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Abstract
The ability to accurately and consistently discover anomalies in time series is important
in many applications. Fields such as finance (fraud detection), information security
(intrusion detection), healthcare, and others all benefit from anomaly detection. Intu-
itively, anomalies in time series are time points or sequences of time points that deviate
from normal behavior characterized by periodic oscillations and long-term trends. For
example, the typical activity on e-commerce websites exhibits weekly periodicity
and grows steadily before holidays. Similarly, domestic usage of electricity exhibits
daily andweekly oscillations combined with long-term season-dependent trends.How
can we accurately detect anomalies in such domains while simultaneously learning a
model for normal behavior?We propose a robust offline unsupervised framework for
anomalydetection in seasonalmultivariate time series, calledAURORA.Akey innova-
tion in our framework is a general background behavior model that unifies periodicity
and long-term trends. To this end, we leverage a Ramanujan periodic dictionary and a
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spline-based dictionary to capture both seasonal and trend patterns.We conduct exper-
iments on both synthetic and real-world datasets and demonstrate the effectiveness of
our method. AURORA has significant advantages over existing models for anomaly
detection, including high accuracy (AUC of up to 0.98), interpretability of recovered
normal behavior (100% accuracy in period detection), and the ability to detect both
point and contextual anomalies. In addition, AURORA is orders of magnitude faster
than baselines.

Keywords Offline anomaly detection ·Multivariate time series · Periodic dictionary ·
Spline dictionary · Alternating optimization

1 Introduction

Multivariate time series data arise in many domains including the web (Xu et al.
2018b), sensor networks (Zhang et al. 2019a), database systems (Van Aken et al.
2017), finance (Zhu and Shasha 2002) and others. Time series from the above domains
often exhibit both seasonal behavior and long-term trends (Saad et al. 1998; Luo
et al. 2005). For example, city traffic levels (Jindal et al. 2013) and domestic energy
consumption (Hong et al. 2016) both have an inherent period related to the regularity of
humanactivity (daily/weekly oscillations) and long term trends.Consider, for example,
Google flu searches (Google 2014) over 13 years at one week granularity visualized
in Fig. 1. Search rates exhibit annual seasonality, while in the long term neighboring
countries share a decreasing trend. In this type of time series, a common problem
across domains is the detection of anomalous time points in each of the co-evolving
time series. How to effectively detect anomalous time points in seasonal time series
with long-term trends without prior knowledge and supervision?

Accurate anomaly detection enables a host of applications including health moni-
toring and risk prevention (Vallis et al. 2014), financial fraud loss protection (Goldstein

(a) (b)

Fig. 1 An example of multivariate time series with seasonality, trends, and different types of anomalies: a
The map shows three neighbouring countries in south America: Peru, Brazil and Bolivia; b the graph shows
weekly time series of Google flu searches for these three countries spanning from 2002 to 2015. Point and
segment annotations are predicted anomalies
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2014) and data cleaning (Zhang et al. 2017). Anomalies are defined as “points” that
deviate significantly from the normal state and are differentiated into two types: point
and contextual anomalies. Point anomalies, denoted as circles in Fig. 1, consist of
a single outlying observation which stands out. Contextual anomalies (segments in
Fig. 1) consist of sequences of outliers, which can be mistaken for normal behavior
due to their persisting nature, and hence require long-term contextual information
to be detected. The detection of anomalies in multivariate time series elucidates the
behavior of a system holistically—both normal and abnormal. For instance, it can
help us make sense of patterns and anomalies in the co-evolving national time series
of cases of COVID-19.

Anomaly detection is often formulated as a classification problem (Liu et al. 2015;
Laptev et al. 2015), and as such, it requires supervised model learning. However, the
labels for anomalies are rare and typically expensive to obtain, leading to a surge
of interest in unsupervised approaches, including statistical methods (Manevitz and
Yousef 2001; Hautamaki et al. 2004; Breunig et al. 2000) and deep-learning (An and
Cho 2015; Zhang et al. 2019a). While some existing methods do not rely on explicit
anomaly annotations, they have three fundamental limitations: (1) they require normal
(non-anomalous) data, (2) they are sensitive to small local variations, and (3) they do
not offer model interpretability.

In this work, we propose an unsupervised offline (or batch) method, called
AURORA, to detect anomalies in multivariate time series with an explicit estima-
tion of the normal behavior as a mixture of seasonality and trends. Our formulation of
normal behavior is flexible and allows capturing diverse temporal patterns. Namely,we
formulate seasonality and trend fitting as an optimal reconstruction problem employ-
ing the Ramanujan periodic dictionary and a spline dictionary, respectively. This new
framework ensures the accurate discovery of interpretable normal behavior while
highlighting anomalies.

Our contributions in this paper are as follows:
Novel formulationWe introduce the problem of anomaly detection in seasonal multi-
variate time series with long-term non-linear trends.
InterpretabilityOur framework AURORA automatically detects anomalies and simul-
taneously obtains an interpretable model of the seasonal and trend components in the
observed time series.
Applicability AURORA ensures strong quantitative improvements on synthetic and
real-world datasets in anomaly detection (up to 30% improvement on AUC), and supe-
rior scalability (14 seconds in data with half a million time points and 200 univariate
series) when compared to state of the art baselines.

2 Related work

2.1 Anomaly detection

Existingmethods can be broadly categorized into supervised and unsupervised. Super-
vised anomaly detection methods such as one-class SVM (Manevitz and Yousef 2001)
and Isolation Forest (Liu et al. 2008) employ labeled anomaly data and pose the
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problem as binary classification (Aminikhanghahi and Cook 2017). Since labels for
anomalies in time series are expensive to obtain and largely unavailable (Zhang et al.
2019a), we focus on the unsupervised case. In unsupervised settings, distance-based
methods, such as kNN (Hautamaki et al. 2004), are commonly used to quantify the
difference between normal and anomalous samples. Subspace learning methods have
also been proposed where the goal is to identify a subspace in which the difference
between normal and anomalous samples are more pronounced (Keller et al. 2012).
Both distance-based and subspace-based methods are designed for anomaly detection
in datasets of independent samples and do not consider the temporal structure of time
series. Thus, they are not well-suited to localize anomalies in time series.

