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Abstract: The vector auto-regressive (VAR) model is commonly used to model mul-
tivariate time series, and there are many penalized methods to handle high dimen-
sionality. However for spatio-temporal data, most of these methods do not consider
the spatial and temporal structure of the data, which may lead to unreliable network
detection and inaccurate forecasts. This paper proposes a data-driven weighted [;
regularized approach for spatio-temporal VAR models. Extensive simulation stud-
ies compare the proposed method with five existing methods for high-dimensional
VAR models, demonstrating advantages of our method over others in terms of pa-
rameter estimation, network detection, and out-of-sample forecasts. We also apply
our method to a traffic data set to evaluate its performance in a real application.
In addition, we explore the theoretical properties of the [; regularized estimation
of the VAR model under a weakly sparse scenario, in which exact sparsity can be
viewed as a special case. To the best of our knowledge, this is the first study to
do so. For a general stationary VAR process, we derive the nonasymptotic upper
bounds on the [ regularized estimation errors, provide the conditions for estimation
consistency, and further simplify these conditions for a special VAR(1) case.

Key words and phrases: [1 regularization, spatio-temporal structure, vector auto-
regressive model, weak sparsity.

1. Introduction

The vector auto-regressive (VAR) model is a popular tool for simultaneously
modeling and forecasting a number of time series, and has been widely applied
in scientific fields such as econometrics (Sims (1980)), finance (Tsay (2015)), and
ecology (Hampton et al. (2013)), among others. Recent developments in comput-
ing have made high-dimensional time series increasingly common. As the number
of time series components increases, the number of parameters in the VAR model
increases dramatically, leading to unreliable or even infeasible estimations. The
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Figure 1. The left panel illustrates the sparsity (zero/nonzero) pattern for the transition
matrix ® in a VAR(1) process, with * denoting nonzero entries. The right panel illustrates
the network structure implied by this VAR(1) process. For example, ®13 is nonzero,
which indicates a directed connection from the third site to the first site.

usual way to handle high dimensionality is to impose sparsity or a low-rank struc-
ture on the transition matrices. Many estimation procedures have been proposed,
including /; regularization (Basu and Michailidis (2015)), two-stage { regulariza-
tion (Davis, Zang and Zheng (2016)), the sparse seasonal VAR (Baek, Davis and
Pipiras (2017)), the low-rank structured VAR (Basu, Li and Michailidis (2019)),
hierarchical lag sparsity (Nicholson, Matteson and Bien (2017); Nicholson et al.
(2020); Safikhani et al. (2018)), the banded VAR (Guo, Wang and Yao (2016)),
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shows a simple example of a VAR(1) model on five sites. There exists a directed
connection from site 3 to site 1, indicating that Xy; is dependent on X3;_1 and
thus @3 is nonzero. Furthermore, ®3; = 0 means there is no directed connection
from site 1 to site 3. Thus, for spatio-temporal data, the spatial structure and
temporal information should be incorporated in the modeling procedure. If such
information is ignored, high-dimensional methods may lead to inaccurate net-
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Figure 2. Comparison of the proposed methods (WLASSO1 and WLASSO2) with five ex-
isting methods (the LASSO, adaptive LASSO, SCAD, MCP and spalLASSO of Schwein-
berger, Babkin and Ensor (2017)) in terms of the network estimation of one simulated
VAR(1) process from Section 3.3. Specifically, if the true value ®zy and its estimator
d,, are nonzero, a black edge is drawn to connect site s and site s’. If ®,, is not zero,
but i)ss/ is zero, the edge is grey solid. If ®,, is zero, but i)ss/ is not zero, the edge is
grey dotted.

work estimations and unreasonable scientific conclusions. Figure 1 illustrates the
drawback of ignoring the spatial and temporal information, based on a simulation
study discussed in Section 3.3, in which the grey solid edges and grey dotted edges
represent false negatives and false positives, respectively. By not considering the
spatial and temporal information, the five existing methods studied in the sim-
ulation underestimate the true connections. In addition, the LASSO, adaptive
LASSO (adaLLASSO), and SCAD also overestimate wrong connections. In con-
trast, our proposed methods (WLASSO1 and WLASSO2) recover the network
very well and significantly reduce false positives and false negatives.

In this paper, we propose a data-driven weighted [; regularized approach
that constructs the penalty based on the spatial distances between sites and the
temporal lags in the VAR model. We derive the nonasymptotic upper bounds
of the estimation error, which hold with high probability, and show that these
bounds are smaller than those of the LASSO (Remark 1(c) in Section 2.2 and
Remark 2(c) in Section 2.3). The simulation studies compare the proposed ap-
proach with five existing methods, namely the LASSO (Basu and Michailidis
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1274 WANG ET AL.

(2015)), SCAD and MCP (Zhu (2020)), spaLASSO (Schweinberger, Babkin and
Ensor (2017)), and adaptive LASSO (Zou (2006); Wang, Li and Tsai (2007a)).
The proposed approach shows a significant advantage in terms of model fitting,
network detection, and forecasting performance (see Tables 1-5 and Figures 3-11
in_the Supplemental Material). We also apply our method to a traffic network
data—set from the Des Moines; lewa. Here, the netwerk -structure-detected-by
the-LASSO'is not meaningful, whereas-the-proposed-method provides-a-—meore
reasonable estimated network and better forecasting results.

Several studies focus on high-dimensional VAR in a spatio-temporal setting.
The most relevant work is that of Schweinberger, Babkin and Ensor (2017), who
developed the spalLASSO, which incorporates the spatial structure in the VAR
model estimation. Their approach assumes the spatial dependence exists only
within a specific distance p, whereas p is either known or estimated in an initial
step by the LASSO within sub-sampled sites. After p is specified, only parameters
associated with distances smaller thanthe-given—p-are-estimated;-others-are fixed
as zero. Assuming that the distance p is known is usually unrealistic in real data
sets. By estimating p using an initial LASSO estimator, the inaccuracy of the
initial estimator can produce an unreliable estimation of p, thus contaminating
the final estimation of the model. As shown in Figure 2(c), the LASSO cannot
identify the true network, and therefore, delivers an inaccurate estimation of p
and an inaccurate estimation from the spaLASSO (Figure 2(g)). Furthermore,
the assumption of no spatial dependence beyond the distance p is restrictive,
and may not be true in some real cases, such as the more general weakly sparse
scenario considered in this study. In addition, this approach does not incorporate
the lag order of the temporal dependence. In contrast, the proposed method
incorporates both the spatial and the temporal information in a smooth way,
rather than truncating the parameters at a certain distance. Furthermore, the
penalty weights are data driven so that no prior information is needed. The
algorithm of the proposed method requires only a single step and is easy to
implement using existing algorithms.

