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ABSTRACT
Changepoint models enjoy a wide appeal in a variety of disciplines to model the heterogeneity of ordered
data. Graphical in!uence diagnostics to characterize the in!uence of single observations on changepoint
models are, however, lacking. We address this gap by developing a framework for investigating instabilities
in changepoint segmentations and assessing the in!uence of single observations on various outputs of a
changepoint analysis. We construct graphical diagnostic plots that allow practitioners to assess whether
instabilities occur; how and where they occur; and to detect in!uential individual observations triggering
instability. We analyze well-log data to illustrate how such in!uence diagnostic plots can be used in practice
to reveal features of the data that may otherwise remain hidden. Supplementary materials for this article
are available online.
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1. Introduction

Detecting changes in the distributional properties of data
are a common problem that arises in many application areas
including; anomaly detection (e.g., Rubin-Delanchy, Lawson,
and Heard 2016), bioinformatics (Erdman and Emerson 2008),
economics (Spokoiny 2009), genetics (Hocking et al. 2013),
network tra!c analysis (Kwon et al. 2006), and oceanography
(Leeson et al. 2017). The "rst work on such changepoint
problems date back to Page (1954). Since then, changepoint
models have been actively investigated (see Eckley, Fearnhead,
and Killick 2011 for an overview) with most studies focusing
on the development of changepoint detection algorithms
(e.g., the PELT method of Killick, Fearnhead, and Eckley
2012 or wild binary segmentation of Fryzlewicz 2014) and
inference methods (e.g., Wu and Matteson 2020 for univariate
changepoint detection in the presence of local outliers, Grundy,
Killick, and Mihaylov 2020 for a recent multivariate change in
mean and variance method).

Recent literature is starting to consider issues that arise when
applying o#ine changepoint techniques in practice such as
the impact of where changepoints are incorporated into the
inference pipeline; pre-modelling as a data cleaning process,
within the main modelling framework or as a post-modelling
diagnostic on residuals from a "tted model (Chapman and
Killick 2020). However, in$uence diagnostics—as an integral
part of any data analysis—have been overlooked for o#ine
changepoint analyses. Yet, diagnostic work is vital to enable
analysts and practitioners to detect (i) potential problems with
the changepoint model, (ii) how and where they occur and
(iii) what may trigger these to occur. Providing such diagnostic
tools is crucial to ensure the potential of changepoint models
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to be fully realized outside of the academic domain and to help
practitioners develop intuition, discover features of the data
that may otherwise remain hidden and make, in the end, more
informed decisions (Rajaratnam et al. 2019).

In this article, we present a uni"ed in$uence framework
for o#ine changepoint models that is fully aligned with this
articulated need. The graphical in$uence diagnostic tools we
develop are the "rst to highlight instabilities in changepoint
models and assess the in$uence of single observations on the
stability of the changepoint segmentation and corresponding
segment parameters.

We devise these plots through automated procedures,
available on CRAN in the R (R Core Team 2017) package
changepoint.influence, to bring the importance of
in$uence diagnosis to the attention of researchers in the
changepoint community and to stimulate their widespread
usage amongst practitioners.

Model instabilities are well-known statistical problems
and in$uence diagnostics are essential to detect them and to
investigate the role of single observations that give rise to these
instabilities. We call observations whose alteration changes
the resulting changepoint segmentation, and thus give rise to
model instabilities, in!uential. In$uence diagnostics have a
long-standing history in regression analysis, see early studies by,
among others, Cook (1979) and Belsley, Kuh, and Welsch (1980)
who assessed the e%ect of single observations on coe!cient
estimates in low-dimensional settings or more recent work by
Hellton, Lingjærde, and De Bin (2019), Rajaratnam et al. (2019),
and Zhao et al. (2019) who adapted diagnostic tools to high-
dimensional regression settings. Developing in$uence diagnos-
tics for changepoint analysis is arguably even more compelling
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than it is for regression analysis since in$uential observations
can not only a%ect parameter estimates (for instance, segment
means) but also the entire changepoint segmentation. In the
same vein, several recent studies have developed in$uence
diagnostics for variable selection procedures (e.g., De Bin,
Boulesteix, and Sauerbrei 2017 for resampling-based methods
or Rajaratnam et al. 2019 for the lasso) thereby addressing
instabilities in both parameter estimation and model/variable
selection.

Our contributions to the changepoint literature are twofold.
First, we introduce a new framework for diagnosing in$uential
observations within changepoint models. We propose two types
of in$uence diagnostics. Both types alter individual data points
and evaluate how, and to what extent, such alterations induce
di%erences in various outputs of the changepoint analysis. They
di%er in the way the data are altered. In one extreme case, we
alter data points by deleting them, one by one, thereby following
the intuitive and popular deletion diagnostics (Belsley, Kuh,
and Welsch 1980) for regression analysis. In the other extreme
case, we alter data points by contaminating them such that each
point forms a segment on its own, thereby building on the idea
of empirical in$uence functions used in robust statistics (e.g.,
Hampel et al. 2011 for an overview or Pison and Van Aelst
2004 for diagnostic plots). In Section 3, we will see that the two
proposed types of in$uence diagnostics provide complementary
views. Second, we equip researchers, analysts and practition-
ers working with changepoint models with a set of diagnostic
plots. These plots help to visualize the output of the in$uence
diagnostics and identify whether the original segmentation is
vulnerable to instabilities. If so, in-depth plots clearly depict how
and where these instabilities manifest. More detailed follow-up
visual tools then aim to identify single observations that trigger
these instabilities to arise and assess their in$uencing role.