To account for the temporal structure, some methods explicitly model temporal
patterns while others utilize comparisons across time. In the former category normal
behavior with multiple periods is rarely considered and many time series models are
restricted to the univariate case.TheAutoregressiveMovingAverage framework (Chen
and Liu 1993) accounts for temporal correlations and can be extended to include
seasonality, but is sensitive to noise and is limited to single-period time series. Twit-
terR (Hochenbaum et al. 2017) applies the Extreme Studentized Deviate outlier test
after decomposing the univariate time series into its median, seasonal and residual
component. This method assumes that periodicity is known and only allows a single
period. Other methods map the time series in some feature space (Chan and Mahoney
2005), a process which requires domain knowledge to construct informative features.
Methods relying on comparison across time declare a time window as anomalous if
its distance to past windows is too large (Wei et al. 2005). However, it is challeng-
ing to select an optimal window size for the analysis. Such methods also requires
some supervision in that it relies on a sanitized (anomaly-free) period of observations.
Matrix profile (Yeh et al. 2016) is another popular distance-based method. It profiles
the distance of all fixed-length subsequences to their top-1 closest subsequence. Since
Matrix Profile operates at the subsequence level, and thus can declare only windows of
pre-selected size as anomalous, it is not a good fit for our task of pinpointing individual
anomaly time points or contextual anomalies of variable length (De Paepe et al. 2019).

Given the wide variety of structures in multivariate time series, recently deep learn-
ing techniques have gained increasing attention in anomaly detection (Zhang et al.
2019a; Hundman et al. 2018; An and Cho 2015; Xu et al. 2018a; Zhou and Paffenroth
2017). In Zhang et al. (2019a), the authors developed a multi-scale model that cap-
tures the temporal patterns. Authors of Hundman et al. (2018) compare LSTM model
predictions to actual observations and use thresholding to detect anomalies. Several
variational autoencoder (VAE)methods have also been proposed for this task (An and
Cho 2015; Xu et al. 2018a; Zhou and Paffenroth 2017). The recent meta-analysis by
Zhang et al. (2019a) demonstrates that such deep learning methods do not exploit the
temporal structure, suffer from sensitivity to noise, and do not offer interpretation. In
addition, deep learning anomaly detectors also require normal (anomaly-free) data to
train the underlying “normal” model. Therefore, these methods are not applicable to
fully unsupervised scenarios where normal data is not available. As we demonstrate
experimentally, ourmethod consistently outperforms representativemethods from this
group, even if they are given access to normal data in both synthetic and real-world
applications.
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2.2 Change point detection in time series

Change points can be viewed as a specific type of anomaly where the change is
long-lasting in nature. Statistical change point detection methods generally assume
independent and identically distributed data within a temporal segment to estab-
lish probabilistic models, and cannot be applied directly on data with periodicity
and trends. They require multiple observations in each segment for accurate estima-
tion (Zhang et al. 2017), and hence may be limited to detecting contextual anomalies.
Some methods require knowledge of the underlying data distributions (Killick et al.
2012), while others constrain the target change point types, for instance focusing on
level shifts (Bleakley and Vert 2011; Zhang et al. 2019b).

2.3 Period learning

Traditional period detection methods have employed Fourier transform (Li et al. 2010;
Indyk et al. 2000) and work in the frequency domain to determine pronounced periods.
The major drawback of such methods is the detection of a large number of spuri-
ous periods (Tenneti and Vaidyanathan 2015). Auto-correlation is another approach
for period learning (Davies and Plumbley 2005) which employs similarity among
time segments. Methods in this category rely on a predefined threshold for select-
ing dominant periods and often employ heuristic post-processing or integration with
Fourier spectrograms (Vlachos et al. 2005). Recently, a dictionary-based period learn-
ing framework has been proposed by Tenneti and Vaidyanathan (2015), comprised
of a family of periodic dictionaries and a unified convex model for period detection.
Recent work has offered improvements by exploiting the group structure in the dic-
tionary (Zhang et al. 2020; Zhang and Bogdanov 2020).

Period learning methods were also proposed for binary sequence data (Li et al.
2015; Yuan et al. 2017). These methods assume that the time series have only one
period and rely on prior information about the series. For example, the model in Li
et al. (2015) requires an appropriate segmentation threshold. More importantly, these
methods are only applicable to binary sequences and are not suited to deal with general
time series.

3 Preliminaries and notation

3.1 Notation

We denote by Ai , Ai , Ai j the i-th column, the i-th row, and the i j-th element of matrix
A, respectively. Throughout the paper, ‖·‖F , ‖·‖1 and ‖·‖∗ denote the Frobenius, L1
and nuclear norms. The nuclear norm is defined as ‖A‖∗ = ∑

i σi , where σi is the
i-th singular value of A. I denotes the identity matrix.
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3.2 The Ramanujan periodic dictionary

TheRamanujan periodic dictionarywas proposed by Tenneti andVaidyanathan (2015)
to learn underlying periods in univariate time series. For a given period g, the Ramanu-
jan periodic dictionary is defined as a nested matrix:

Φg =
[
Pd1 , Pd2 , . . . PdK

]
, (1)

where {d1, d2, . . . , dK } are the divisors of the period g sorted in an increasing order;
Pdi ∈ Rg×φ(di ) is a periodic basis matrix for period di , where φ (di ) denotes the Euler
totient function evaluated at di and d = ∑

i φ (di ). The basismatrix here is constructed
based on the Ramanujan sum (Tenneti and Vaidyanathan 2015):

Cdi (g) =
di∑

k=1,gcd(k,di )=1

e j2πkg/di , (2)

where gcd(k, di ) denotes the greatest common divisor of k and di . The Ramanujan
periodic basis matrix is constructed as a circulant matrix as follows:

Pdi =





Cdi (0) Cdi (g − 1) . . . Cdi (1)
Cdi (1) Cdi (0) . . . Cdi (2)
. . . . . . . . . . . .