In a real application, spatial and temporal dependence may still exist, even
for a long distance or temporal lag. In such cases, the transition matrices in the
VAR model have many small nonzero elements, and thus are not sparse; hence
this is the so-called “weakly sparse” scenario. The second goal of this study is to
investigate the theoretical properties of the I; regularized estimation of the VAR
model under the weakly sparse scenario. Weak sparsity is pursued mostly for
independent data; see Negahban et al. (2009) and Raskutti, Wainwright and Yu
(2011). However, no existing studies investigate the properties of [; regularized
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HIGH-DIMENSIONAL SPATIO-TEMPORAL VAR 1275

estimators for high-dimensional VAR models under the weakly sparse scenario.
Our contribution is to fill this gap. In addition, the “weak sparsity” defined here
is more general than the [, ball constraint commonly used in the literature; we
discuss the advantages of our weak sparsity in detail in Section 2.3. We first
derive the upper bounds of the [ regularized estimation error for a general sta-
tionary VAR process (Theorem 2) and provide the weak sparsity constraint (2.9)
that guarantees the estimation consistency. Then, we further explore the weak
sparsity constraint and simplify it for a special case of the VAR(1) process. More-
over, the results in Theorem 2 can also be used directly to derive the error bound
under the I, ball setting (Corollary 1), and we prove that our weak sparsity con-
straint is more relaxed than the [, ball setting (Remark 3). Finally, we exa

the proposed method under the weakly sparse scenario using simulation studies,
demonstrating impressive advantages over other existing methods.

The remainder of the paper is structured as follows. Section 2 introduces the
weighted [; regularized approach for the high-dimensional spatio-temporal VAR,
as well as its theoretical properties. Section 3 presents the implementation of the
proposed method and compares its performance with that of the LASSO, SCAD,
MCP, adaptive LASSO (adaLASSO), and spaLASSO using simulation studies.
In Section 4, we apply the proposed method to a traffic network data set. Section
5 concludes the paper.

Notation. Throughout this paper, we denote the cardinality of a set J by |J|,
and use JC to denote its complementary set. For a vector v, we use v := (v;)ics
to denote the sub-vector with support J, and use [lv||, :== (37, |v5] 1)1/ to de-
note its {9 norm. For a matrix A, we use A4; to denote its jth column. vec(A), A’,
and AY are its vectorization, transpose, and conjugate transpose, respectively.
Ao B and A ® B are the element-wise product and Kronecker product, respec-
tively, of matrices A and B. Apax(A) and Apin(A) are the largest and smallest
eigenvalues, respectively, of a symmetric or Hermitian matrix A. For a squared
matrix A, ||A| z, p(A4), and ||A||, are its Frobenius norm /tr(AH” A), spectral
radius max{|\;| : \; are eigenvalues of A}, and spectral norm \/Apax(A7A), re-
spectively. We write z 2 y if there exists a positive constant ¢ such that x > cy.
If we have both x 2 y and y 2 x, we use x < y to denote their relationship.

2. High-Dimensional Spatio-Temporal Vector Autoregression

Suppose z4 is the observation on site s at time ¢ (s =1,...,m;t =1,...,T),
and we assume Xy = (Z1¢,...,Tmt) 18 generated by a pth-order VAR process:
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X, =01 Xi 14+ P X ,+e, g <Y N(0,3), (2.1)

Here, ®1,...,®, are m x m transition matrices encoding dependence across space
and temporal lags. We use ®; ;¢ to denote the ss'th entry of ®;, so that ®; s
represents the [-lagged influence of site s’ on site s. We express this VAR(p)
model in the following multivariate regression form:

/ / / /
X, Xpo - X5 [ er
2N IS RN N N
!/ !/ / /
p+1 Xp o X o, S+l
——— ~ —— =
}/(Tfp)xm X(T—p)xpm, Bpm)(nl E(Tfp)XnL

In the high-dimensional case, the LASSO can recover the sparseness of the
transition matrices and reduce the forecasting error (Basu and Michailidis (2015)).
However, the regular LASSO uses the same penalty for different ®; , compo-
nents, which may be inappropriate for spatio-temporal data. Instead, we propose
the following weighted /1 regularized LS, which penalizes ®; ,,» according to the
spatial distance between site s and s, say ds¢, as well as the temporal lag I:

~ 1
weighted 11-LS: B = min - [[Y — X B|% + \Q(B), (2.2)

where N =T — p and Q(B) = Y1, D arsm1 Wiss' | Prssr|, With wyse > 0 being
the penalty weight for ®; ;. Because ®; . quantifies the dependence between
site s and site s’ across the temporal lag [, it is more likely to be zero if dgg
and [ are large. Therefore, the weight wy s¢ is set to be an increasing function of
the distance dss and the temporal lag [. Using this construction of the penalty
weights, we impose a spatio-temporal structure on the data in which the condi-
tional dependence between two sites across the temporal lag [ (represented by
®,; 55) decays as the spatial distance dss and temporal lag [ increase. There are
several ways to define the weights, for example,

ldss/ ldss’ @
wl(’ls)s, = exp <Clpd’maz> or wl(’gs)s, = <1 + pdmm> , (2.3)

where d;,q; i the maximum of dss, and ¢q, co > 0 are universal constants deter-
mined using cross-validation. The inclusion of ¢; and ¢ ensures that the weights
are data driven and adds flexibility to this method. Other weight functions can
be defined as well based on the context of the data set under investigation. A spe-

®3) _

cial case is that w; s¢ is a function of dys only, such as w,",, = exp (c3dss' /dimaz),
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HIGH-DIMENSIONAL SPATIO-TEMPORAL VAR 1277

which means that the magnitudes of the parameters are influenced only by the
distance. We examine the performances of various weight functions in our simu-
lation studies and real data application.

