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Abstract

Vector autoregression (VAR) is a fundamental tool for modeling multivariate time series.
However, as the number of component series is increased, the VAR model becomes over-
parameterized. Several authors have addressed this issue by incorporating regularized
approaches, such as the lasso in VAR estimation. Traditional approaches address overpa-
rameterization by selecting a low lag order, based on the assumption of short range depen-
dence, assuming that a universal lag order applies to all components. Such an approach
constrains the relationship between the components and impedes forecast performance.
The lasso-based approaches perform much better in high-dimensional situations but do not
incorporate the notion of lag order selection. We propose a new class of hierarchical lag
structures (HLag) that embed the notion of lag selection into a convex regularizer. The
key modeling tool is a group lasso with nested groups which guarantees that the spar-
sity pattern of lag coe�cients honors the VAR’s ordered structure. The proposed HLag
framework o↵ers three basic structures, which allow for varying levels of flexibility, with
many possible generalizations. A simulation study demonstrates improved performance in
forecasting and lag order selection over previous approaches, and macroeconomic, finan-
cial, and energy applications further highlight forecasting improvements as well as HLag’s
convenient, interpretable output.
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1. Introduction

Vector autoregression (VAR) has emerged as the standard-bearer for macroeconomic fore-
casting since the seminal work of Sims (1980). VAR is also widely applied in numerous
fields, including finance (e.g., Han et al., 2015), neuroscience (e.g, Hyvärinen et al., 2010),
and signal processing (e.g., Basu et al., 2019). The number of VAR parameters grows
quadratically with the the number of component series, and, in the words of Sims, this
“profligate parameterization” becomes intractable for large systems. Without further as-
sumptions, VAR modeling is infeasible except in limited situations with small number of
components and lag order.

Many approaches have been proposed for reducing the dimensionality of vector time
series models, including canonical correlation analysis (Box and Tiao, 1977), factor models
(e.g., Forni et al., 2000, Stock and Watson, 2002, Bernanke et al., 2005), Bayesian models
(e.g., Banbura et al., 2010; Koop, 2013), scalar component models (Tiao and Tsay, 1989),
independent component analysis (Hyvärinen et al., 2010), and dynamic orthogonal com-
ponent models (Matteson and Tsay, 2011). Recent approaches have focused on imposing
sparsity in the estimated coe�cient matrices through the use of convex regularizers such
as the lasso (Tibshirani, 1996). Most of these methods are, however, adapted from the
standard regression setting and do not specifically leverage the ordered structure inherent
to the lag coe�cients in a VAR.

This paper contributes to the lasso-based regularization literature on VAR estimation
by proposing a new class of regularized hierarchical lag structures (HLag), that embed lag
order selection into a convex regularizer to simultaneously address the dimensionality and
lag selection issues. HLag thus shifts the focus from obtaining estimates that are generally
sparse (as measured by the number of nonzero autoregressive coe�cients) to attaining
estimates with low maximal lag order. As such, it combines several important advantages:
It produces interpretable models, provides a flexible, computationally e�cient method for
lag order selection, and o↵ers practitioners the ability to fit VARs in situations where various
components may have highly varying maximal lag orders.

Like other lasso-based methods, HLag methods have an interpretability advantage over
factor and Bayesian models. They provide direct insight into the series contributing to the
forecasting of each individual component. HLag has further exploratory uses relevant for
the study of di↵erent economic applications, as we find our estimated models on the consid-
ered macroeconomic data sets to have an underlying economic interpretation. Comparable
Bayesian methods, in contrast, primarily perform shrinkage making the estimated models
more di�cult to interpret, although they can be extended to include variable selection (e.g.,
stochastic search). Furthermore, factor models that are combinations of all the component
series can greatly reduce dimensionality but forecast contributions from the original series
are only implicit. By contrast, the sparse structure imposed by the HLag penalty explicitly
identifies which components are contributing to model forecasts.

While our motivating goal is to produce interpretable models with improved point fore-
cast performance, a convenient byproduct of the HLag framework is a flexible and com-
putationally e�cient method for lag order selection. Depending on the proposed HLag
structure choice, each equation row in the VAR will either entirely truncate at a given lag
(“componentwise HLag”), or allow the series’s own lags to truncate at a di↵erent order than

2



Interpretable Vector Autoregression

those of other series (“own/other HLag”), or allow every (cross) component series to have
its own lag order (“elementwise HLag”). Such lag structures are conveniently depicted in a
“Maxlag matrix” which we introduce and use throughout the paper.

Furthermore, HLag penalties are unique in providing a computationally tractable way
to fit high order VARs, i.e., those with a large maximal lag order (pmax). They allow the
possibility of certain components requiring large max-lag orders without having to enumer-
ate over all combinations of choices. Practitioners, however, typically choose a relatively
small pmax. We believe that this practice is in part due to the limitations of current
methods: information criteria make it impossible to estimate VARs with large pmax by
least squares as the number of candidate lag orders scales exponentially with the number
of components k. Not only is it computationally demanding to estimate so many models,
overfitting also becomes a concern. Likewise, traditional lasso VAR forecasting performance
degrades when pmax is too large, and many Bayesian approaches, while statistically viable,
are computationally infeasible or prohibitive, as we will illustrate through simulations and
applications.