Cdi (g − 1) Cdi (g − 2) . . . Cdi (0)



 . (3)

To this end, we can obtain the overall Ramanujan periodic dictionary R for maxi-
mum period gmax as R =

[
Φ1, ..,Φgmax

]
, where R is also called a nested periodic

matrix (NPM). To analyze time series of length T , the columns in R are periodically
extended to a length of T . One can reconstruct time series as a linear combination
of a few columns from R, where the dominant periods of time series correspond to
high-magnitude coefficients.

3.3 Spline dictionary

PB-spline regression (Goepp et al. 2018; Eilers andMarx 2010) is a flexible method to
fit curves using B-splines of degree-d with a smoothness regularization. Quadratic or
cubic B-splines are sufficient for most applications (Eilers and Marx 2010). A spline
of degree d with k distinct interior knots {u1, . . . , uk} is a function constructed by
connecting and summing polynomial segments of degree d. We construct the spline
from B-splines basis functions Bi,d(u) which can be defined recursively by the Cox-
de-Boor formula: Bi,0 = 1 if ui ≤ u < ui+1, 0 otherwise.

Bi,p = u − ui
ui+p − ui

Bi,p−1(u)+
ui+p+1 − u

ui+p+1 − ui+1
Bi+1,p−1(u)
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Each Bi,d(u) is non-zero on [ui , ui+d+1). The resulting spline is a linear combination
of the basis functions. A sequence of equally-spaced knots is often specified, with
a regularization term to penalize for overfitting and to encourage smoothness of the
fitted curve.

4 Problem definition

In this paper we study the anomaly detection problem on multivariate time series.
Suppose we are given a multivariate time series matrix X ∈ Rt×n with t time points
and n samples. We model this input as a mixture of three components:

X = XT + XS + O + δ, (4)

where XS denotes the seasonal component, XT denotes the trend component, O rep-
resents anomalies, and δ is random noise. In general, prior information about these
three components is not available, therefore, we propose to minimize the following
objective to model them:

argmin
XS ,XT

‖X − XS − XT ‖1 + R1(XS)+ R2(XT ), (5)

where anomalies are computed as the residual: O = X − XS − XT . In the above
objective, R1(XS) and R2(XT ) are regularization terms for XS and XT , respectively.
Note that minimizing the L1 norm reconstruction cost is robust to anomalies, there-
fore, the objective can capture the XT and XS components without being sensitive to
distortion. The two learned components comprise the normal temporal behavior of the
data.

4.1 Seasonality modeling R1(XS)

We impose structure on the periodic component by harnessing the Ramanujan periodic
dictionary. Namely, we convert this problem as a sparse coding problem into follows,

argmin
U

λ1 ‖U‖1 , s.t . XS = GU (6)

where G = RH−1 ∈ R and λ1 is a balance parameter. Here, H is a diagonal matrix
for penalizing large periods in R when sparse coding, where Hii = p2 and p is the
period of the i-th column in the R. Finally, the coefficients of periods can be obtained
through Û = H−1U .

4.2 Trendmodeling R2(XT)

Our second goal is to impose structure on the trend component XT . Trends do not
typically follow a parametric regular shape and users have no prior information about

123



A Unified fRamework fOR Anomaly detection 1889

it, therefore, we employ a spline-based approximation, which is an effective nonpara-
metric smooth shape estimation solution based on polynomial functions.We introduce
a spline dictionary, denoted as A ∈ Rt×m , where each column represents a spline basis
function. We can use the degree-d B-spline basis defined over k internal knots, such
that m = k + d + 1. We employ equally-spaced knots to construct the dictionary. To
ensure separability between the periodic and trend components, we pre-process the
spline basis S to be orthogonal to the periodic dictionary R. Let R̃ be an orthonormal
version of R, which can be constructed by the Gram-Schmidt process. R̃ has the same
dimensions as R since the latter forms a basis. We can then find the component of S
perpendicular to the subspace spanned by the columns of R̃ by A = S − R̃ R̃′S.

By treating A as the underlying factors, XT can be linearly reconstructed in terms
of these factors as follows:

argmin
W

λ2 ‖W‖∗ + λ3 ‖DW‖2F , s.t . XT = AW , (7)

whereW is the coefficient matrix and D is the matrix form of the difference operator;
and λ2 and λ3 are balance parameters. Multivariate time series are often collected from
the same system, thus they often share similar global trends. To this end, we impose
a low-rank constraint on W through a nuclear norm penalty. We also incorporate a
selection regularization on W as ‖DW‖2F to prevent overfitting and to encourage
smoothness of the fitted curve. We define this difference penalty by introducing the
cases of 1st ∼ 3rd order difference as follows:






[DW ]i j = Wi j − Wi−1, j 1th-order
[DW ]i j = Wi j − 2Wi−1, j +Wi−2, j 2th-order
[DW ]i j = Wi j − 3Wi−1, j + 3Wi−2, j − Wi−3, j 3th-order.

(8)

We use 3rd order as the default setting, except when noted otherwise. Note that the
selection of the type of spline basis functions in dictionary A is flexible, but certain
choices such as truncated polynomials are known to be prone to numerical instability.

4.3 Overall AURORA objective

By integrating all the above, we arrive at the objective function for anomaly detection
on multivariate time series as follows:

argmin
U ,W

‖X − GU − AW‖1 + λ1 ‖U‖1 + λ2 ‖W‖∗ + λ3 ‖DW‖2F . (9)

Instead of modeling outliers explicitly, we detect anomalies from the residuals of
O = X − GU − AW . Intuitively, anomalies diverge from normal components, i.e.
seasonal and trend component, and thus, lead to large residuals. We produce a ranked
list of possible anomaly locations corresponding to high magnitude of the residuals.
Without any assumptions on anomaly lengths, this model allows us to detect any
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1890 L. Zhang et al.

deviation from the normal state, instead of being restricted to only detecting certain
types of anomalies.