Utilizing weighted penalty functions such as those above significantly im-
proves the model performance, without sensitivity to the exact choice of weight
functions. This is mainly because we include the data-informed constants ¢; in
all weight functions, which are selected via cross-validation. Including such data-
driven constants optimizes the weights to some extent, and reduces the reliance
of the model performance on the choice of the weight functions, demonstrating
the robustness of the proposed method with respect to changes in the weight
functions.

2.1. Model assumption

In the following, we provide the nonasymptotic bounds on the estimation
error of the weighted [;-LS estimation (2.2), and show that under certain condi-
tions, the proposed estimator is consistent. We rewrite the VAR model as

vec(Y') = vec(X B) + vec(E) = (I, ® X)vec(B) + vec(E) := Z3 + e,

where y = vec(Y) is an mN X 1 vector[Z]= I, ® X is an mN X g matrix, and
B = vec(B) is a ¢ x 1 vector with ¢ = m®p. The proposed estimation (2.2) can
be expressed as the following M-estimation:

8= argénin {—Qﬁ”y + 8T8+ ANQ(E;')} , (2.4)

where 4 = (I,, ® X")y/N and T' = (I,, ® X'X)/N. Throughout this p@r, we
denote the true parameter as 3* and the corresponding true transition matrices
as ®7,...,®;. We consider two scenarios: (1) B* is exactly sparse; and (2) B~
is not exactly sparse, but can be well approximated by a sparse vector, which is
called “weakly sparse.” Both scenarios need the following assumption.

Assumption 1. The VAR(p) process is stationary, that is, the roots of I, —
Zle ®;z| = 0 are lying outside the unit circle. In addition, ¥ is positive definite.

Assumption 1 is fundamental in high-dimensional time series analyses. Be-
cause the key to analyzing the M-estimation (2.4) is the dependence shown in
4 and f‘, this assumption guarantees that the spectral density of {X;} exists.
Under such an assumption, Basu and Michailidis (2015) used the spectral den-
sity to construct a measure of dependence, and proved that 4 and r satisfy
two important conditions. More specifically, Propositions (4.2) and (4.3) in
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1278 WANG ET AL.

Basu and Michailidis (2015) state that, under Assumption 1, there exist con-
stants b;, such that for N > max{w?, 1}(logp+ 2logm), the restricted eigenvalue
(RE) condition (2.5) and Derivation condition (2.6) hold with probability at least
1 — by exp(—ba N min{w=2,1}) — bz exp(—bs(logp + 2logm)):

RE cbndition: 6'T0 > a||0]3 —7]16]>, V6 < RY, (2.5)

Derivation condition: ||§ — I'8* HOOEFQ

Here, w, o, 7, and Q are determined by the transition matrices {®;}}_; and the

1 21
o £ 2logm (o

covariance matrix of the innovation . Specially, we first define

fmin(®) = min Amin(q)H(z)q)(z))’ Pmax(®) = gl\i}f AmaX((I)H(Z)q)(Z))u

|2|=1

where ®(2) =1 — Y7 ®;2! (2 € C) is the characteristic polynomial of the VAR
process and ®(z) is its conjugate transpose. Furthermore, we set

e -0, 1 D, ) )
N I,--- 0 O ®(2) = Ipy, — Pz (2 € C),
0--- 1, O
Then, w, a, 7, and Q are defined as follows:
Amax(2)/ tmin (®) Apin(3) 2 1y logp+logm
w=ay , a=——>"_ 7T=qamax{w’,1}———
Amin(2)/ Hmax (P) 2pimax (P) t J N
Q= a2 | Apan(®) + Smx ) A (2) (2.7

fomin (®) Hmin (11)) ’

where a1 and ag are positive constants. Refer to Basu and Michailidis (2015) for
more detail. The RE condition (2.5) and Derivation condition (2.6) are the key
to deriving the convergence rate of the M-estimation (2.4).

2.2. Convergence rate under exact sparsity

In this section, we assume the true paramete‘" B* has-many-zero-entries; and
# 0}, with |.J| = k. |Eaddn:lom we
need the following constraint for the penalty weights.

we set its support to be J = {(l,\ss

lss

Assumption 2. wy sy >0, for all (1,ss") € JC.
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HIGH-DIMENSIONAL SPATIO-TEMPORAL VAR 1279

This assumption states that the parameters with true values equal to zero
should have nonzero penalties. This assumption can be guaranteed by setting all
penalty weights to be positive. In addition, any choice of (An, {w;ss}) is equiv-
alent to (XN,{w,,ss/}L with Ay = a\y and Wy ss = W ss/a, for any arbitrary
positive number a. Without loss of generality, we can set min{w; ss : (I,s5') €
J¢} = 1. Furthermore we set r,, = max{w; ss : (I, ss") € J}, which is indeed the
ratio between the maximum weight of the nonzero parameters and the minimum
weight of the zero parameters, that is, 7, = max{w; ss : (I, s5") € J}/ min{w; s¢ :
(1,ss') € J¢}. In the following theorem, this ratio is the key quantity for the
proposed method to achieve smaller error bounds than those of the LASSO.

Theorem 1. Consider the weighted l1-LS estimator in (2.4). If Assumptions 1
and 2 hold, there exist constants b; > 0 not depending on the data or the model
parameters, such that for any N 2 (1 + r,)? max{w? 1}k(logp + 2logm) and
AN > 4Q\/(logp + 2logm) /N, with probability at least:

1 — by exp(—byN min{w™2,1}) — by exp(—by(logp H 2log m)),

the estimation error (B — B*) is bounded as follows:

8 1+2r s 2 + 67y, + 472
18 =Bz = — “Vidy, 8- < #W\Nv
(1+ 2ry)?

(B-B)T(B - p) < —— =k}

If we set so = min{|3}| : j € J}, the number of false zeros is bounded by

* X 2 + 6Tw + 47"121)
)Supp(ﬁ )\Supp(ﬁ)‘ < So—ak/\N.