The remainder of this article is structured as follows. In Sec-
tion 2, we present a motivating example for the development of
changepoint in$uence diagnostics. We introduce the framework
for diagnosing changepoint models in Section 3. In Section 4, we
present the in$uence diagnostic plots that guide practitioners
in answering various diagnostic questions. We demonstrate the
usage of our graphical in$uence diagnostics on an application
to well-log data in Section 5. Finally, in Section 6, we summa-
rize our contributions and propose several directions for future
work.

2. Motivating Example

We present a motivating example to illustrate that changepoint
segmentations can be highly sensitive to individual data points,
thereby calling for appropriate in$uence diagnostics to identify
and assess these various sources of instability and data in$uence
on them.

2.1. Well-Log Data

We consider the problem of detecting changes in well-log data
(Ruanaidh and Fitzgerald 2012). Figure 1(a) displays n = 1000
measurements from a probe that is lowered into a bore-hole. The
probe takes measurements of the nuclear-magnetic response

of the rock that it is passing through. Abrupt changes occur
in the measurements as the probe moves from one type of
rock strata to another. Changepoint analysis is used to detect
these rock strata. While online changepoint detection can be
used to modify the settings of the drill in (near-)real time,
we focus on in$uence diagnostics that are suitable for o#ine
changepoint analysis. The well-log data are particularly suited
for this purpose as they exhibit several interesting features for
in$uence diagnosis, as discussed below.

2.2. Changepoint Segmentation

Several changepoint methods have been used to detect changes
in the well-log data (Fearnhead 2006, and Ruanaidh and
Fitzgerald 2012). Following Fearnhead and Rigaill (2019), we
focus–throughout the article–on the minimum penalized cost
approach to detect changes in the mean and use a Normal
likelihood test statistic and the Pruned Exact Linear Time
(PELT) algorithm (Killick, Fearnhead, and Eckley 2012),
available in the R package changepoint (Killick and Eckley
2014), to detect these changes. Details about this approach are
included in Appendix A of the supplemental material. This is
merely an illustrative example of a changepoint model as our
framework is more broadly applicable, as will be discussed in
Section 6.

In Figure 1(a), we visualize in dashed (blue) lines the change-
points detected from a change in mean model: 19 changes are
detected. The segments vary considerably in length, ranging
from segments containing as many as 171 observations (last
segment) to single observation segments (e.g., two segments in
between observations 219 and 221). The latter are very low mea-
surements that occur due to malfunctioning of the probe and
can be highly in$uential. Indeed, if a data point is su!ciently
extreme compared to its neighbors, it occurs in a segment of its
own (see Fearnhead and Rigaill 2019 and Proposition B.1 in the
Appendix).

2.3. Changepoint Stability and Data In!uence

While the well-log data have been extensively analyzed
through various changepoint methods, the stability of the
obtained changepoint segmentation and in$uence of single data
observations on it is less well understood. To illustrate this,
consider the in$uence of two types of data alterations on the
obtained segmentation.

First, in Figure 1(b), we delete data point 685. This data
alteration has a drastic local impact: 17 instead of 19 changes
in the mean are detected, the original changepoints at positions
687 and 695 no longer arise and all observations from position
684 to 866 are placed in a single segment instead of the original
three. To reiterate, deleting a single observation removes two
non-adjacent changepoints—this clearly calls into question any
inference regarding those inferred changepoints and the seg-
ment means.

Second, in Figure 1(c), we contaminate data point 326 (in
the middle of a segment) by adding twice the range of the
data to its value. Two additional changes around the contami-
nated data point occur since “outlying” data points are placed
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Figure 1. (a) Well-log data with 19 changepoints (vertical dashed blue lines) and segment means (horizontal solid red lines). (b) Segmentation when deleting observation
685. (c) Segmentation when contaminating observation 326. The gray background in panels (b) and (c) highlights the span of changes to the segmentation compared to
panel (a).

in their own segment—this is to be expected (see Appendix
B.2). Additionally and unexpectedly, the original changepoint at
location 368 no longer occurs. Hence, when observations 327–
387 are not jointly considered with observations 221–326, the
former are not su!ciently di%erent from the latter observations.
Again the inference regarding the changepoint at location 368
is a%ected. These two examples illustrate the dramatic impact
slight data alterations or measurement errors might have on the
changepoint analysis.