In Section 2 we review the literature on dimension reduction methods to address the
VAR’s overparametrization problem. In Section 3 we introduce the HLag framework. The
three aforementioned hierarchical lag structures are proposed in Section 3.1. As detailed
above, these structures vary in the degree to which lag order selection is common across
di↵erent components. For each lag structure, a corresponding HLag model is detailed in
Section 3.2 for attaining that sparsity structure. Theoretical properties of high-dimensional
VARs estimated by HLag are analyzed in Section 3.3. The proposed methodology allows for
flexible estimation in high dimensional settings with a single tuning parameter. We develop
algorithms in Section 4 that are computationally e�cient and parallelizable across compo-
nents. Simulations in Section 5 and applications in Section 6 highlight HLag’s advantages
in forecasting and lag order selection.

2. Review of Mitigating VAR Overparametrization

We summarize the most popular approaches to address the VAR’s overparametrization
problem and discuss their link to the HLag framework.

2.1 Information Criteria

Traditional approaches address overparametrization by selecting a low lag order. Early
attempts utilize least squares estimation with an information criterion or hypothesis testing
(Lütkepohl, 1985). The asymptotic theory of these approaches is well developed in the fixed-
dimensional setting, in which the time series length T grows while the number of components
k and maximal lag order pmax are held fixed (White, 2001). However, for small T , it has
been observed that no criterion works well (Nickelsburg, 1985). Gonzalo and Pitarakis
(2002) find that for fixed k and pmax, when T is relatively small, Akaike’s Information
Criterion (AIC) tends to overfit whereas Schwarz’s Information Criterion (BIC) tends to
severely underfit. Despite their shortcomings, AIC, BIC, and corrected AIC (Hurvich and
Tsai 1989) are still the preferred lag order selection tools by most practitioners (Lütkepohl,
2007; Tsay, 2013).
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A drawback with such approaches is, however, that they typically require the strong
assumption of a single, universal lag order that applies across all components. While this
reduces the computational complexity of model selection, it has little statistical or economic
justification, unnecessarily constrains the dynamic relationship between the components,
and impedes forecast performance. An important motivating goal of the HLag framework
is to relax this strong assumption. Gredenho↵ and Karlsson (1999) show that violation of
the universal lag order assumption can lead to overparameterized models or the imposition
of false zero restrictions. They instead suggest considering componentwise specifications
that allow each marginal regression to have a di↵erent lag order (sometimes referred to
as an asymmetric VAR). One such procedure (Hsiao, 1981) starts from univariate autore-
gressions and sequentially adds lagged components according to Akaike’s “Final Prediction
Error” (Akaike, 1969). However, this requires an a priori ranking of components based on
their perceived predictive power, which is inherently subjective. Keating (2000) o↵ers a
more general method which estimates all potential pmaxk componentwise VARs and uti-
lizes AIC/BIC for lag order selection. Such an approach is computationally intractable and
standard asymptotic justifications are inapplicable if the number of components k is large.
Ding and Karlsson (2014) present several specifications which allow for varying lag order
within a Bayesian framework. Markov chain Monte Carlo estimation methods with spike
and slab priors are proposed, but these are computationally intensive, and estimation be-
comes intractable in high dimensions though recent advances have been made by Giannone
et al. (2017).

Given the di�culties with lag order selection in VARs, many authors have turned instead
to shrinkage-based approaches, which impose sparsity, or other economically-motivated re-
strictions, on the parameter space to make reliable estimation tractable, and are discussed
below.

2.2 Bayesian Shrinkage

Early shrinkage methods, such as Litterman (1979), take a pragmatic Bayesian perspective.
Many of them (e.g., Banbura et al., 2010; Koop, 2013) apply the Minnesota prior, which
uses natural conjugate priors to shrink the VAR toward either an intercept-only model or
a vector random walk, depending on the context. The prior covariance is specified so as
to incorporate the belief that a series’ own lags are more informative than other lags and
that lower lags are more informative than higher lags. With this prior structure, coe�cients
at high lags will have a prior mean of zero and a prior variance that decays with the lag.
Hence, coe�cients with higher lags are shrunk more toward zero. However, unlike the HLag
methods but similar to ridge regression, coe�cients will not be estimated as exactly zero.

The own/other HLag penalty proposed below is inspired by this Minnesota prior. It
also has the propensity to prioritize own lags over other lags and to assign a greater penalty
to distant lags, but it formalizes these relationships by embedding two layers of hierarchy
into a convex regularization framework. One layer (within each lag vector) prioritizes own
lags before other lags. Another layer (across lag vectors) penalizes distant lags more than
recent lags since the former can only be included in the model if the latter are selected.

The Bayesian literature on dealing with overparametrization of VARs is rapidly grow-
ing, with many recent advances on, amongst others, improved prior choices (e.g., Carriero
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et al., 2012, Giannone et al., 2015), stochastic volatility (e.g., Carriero et al., 2019), time-
varying parameter estimation (e.g., Koop and Korobilis, 2013), and dimension reduction
via compressing (Koop et al., 2019).

2.3 Factor Models

Factor models form another widely used class to overcome the VAR’s overparameterization
and have been used extensively for macroeconomic forecasting (e.g., Stock and Watson,
2002). Here, the factors serve the purpose of dimension reduction since the information
contained in the original high dimensional data set is summarized—often using princi-
pal component analysis—in a small number of factors. While Factor Augmented VARs
(FAVAR) (e.g., Bernanke et al., 2005) include one or more factors in addition to the ob-
servables, all observables are expressed as a weighted average of factors in Dynamic Factor
Models (e.g., Forni et al., 2000).