5 Optimization

Since the objective function in Eq. 9 is not jointly convex, we optimize the two vari-
ables alternatively using the Alternating Direction Method of Multiplier (ADMM)
framework (Boyd et al. 2011). We first introduce auxiliary variables: V = U , P = W
and Y = X − GU − AW . Then, we rewrite Eq. 9 as follows:

argmin
U ,W ,V ,P,Y

‖Y‖1 + λ1 ‖V ‖1 + λ2 ‖P‖∗ + λ3 ‖DW‖2F

s.t V = U , P = W , Y = X − GU − AW .

(10)

The corresponding Lagrangian function is:

L (U ,W , V , P,Y ,&1,&2,&3) = ‖Y‖1 + λ1 ‖V ‖1 + λ2 ‖P‖∗ + λ3 ‖DW‖2F
+ 〈'1, V −U 〉 + (1

2
‖V −U‖2F + 〈'2, P − W 〉 + (2

2
‖P − W‖2F

+ 〈'3,Y − (X − GU − AW )〉 + (3

2
‖Y − (X − GU − AW )‖2F

(11)

where '1 ∼ '3 are the Lagrangian multipliers and (1 ∼ (3 are penalty parameters.

5.1 Update Y

The subproblem w.r.t. V is as follows:

argmin
Y

‖Y‖1 +
(3

2

∥∥∥∥Y − (X − GU − AW )+ '3

(3

∥∥∥∥
2

F
(12)

This problem can be solved based on the following Lemma from Lin et al. (2013).

Lemma 1 For ) > 0, the following objective has a closed-form solution

argmin
A

1
2

‖A − B‖2F + ) ‖A‖1 (13)

which is written as Ai j = sign
(
Bi j

)
× max

(∣∣Bi j
∣∣ − ), 0

)
. Here, sign (t) is the

signum function defined as:

sign (t) =






1 if t > 0
−1 if t < 0
0 if t = 0

(14)
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Based on this lemma, we obtain a closed-form solution for Y :

Yi j = sign
(
Ei j

)
× max

(∣∣Ei j
∣∣ − 1

(3
, 0

)
(15)

where E = (X − GU − AW ) − '3
(3
.

5.2 Update V

The subproblem w.r.t. V is as follows:

argmin
V

λ1 ‖V ‖1 +
(1

2

∥∥∥∥V −U + '1

(1

∥∥∥∥
2

F
(16)

We similarly obtain a closed-form solution for V employing Lemma 1:

Vi j = sign
(
Hi j

)
× max

(∣∣Hi j
∣∣ − λ1

(1
, 0

)
, (17)

where H = U − '1
(1
.

5.3 Update P

The subproblem w.r.t. P is as follows:

argmin
P

λ2 ‖P‖∗ +
(2

2

∥∥∥∥P − W + '2

(2

∥∥∥∥
2

F
(18)

According to the singular value thresholding (SVT) method (Cai et al. 2010), we
can compute a closed-form solution for P as well. By setting M = W − '2

(2
,

we first take the singular value decomposition of M as M = J*KT , where
J , K and * denote left-singular vectors, right-singular vectors, and singular val-
ues, respectively. Then, we obtain the solution for P as P = JS (*) KT , where
S (*) = diag

[
max

(
σi − λ2

(2
, 0

)]
and σi is the i th singular value.

5.4 Update U

The subproblem w.r.t. U is:

argmin
U

(1

2

∥∥∥∥V −U + '1

(1

∥∥∥∥
2

F
+ (3

2

∥∥∥∥Y − (X − GU − AW )+ '3

(3

∥∥∥∥
2

F
(19)
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By taking the gradient w.r.t. U and equating it to zero, we obtain:

(1U − ((1V + '1)+ (3GT
(
GU − X + AW + Y + '3

(3

)
= 0 (20)

We get the closed-form solution of U as follows:

U =
(
(1 I + (3GTG

)−1
[
(1V + '1 + (3GT

(
X − AW − Y − '3

(3

)]
(21)

5.5 UpdateW

The subproblem w.r.t. W is as follows:

argmin
W

λ3 ‖DW‖2F + (2

2

∥∥∥∥P − W + '2

(2

∥∥∥∥
2

F
+ (3

2

∥∥∥∥Y − (X − GU − AW )+ '3

(3

∥∥∥∥
2

F
(22)

By setting the above objective’s derivative w.r.t. W to zero, we obtain:

λ3DT DW + (2

(
W − P − '2

(2

)
+ (3AT

(
AW − GU + Y + '3

(3

)
= 0

(23)

As a result, a closed-form solution for W is as follows:

W =
(
λ3DT D + (2 I + (3AT A

)−1
[
(2P + '2 + (3AT

(
GU − Y − '3

(3

)]

(24)

Updates for the Lagrangian multipliers '1, '2 and '3: In the i + 1 iteration, the
Lagrangian multipliers can be updated as follows: 'i+1

1 = 'i
1 + (1 (V −U ), 'i+1

2 =
'i
2 + (2 (P − W ), and 'i+1

3 = 'i
3 + (3 [Y − (X − GU − AW )].