2.4. Diagnostic Questions

While these motivating examples are deliberately chosen to
emphasize the potential dramatic in$uence a single observation
can have on the output from a changepoint analysis, they raise
several general diagnostic questions practitioners might be con-
cerned with. We present three main diagnostic questions, each
motivating the need for a particular type of in$uence diagnostic,
as will be discussed in Section 4:

Q1. Is the output of the changepoint analysis stable or vulnera-
ble to data instabilities?

Q2. If vulnerable, how and where do the instabilities manifest?

Q3. Which single in$uential observations trigger these instabil-
ities to arise and how so?

The "rst two questions aim to assess the stability of various
outputs of the changepoint analysis: For instance, which change-
points are sensitive to the data at hand and does this sensitivity
raise questions on their occurrence and/or their location? The
third question digs deeper into the in$uential role of single
observations on the various output measures. An important
remark that needs to be made here is that in$uential observa-
tions need not to be seen as harmful in the analysis, in the sense
of measurement errors or extreme/atypical data points, but can
be seen as data points that are highly relevant for obtaining the
segmentation at hand (Serneels et al. 2005).

3. Framework for Diagnosing Changepoint Models

In this article, we consider observed sequences of data,
y1, . . . , yn, and assume a changepoint analysis has been
performed on such a sequence resulting in m̂ identi"ed
changepoints at ordered locations τ̂1, . . . , τ̂m̂. This segmentation
splits the data into m̂+1 independent segments, the ith of which
contains the data points yτi+1, . . . , yτi+1 using the convention
that τ0 = 0 and τm̂+1 = n. Our goal is to develop a general
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Figure 2. Work!ow for assessing a segmentation’s stability and identifying in!uence of single data points on the segmentation obtained.

framework for assessing a segmentation’s (in)stability, and
understanding the role of each observation yt , t = 1, . . . , n,
on the estimated segmentation. The framework is presented
in this section. In Section 4, we explain how to use the newly
constructed in$uence diagnostic plots for these purposes.

The proposed framework allows us to identify and analyze
both global and local (observation-speci"c) instabilities. The
global diagnosis involves the assessment of the (in)stability in
three pertinent outputs of a changepoint analysis: the number of
changepoints, changepoint locations and segment parameters.
Monitoring changes in each of these outputs will be a useful
guide toward assessing a changepoint model’s (in)stability. The
more detailed diagnosis then involves the identi"cation of single
in$uential observations that trigger these changepoint instabil-
ities.

Figure 2 visualizes the typical work$ow of a changepoint
diagnostic analysis, thereby linking both diagnostic objectives
(dashed boxes) to the three diagnostic questions (Q1–3 in Sec-
tion 2) and the four graphical tools as indispensable work$ow
documents to guide practitioners in answering these questions.
The diagnostic questions and corresponding graphics are hier-
archically structured from global toward detailed diagnosis.
While the Stability Dashboard is useful to address Q1, the
location and parameter stability plots (additionally) address Q2,
and the In$uence Map is useful to (additionally) address Q3.

To detect changepoint (in)stabilities and quantify the e%ect
of a single data point on them, we follow the procedure of con-
secutively rolling through all data points and at each time either
deleting or contaminating a particular observation. This way, we
identify (i) whether various output measures of the changepoint
analysis are stable or di%er substantially a&er altering individual
data points; (ii) how and where instabilities arise: locally, only
a%ecting the segment the deleted data point is within, or global,
thereby a%ecting other segments as well; and (iii) the individual
in$uential data points triggering these instabilities.

3.1. Rolling Procedure

For each data point t = 1, . . . , n in this rolling procedure, two
new segmentations are obtained. The "rst new segmentation, we
call the “Observed Segmentation.” Here, we simply re-run the
changepoint method on the altered (deleted or contaminated)
data and record the “Observed Segmentation” obtained. The

second segmentation, we call the “Expected Segmentation.”
This segmentation corresponds to our expectation regarding
the change in a particular output measure of the changepoint
analysis when either deleting a data point or contaminating
it. Detailed results for the expected segmentations under a
penalized cost approach for a change in mean are provided
in Appendix B.

While all in$uence diagnostic plots are constructed from the
observed segmentation, only the Location Stability plot and the
In$uence Map rely on the comparison between the observed
and expected segmentation. The idea is that these plots should
directly highlight unusual behavior rather than changes to the
segmentation we expect to see due to the data alteration. We
therefore do not display the expected changes but instead com-
pare what is observed to what is expected under a penalized cost
approach such that only changes beyond the expected ones are
displayed. As such, we draw a practitioner’s attention to insight-
ful discrepancies that help to assess how and where instabilities
manifest (location stability plot) and quantify the in$uence of
individual data points on a changepoint’s (in)stability (In$u-
ence Map). The di%erence between both segmentations presents
evidence of a single data point’s in$uence beyond what is to
be theoretically expected, which a practitioner can interpret as
in$uence.