2.4 Lasso-based Regularization

Other shrinkage approaches have incorporated the lasso (Tibshirani, 1996). Hsu et al.
(2008) consider the lasso with common information criterion methods for model selection.
The use of the lasso mitigates the need to conduct an exhaustive search over the space of
all 2k

2pmax possible models but does not explicitly encourage lags to be small. HLag, in
contrast, forces low lag coe�cients to be selected before corresponding high lag coe�cients,
thereby specifically shrinking toward low lag order solutions. As will be illustrated through
simulations and empirical applications, this often improves forecast performance.

To account for the VAR’s inherent ordered structure, Lozano et al. (2009) use a group
lasso (Yuan and Lin, 2006) penalty to group together coe�cients within a common compo-
nent. Song and Bickel (2011) treat each variable’s own lags di↵erently from other variables’
lags (similar to the own/other Hlag penalty we propose), consider a group lasso structure
and additionally down-weight higher lags via scaling the penalty parameter by an increasing
function of the coe�cients’ lag. The authors note that the functional form of these weights is
arbitrary, but the estimates are sensitive to the choice of weights. A similar truncating lasso
penalty is proposed by Shojaie and Michailidis (2010) and refined by Shojaie et al. (2012) in
the context of graphical Granger causality. However, unlike HLag, this framework requires
a functional form assumption on the decay of the weights as well as a two-dimensional
penalty parameter search which generally squares the computational burden.

3. Methodology

Let {yt 2 Rk}Tt=1
denote a k-dimensional vector time series of length T . A pth order vector

autoregression VARk(p) may be expressed as a multivariate regression

yt = ⌫ +�(1)yt�1 + · · ·+�(p)yt�p + ut, for t = 1, . . . , T, (1)

conditional on initial values {y�(p�1), . . . ,y0}, where ⌫ 2 Rk denotes an intercept vector,

{�(`) 2 Rk⇥k}p`=1
are lag-` coe�cient matrices, and {ut 2 Rk}Tt=1

is a mean zero white noise
vector time series with unspecified k ⇥ k nonsingular contemporaneous covariance matrix
⌃u.
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In the classical low-dimensional setting in which T > kp, one may perform least squares
to fit the VARk(p) model, minimizing

TX

t=1

kyt � ⌫ �
pX

`=1

�(`)yt�`k22 (2)

over ⌫ and {�(`)}, where kak2 = (
P

i a
2

i )
1/2 denotes the Euclidean norm of a vector a. We

will find it convenient to express the VAR using compact matrix notation:

Y = [y1 · · · yT ] (k ⇥ T ); � = [�(1) · · · �(p)] (k ⇥ kp);
zt = [y>

t�1
· · · y>

t�p]
> (kp⇥ 1); Z = [z1 · · · zT ] (kp⇥ T );

U = [u1 · · · uT ] (k ⇥ T ); 1 = [1 · · · 1]> (T ⇥ 1).
(3)

Equation (1) is then simply

Y = ⌫1> +�Z+U,

and the least squares procedure (2) can be expressed as minimizing

kY � ⌫1> ��Zk22

over ⌫ and�, where kAk2 denotes the Frobenius norm of the matrixA, that is the Euclidean
norm of vec(A) (not to be mistaken for the operator norm, which does not appear in this
paper).

Estimating the parameters of this model is challenging unless T is su�ciently large.
Indeed, when T > kp but kp/T ⇡ 1, estimation by least squares becomes imprecise. We
therefore seek to incorporate reasonable structural assumptions on the parameter space to
make estimation tractable for moderate to small T . Multiple authors have considered using
the lasso penalty, building in the assumption that the lagged coe�cient matrices �(`) are
sparse (e.g., Song and Bickel, 2011; Davis et al., 2016; Hsu et al., 2008); theoretical work
has elucidated how such structural assumptions can lead to better estimation performance
even when the number of parameters is large (e.g., Basu and Michailidis, 2015, Melnyk and
Banerjee, 2016, Lin and Michailidis, 2017). In what follows, we define a class of sparsity
patterns, which we call hierarchical lag or HLag structures, that arises in the context of
multivariate time series.

3.1 HLag: Hierarchical Lag Structures

In Equation (1), the parameter �(`)
ij controls the dynamic dependence of the ith component

of yt on the jth component of yt�`. In describing HLag structures, we will use the following
notational convention: for 1  `  p, let

�(`:p) = [�(`) · · · �(p)] 2 Rk⇥k(p�`+1)

�(`:p)
i = [�(`)

i · · · �(p)
i ] 2 R1⇥k(p�`+1)

�(`:p)
ij = [�(`)

ij · · · �(p)
ij ] 2 R1⇥(p�`+1).
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Figure 1: A componentwise (C) HLag active set structure (shaded): HLagC3 (5).
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Figure 2: An own-other (O) HLag active set structure (shaded): HLagO3 (5).
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Figure 3: An elementwise (E) HLag active set structure (shaded): HLagE3 (5).

Consider the k ⇥ k matrix of elementwise coe�cient lags L defined by

Lij = max{` : �(`)
ij 6= 0},

in which we define Lij = 0 if �(`)
ij = 0 for all ` = 1, . . . , p. Therefore, each Lij denotes the

maximal coe�cient lag (maxlag) for component j in the regression model for component i.