5.6 Overall algorithm and complexity analysis

We summarize AURORAin Algorithm 1. We repeatedly perform the updates for U
and W from Steps 3 to Step 12 until convergence. The most substantial running time
cost is due to Steps 5, 7 and 8, while the remaining steps are either of linear complexity
or near-linear complexity, e.g. involvivng sparse matrix multiplication. For Step 5, the
SVD operation has a complexity of O

(
min

(
tn2, t2n

))
. Here, t is often much greater

than n, therefore, the complexity of svd is O
(
tn2

)
. Both step 7 and 8 involve an

inversion of a quadratic matrix, which incurs a cost of O(q3) and O(m3) in the worst
case, respectively. Because of the sparsity in D and I , the complexity of the two can
be significantly reduced to O(qSnnz) and O(mSnnz) based on the analysis in Zhang
and Bogdanov (2019). In the above, Snnz is the number of non-zero elements of
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Algorithm 1 AURORA
Require: A multivariate time series matrix X , and parameters (λ1 ∼ λ3).
1: Initialize: '1 = 0, '2 = 0, '3 = 0; (1 = 1, (3 = 1, (3 = 1.
2: while W and U have not converged do
3: Yi j = sign

(
Ei j

)
× max

(∣∣Ei j
∣∣ − 1

(2
, 0

)

4: Vi j = sign
(
Hi j

)
× max

(∣∣Hi j
∣∣ − λ1

(1
, 0

)

5: [J ,*, K ] = svd(W − '2
(2

)

6: P = JS (*) KT

7: U =
(
(1 I + (3GT G

)−1
[
(1V + 'i

1 + (3GT
(
X − AW − Y − 'i

3
(3

)]

8: W =
(
λ3DT D + (2 I + (3AT A

)−1
[
(2P + 'i

2 + (3AT
(
GU − Y − 'i

3
(3

)]

9: 'i+1
1 = 'i

1 + (1 (V −U )

10: 'i+1
2 = 'i

2 + (2 (P − W )

11: 'i+1
3 = 'i

3 + (3 [Y − (X − GU − AW )]
12: i = i + 1
13: end while
14: O = X − GU − AW
15: return {O,W ,U }

λ3DT D+(2 I and Innz is the number of non-zero elements of I . Therefore, the overall
asymptotic complexity for each iteration is O

(
tn2 + q Innz + mSnnz

)
. In practice,

AURORA often only needs a few iterations to converge. An implementation of our
method is available for download at http://www.cs.albany.edu/~petko/lab/code.html.

6 Experimental evaluation

Our goal is to evaluate the performance of our method on data with periodic and trend
components with both single point and contextual anomalies. Thus, our selection of
datasets, baselines and evaluation metrics are geared towards this setting.

6.1 Datasets

We conduct evaluation experiments on both synthetic and real-world datasets.

6.1.1 Synthetic data

We generate 20-dimensional time series of length 5000 and refer to each univariate
time series as a sample. The time series are comprised of four additive components:
(1) periodic, (2) trend, (3) anomalies and (4) noise components. We generate the peri-
odic component by following the methodology in Tenneti and Vaidyanathan (2015),
namely, we generate a uniformly random sequence of length equal to a pre-specified
underlying period and repeat it to obtain a series of the desired length. We select
two periods for each time series randomly from {3, 5, 7, 11, 13}. We use 4-th degree
polynomial functions to generate the trends in the time series with two sets of coeffi-
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cients: {[1, 1, 0,−0.1], [1, 0.1, 0.1, 0.1]}. Individual samples are assigned one of the
two trend polynomials randomly.

We select random individual time points as positions for point anomalies and add
random values to the normal behavior of varying magnitude as outlined in individual
experiments. To inject contextual anomalies, we select a position uniformly at random
in the time series and add contiguous point anomalies (as described above), of length
chosen uniformly from {3, 4, 5, 6}. All contextual anomalies are independent in each
univariate (sample) time series. We also add Gaussian noise to all time series and
control the signal-to-noise ratio (SNR) in the experiments.

6.1.2 Real-world data

We also experiment with time series from 4 real-world datasets, including Power
plant (Rosca et al. 2015) andGoogle flu (Google 2014), Yahoo (Laptev andAmizadeh
2015) and NAB (Lavin and Ahmad 2015). We inject point anomalies in the Power
plant (Rosca et al. 2015) andGoogle flu (Google 2014) following the same protocol as
in our synthetic datasets. Note that this is a common evaluation strategy when anomaly
labels are not available (Rosca et al. 2015; Emmott et al. 2015). The rest of the datasets
have anomaly labels.
• Power plant (Rosca et al. 2015): This dataset is from the 2015 PHM Society Data
Challenge. There are a total of 24 sensors with a sampling rate of 15 minutes. We
experiment with the first segment of 10,000 time steps. We randomly inject 6 point
anomalies for each sensor (144 in total) by following our synthetic anomaly injection
methodology. Anomaly positions are independent in each sample.
• Google flu (Google 2014): The Google flu dataset consists of weekly estimates for
influenza rates based on web searches in 29 countries from 2002 to 2015 (659 time
points). We inject 6 point anomalies in the time series of each country.
• Yahoo (Laptev and Amizadeh 2015): The Yahoo A1 benchmark has 67 time series
with labeled anomalies. This is a collection of real traffic metrics from Yahoo! ser-
vices reported hourly. The lengths of individual time series varies between 741 and
1461. Note that existing literature argues that ground truth in some time series are not
reliable (De Paepe et al. 2020).We have annotated such time series in the experiments,
but report results on all of them for completeness.
• NAB (Lavin and Ahmad 2015): The NAB dataset includes time series data from
multiple domainswithmanually labelled anomalies.We report results on the 10Twitter
traffic time series from the benchmark as they fit our assumptions of periodic behavior.

