivalent. The additional improvement from dropout illustrates
that other neural net training techniques can further optimize imputation based on
data type.

We now compare ranking models trained on the imputed datasets, as measured
by four performance metrics that indicate ranking quality. NDCG10 and MRR10 are
defined in Sect. 5.3.1 and computed based on the first 10 results per query-group
as returned by the ranking model. NDCG and MRR Gain refer to percentage-wise
improvement compared the baseline ranking model. In terms of all four metrics, the
ranking models trained on imputations from Conditional GANs demonstrated statisti-
cally significant gains than those from the vanilla GAIN; see Table 5. This result holds
even after controlling for false discovery rates using Benjamini-Hochberg procedure.
Unequal variances are assumed and Satterthwaite approximation for degrees of free-
dom (df*) is used. We emphasize here that given the volume of queries, even a minor
but statistically significant improvement in performance is important for impact on
downstream applications.

6 Conclusion

We have demonstrated a novel Conditional Imputation GAN for extended missing
mechanisms in ranking applications. Theoretical analysis showed compatible impu-
tation guarantees for EMAR and EAMAR mechanisms that encompass a broader
collection of missing models and datasets. Using a variety of ranking datasets, we
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showcase the superior imputation quality of our method against standard benchmarks.
Experiment results illustrate the flexibility of the method, which generalizes well
across a range of distributions and heterogeneous subgroups specified by always
observed columns. GAN-based imputation approaches also scale computationally for
very large datasets compared to the random-forest based MissForest, and general-
izes better for complex missing mechanisms compared to the MCAR assumptions of
MICE.

In particular, simulations with five different distributions show that Conditional
Imputation GAN outperformed traditional imputation methods such as MICE and
MissForest, especially for non-Gaussian distributions. Furthermore, our method’s
imputations had lower standard errors overall which attests to the robustness across
multiple imputations. Results using the open-source MSR ranking dataset confirm
that Conditional Imputation GAN adapts well to multi-modal distributions that vary
significantly conditional on auxiliary information, which other benchmarks fail to
capture. Finally, experiments with the proprietary 1.8 million query-group Amazon
ranking dataset demonstrate that downstream ranking models trained on imputed data
also perform well as measured by NDCG and MRR.

Future work can explore whether GAN imputation optimality is possible under
challenging missing mechanisms such as MNAR, and whether more complex GAN
architecture (e.g. multi-task multi-label) could also benefit GAN imputation quality.

Acknowledgements The authors gratefully acknowledge financial support from theNational Science Foun-
dation Awards 1934985, 1940124, 1940276, and 2114143.

A Additional MSR experiments

To further explore the effect of missingness levels on accuracy for the MSR dataset,
we repeat experiments in Sect. 4 with additional missingness levels from 40 to 80%.
The exact same data standardization and training hyperparameters in Sect. 4 are used
for both Conditional Imputation GAN andGAIN; default settings forMICE andMiss-
Forest are also used in their respective R packages. Imputation quality measured by
average RMSE over 10 replicates with corresponding standard errors are reported
in Table 6; lower missing percentage results are reported in Table 3. We note that
Conditional Imputation GAN performs best for all missingness levels up to 70% and
consistently outperforms benchmark GAIN, which is evidence that the auxiliary infor-
mation provided by Query Class labels augments the imputation process. Although
MissForest has slightly lower error than Conditional Imputation GAN for 80% miss-
ing, we note that these very high missingness levels are subject to greater imputation
variability and that in terms of computational cost, GAN-based methods would scale
much better for very large datasets. MICE consistently performs lowest out of all
imputation methods.
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Table 6 MSR results for high missingness—imputation quality (RMSE)

Method 40% Missing 50% Missing 60% Missing 70% Missing 80% Missing

Cond. Imp. GAN 0.244 0.245 0.247 0.254 0.267

(0.00001) (0.00001) (0.00001) (0.00001) (0.00002)

GAIN 0.252 0.263 0.271 0.272 0.299

(0.00001) (0.00001) (0.00001) (0.00002) (0.00002)

MICE 0.315 0.316 0.318 0.320 0.322

(0.00043) (0.00043) (0.00035) (0.00024) (0.00024)

MissForest 0.250 0.252 0.257 0.257 0.264

(0.00367) (0.00113) (0.00502) (0.007) (0.00549)

Bold values indicate that the associated results (imputation as measured by RMSE, etc.) are the "best" out
of all benchmarks/method comparisons
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