If we consider a threshold version 8 = {B;I(|3;| > An)}, with I(.) being the
indicator function, the number of false nonzeros in B is bounded by

k
< (14 2r)2=.
(6%

’SUPp(B)\Supp(ﬁ*)

Remark 1.
(a) |8 — B2 = \/Zle |®; — ®*||% is the error of the transition matrices

under the Frobenius norm, and (8 — 8*)T(8 — 8*) = S/, || 50 (&) —
®7)X;||3/T is the in-sample prediction error under the Iy norm.

(b) If we set 7, = 1, which corresponds to the LASSO, we will get the following
upper bounds, which are similar to those in Basu and Michailidis (2015):
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1280 WANG ET AL.

18 = B°ll2 < 3VEkAv/a, |IB = B7Ili < 12kAv/a, (B — B)T(B — B°) <
9k /e, [supp(8*)\supp(B)| < 12kAn/(soe), [supp(B)\supp(B*)| < 9k/a.

(c) Compared with the LASSO (r,, = 1), if the weights {w; ss} are properly
specified, the ratio r,, should be much smaller than one. In the ideal case
when 7, is close to zero, our upper bounds for H,é — B*|l2, HB - B,
(,3 — 5*)’f‘(,é - B%), \supp(ﬁ*)\supp(ﬁ)\ and \supp(B)\supp(,@*)\ are nearly
1/3,1/6, 1/9, 1/6, and 1/9 respectively, of that of the LASSO.

(d) Condition of Consistency: If Ay is selected as Ay =< Q+/(log p + 2logm)/N,
the upper bounds of the estimation errors become

3 * (14 2r,)Q [Ek(logp+ 2logm)
18— B2 < - ~ ’
s (2 + 61y +4r2)Q [k(logp + 2logm)
18— 8% < - . ’
(B-BTB-B) < (1+2rw)2 -1 <10gp} 2logm)

where a and QQ are related to unknown parameters, as shown in equation
(2.7). When Q/a has a finite upper bound, we will have |3 — B8*[2 <
\/ k(logp + 2logm)/N. In this case, the consistency of the proposed esti-

mator requires only that N increases at a faster rate than k(logp+2logm).

2.3. Convergence rate under weak sparsity

IrLF—eLLI applications, the conditional dependence quantified by ®
be zero, even for a large distance dgy and/or lag I. For instance, Qe #0

Z s May not
may occur for a large distance dgy, especially when the sites are located on an
irregular lattice. This example motivates us to consider a scenario called “weak
sparsity”, in which the true parameter vector 8* does not have many zeros (i.e.
not exactly sparse), but can be well approximated by a sparse vector. Only a few
studies touch on weak sparsity, and almost all of them focus on independent data
(Negahban et al. (2009), Raskutti, Wainwright and Yu (2011)). An exception is
the work of Sun et al. (2018), which focuses on estimating the spectral density
matrix of high-dimensional time series. Moreover, they all define weak sparsity
under the so-called “ [, ball” setting. Specifically, they assume the true parameter
vector is within the I, ball: B.(R) := {8* : 327 , |8}|" < R}. where r € [0,1] is
fixed-—Under—this setting la-constraint-on-theradius R isreguired to achieve the

estimation censisteney. Eeor-example, in independent data, the LASSO estimator
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HIGH-DIMENSIONAL SPATIO-TEMPORAL VAR 1281

is consistent if R satisfies

N 1-r/2
I, ball constriant: R = o (( ) > , (2.8)
log g

where ¢ is the number of parameters (Negahban et al. (2009), Raskutti, Wain-

wright and Yu (2011)). However, how “sparsifiable” 8* is depends on the relative
magnitude of each element in 3*, rather than its overall [, length. Thus, the [,
ball setting does not clearly describe the “sparsifiability” of 3*. A special case
in which all 8 have the same magnitude could still fit in the . ball setting.
However, in this case, 3* cannot be appreximated-by-a'sparse veetor,-and-isnot
suitablefor-an [yregularized estimation. In general, the [, ball setting may not
be a reasonable way to relax the sparsity assumption.

Instead of using the [, ball setting, we define “weak sparsity” from another
perspective: most entries of 3* are small enough such that 3* can be well ap-
proximated by its hard thresholding version, say 8y, the jth entry of which is
BiI(|8;| > m). For any given threshold n, we use J; = {j : [8;| > n} to denote
the support of 8;. The formal definition of our proposed weak sparsity is as
follows.

Definition 1 (Weak Sparsity Constraint). If there exists an 1 such that the
following two conditions hold:

2
« N
|Jn’—0<<(@) logp+210gm> and

N . a 1 N
185l =e (“““ {515} s 2 ) | 2

where Jnc ={j:]| 5j| < n}, we say 3" satisfies the weak sparsity constraint.

This constraint means, with a proper choice of 1, 3y is sparse and is a good
approximation of 3* in the sense that its difference from 3*, denoted as ’BZC’
is sufficiently small. In this way, our weak sparsity constraint quantifies how
sparsifiable the true parameter vector 8* is, so that its I; regularized estimation
remains consistent. In the following theorem, first without this constraint, we give
a general result of the upper bound of the estimation error. Then, under this
weak sparsity constraint, with a proper choice of Ay, we show that the proposed
estimator is consistent. Furthermore, we simplify the weak sparsity constraint in
a special case of VAR(1) in Proposition 1. Finally, we directly apply Theorem
2 to derive the upper bound of the estimation error under the [, ball setting,
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1282 WANG ET AL.

and prove that our weak sparsity constraint (2.9) is more relaxed than the I,

ball constraint (Corollary 1). Also note that Theorem 2 and Corollary 1 also

hold for the LASSO, because LASSO can be viewed as a special case of the

proposed method in which all w; s¢s are the same. To state our theorem, we

require the following notation: for any 7, set ﬁ) = min{w; s¢ : (I,s5') € J,7C},
(n) /w1 (n).

w2(77) = maX{wl,ss/ : (l, SS/) S Jn}, and rw(n)
Assumption 3. w; o > 0, for all (I, ss').