3.2. Deleting Observations

Deletion diagnostics have been the subject of extensive research
in the context of regression analysis and date back to Cook’s
distance (Cook 1979), which measures the in$uence of single
observations on various aspects of the "tted regression model,
including and excluding the observation in question. For
changepoint models, a diagnostic analysis based on deleting
data points is complicated by the fact that (i) individual data
points can, in addition to parameter estimates as in traditional
regression analysis, a%ect the entire changepoint model through
the number of changepoints and their location. (ii) While the
total number of observations n might be considerable, each
segment contains only a (sometimes small) fraction of the
total sample size, hence individual observations can not only
have a potentially tremendous local in$uence on the segment
to which it belongs but this in$uence might also spill over
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globally to other segments. Hence, this calls for the need of new
deletion diagnostics for detecting changepoint (in)stabilities
and understanding the in$uential role of single data points on
them.

Inspired by these intuitive and popular deletion diagnostics,
we alter data points by deleting them, one by one, and assess the
relative change in various outputs of the changepoint analysis
(i.e., number of changepoints, changepoint location, segment
parameters) to demonstrate the in$uence, or not, of the deleted
data points. We show in Appendix B that the segmentation
expected under a single data point deletion remains the same
as the original one unless the data point belonged to a segment
of length one. In practice, we implement the deletion approach
as follows. By way of example, consider a changepoint segmen-
tation, 1 1 1 2 3 3 3. When we leave out the "rst observation the
expected segmentation then becomes NA 1 1 2 3 3 3. However,
when we leave out the fourth observation, the expected segmen-
tation is 1 1 1 NA 2 2 2. Note that we re-number the segments to
ensure that two neighboring segments di%er in their numbering
by one.

3.3. Contaminating Observations

As an alternative to deletion diagnostics, empirical in$uence
functions are commonly used in robust statistics to determine,
on a sample-speci"c basis, the in$uence of each data point on
parameter estimation or prediction (Hampel et al. 2011). To this
end, the e%ect of an in"nitesimal contamination at a certain data
point on a statistical functional of interest is measured and used
as a diagnostic tool to assess its in$uence. It is hereby crucial
to stress the discrepancy between in$uence and extremeness.
While both properties coincide in the detection of in$uen-
tial outliers (i.e., atypical data points), in general, non-outlying
in$uential data points as well as non-in$uential outliers do exist
(Serneels et al. 2005).

Inspired by techniques from robust statistics, we alter data
points one by one such that each point is made atypical/outlying
and assess the relative change in various changepoint outputs
of this contaminated data point. Fearnhead and Rigaill (2019)
showed that the segmentation expected under this data alter-
ation corresponds to the segmentation obtained on the original
data with two extra changes added before and at the contam-
inated position. Being di%erent from the bulk of the data, a
contaminated point thus warrants its own segment. However,
only one extra change occurs if we are close to an original
changepoint. Coming back to our earlier example (i.e., segmen-
tation 1 1 1 2 3 3 3), when we contaminate the "rst observation
the expected segmentation becomes 1 2 2 3 4 4 4; hence, there
are four segments in total instead of three. However, when we
contaminate the second observation, the expected segmentation
is 1 2 3 4 5 5 5, thereby including two additional changes.

These two ways of altering observations provide two extreme
perspectives: on the one hand, when deleted, the segmentation
reveals what would have happened had the observation not
been observed. On the other hand, when contaminated, the
point is simultaneously both maximally in$uential (it has its
own segment) and minimally in$uential (in its own segment
it does not directly contribute to other segments). Curiously,

the contaminated point also forces a shortening of the segments
on either side, thus allowing one to identify if a change is
sensitive to the length of the segment it is within. Thereby, both
present complementary views on the stability of changepoint
segmentations and allow us to better grasp the overall in$uence
of single observations.

4. In!uence Diagnostic Plots

We create a set of four diagnostic plots which range from coarse
level to detailed, namely the “Stability Dashboard,” “Segment
Location Stability,” and “Segment Parameter Stability” plots, and
"nally the “In$uence Map.” The di%erent plots each aim to tackle
a speci"c diagnostic question (see Figure 2), making the choice
of an appropriate plot crucial for highlighting a particular aspect
of the in$uence diagnosis for changepoint models. Practitioners
should choose the most appropriate level of detail for the data
set and question they are considering. All plots rely on the
rolling procedure discussed in Section 3 and are constructed for
both the case where data points are consecutively deleted and
contaminated. The in$uence diagnostic plots can be created via
the R package changepoint.influence.

To illustrate the usage of the plots and provide guidance on
how to interpret their various features, we make use of a simu-
lated data example. We generate an ordered sequence of length
n = 200 with four changes in mean: the "rst 50 data points are
generated from a standard Normal distribution. Data points 51
to 100 as well as data points 102 to 150 are drawn from a Normal
distribution with mean "ve and unit variance. An atypical data
point, drawn from a Normal distribution with mean 15 (10
standard deviations above the mean either side) is included at
101. Finally, the last 50 data points are drawn from a Normal
distribution with mean four and unit variance, giving rise to a
relatively small change in mean. The simulated data sequence
is shown in Figure 3 together with the four changepoints (at
positions 50, 100, 101, 145) detected by the Normal likelihood
test statistic with the PELT search method.