In particular, Lij is the smallest ` such that �([`+1]:p)
ij = 0. Note that the maxlag matrix

L is not symmetric, in general. There are numerous HLag structures that one can consider
within the context of the VARk(p) model. The simplest such structure is that Lij = L for
all i and j, meaning that there is a universal (U) maxlag that is shared by every pair of
components. Expressed in terms of Equation (1), this would say that �([L+1]:p) = 0 and

that �(L)
ij 6= 0 for all 1  i, j  k. While the methodology we introduce can be easily

extended to this and many other potential HLag structures, in this paper we focus on the
following three fundamental structures.

1. Componentwise (C).A componentwise HLag structure allows each of the k marginal
equations from (1) to have its own maxlag, but all components within each equation
must share the same maximal lag:

Lij = Li 8j, for i = 1, . . . k.

Hence in Equation (1), this implies �([Li+1]:p)
i = 0 and �(Li)

ij 6= 0 for all i and j. This
componentwise HLag active set structure (shaded) is illustrated in Figure 1.
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2. Own-Other (O). The own-other HLag structure is similar to the componentwise
one, but with an added within-lag hierarchy that imposes the mild assumption that a
series’ own lags (i = j) are more informative than other lags (i 6= j). Thus, diagonal
elements are prioritized before o↵-diagonal elements within each lag, componentwise
(i.e., row-wise). In particular,

Lij = Lother
i for i 6= j and Lii 2 {Lother

i , Lother
i + 1}, for i = 1, . . . k.

This HLag structure allows each component of yt to have longer range lagged self-
dependence than lagged cross-dependencies. This own-other HLag structure is illus-
trated in Figure 2.

3. Elementwise (E). Finally, we consider a completely flexible structure in which the
elements of L have no stipulated relationships. Figure 3 illustrates this elementwise
HLag structure.

In the next section, we introduce the proposed class of HLag estimators aimed at esti-
mating VARk(p) models while shrinking the elements of L towards zero by incorporating
the three HLag structures described above.

3.2 HLag: Hierarchical Group Lasso for Lag Structured VARs

In this section, we introduce convex penalties specifically tailored for attaining the three lag
structures presented in the previous section. Our primary modeling tool is the hierarchical
group lasso (Zhao et al., 2009; Yan and Bien, 2017), which is a group lasso (Yuan and Lin,
2006) with a nested group structure. The group lasso is a sum of (unsquared) Euclidean
norms and is used in statistical modeling as a penalty to encourage groups of parameters to
be set to zero simultaneously. Using nested groups leads to hierarchical sparsity constraints
in which one set of parameters being zero implies that another set is also zero. This
penalty has been applied to multiple statistical problems including regression models with
interactions (Zhao et al., 2009; Jenatton et al., 2010; Radchenko and James, 2010; Bach
et al., 2012; Bien et al., 2013; Lim and Hastie, 2015; Haris et al., 2016; She et al., 2018),
covariance estimation (Bien et al., 2016), additive modeling (Lou et al., 2016), and time
series (Tibshirani and Suo, 2016). This last work focuses on transfer function estimation,
in this case scalar regression with multiple time-lagged covariates whose coe�cients decay
with lag.

For each hierarchical lag structure presented above, we propose an estimator based on
a convex optimization problem:

min
⌫,�

⇢
1

2T
kY � ⌫1> ��Zk22 + �PHLag(�)

�
, (4)

in which P
HLag

denotes a hierarchical lag group (HLag) penalty function. We propose three
such penalty functions: componentwise; own-other; and elementwise; and discuss their
relative merits.
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1. HLagC aims for a componentwise hierarchical lag structure and is defined by

PC
HLag(�) =

kX

i=1

pX

`=1

k�(`:p)
i k2, (5)

in which kAk2 denotes the Euclidean norm of vec(A), for a matrix A. As the penalty

parameter � � 0 is increased, we have �̂
(`:p)
i = 0 for more i, and for smaller `. This

componentwise HLag structure builds in the condition that if �̂
(`)
i = 0, then �̂

(`0)
i = 0

for all `0 > `, for each i = 1, . . . , k. This structure favors lower maxlag models compo-
nentwise, rather than simply giving sparse � estimates with no particular structure.

2. HLagO aims for a own-other hierarchical lag structure and is defined by

PO
HLag(�) =

kX

i=1

pX

`=1

h
k�(`:p)

i k2 + k(�(`)
i,�i,�

([`+1]:p)
i )k2

i
, (6)

in which�(`)
i,�i = {�(`)

ij : j 6= i}, and where we adopt the convention that�([p+1]:p)
i = 0.

The first term in this penalty is identical to that of (5). The di↵erence is the addition

of the second penalty term, which is just like the first except that it omits �(`)
ii . This

penalty allows sparsity patterns in which the influence of component i on itself may
be nonzero at lag ` even though the influence of other components is thought to be

zero at that lag. This model ensures that, for all `0 > `, �̂
(`)
i = 0 implies �̂

(`0)
i = 0

and �̂
(`)
ii = 0 implies �̂

(`0+1)

i,�i = 0. This accomplishes the desired own-other HLag

structure such that Li,�i = Lother
i 1k�1 and Lii 2 {Lother

i , Lother
i +1}, componentwise.