Theorem 2. Consider the weighted l1-LS estimator in (2.4), and assume As-
sumptions 1 and 3 hold. Then, there exist constants b; > 0, such that for any
n, if N 2 (1+ry(n))?J, max{w? 1}(logp + 2logm) and Ay = v /wi(n) with
Ay = 4Q\/(logp + 2logm) /N, with probability at least

1 — by exp(—byN min{w™2,1}) — bg exp(—bs(log g+ Rlogm)),

the estimation error (B — %) is bounded as follows:

\/rw(n)xwllﬁic\h
T 4
«

IN

14 2ry (77)
(6%

18— B*l2 Ty A + 2

4ry(n) maxiw, 1}~ N
et LS v

18 = B%ll1 < 2+ rum)\/1Jyl18 = B*[l2 + 4rw(m) 185 1.

(B yRB -7 < 2 B8~ B + 2n () B

Second, if there exists an n such that B* satisfies the weak sparsity constraint
(2.9), the proposed estimator is consistent, that is, for any arbitrary € > 0,
Pr(||B — B*l2 > €) = 0 as T,m — .

Remark 2.

Theorem 2 includes exact sparsity as a special case. If 8* is exactly sparse
with k nonzero entries, by setting n = 0, we can obtain |J,| = k and
|B%c|l1 = 0. Then, the above three upper bounds are the same as those in
Theorem 1. For the weakly sparse scenario, we approximate 8* by its hard
thresholding version 3;. As a result, extra terms containing ||ﬁ§nc\|1 occur
in the upper bounds.
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(b) By setting 7, = 1, we obtain the upper bounds of the LASSO:

. . 3 ~ XNH/@?CW dmax{w, 1}~ N
18-l < 2l + 2y S 4 A LR g,

18 = B7Il < 3/ 17418 = B7ll2 + 41185e |1,
2 T A * 3 Y % * Y *
(B =B )YL(B = B7) = 5/ InlANIIB = Bz + 2An | Bje -

Furthermore, if the weak sparsity constraint (2.9) holds, the LASSO esti-
mator is also consistent.

(c) If the weights {w; s } are properly specified, the ratio r,, should be smaller
than one and implies smaller error bounds than those of the LASSO. In
the ideal case, when r,, is close to zero, the e bounds of the proposed
method approach:

% * 1 3 3 * A *
18 =87z < —\/IdalAns 118 =Bl < 24/14[l18 = 872,
% *\/T/ A * 1 Y 3 *
(B BT - ) < 5\l AxlB - 5.
which are less than 1/3, 2/9, and 1/9, respectively, of those of the LASSO.

The meaning of the weak sparsity constraint (2.9) is straightforward. How-
ever, it is difficult to verify in practice, because it contains «, Q, and w, which
depend on unknown model parameters. When « is bounded away from zero, and
Q and w are bounded away from infinity, the weak sparsity constraint can be
simplified as |J,| = o (N/(logp + 2logm)) and H,@f‘,ﬁb =o0(N/(logp+ 2logm)),
which depends only on the number of observations the parameter dimension.
For a general stationary VAR process, the behaviors of «a, Q, and w are complex,
and cannot be guaranteed to be bounded. Here, we consider a simple case of
VAR(1) process with symmetric transition matrix, and explore the properties of
a, Q, and w in Proposition 1.

Proposition 1. For any stationary VAR(1) process Xy = ®X;—1 + € with sym-
metric transition matriz ®, we have

[Ail <1 for any i, p(®) = max |Ad,

pmax(®) = (L4 p(@))%,  pmnin (®) = (1 — p(@))?,
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1284 WANG ET AL.

where {\;}I", are the eigenvalues of ®. Furthermore, o is bounded away from
zero, Q and w are bounded away from infinity if and only if Amax(X) is bounded
away from infinity, Amin(X) is bounded away from zero and p(®) is bounded away

from one.

This proposition implies the following: for a VAR(1) process with a sym-
metric transition matrix, if the eigenvalues of ¥ and ® behave properly and
there exists an n > 0 satisfying |J,| = o(N/(logp + 2logm)) and H,@f}]cﬂl =
0 (N/(logp + 2logm)), we achieve the consistency of 3. The symmetry of &
is not required for the general case to build consistency. However, it helps to
simplify the weak sparsity constraint, and makes it more informative for real ap-
plications. In addition, because dss equals to dg s, a symmetric ® can happen in
reality when @, is a function of the distance d, .

[, Ball Setting. Negahban et al. (2009) and Raskutti, Wainwright and Yu (2011)
investigate the LASSO estimation of linear regression in independent data under
the [, ball setting. Under some conditions, they build up the upper bound of
the [y estimation error and provide the condition for consistency (i.e. the [, ball

constraint (2.8)). Based on Theorem 2, we obtain a similar error bound under
the l’/‘ ball constre aint for tho ﬁY’I\pCCﬂf“I vnethon‘l {nnvnnav"r 1\ “/rnvan‘rov, e lprove

(e s avar oz aun vr s sy (Sieie

that our constraint (2.9) is more relaxed than the lr ball constraint, and thus is

more general.

Corollary E'Consider the weighted l1-LS estimator in (2.4) with true parameter
B* within the I, ball: B,.(R) := {3" : ?:1 1B5|" < R}. Assume Assumptions 1

and 3 hold. Furtherfote, set w1 = min{wy s }, w2 = max{w; s}, 10 = wo/wi,
v = 4w Qy/(logp + 2logm)/N, and n = Ax/a. Then, there exist constants
b; > 0, such that for any N 2 (1 + rw)2|Jn|maX{w2,1|_i(_llogp + 2logm), with
probability at least

1 — by exp(—boN min{w™2,1}) — bz exp(—bs(logp + 2logm)),

the estimation error is bounded as follows:

. . w1 + 2w + 2/W3 /9, (2-r)/2 | Aw2 max{w, 1}
_ < iabad’Resieniel Sattlng §
H/@ ﬁ H2 Q2-1/2 R )‘ + Qalfr

RA\Y". (2.10)

Remark 3.

(a) Corollary 1 implies that oz(’ﬂ_Q)/QRl/Q)\5\2,_74)/2 = o(1) and o/ 'RAY/Q =
o(1) are required to obtain the estimation consistency in the [, ball setting.
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After plugging in the choice of Ay, we obtain the following [/, ball constraint:

(2—7)/2
aT—2Q2—T‘R <W> — 0(1)’ and
(2-7)/2
max{w,1}o" Q"R (W) = o(1). (2.11)

In the Supplemental Material, we prove this constraint is stricter than our
weak sparsity constraint (2.9).