4.1. Stability Dashboard

At the coarsest level, we have the “Stability Dashboard”: it
presents the original data with the original changepoints
depicted as vertical lines at the changepoint locations. The
lines are now displayed either dashed (green), dot-dashed
(orange) or dotted (red), in line with the extent to which
each is vulnerable to data instabilities. We use dashed green
for una%ected changepoints (i.e., una%ected when all data
points other than itself are altered), dot-dashed orange when
a changepoint moves or is deleted (for at least one altered point)
and dotted red when a changepoint forms a segment on its
own. This plot thus provides a coarse depiction of the results to
directly address the "rst diagnostic question.

The Stability Dashboards for the simulated data example are
presented in Figure 4. Both the deletion and outlier method give
the same insights (though deviate as we delve deeper): the "rst
changepoint is stable (dash green), the last is somewhat unstable
(dot-dash orange), and changepoints at positions 100 and 101
are bounding an outlier (dot red) Whether a practitioner con-
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Figure 3. Simulated data example with four changepoints (vertical dashed lines). The horizontal solid lines are the segment means.

Figure 4. Stability Dashboard when (a) deleting and (b) contaminating observations.

tinues or not with inspecting the more detailed diagnostic plots
depends on the outcome of the Stability Dashboard. If all the
changepoints are stable (green), then the segmentation seems
stable and there may be no need to delve further into the results.
In contrast, if some changepoints are unstable or outlying then
the practitioner may wish to further investigate how and where
these instabilities manifest.

4.2. Segment Location Stability

We next move to the second level to assess how and where
instabilities in the location of the changepoints occur. To this
end, a Location Stability plot of the changepoint locations across
the n altered data points can be used.

We record the number of times a changepoint alteration
occurs as well as the location of any moved or additional change-
points. This plot thus allows practitioners to assess how and
where instabilities manifest, thereby (partially) addressing the
second diagnostic question.

For a segmentation which does not vary across altered data
points, we expect each of the original changepoints to stay in
place when all data points other than itself are altered. For ease
of use, we directly display the discrepancy in number of change-
point occurrences from this expected maximum. This way only
unstable (dot-dashed orange) or outlying (dotted red) original
changepoints may enter the plot with a negative di%erence.
The latter indicates that the changepoint no longer occurs at
its original location for some instances. Either the changepoint
moves to another location or it disappears completely. When a
changepoint moves, it will be o%set and depicted by a positive

di%erence at another location, thereby leading toward a net
balance of zero. Disappearing changepoints, on the other hand,
do not appear in the plot but can be deduced from net negative
balances. It can also occur that the original changepoints remain
but that additional changepoints occur due to the alterations
(net positive) but this is much less common in our experience.

The Location Stability plots for the simulated data example
are presented in Figure 5. When deleting observations one by
one, changepoint 145 turns out to be slightly unstable as it moves
earlier for one instance, as can be seen from the negative dot-
dashed (orange) line of height one at the changepoint location
which is o%set by the positive solid (black) line of the same
height at location 137, see Figure 5(a). When contaminating
observations one by one, changepoint 145 shows more insta-
bility as it displays di%erences from what is expected on more
than 25 instances. On six instances, the changepoint is moved
earlier, as can be seen from the black positive line of height six in
Figure 5(b). The net negative balance indicates that the change-
point disappeared completely for several data contaminations.
The negative red line of length one at location 101 (Figure 5(a))
indicates that the changepoint induced by the outlying data
point at this location disappears completely when it is deleted.
These plots give an indication of what the stability looks like but
not which data points in$uence this behaviour.

4.3. Segment Parameter Stability

This plot complements the previous in tackling the second
diagnostic question by considering instabilities in the segment
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Figure 5. Location stability plot of the simulated data when (a) deleting and (b) contaminating observations.

Figure 6. Parameter stability plot of the simulated data when (a) deleting and (b) contaminating observations.

parameters, such as the mean. It is important to investigate
the segment parameters separately as the changepoint locations
may vary but for a small or uncertain changepoint, the segment
parameters may not vary considerably. If one is only interested
in inference on the segment parameters and not the changepoint
locations then this is important information.

To construct our diagnostic plot we start by depicting the
original segment parameters, such as the mean in our example,
by solid (red) lines, which correspond to the ones from Figure 3.
On the same plot, we add the mean of each data point across the
n data alterations over time. For many segmentations where the
altered point is far away, there will be no di%erence in the mean
values. We thus take the unique values of the segment means
and plot them in shades of gray, scaled by the frequency of
occurrence. Thus, common values across many iterations of the
rolling procedure appear darker than those across few iterations.
The original parameter estimate is intentionally thick on the
plot to ensure that any black seen around this is meaningful.
The wider the dark area (vertically) that can be seen around the
original segment means (red), the more evidence of instability.