3. HLagE aims for an elementwise hierarchical lag structure and is defined by

PE
HLag(�) =

kX

i=1

kX

j=1

pX

`=1

k�(`:p)
ij k2. (7)

Here, each of the k2 pairs of components can have its own maxlag, such that �(`:p)
ij = 0

may occur for di↵erent values of ` for each pair i and j. While this model is the most
flexible of the three, it also borrows the least strength across the di↵erent components.
When Lij di↵er for all i and j, we expect this method to do well, whereas when, for
example Lij = Li, we expect it to be ine�cient relative to (5).

Since all three penalty functions are based on hierarchical group lasso penalties, a unified
computational approach to solve each is detailed in Section 4. First, we discuss theoretical
properties of HLag.

3.3 Theoretical Properties

We build on Basu and Michailidis (2015) to analyze theoretical properties of high-dimensional
VARs estimated by HLag. Consider a fixed realization of {yt}Tt=�(p�1)

generated from the

VAR model (1) with fixed autoregressive order p and ut
iid⇠ N(0,⌃u). Denote the corre-

sponding true maxlag matrix by L. We make the following assumptions.
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Assumption 1 The VAR model is stable, such that det{�(z)} 6= 0 for all {z 2 C : |z|  1},
where

�(z) = I��(1)z ��(2)z2 � . . .��(p)zp;

and the error covariance matrix ⌃u is positive definite such that its minimum eigenvalue
⇤min(⌃u) > 0 and its maximum eigenvalue ⇤max(⌃u) <1.

These assumptions are standard in the time series literature. Define the following two
measures of stability of the VAR process, which will be useful for our theoretical analysis
(see Basu and Michailidis, 2015 for more detail)

µmin(�) = min
|z|=1

⇤min(�
⇤(z)�(z)), and µmax(�) = max

|z|=1

⇤max(�
⇤(z)�(z)),

where �⇤(·) denotes the conjugate transpose of a complex matrix.
We derive a bound on the in-sample prediction error. Define the in-sample, one-step-

ahead mean squared forecast error to be

MSFEin = E

1

T
kY � �̂Zk22 | Z

�
= tr(⌃u) +

1

T

TX

t=1

�����

pX

`=1

(�̂
(`) ��(`))yt�`

�����

2

2

,

with Y,� and Z as defined in equation (3). While tr(⌃u) is the irreducible error, an
unavoidable part of the forecast error, a good estimator of the autoregressive parameters
should allow us to control the size of the second term. In Theorem 1, we provide such
a bound on the in-sample prediction error for the most flexible HLag method, namely
elementwise HLag.

Theorem 1 Suppose T > max{25 log(pk2), 4} and pk2 � 1. Under Assumption 1 and tak-
ing all lag coe�cients to be bounded in absolute value by M , we choose

� ⇣ v(�,⌃u)
p
log(pk2)/T , where v(�,⌃u) = ⇤max(⌃u)

⇣
1 + 1+µmax(�)

µmin(�)

⌘
. Then, with

probability at least 1� 12

(pk2)23/2
,

1

T

TX

t=1

�����

pX

`=1

(�̂
(`) ��(`))yt�`

�����

2

2

. Mv(�,⌃u)

r
log(pk2)

T

kX

i=1

kX

j=1

L3/2
ij ,

where �̂ is the elementwise HLag estimator with pmax = p.

The proof of Theorem 1 is included in Section A of the appendix. Theorem 1 establishes
in-sample prediction consistency in the high-dimensional regime log(pk2)/T ! 0. Hence,
the same rate is obtained as for i.i.d. data, modulo a “price” paid for dependence. The
temporal and cross-sectional dependence a↵ects the rate through the internal parameters
⇤max(⌃u), µmin(�) and µmax(�).

While Theorem 1 is derived under the assumption that p is the true order of the VAR,
the results hold even if p is replaced by any upper bound pmax on the true order since the
VARk(p) can be viewed as a VARk(pmax) with �(`) = 0 for ` > p, see Basu and Michailidis
(2015). The convergence rate then becomes

p
log(pmax · k2)/T instead of

p
log(pk2)/T .
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The bound includes terms of the form L3/2
ij . The 3/2 exponent can be removed if

one adopts a more complicated weighting scheme (see e.g., Jenatton et al., 2011a, Bien
et al., 2016), which would avoid high order lag coe�cients from being aggressively shrunken.
However, in the context of VAR estimation, we find through simulation experiments that
this aggressive shrinkage is in fact beneficial (see Section C.3 of the appendix).

4. Optimization Algorithm

We begin by noting that since the intercept ⌫ does not appear in the penalty terms, it
can be removed if we replace Y by Y(IT � 1

T 11
>) and Z by Z(IT � 1

T 11
>). All three

optimization problems are of the form

min
�

(
1

2T
kY ��Zk22 + �

kX

i=1

pX

`=1

⌦i(�
(`:p)
i )

)
, (8)

and (5), (6), and (7) only di↵er by the form of the norm ⌦i. A key simplification is possible
by observing that the objective above decouples across the rows of �:

min
�

kX

i=1

"
1

2T
kYi ��iZk22 + �

pX

`=1

⌦i(�
(`:p)
i )

#
,

in which Yi 2 R1⇥T and �i = �(1:p)
i 2 R1⇥kp. Hence, Equation (8) can be solved in parallel

by solving the “one-row” subproblem

min
�i

(
1

2T
kYi ��iZk22 + �

pX

`=1

⌦i(�
(`:p)
i )

)
.