(b) Note that, in the special case when « is bounded away from zero and Q
and w are bounded away from infinity, the second term in (2.10) is of higher
order than the first term. Thus, the convergence rate becomes ||3 — 8[|z =
O (RY?(logq/N) 12-r/a
This rate is the same as that in the regression of independent data (Raskutti,
Wainwright and Yu (2011); Negahban et al. (2009)). D

).5with ¢ = pm? being the number of parameters.

3. Simulation Studies

In this section, we first describe the implementation of the proposedrweiglted
l1-LSrapproact (2:2).Therr, we present several sinmutation studies that compare
the proposed method with five existing penalized estimations of high-dimensional
VAR: the LASSO (Basu and Michailidis (2015)), SCAD and MCP (Zhu (2020)),
adaLASSO, and spalLASSO (Schweinberger, Babkin and Ensor (2017)). Several
settings of the VAR order, dimension of the time series and sparse scenarios are
considered. We that, in all settings and scenarios, the proposed method
achieves substantial improvements over the existing methods in terms of param-
eter estimation, network-detection.—and-out-ofisample forecast. Because we-have
consistent findings across the different-settings;we-deseribesimulation-of VAR (1)
with m = 100 in detail and summarize the findings for other simulation settings.

3.1. Practical implementation

The objective function in the minimization problem (2.2) can be decomposed
as a sum of independent objectives:

m
1
> [N |Y; - X B3+ )\NQi(Bi)] ;
i=1
where Y; and B; are the ith columns of matrices Y and B, respectively, and
Qi(Bi) = >1_; >_jL) Wiss'| Py 55| Therefore, the optimization (2.2) can be solved
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1286 WANG ET AL.

in parallel by solving the following sub-objectives:

1
Hgnﬁ||Yi—XB,-||2+)\NQZ-(B¢), i=1,...,m. (3.1)

By defining &?1758/ = Wy e8P ssr, B = [2131, .. .,&)p]"and, correspondingly, X0 =
.-+, Xmp| the jth column of which is = o w® with wl®) =

X ., XW] the jth col f which is X\” = X; o w®, with w®

(1/wi41,--, L/ wiim, .., L/wpi, ..., 1/wpim)’, objective (3.1) is transformed into

a LASSO optimization,
1 %) 3112 ~ .
HEHNHYZ_X B’L|‘2+)\N||B1H1> Z:L"'vmv
B;

which can be easily solved by existing LASSO algorithms.lzl

In practice, we need to select the VAR order p, the penalty parameter Ay,
and the universal constant ¢; in the penalty weights (2.3). The parameter selec-
tion can follow the forward cross-validation approach, which is commonly used
in high-dimensional VAR model estimations (Banbura, Giannone and Reichlin
(2010); Song and Bickel (2011); Nicholson et al. (2020)) and provides good per-
formance for finite samples as shown in the following simulation studies and
real-data analysis. First, we separate the data into@ sets: a training data
set {1,...,7p} and a validation data set {Tp +1.....7T}. Here, Tj is prespeci-
fied such as Ty = |0.67"]. Then, we specify pctential values-of p-and-¢;such-as
pe1,—4}-and-¢-€l {0555, 10,15:20,25,.30}. L Forleach given pair of (p,¢;),
we follow Friedman, Hastie and Tibshirani (2010) to perform a grid search of
AN, which starts from A, the smallest value that shrinks all parameters to
zero, and then decreases in log-linear increments until the value of A’%j%*/1000
is reached. We take 30 values along this grid, and obtain 4 x 7 x 30 triples of
(p, ci, An)._For each triple of (p, ¢;. A ). we optimize (2.2) using the training data
set and ther-ealeulate-one-step-aheadforecast )Aft(i’lc“)w ) for the validation data
set (t =Tp,...,T —1). Then, we select the values of (p, c;, \y) = (p°*, c?pt, )\?\’;t)
by minimizing the following root mean squared forecast error (RMSFE):

T-1
1 1 O (DCi, AN 2
RMSFE = T ;_Tj — HXt o Xi1 H .

T— +1 2

Finally, we optimize (2.2) based on the selected (p°, ¢;* t )\?\I;t) and data till T.

[]
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3.2. Simulation setting

In each simulation setting, we simulate the VAR process 100 times, and each
simulated process has 150 observations. The last 80 points (¢t = 71,...,150)
are preserved as a test data set for out-of-sample forecast comparison. For the
LASSO, adalLASSO, SCAD, MCP, and proposed method, we apply the afore-
mentioned forward cross-validation to select the tuning parameters, and set the
data within ¢ = 1,...,40 as training data set, and the data within ¢ =41,...,70
as the validation data set. We use the LASSO estimator to derive the penalty
weight for the adaLLASSO, that is, A\; = A/|5;| with the LASSO estimator /3;. For
the spalLASSO, we use the code provided in the online supplemental materials of
Schweinberger, Babkin and Ensor (2017) to carry out the model estimation and
prediction. This method uses stability selection (Meinshausen and Biihlmann
(2010)) to sidestep the selection of the tuning parameters. Two weight functions
are considered in the proposed method:

l dss’ \62
p dma;t J '

WLA

n
in
®)
=

(1 (e % [V ] wrassoz: ., = (1
T 0% ET = ] . 1ol — +
hss a \ pdmam/ oo \

We-consider the following criteria to compare the various methods:

e [} estimation error: |3 — B*||1 = Dlss Doy — D7l

e I estimation error: |3 — B*|]2 = \/ZLS’S, Doy — 7, 1%

e Percentage of false zeros: PFZ = Zl,s,sff(&)ss’,l =0,07,, # 0)/m?p.

e Percentage of false nonzeros: PFNZ = 217878,1(@95/75 # 0,95, , = 0)/m?p.
e RMSFE for h-step out-of-sample forecast, with h =1,...,5.

To simply the presentation of the results, we treat the LASSO as a benchmark,
and report the ratio of each method over the LASSO. Ratio less than one means
the method outperforms the LASSO.