The parameter stability plots for the simulated data example
are presented in Figure 6. For the deletion method (Figure 6(a)),
the means across the data deletions appear very tightly around
the original means, thereby supporting stability of the segment

means. Only for data points 137–144, a minor instability is
observed by the additional dark (lower) line which occurs at the
height of the next segment’s mean and is caused by changepoint
145 being moved earlier.

For the outlier method (Figure 6(b)), the darker areas are
typically larger in size, especially toward the edges of a segment.
This is in line with our expectation, since the data contamina-
tion induces two additional changes thereby triggering directly
surrounding segments to be smaller in size. The additional
variability then arises due to the fewer data points available for
estimation of the segment parameters. This results in a “bleed-
ing” e%ect at the edges of the segments. The most pronounced
instability in segment means is again observed for the data
points around the last changepoint. Coupled with the Stability
Dashboard, it is clear that the changepoint moves both earlier
(producing a lower mean) and disappears (producing a higher
mean a&er 145) although again it gives no information as to
which observations are responsible for this.

4.4. In!uence Map

At the most detailed level, we have an In!uence Map of salient
di%erences between the observed and expected segmentation
from the deleted or contaminated data points. This "nal plot is
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Figure 7. Main features of the In!uence Map.

a heat map which identi"es single, in$uential observations that
trigger changepoint instabilities, thereby addressing the third
diagnostic question. The heat map depicts the di%erence in
segment number between the observed and expected segmenta-
tions across each of the altered data points. Analogous in$uence
maps can be made for other outputs of the changepoint analysis.

The horizontal axis of the In$uence Map is the standard time
index of the original data (1 to n). The vertical-axis indexes
the altered data point (1 to n). Each colored (taupe or blue)
pixel marks the di%erence between the observed and expected
segmentation at the speci"c (x, y) coordinate. The data point on
the vertical-axis should be understood as the in$uential data
point whose alteration leads to changes in the a%ected data
points on the horizontal axis if any coloring appears. We color
zero di%erence in the heat map as white, increases in segment
number as taupe and decreases as blue. Hence, data points on
the vertical axis without a single colored co-ordinate on the
horizontal axis can be considered as nonin$uential since they
do not trigger any changepoint instability. Rows with colored
pixels correspond to data points which are instability triggers.
The intensity of the color then signi"es the magnitude of the
instability (namely the increase or decrease in segment number).
Coloured areas are expected to occur around unstable or outly-
ing (orange or red) changepoints, which are depicted as colored
circles on the diagonal.

Before discussing the In$uence Maps for the simulated data
example, we describe its important features to aid practitioners
in studying the in$uential role of the individual data points
through these maps. These features are summarized in Figure 7.
(i) Figure 7(a) highlights the role of the diagonal: coloring above
the diagonal indicates that an alteration of the corresponding
data point (on the vertical axis) a%ects earlier data points, col-
oring below the diagonal indicates that subsequent data points
are a%ected. (ii) Figure 7(b) concerns the horizontal span of
the coloring: a stop in coloring indicates that changepoints

have moved, while a continuation of coloring to the last data
point indicates that, in total, fewer or additional changepoints
are detected. (iii) Figure 7(c) zooms in on the discrepancy
between local versus global e%ects. Most coloring originates on
the diagonal, thereby indicating that a data point’s alteration
mainly a%ects neighboring data points that most o&en belong
to the same segment. By contrast, in some cases a colored pixel
may originate away from the diagonal, thereby exercising global
in$uence. (iv) Finally, Figure 7(d) zooms in on the height of
the coloring. All data points (on the vertical axis) that appear
in the colored area are in$uential and assert in$uence over the
corresponding data points on the horizontal axis. The height can
be seen as the extent to which instability arises in this in$uential
region.

Relying on these features, we are ready to discuss the
In$uence Maps for the simulated data example, as presented
in Figure 8. Across both maps, few colored areas appear, each
of them characterizing some form of instability. All of them
occur around the originally detected unstable or outlying
changepoints. The instability triggers (i.e., data points on
vertical axis with coloring) are observations 101 and 129-157;
their in$uential role will be detailed below. Note that most
colored areas are blue, thereby indicating that a particular data
point (on the horizontal axis) has a lower segment number
in the observed segmentation than expected; in other words
less expected changepoints occur. We subsequently discuss the
In$uence Maps according to their main features.

(i) In this example, we see that in$uential data points have a
tendency to a%ect subsequent data points rather than preceding
ones since most coloring occurs below the diagonal. Consider
the blue coloring in Figure 8(a). When deleting outlying data
point 101 (i.e., the instability trigger on the vertical axis), the
changepoint induced by it disappears, and thus all subsequent
observations (horizontal axis) are a%ected by having a lower
segment number than expected. The In$uence Map highlights
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Figure 8. In!uence Map of the simulated data when (a) deleting and (b) contaminating observations.

this data instability through the blue coloring of all pixels until
the last data point and is in line with the negative dotted red line
of height one in the location stability plot (Figure 5(a)).