Jenatton et al. (2011b) show that hierarchical group lasso problems can be e�ciently solved
via the proximal gradient method. This procedure can be viewed as an extension of tradi-
tional gradient descent methods to nonsmooth objective functions. Given a convex objective
function of the form fi(�i) = Li(�i) + �⌦⇤

i (�i), where Li is di↵erentiable with a Lipschitz
continuous gradient, the proximal gradient method produces a sequence �̂i[1], �̂i[2], . . .
with the guarantee that

fi(�̂i[m])�min
�i

fi(�i)

is O(1/m) (cf. Beck and Teboulle 2009). For m = 1, 2, . . ., its update is given by

�̂i[m] = Proxsm�⌦⇤
i

⇣
�̂i[m� 1]� smrL(�̂i[m� 1])

⌘
,

where sm is an appropriately chosen step size and Proxsm�⌦⇤
i
is the proximal operator of

the function sm�⌦⇤
i (·), which is evaluated at the gradient step we would take if we were

minimizing Li alone. The proximal operator is defined as the unique solution of a convex
optimization problem involving ⌦⇤

i but not Li:

Proxsm�⌦⇤
i
(u) = argmin

v

⇢
1

2
ku� vk22 + sm�⌦⇤

i (v)

�
. (9)
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The proximal gradient method is particularly e↵ective when the proximal operator can

be evaluated e�ciently. In our case, ⌦⇤
i (�i) =

Pp
`=1

⌦i(�
(`:p)
i ) is a sum of hierarchically

nested Euclidean norms. Jenatton et al. (2011b) show that for such penalties, the proximal
operator has essentially a closed form solution, making it extremely e�cient. It remains to
note that Li(�i) = 1

2T kYi � �iZk22 has gradient rLi(�i) = � 1

T (Yi � �iZ)Z> and that
the step size sm can be determined adaptively through a backtracking procedure or it can
be set to the Lipschitz constant of rLi(�i), which in this case is �1(Z)�2 (where �1(Z)
denotes the largest singular value of Z).

We use an accelerated version of the proximal gradient method which leads to a faster
convergence rate and improved empirical performance with minimal additional overhead.
Our particular implementation is based on Algorithm 2 of Tseng (2008). It repeats, for
m = 1, 2, . . . to convergence,

�̂ �̂i[m� 1] + ✓m�1(✓
�1

m�2
� 1)

⇣
�̂i[m� 1]� �̂i[m� 2]

⌘

�̂i[m] Proxsm�⌦⇤
i

⇣
�̂� smrLi(�̂)

⌘
,

with ✓m = 2/(m + 2) as in Tseng (2008) and converges at rate 1/m2 (compared to
the unaccelerated proximal gradient method’s 1/m rate). Alternatively, one could set

✓m = 1

2

⇣q
✓4m�1

+ 4✓2m�1
� ✓2m�1

⌘
which is essentially the Fast Iterative Soft-Thresholding

Algorithm developed by Beck and Teboulle (2009). We verified that our findings in the
simulation study are una↵ected by this choice.

Our full procedure is detailed in Algorithm 1 and is applicable to all three HLag es-
timators. Note that the algorithm requires an initial value �̂[0]. As is standard in the
regularization literature (e.g., Friedman et al., 2017), we use “warm starts”. We solve Algo-
rithm 1 for a grid of penalty values starting at �max, the smallest value of the regularization
parameter in which all coe�cients will be zero. For each smaller value of � along this grid,
we use the previous solution as a “warm start” (�̂[0]) to run Algorithm 1 with the new
�-value. A key advantage of our HLag estimates being solutions to a convex optimization
problem is that the algorithms are stable and not sensitive to the choice of initialization
(Beck and Teboulle, 2009). As stopping criterion, we use ||�̂ � �̂i[m]||1  ✏, while one
could also use ||�̂i[m]� �̂i[m� 1]||1  ✏. We opt for the former since we have numerically
observed in our simulation experiments that considerably less iterations are needed without
a↵ecting accuracy.

The algorithms for these methods di↵er only in the evaluation of their proximal operators
(since each method has a di↵erent penalty ⌦⇤

i ). However, all three choices of ⌦⇤
i correspond

to hierarchical group lasso penalties, allowing us to use the result of Jenatton et al. (2011b),
which shows that the proximal operator has a remarkably simple form. We write these three
problems generically as

x̂ = argmin
x

(
1

2
kx� x̃k22 + �

HX

h=1

whkxghk2

)
, (10)

where g1 ⇢ · · · ⇢ gH . The key observation in Jenatton et al. (2011b) is that the dual of the
proximal problem (9) can be solved exactly in a single pass of blockwise coordinate descent.
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Algorithm 1 General algorithm for HLag with penalty ⌦⇤
i

Require: Y,Z, �̂[0],�, ✏ = 10�4

�̂[1] �̂[0]; �̂[2] �̂[0]
s �1(Z)�2

for i = 1, . . . , k do
for m = 3, 4, . . . do

�̂ �̂i[m� 1] + m�2

m+1

⇣
�̂i[m� 1]� �̂i[m� 2]

⌘

�̂i[m] Proxs�⌦⇤
i

⇣
�̂+ s

T · (Yi � �̂Z)Z>
⌘

if k�̂� �̂i[m]k1  ✏ then
break

end if
end for

end for
return �̂[m]

Algorithm 2 Solving Problem (10)

Require: x̃,�, w1, . . . , wH

r x̃
for h = 1, . . . , H do

rgh  (1� �wh/krghk2)+rgh
end for
return r as the solution x̂.