3.3. Simulation of VAR(1) with dimension m = 100

First, we construct 21 x 21 lattices with coordinates {(xi,yj)}?g:l as xr; =
0.05¢ + ¢; and y; = 0.05¢ + §;, where ¢; and 0, are independently generated from
unif(-0.01,0.01). Then, we randomly select 100 sites from all 441 vertices in the
lattice. Four sparse scenarios are considered:

& *
- |(I)ss’

~ unif(0.1,0.5); then, set |P%,,

(a) Exactly sparse: Generate |®*,,
I(dyy < 0.05).
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1288 WANG ET AL.

(b) Weakly sparse (fast decay): |®%., | = 0.55/exp(20 dss).

*
ss’
(c) Weakly sparse (slow decay): |®%.,| = 0.25/exp(5dss).

(d) Exactly sparse with zero parameters within a small distance: Generate
|| ~ unif(0.1,0.5) and set |®%,,| = |®*,,|I(dss < 0.06). Then, randomly

ss’ ss’ ss’

select 33% nonzero parameters to be zero.

The sign of @7, is selected randomly. Scenarios (a) and (d) represent exact spar-
sity, and scenario (d) less favor the proposed method because some parameters
associated with the small distance are zero. This scenario is specifically designed
to investigate the performance of the proposed method under an unfavorable sce-
nario. Scenarios (b) and (c) represent weak sparsity. Compared with scenario
(c), |®%,| in scenario (b) decays much faster, and thus is more sparsifiable. To
guarantee that the VAR(1) process is stationary, the above generation procedure
is repeated until all eigenvalues of ®* are within (-1,1). We set ¥ = 0.011.

Simulation results. The empirical results are reported in Table 1 and Figure
3 in the Supplemental Material. In terms of model fitting, the proposed method
achieves a considerable improvement over the other five competing methods in all
four scenarios, highlighting the advantage of incorporating spatial and temporal
information. In particular, in scenario (a), the [y error, ls error, PFZ, and PFNZ
of the proposed method are only 35%, 41%, 5%, and 20%, respectively, of those
of the LASSO. In contrast, the other four methods do not outperform the LASSO
and underestimate the nonzero parameters. The only exception is PFNZ. This is
because the other competing methods are too conservative and severely under-
estimate the nonzero parameters. Thus, their PFNZ are low, but their PFZ are
high. Meanwhile, it is not surprising that the proposed method has a high PFNZ
in scenario (d), because there are some zero parameters associated with small
distances. We further explored the true zero parameters with distances less than
0.06, and summarize their WLASSO estimations in Table 2 in the Supplemental
Material. The zero parameters are estimated well by the proposed method, even
though their WLASSO penalties are small. Specifically, more than 70% of the
zero parameters are estimated as zero, and further 20% of them are estimated
to be within (—0.03,0.03), which is negligible compared with the true nonzero
parameters. This is because the estimation becomes a low-dimensional prob-
lem after the proposed method forces the parameters with larger distances to be
zero. Thus, their estimations are close to the true value, that is, zero, even with-
out large penalties. On the other hand, the penalty weights of the adaLASSO
and spaLASSO are derived from an initial estimator (LASSO). Inaccuracy of
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HIGH-DIMENSIONAL SPATIO-TEMPORAL VAR 1289

the initial estimator produces unreliable penalty weights, thus contaminating the
estimation.

Figure 2 in Section 1 depicts the network detection results of one randomly
selected replicate in scenario (a), and the results are consistent with what we
observe in PFZ and PFNZ: the proposed method performs the best and provides
desirable network estimation. In contrast, the other five methods severely under-
estimate the true connections. Meanwhile, the LASSO, adaLASSO and SCAD
also overestimate wrong connections.

Figure 3 in the Supplementary Material plots the RMSFE ratio between
each method and the benchmark (LASSO). The proposed method demonstrates
significant improvement over the LASSO at A = 1,2,3,4 in all scenarios. In
contrast, the other four methods do not show obvious advantages over the LASSO,
and sometimes even perform worse. In addition, the performance of WLASSO1
and WLASSO?2 are very close, which confirms that the proposed method is not
sensitive to the choice of weight function. The following simulation studies and
real-data analysis also confirm this robustness.

3.4. Simulation for VAR(1) with m = 200, VAR(2) and VAR(3)

The simulation results are reported in Tables 3-5 and Figures 6-11 in the
Supplementary Material, which also indicates the superiority of proposed method
over other competing methods. Furthermore, the improvement over the other
methods is more significant for m = 200 than that it is for m = 100. For
example, the proposed method has a significantly better forecast than the others
even at horizon h = 5, and its reduction in the RMSE is larger for m = 200 than
that it is for m = 100. In addition, the improvement over the LASSO in terms
of forecasting becomes more obvious as p increases (Figure 11). This is because
our method penalizes the parameters based on both the spatial distance and the
temporal lags.

4. Traffic Data Analysis

The real data contain the hourly traffic volumes recorded on 79 sites on high-
ways around Des Moines, lowa. The records are hourly data from Sepmtember
20, 2014 to November 2, 2014 (six weeks and two days), with a total of 1,056 ob-
servations for each site. The 79 sites are shown in Figure 17 in the Supplementary
Material.

For each site s, the volume series {z&} (s = 1,...,79; t = 1,...,1056) has
strong weekly periodicity, that is, its weekly trend is repeated every 168 time
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points. For each time point ¢, we use d = t mod (168) to denote the hour of the
time point ¢ in one week. We model {z4} as follows:

Zst = fhsd T OsdTst, E(xst) =0 and E(mzt) = 17 log(asd) =as+ bs IOg(MSd)a
Xi= (@1 i), Xg=P1Xp 14+ PpX; 46y (4.1)

Here, {psq}l% is the weekly trend of {zy}, and {4 };23° is the series after sub-
tracting the trend and standardization, which is assumed to be stationary. In
addition, E(rg) = 0 and E(z%) = 1 guarantee that o,y and g are identifi-
able. The following two-stage procedure is carried out for the estimation and
forecasting.