(ii) We "nd evidence of in$uential data points moving orig-
inal changepoints as well as triggering some to disappear. To
this end, we zoom in on the instability of changepoint 145.
When deleting this data point, Figure 8(a) (taupe pixels above
diagonal line) shows that the changepoint gets moved earlier
toward position 137; in line with the black positive height in
Figure 5(a). The same change in changepoint location occurs
when contaminating observations 129–135, as can be seen from
the taupe below-diagonal coloring in Figure 8(b). By contrast,
the changepoint disappears when observations 136–157 (verti-
cal axis) are contaminated (blue zone).

(iii) Almost all coloring originates on the diagonal, thereby
indicating that a data point’s alteration mainly a%ects its neigh-
bors of the same segment. An exception is the contamination of
observations 129–135 (right panel) which makes observations
138 to 144 move from its original fourth segment to the "&h
segment.

(iv) Finally, two in$uential regions appear in Figure 8(b).
The blue in$uential region is the most outspoken one: the
contamination of no less than 21 data points (i.e., instability
triggers 136–157 on vertical axis) all trigger changepoint 145
to disappear; in line with the net negative balance for change-
point 145 in Figure 5(b). The smaller taupe region indicates
that the contamination of six data points (i.e., instability trig-
gers 129–135 on vertical axis) causes the changepoint at loca-
tion 145 to move earlier; in line with the black positive di%er-
ence of height six at position 137 in the Location Stability plot
(Figure 5(b)).

5. Well-log Application

We now return to the well-log data, presented in Section 2, and
address our main diagnostic questions one by one.

5.1. Stability of the Changepoint Analysis

We start by tackling our general diagnostic question “Is the
output of changepoint analysis stable or vulnerable to data insta-
bilities?” through the Stability Dashboards, presented in Fig-
ure 9. Out of the original 19 changepoints, 15 are depicted as
potentially unstable (orange or red) by the deletion method
(Figure 9(a)) while all but one (change at location 217) are
colored orange or red by the outlier method (Figure 9(b)).

While such pronounced results will not arise for each change-
point analysis, they do illustrate that in$uence diagnostics
should not be overlooked but rather considered as a much
needed natural successor to any changepoint analysis. The
mere visualization of one single additional graphic, the Stability
Dashboard, can either re-assure practitioners on the stability
of their performed analysis or warn them for the occurrence
of instabilities. In the latter case, a more detailed in$uence
diagnosis can be performed through our other diagnostic tools
which are discussed next.

5.2. Manifestation of the Instabilities

Next, we address the question “How and where do the instabil-
ities manifest?” First, consider the stability of the changepoint
locations, as visualized in the Location Stability plots of Fig-
ure 10. For the deletion method, the few positive short (black)
heights (Figure 10(a)) immediately highlight that only a minor-
ity of location instabilities occur. Hence, while many changes
are labeled as potentially unstable (orange dot-dashed lines
in Figure 10(a)); these instabilities only manifest themselves
in rare cases. For the outlier method, by contrast, especially
changepoints 368 and 695 are prone to more severe instability
as can be observed from the long negative heights at their
locations in Figure 10(b). The positive solid (black) heights show
that when the changepoints move, they do not move far from
existing changepoint locations. The net negative balance shows
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Figure 9. Stability Dashboards for the Well-log data.

Figure 10. Location Stability plots for the Well-log data.

Figure 11. Parameter Stability plots for the Well-log data.

that overall changepoints are deleted rather than moved. The
analysis of the well-log data is, however, more complex than
the simulation data example, which makes it harder to directly
associate the changepoint moves (black positive lines) to the
original changepoints (colored negative lines) in the location

stability plots. Practitioners are therefore advised to consult
the more detailed In$uence Map to match how various data
perturbations a%ect the original data.

Second, consider the stability of the segment parameters,
namely the mean, as visualized in the Parameter Stability plots of
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Figure 12. In!uence Maps for the Well-log data.

Figure 11. Due to the (minor) evidence of changepoint location
instability for the deletion method, the vast majority of segment
means appears very stable in Figure 11(a). Some instability
can be observed for observations around changepoint 368 and
687 by the additional dark lines occurring to their le&. This
indicates that these changepoints are (somewhat) unstable and
cause their preceding observations to have lower segment means
when the changepoint is moved earlier. These same instabilities
in the segment mean appear even stronger in the Parameter
Stability plot of the outlier method (Figure 11(b)). Furthermore,
around observation 200, both parameter stability plots show
some instabilities corresponding to the malfunctioning of the
probe. When only two observations form a segment, the dele-
tion or contamination of one of them causes the mean to be
the other data point, thereby giving rise to the light gray areas
of instability. Alongside this there are further instabilities in
the 300–450 range. Jointly using the parameter stability and
the location stability plots we can see that this instability is
driven by the instances where the change before 400 does not
manifest along with the movement of the change a&er 400.
Anyone inspecting the original segmentation would be unlikely
to think that a single data point would have such a profound and
far-reaching e%ect on the resulting segment means.