6.2 Experimental setup

6.2.1 Baselines

•Anomaly detectionWe compare AURORAon anomaly detection with two baselines:
TwitterR (Hochenbaum et al. 2017) andDonut (Xu et al. 2018b). These state-of-the-art
anomaly detectors are both flexible in detecting time series patterns of varying length.
While Matrix profile (Yeh et al. 2016) is another potential baseline, it operates at a
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fixed-length subsequence level and is not applicable to detecting anomalies of variable
length. Hence, we do not employ it for comparison.
Donut (Xu et al. 2018b) is based on the Variational Autoencoder (VAE) framework. It
detects anomalies by scoring dependencies in a time window of a fixed length based
on a pre-trained model for anomalies. This method accounts for periodicity and trends
in the time series and is, thus, an especially good fit for our setting. The window size is
the main parameter in the method. We report the best result based on a grid search on
window sizes varying from 10 to 100 with a step of 10. In all experiments a window
size with 10 resulted in the best performance.
TwitterR (Hochenbaum et al. 2017) employs the Seasonal Extreme Studentized Devi-
ate (S-ESD), a popular and robust anomaly detection method for univariate seasonal
data. Raw data is decomposed into a median component, seasonal component and
residuals. The Extreme Studentized Deviate (ESD) test is then applied to the residu-
als to produce a list of anomaly time points ordered by their probability of being an
outlier. Different from our method which learns the underlying periods from data, this
algorithm requires a single dominant period as an input. We set this parameter to the
minimum true period present in our synthetic time series which puts the method in
an advantageous position. We are, however, interested in characterising its quality for
anomaly detection in the best possible settings, and thus, control for other factors of
inaccuracy. For experiments on real-world data, the true periods are unknown, so we
set TwitterR’s period parameter according to the highest-magnitude DFT frequency
in each time series.
• Period detection AURORA learns the underlying periods from data, and hence, we
also evaluate its ability to detect GT periods and compare to three baselines:
NPM (Tenneti and Vaidyanathan 2015) is the state-of-the-art period learning method
based on periodic dictionaries. It encodes time series employing the Ramanujan
periodic dictionary and predicted periods are recovered based on the reconstruction
coefficients. Since NPM operates on univariate time series, we apply it on each uni-
variate time series and compile top ranked periods as final predictions.
FFT (Priestley 2004) is a classical period learning method that transforms time series
into their frequency domain. Predicted periods have high-magnitude coefficients.
AUTO (Li et al. 2015) combines auto-correlation and Fourier transform. It first calcu-
lates the auto-correlation of the input data. Next, it employs Fourier transform on the
results from the first step to derive periods of highest magnitude.

6.2.2 Performance metrics

We employ area under the ROC curve (AUC) to quantify the performance in anomaly
detection.A true positive (TP) in the case of point anomalies is the correct identification
of a time point annotated as a ground truth anomaly. We treat contextual (interval)
anomalies as a collection of point anomalies (e.g., a contextual anomaly of length
l is treated as l positive instances of anomalies), and evaluate AUC for this case
in the same manner. Note that this measure is naturally biased to longer contextual
anomalies which correspond to positive examples proportional to their length. Since,
in some experiments we consider both point and contextual anomalies in the same
time series, we focus on this simple measure that can capture both types. It is also

123



1896 L. Zhang et al.

worth noting that more optimistic metrics have been employed where any overlap of
a predicted interval with anomalous interval is declared a TP (De Paepe et al. 2019),
however, we employ the above time-point-wise metric as it does not leave ambiguity
about the correspondence of predicted and GT time points.

To quantify the evaluation of period learningwe compare the top-k obtained periods
with the ground truth (GT) periods, where k is the number of GT periods. We report
the accuracy of period identification for datasets with known GT periods.

6.3 Anomaly detection in synthetic time series

We compare the performance of AURORA and baselines for anomaly detection in
three types of settings: point-only, contextual-only, and mixed anomalies (Fig. 2). For
this analysis we vary the signal-to-noise ratio (SNR) and report an average AUC of
ten samples of data for each setting. With decreasing noise level (or increasing SNR),
the average AUC of AURORA increases slightly in all three settings and consistently
dominates that of alternatives. In the case of point anomalies, AURORA achieves an
AUC of 0.98 at SNR greater than 20, while Donut and TwitterR peak at AUC of 0.83
and 0.68, respectively. AURORA is similarly better than baselines in the cases of
contextual anomalies and mixture of anomalies, exhibiting a 15% improvement over
Donut and a 25% improvement over TwitterR. AURORA’s advantage is due to its
explicit modelling of normal periodic and trending behavior in the time series which
is built into our synthetic datasets. This allows AURORA to precisely detect time
points that deviate from normal.

TwitterR’s performance is close to constant at different SNRs as it employs LOESS
local smoothing to extract a seasonal component. We parametrize TwitterR with the
smallest ground truth period in our synthetic data, and hence, its quality is not affected
by incorrect periodicity estimation. However, when this important information is not
available (e.g. in real data), its reliance on accurate periodicity estimation becomes a
crucial step for TwiterR and a potential weak point, limiting its application. Another
key drawback of TwitterR is its assumption of a single period in the data. Our synthetic
data features complex/multiple periods, which is another factor for AURORA’s edge
in performance over TwitterR in this set of experiments.
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Fig. 2 Comparison of anomaly detection quality for different types of anomalies in synthetic and varying
signal-to-noise ratio (SNR) taking values of [10, 40, 70, 100]. We consider a point anomalies; b contextual
anomalies (size range: [3, 4, 5, 6]); c mixture of both types
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The performance of Donut is also close to constant over varying SNRs. Thismethod
uses pre-trained models to score anomalies, i.e., its anomaly score function is bounded
by the quality of its training data. Specifically, the VAE at the core of Donut should
ideally be trained on anomaly-free data, thus, obtaining a model for normal behavior.
The presence of anomalies in the input, however, are incorporated in the model, and
thus, affect the likelihood scoring of anomalies in testing data. In contrast, AURORA
has no requirement for anomaly-free data. Instead, it models anomalies in the testing
data directly without pre-training.

6.4 Anomaly detection in real-world data

We next present anomaly detection results in real-world datasets in Fig. 3. We inject
anomalies into the Power plant and Google flu time series. Since difference in perfor-
mance between point-based and context anomalies isminimal (as observed in synthetic
data in Fig. 2), we focus on point anomalies and inject those in our two datasets without
GT. The magnitude of anomalies plays an important role as anomalies of increasing
magnitude are naturally expected to be more discernible. Hence, we evaluate the per-
formance by varying the magnitude of anomalies.