Stage 1: Estimate pgq4, 054, and series {xst}. We first use the local linear
kernel regression (Fan, Heckman and Wand (1995)) to estimate {usq}:%% and
obtain the detrended series ys := 2zt — flsq- Because we have multiple y4; at each
d, we can approximate og; using the standard error of these yg (i.e., 54 is the
standard error of {ys : t mod (168) = d}). Then, we regress log(dsq4) on log(fisq)
to estimate a5 and by. Finally, the estimate of the series {xs} is obtained as
Zot = (2st — fisd)/ explas=+bslog(fiss))—Figurd 12 in the Supplemental Material
illustrates the result for one site in Stage 1.

Note that some stretches of observations in {zg} are zero. This may be the
result of road construction or maintenance at that time. These zero observations
are considered outliers, and are excluded when estimating {psq} and {osq}. The
following procedure is applied for outlier screening. For a given d, we have six to
seven zg. If the median of these zg is above 30, but one of them, say zg,, is zero,
we mark zg, as an outlier. In addition, we used boxplot to identify outliers: if
Zst, 18 below the interquantile of the 25% quantile or above the interquantile of
the 75% quantile, zy, is marked as an outlier. We exclude these outliers when
estimating {usq} and {054}, but attribute them to component {x4}.

Stage 2: Modeling {X;}. Set X; = (&1, ... 2m:). We apply the VAR, LASSO,
and the proposed method to estimate model (4.1) and carry out the forecasting.
Here, we divide the time period into four sub-periods: (1) weekday peak time
(6 a.m. to 8 p.m.); (2) weekday off-peak time (9 p.m. to next day 5 a.m.); (3)
weekend peak time (8 a.m. to 8 p.m.); (4) weekend off-peak time (9 p.m. to
next day 7 a.m.). We carry out one-step- to four-steps-ahead forecasting for the
last two weeks. To incorporate the spatial loc@n information, we calculate the
road distances between the 79 sites. If there is a highway path from site s to site
s', dss is the road distance of this path, otherwise, we set dss = dimaz, Where
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dpaz := max{dsy : there is a road path from s to s'}. The following four weight

functions are considered:

ldSSI ldSS/ C2
—exp (a1 ., WLASSO2: w®, = (14— |
pdmam 159 pdmaa:

WLASSO1: v

l,ss’

C3
WLASSO3: wl(?;l/ = (l exp ( dss )) , WLASSO4: wl(?s, = exp <C4 dss > .
’ p dmaz ’ Amasz

We also tried a setting in which dgs = oo if there is no road path between site s
and site s’. This setting forces the corresponding @44 ; to be zero. In practice,
these two distance settings provide very similar network detection and forecasting
performance. For both the LASSO and the proposed method, the VAR order p is
selected from {1,...,6}. Table 6 in the Supplemental Material lists the partition
of the training data set, validation data set, and test data set. In summary, the
last two weeks are the test data, and the last third and fourth weeks are the
validation data. It turns out WLASSO1, WLASSO2, and WLASSO3 performs
similarly and WLASSO4 behaves slightly worse. Thus, we report the result for
WLASSO1 only.

Summary of fitting and forecasting results. Table 7 in the Supplemental
Material lists the selected orders of the LASSO and WLASSO1 using forward
cross-validation. For the VAR without any penalty, we fix p = 1, which gives the
best forecast. WLASSO1 selects p as one or two for all sub-periods, but LASSO
selects p = 5 for the weekend peak time. Here, p = 5 means one site may be
influenced by another site even after five hours, which seems to be unreasonable.
This is because the LASSO penalizes the parameters equally regardless of the
temporal lag. The forecasting RMSFEs are listed in Table 8 in the Supplemental
Material. Unsurprisingly, the LASSO and WLASSO1 outperform the VAR. In
addition, WLASSOL1 is superior to the LASSO for all scenarios, except the week-
day peak time, with A = 1. In particular, for the weekend peak time, WLASSO1
outperforms the LASSO by reducing the RMSFE by 17%, 9%, 8%, and 6% for
h=1, 2, 3, and 4 respectively. It also reduces the RMSFE by 8% for the weekend
off-peak time, with A = 1. To examine the significance of such improvements, we
carry out the Diebold-Mariano (DM) test (Diebold and Mariano (2002)) for each
sub-period. The test results show that WLASSO1 is significantly better than the
LASSO for the weekend peak time.

In addition, WLASSO1 yields a more reasonable network estimation than
that of the LASSO in all sub-periods, as shown in Figures 13-16 in the Supple-
mental Material. The LASSO connects some-sites-that-are-far-from-each other, or
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even in opposite directions, which is counter-intuitive, whereas WLASSO1 only
connects sites that are close to each other.

5. Conclusion

We have introduced a data-driven weighted [; regularized estimation of a
high-dimensional VAR model for spatio-temporal data. This method incorporates
spatial distance and temporal lags to construct penalty weights. Its optimization
is straightforward and easy to implement using existing algorithms. Its theoret-
ical properties are explored for both the exactly sparse scenario and the weakly
sparse scenario. We also explore the conditions for consistency, which shows the
proposed method achieves smaller error bounds than those of the LASSO. The
theoretical results of the I regularization in the weakly sparse scenario are new,
and have not been addressed previously in a time series framework. Our defi-
nition of weak sparsity is also more general than the [, ball setting used in the
literature. To evaluate the model performance, we compare the proposed method
with five existing penalized VAR estimation methods using simulation studies,
showing that the proposed method yields more reasonable network detection and
a substantial improvement in terms of model fitting and forecasting. A real-data
application on a traffic data set also demonstrates the advantages of the proposed
method over the LASSO.

In this study, the tuning parameters are selected using cross-validation, yield-
ing reasonable performance in the numerical analysis. Another popular approach
is to use the BIC (Wang, Li and Tsai (2007a,b)). However, the BIC requires
estimating the covariance matrix 3, which can be infeasible when the number of
observations T is smaller than the dimension m. A feasible solution in this case
is to apply a penalized estimation for X. However, it involves another tuning
parameter and is more expensive in terms of computation. An optimal proce-
dure of selecting the-tuning-parameters for-high-dimensional time series and the
corresponding theoretical properties are beyond the scope of this study, and are
left to future research.

Supplementary Material

The online Supplementary Material contains three parts: (1) proofs of the
theorems, propositions, and corollaries; (2) simulation settings; and (3) tables
and figures.
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