5.3. Sources of the Instabilities

Finally, we consider our more detailed in$uence Diagnostic
Objective, namely “Which single in!uential observations trigger
these instabilities to arise and how so?”, through the lens of the
In$uence Maps (Figure 12).

We "rst discuss the results for the deletion method (Fig-
ure 12(a)). Several potentially unstable (orange) changepoints–
such as the one at location 34–hardly have any (clearly) visible
colored pixels of instability surrounding them. This is due to

the larger dataset size n = 1000 than our previous example.
We recommend to consider these changepoints as su!ciently
stable. A handful of observations are found to assert notable
in$uence. Recall that within the data just a&er time points 200
and 400 there are malfunctions in the observations recorded.
Rather than a%ect single observations these result in a quick
degradation and restoration of the signal. Most, but not all, of
these are isolated as individual segments in the original segmen-
tation. The deletion of irregular data points 212, 218, and 219
each triggers the changepoint induced by their outlyingness to
disappear. Similarly, almost all observations in the range 685–
698 are highly in$uential: their deletion triggers the segment
687–695 to no longer arise.

Secondly, consider the results for the outlier method (Fig-
ure 12(b)). The largest area of in$uential observations (vertical
axis) concerns the data points in the range 681–845. Their
contamination triggers changepoint 695 to disappear; the "rst
"ve additionally trigger the removal of changepoints 684 and
687. This is interesting as it signi"es that if the original segment
were shorter, the changepoint at 695 would no longer arise. Care
must be taken about inference made for this changepoint.

Interestingly, the same phenomenon occurs for the instability
triggers 326–384: their contamination causes changepoint 368
to disappear. Other similar, though less outspoken, in$uential
regions occur in Figure 12(b). All of these are blue, indicating a
changepoint removal and the majority of them a%ect subsequent
observations from the same segment (since the colored pixels
start below-diagonal and continue until the end of the sample).

6. Conclusion

Motivated by questions from practitioners in applying com-
monly used changepoint methods, this article has presented
the "rst approach to considering in$uence of the observed data
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points on changepoint segmentations. We provide a framework
for two methods to characterize in$uence; deletion and con-
tamination. Alongside the framework three levels of graphics
were introduced. The Stability Dashboard provides an overview
of the results which indicates if there are any locations of con-
cern. The location and parameter stability plots provide the
second granularity of detail indicating how the segmentations
are a%ected. The most detailed level is the in$uence map which
includes which observations are in$uential and how they in$u-
ence the segmentation.

A challenging aspect of the proposed approach is to char-
acterize what a “no problem” situation looks like. The simplest
answer is that if all changepoints are stable (dashed green) then
there is no problem. However, in reality this is unlikely to be
the case as short segments, small changepoints and clustered
changepoints as seen in our well-log example, are common. We
have deliberately not addressed this subjective issue of when a
point is “in$uential enough” to compromise an analysis, as the
deliberation of this depends on the downstream pipeline of deci-
sion to be made based upon the original segmentation. We pre-
fer to leave this evaluation to the sensibility of the practitioner.

We illustrated our general approach using the change in Nor-
mal mean test statistic coupled with the PELT search method but
we stress that our approach can be applied to all changepoint
methods. Furthermore, the only aspect of this article which
is speci"c to the change in Normal mean test statistic is our
justi"cation of the expected alterations to the segmentations
that feed into the location stability and in$uence map. For
other test statistics, these either need to be calculated or to plot
the altered segmentations rather than the di%erence from the
expected. This is an important consideration as if one was using
a robust test statistic such as that provided in Fearnhead and
Rigaill (2019), then the outlier method would not guarantee
the creation of two new changepoints. It is still interesting to
consider the in$uence of the data in this robust setting but we
leave this for future work. Our aim in this article is to provide a
framework for assessing in$uence in a general sense; utilizing a
common test statistic and search method purely as an example.
In the future research, it would be interesting to explore whether
di%erent test statistic and search method combinations may be
more/less prone to instabilities than others.

Finally, one may consider that the in$uence plots character-
ize information about uncertainty in the changepoint segmenta-
tion. Whilst this is true, we are not aiming to provide con"dence
intervals or similar measures of uncertainty quanti"cation. Akin
to regression analyses, there are questions best answered by con-
"dence intervals and others by measures of in$uence. Similarly,
we have advocated questions here that practitioners may wish
to answer for which a measure of in$uence for changepoint
segmentations is required.

Supplemental Materials

R-code: The supplemental "les for this article include R-code to obtain the
in$uence diagnostic plots with the R-packagechangepoint.influ
ence, version 1.0. We include an R-script that generates all the plots
for the simulated data example and the well-log data example. Please
consult the "le README contained in the zip "le for more details.
(Rcode.zip, zip archive)

Appendix: The Appendix contains background to changepoint methods
used and details on the expected segmentation (Appendix.pdf)
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