The AUC of AURORA and TwitterR grows with the magnitude. The AUC of
AURORA is greater than 0.9 inmost cases and is about 0.3 higher than that of TwitterR
in Power plant and 0.25 higher inGoogle flu. The single period assumption of TwitterR
is not necessarily realistic for these datasets and the more flexible periodicity model
in AURORA may partially explain its performance advantage. Donut exhibits worse
performance in both datasets with injected anomalies and notably its AUC does not
grow with the magnitude of injected anomalies. The key reason for this behavior is
that Donut requires anomaly-free data for training, but this is often not possible in
real-world applications due to the presence of noisy or unidentified anomalies. As
a consequence, since we train it on the actual data with injected anomalies to allow
for fair comparison, its performance is proportionately affected by the magnitude of
anomalies in training data which gets encoded in the VAE. We use part of the actual
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Fig. 3 Comparison of AUC for anomaly detection by varying the magnitude of injected anomalies in the a
Google flu; b Power plant datasets
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data for training the VAE as we do not have access to additional anomaly-free data
from the same sources.

The Yahoo and NAB datasets include GT anomaly labels, hence, we present the
AUC values for each time series in those benchmarks in Tables 1 and 2. Some time
series in the Yahoo benchmark have anomaly labels of questionable quality as reported
by others (De Paepe et al. 2019). We mark these time series with unreliable GT labels
by an asterisk in Table 1, but show results on all time series for completeness.

AURORA’s anomaly detection quality dominates that of baselines in most time
series for both benchmarks. In particular, AURORA obtains the best results in 46 out
of the 67 time series in the Yahoo benchmark. We get the best results in 29 out of

Table 1 AUC comparison for anomaly detection in the Yahoo benchmark. The performance of the best
method in each benchmark dataset are marked in bold font

1 2 3∗ 4 5 6 7∗ 8 9∗ 10

AURORA 0.99 0.99 0.99 0.99 1 1 0.79 0.98 0.99 1

Donut 0.58 0.04 0.02 0.34 0.61 0 0.47 0.42 0.63 0.46

TwitterR 0.52 0.6 0.56 0.42 0.52 0.39 0.59 0.61 0.61 0.75

11 12 13∗ 14 15∗ 16∗ 17 18∗ 19 20∗

AURORA 0.99 0.96 0.86 0.73 0.84 1 0.99 0 0.99 0.58

Donut 0 0.11 0.3 0.17 0.17 0.41 0.45 0.41 0.77 0.57

TwitterR 0.35 0.35 0.42 0.55 0.46 0.51 0.48 0.56 0.46 0.54

21 22 23 24 25 26∗ 27∗ 28∗ 29∗ 30∗

AURORA 0.99 1 0 0 1 0 0.86 0 0.3 0.99

Donut 0.98 0.78 0.49 0.05 0.31 0.52 0.5 0.42 0.44 0.03

TwitterR 0.85 0.45 0.53 0.51 0.50 0.38 0.13 0.52 0.55 0.92

31 32 33 34∗ 35∗ 36∗ 37∗ 38∗ 39∗ 40

AURORA 0.91 0 0.99 0.79 0 0.99 0.43 0.84 0.84 0.01

Donut 0.71 0.54 0 0.72 0 0.38 0.71 0.45 0.47 0.49

TwitterR 0.5 0.5 0.25 0.37 0 0.72 0.70 0.74 0.66 0.45

41 42 43 44∗ 45 46∗ 47∗ 48 49∗ 50

AURORA 0.98 0.99 0.58 0.25 1 0.02 0.35 0.75 0 1

Donut 0.41 0.42 0.64 0.57 0.97 0.49 0.42 0.36 0.41 0

TwitterR 0.53 0.47 0.45 0.52 0.17 0.52 0.49 0.44 0.83 0.6

51∗ 52∗ 53 54∗ 55∗ 56∗ 57∗ 58 59∗ 60∗

AURORA 0.39 0.64 0.11 0.5 0.23 0.34 0.76 1 0 0.99

Donut 0.70 0.58 0.1 0.79 0.4 0.53 0.53 0.48 0 0.3

TwitterR 0.67 0.47 0.55 0.3 0.52 0.81 0.58 0.48 0 0.52

61 62 63 64∗ 65∗ 66 67

AURORA 0.54 0.99 1 0 0.93 0.98 0.99

Donut 0.43 0.44 0 0 0 0.41 0.51

TwitterR 0.54 0.36 0.12 0 0.48 0.44 0.56

Indices marked with asterisk (*) have been reported to have questionable anomaly labels in recent work (De
Paepe et al. 2020), but we include them for completeness
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Table 2 AUC comparison for anomaly detection on the NAB benchmark, realTwitter series. The perfor-
mance of the best method in each benchmark dataset are marked in bold font

APPL AMZN CRM CVS FB GOOG IBM KO PFE UPS

AURORA 0.76 0.99 0.99 0.55 1 0.88 0.53 0.99 0.99 0.98

Donut 0.90 0.64 0.93 0.42 0.52 0.48 0.49 0.85 0.56 0.77

TwitterR 0.72 0.97 0.94 0.36 0.82 0.59 0.40 0.76 0.73 0.85

34 from the non-questionable labeled time series. In NAB, AURORA gets the best
results in 9 out of the 10 time series. Inspecting the cases in which AURORA is not
the best method among the baselines reveals that it under-performs in data which does
not match well our modeling assumptions of periodicity and trends.

6.5 The importance of multivariate analysis

Recall that we address anomaly detection in multivariate time series. Our approach
takes full advantage of shared periods and/or trends among individual univariate time
series. Univariate anomaly detection treating each time series as independent cannot
take advantage of such shared patterns. To demonstrate the utility of multivariate anal-
ysis, we compare AURORA and a univariate version which fits periodicity and trends
independently for each time series. To this end, we remove the low-rank regularization
term λ2 ‖W‖∗ from Eq. 9 and call the resulting method AURORAuni. In Fig. 4, we
present a comparison between the alternatives on synthetic and real-world data. Both
results show that AURORA outperforms AURORAuni with an increase of the AUC
of at least 0.1.