By strong duality, this solution to the dual provides us with a solution to problem (9). The
updates of each block are extremely simple, corresponding to a groupwise-soft-thresholding
operation. Algorithm 2 shows the solution to (10), which includes all three of our penalties
as special cases.

Selection of the penalty parameters. While some theoretical results on the choice
of penalty parameters are available in the literature (Basu and Michailidis, 2015), such
theoretical results can not be used in practice since the penalty parameter’s value depends
on properties of the underlying model that are not observable. For this reason, we use cross
validation, one of the standard approaches to penalty parameter selection.

Following Friedman et al. (2010), the grid of penalty values is constructed by starting
with �max, an estimate of the smallest value in which all coe�cients are zero, then decre-
menting in log linear increments. The grid bounds are detailed in the appendix of Nicholson
et al. (2017). The HLag methods rely on a single tuning parameter � in equation (8). Our
penalty parameter search over a one-dimensional grid is much less expensive than the search
over a multi-dimensional grid as needed for the lag-weighted lasso (Song and Bickel, 2011).
To accommodate the time series nature of our data, we select the penalty parameters us-
ing the cross-validation approach utilized by Song and Bickel (2011) and Banbura et al.
(2010). Given an evaluation period [T1, T2], we use one-step-ahead mean-squared forecast
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error (MSFE) as a cross-validation score:

MSFE(T1, T2) =
1

k(T2 � T1)

kX

i=1

T2�1X

t=T1

(ŷi,t+1 � yi,t+1)
2, (11)

with ŷi,t+1 representing the forecast for time t + 1 and component i based on observing
the series up to time t. If multi-step ahead forecast horizons are desired, we can simply
substitute (11) with our desired forecast horizon h. Since this penalty search requires
looping over many time points, we have coded most of the HLag methods in C++ to increase
computational e�ciency.

5. Simulation Study

We compare the proposed HLag methods with 13 competing approaches: (i) AIC-VAR:
least squares estimation of the VAR and selection of a universal lag order ` using AIC, (ii)
BIC-VAR: same as in (i) but lag order selection using BIC, (iii) Lasso-VAR: estimation of
the VAR using an L1-penalty, (iv) Lag-weighted (LW) Lasso-VAR: estimation of the VAR
using a weighted L1-penalty, which applies greater regularization to higher order lags, (v)
BGR-BVAR: Bayesian VAR of Banbura et al. (2010), (vi) GLP-BVAR: Bayesian VAR of
Giannone et al. (2015), (vii) CCM-BVAR: Bayesian VAR of Carriero et al. (2019) (viii)
DFM: Dynamic Factor Model (see e.g., Forni et al., 2000), (ix) FAVAR: Factor Augmented
VAR (Bernanke et al., 2005) (x) VAR(1): least squares estimation of a VAR(1) (xi) AR:
univariate autoregressive model, (xii) Sample mean: intercept-only model, (xiii) Random
walk: vector random walk model. The comparison methods are detailed in Section B of the
appendix.

5.1 Forecast Comparisons

To demonstrate the e�cacy of the HLag methods in applications with various lag structures,
we evaluate the proposed methods under four simulation scenarios.

In Scenarios 1-3, we take k = 45 components, a series length of T = 100 and simulate
from a VAR with the respective HLag structures: componentwise, own-other, and elemen-
twise. In this section, we focus on simulation scenarios where the sample size T is small
to moderate compared to the number of parameters to be estimated (pmax · k2 + k). We
investigate the impact of increasing the time series length in Section C.4 of the appendix.
The coe�cient matrices used in these scenarios are depicted in Figure 4, panel (1)-(3)
respectively.

In Scenario 4, we consider a data generating process (DGP) with k = 40 and T =
195 that does not a priori favor the HLag approaches vis-a-vis the competing approaches
but follows the “data-based Monte Carlo method” (Ho and Sorensen, 1996) to make the
simulation setting robust to arbitrary DGPs. This DGP does not have any special lag
structure; all variables in all equations have p = 4 non-zero lags, as can be seen from Figure
4, panel (4).

All simulations are generated from stationary coe�cient matrices. Full details on each
simulation design together with the steps taken to ensure the stationarity of the simulation
structures are given in Sections C.1 and C.2 of the appendix. In each scenario, the error
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Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

(1) Componentwise structure in Scenario 1.

Φ(1) Φ(2)

(2) Own-other structure in Scenario 2.

Φ(1) Φ(2) Φ(3) Φ(4)

(3) Elementwise structure in Scenario 3.

Φ(1) Φ(2) Φ(3) Φ(4)

(4) Data-based structure in Scenario 4.

Figure 4: Sparsity patterns (and magnitudes) of the HLag based simulation scenarios.
Darker shading indicates coe�cients that are larger in magnitude.

covariance is taken to be ⌃u = 0.01 · Ik. We investigate the sensitivity of our results to
various choices of error covariance in Section C.5 of the appendix. To reduce the influence
of initial conditions on the DGPs, the first 500 observations were discarded as burn-in for
each simulation run. We run M = 500 simulations in each scenario.