6.6 A case study: the Google Flu dataset

Next we employ AURORA on the Google Flu dataset without injecting anomalies) in
order to qualitatively explore the reported anomalies in the raw data. Overall, we find
that anomalous time points fall well within typical flu seasons.

As an example, we dive deeper into the anomalies detected for Brazil, Bolivia and
the United States (Fig. 5). In Brazil, the flu season generally spans May to July, which
are the southern hemisphere’s winter months (Alonso et al. 2007). Out of the top 50
anomalies detected for Brazil, 44 fall within this time period. The other 6 points all
fall in August, with 5 in August 2009 which corresponds with the outbreak of H1N1
flu or swine flue. Brazil registered 7569 new cases of H1N1 flu from August 25 to
29, and later confirmed that the country had the highest number of fatalities from the
virus in early September (CNN 2009).

In Bolivia, the flu season typically spans April to September (US Embassy in
Bolivia 2019). Out of the top 50 anomalies detected for Bolivia, 47 fall within this
time period, and the remaining 3 are in October 2005 and 2007 which might signify
a slightly longer flu season in those years.

123



1900 L. Zhang et al.

0 50 100
SNR 

0.95

0.96

0.97

0.98

0.99

1

A
U

C

AURORA
AURORAuni

0 0.5 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ur

e 
P

os
iti

ve
 R

at
e 

AURORA AUC=0.86
AURORAuni AUC=0.73

(a) Synthetic data (b) Google flu
Fig. 4 Comparison between AURORA and a univariate alternative AURORAuni on a synthetic and b the
Google Flu datasets

Fig. 5 Case study on Google flu. Blue diamonds and red circles annotate anomalies detected within and
outside of flu season, respectively

In the United States, the flu season typically spans fall and winter, and flu activity
peaks between December and February (Centers for Disease Control and Prevention
2018). 43 out of our 50 top anomalies detected for the US fall within this time period.
Another 6 are in September through November 2009, which coincides with the out-
break of the H1N1 influenza virus that peaked in October (Centers for Disease Control
and Prevention 2009). The remaining anomaly is in earlyMarch 2008, which indicates
a slightly longer flu season, as supported by the fact that the peak flu activity that year
was in mid-February.

6.7 Period learning on synthetic data

In Fig. 6, we present AURORA’s performance on period learning with varying SNR.
AURORAshows superiority over alternatives by consistently obtaining allGTperiods.
The robustness of AURORA canmostly be attributed to the application of the L1-norm
fitting function that is robust to anomalies and noise. In addition, AURORA, detects
periods by multivariate analysis and explicitly models trends unlike the alternatives.
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Fig. 6 The comparison of period learning by varying SNR under different types of anomalies

NPM achieves 50% accuracy in period detection across settings as it does not model
noise or anomalies which may dominate its objective and obs.cure true periods. FFT
and AUTO have similar performance as they both employ Fourier Transform. The two
methods exhibit different behavior under different types of anomalies. Their accuracy
is about 70% for point anomaly andmuch lower on contextual andmixed (about 20%).
This is because point anomalies distort the general periodicity of the time series to a
lesser extent than the lengthier contextual anomalies.

6.8 Parameter sensitivity analysis

We study the sensitivity of AURORA to parameters {λ1, λ2, λ3} in the synthetic data.
Wefix one parameter and vary the other two, and report theAUC for anomaly detection
in Fig. 7. AURORA achieves a stable close-to-optimal performance for a wide range
of parameters. Its minimum AUC in the studied range is around 0.85 which is still
better than competitors. The performance of AURORA degrades slightly when the
values of parameters approach 1 as large weights on regularization terms undermine
the importance of the data fit cost.

6.9 Scalability

We also measure the CPU running time of the three competing anomaly detection
methods on synthetic data by varying the length of time series and the number of
samples inFig. 8.We runAURORAonadesktopDell computerwith Intel(R)-Core(i7)
CPUs of 3.20 GHz and 31.2 GB memory using MATLAB R2018b 64-bit edition
without parallel operation. Donut is executed on the same machine with Python 3.7
without parallel operation. TwitterR is implemented and executed on Intel(R)-Core(i5)
CPUs of 2.7 GHz and 8 GB RAM without parallel operation. In a dataset with 0.5
million time points and 200 samplesAURORAcompletes in 14 seconds. In contrast, on
the same data size TwitterR requires 150 hours (over 6 days) to run, andDonut requires
1500 hours (over 2 months), including training and testing. Note that since TwitterR
and Donut analyze each univariate time series independently, to obtain these results
for the largest data size, we ran only a single univariate time series and multiplied
the running time by the number of samples: 200. As a result, AURORA is more than
38,000 times faster than TwitterR andmore than 380,000 times faster thanDonut. Even
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Fig. 7 Parameter sensitivity of AURORA

Fig. 8 Comparison of CPU running time as a function of the time series length and the number of samples
(univariate time series) between aAURORA,bTwitterR and cDonut.Note, thatAURORA’s time is reported
in seconds while those of baselines in hours

if we account for differences between programming languages and CPUs, AURORA
is still orders of magnitude faster than the baselines.

7 Conclusions

In this paper, we proposed a novel solution for the problem of anomaly detection
in multivariate time series in the presence of seasonality and trends. We introduce
an efficient and accurate solution, called AURORA, which offers interpretable sum-
maries of the time series and automatic unsupervised anomaly detection. We applied
AURORA on both synthetic and real-world datasets and demonstrated its superior
performance compared to that of state-of-the-art baselines. AURORA was able to
achieve AUC = 0.95 for anomaly detection even in very high noise regimes, and
100% accuracy for period learning. In addition, AURORA is orders of magnitude
faster than baselines.
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