Forecast performance measure. We focus on the problem of obtaining reliable point
forecasts. To evaluate how well our methods and their competitors do in the context of pro-
viding such point forecasts, we measure their performance in terms of out-of-sample point
forecast accuracy and choose mean squared forecast error as our main measure of perfor-
mance. We generate time series of length T , fit the models to the first T � 1 observations
and use the last observation to compute the one-step-ahead mean squared forecast error

MSFE =
1

kM

MX

s=1

kX

i=1

(y(s)i,T � by(s)i,T )
2,

with y(s)i,T the value of component time series i at the time point T in the sth simulation run,

and by(s)i,T is its predicted value.
Figure 5 gives the forecast performance of the methods in Scenarios 1-4. Concerning

the VAR-based methods, we report the results for known (p = 5 in Scenario 1, p = 2 in
Scenario 2 and p = 4 in Scenario 3 and 4) maximal lag order. We first discuss these results
and then summarize the di↵erences in results when the maximal lag order is unknown, for
which we take pmax = 12.

Scenario 1: Componentwise HLag. Componentwise and own-other HLag perform best,
which is to be expected since both are geared explicitly toward Scenario 1’s lag structure.
Elementwise HLag outperforms the lag-weighted lasso, and both do better than the lasso.
Among the Bayesian methods, the BGR and CCM approaches are competitive to element-
wise HLag, whereas the GLP approach is not. All Bayesian methods perform significantly
worse (as confirmed with paired t-tests) than componentwise and own-other HLag. The fac-
tor models are not geared towards the DGP of Scenario 1: They select around five factors,
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Scenario 4: Data−based
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Figure 5: Out-of-sample mean squared forecast error for VARs in Scenario 1 to 4. Error
bars of length two standard errors are in blue; the best performing method is in
black.

on average, in their attempt to capture the time series dynamics and are not competitive to
HLag. Regarding lag order selection with AIC/BIC, we can not estimate the VAR model
for ` > 1 with least squares, thus for a simple benchmark we instead estimate a V ARk(1)
by least squares. Despite the explicit orientation toward modeling recent behavior in the
VAR45(1) model, it su↵ers both because it misses important longer range lag coe�cients
and because it is an unregularized estimator of �(1) and therefore has high variance. The
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univariate AR benchmark also su↵ers because it misses the dynamics among the time series:
its MSFE is more than twice as large as the MSFEs of the HLag methods.

Scenario 2: Own-other HLag. All three HLag methods perform significantly better than
the competing methods. As one would expect, own-other HLag achieves the best forecasting
performance, with componentwise and elementwise HLag performing only slightly worse.
As with the previous scenario, the least-squares approaches are not competitive.

Scenario 3: Elementwise HLag. As expected, elementwise HLag outperforms all oth-
ers. The lag-weighted lasso outperforms componentwise and own-other HLag, which is not
surprising as it is designed to accommodate this type of structure in a more crude manner
than elementwise HLag. The relatively poor performance of componentwise and own-other
HLag is likely due to the coe�cient matrix explicitly violating the structures in all 45 rows.
However, both still significantly outperform the Bayesian methods, factor-based methods
and univariate benchmarks.

Scenario 4: Data-based. Though all true parameters are non-zero, the HLag approaches
perform considerably better than the lasso, lag-weighted lasso, Bayesian, factor-based and
univariate approaches. HLag achieves variance reduction by enforcing sparsity and low
max-lag orders. This, in turn, helps to improve forecast accuracy even for non-sparse DGPs
where many of the coe�cients are small in magnitude, as in Figure 4, panel (4).

Unknown maximal lag order. In Figure 6, we compare the performance of the VAR-
based methods for known and unknown maximal lag order. For all methods in all considered
scenarios, the MSFEs are, overall larger when the true maximal lag order is unknown since
now the true lag order of each time series in each equation of the VAR can be overestimated.
With a total of pmax · k2 = 12 ⇥ 452 autoregressive parameters to estimate, the methods
that assume an ordering, like HLag, are greatly advantaged over a method like the lasso that
does not exploit this knowledge. Indeed, in Scenario 3 with unknown order, componentwise
and own-other HLag outperform the lasso.

Computation time. Average computation times, in seconds on an Intel Core i7-6820HQ
2.70GHz machine including the penalty parameter search, for Scenario 1 and known order
are reported in Table 1 for comparison. The relative performance of the methods with
regard to average computation time in the other scenarios was very similar. The HLag
methods have a clear advantage over the Bayesian methods of Giannone et al. (2015),
Carriero et al. (2019) and the lag-weighted lasso. The latter minimally requires specifying
a weight function, and a two-dimensional penalty parameter search in our implementation,
which is much more time intensive than a one-dimensional search, as required for HLag.
The Bayesian method of Banbura et al. (2010) is fast to compute since there is a closed-
form expression for the mean of the posterior distribution of the autoregressive parameters
conditional on the error variance-covariance matrix. While the Bayesian method of Banbura
et al. (2010) and lasso require, in general, less computation time, HLag has clear advantages
over the former two in terms of forecast accuracy, especially when the maximal lag length
pmax is large, but also in terms of lag order selection, as discussed in the following sections.

5.2 Robustness of HLag as pmax Increases

We examine the impact of the maximal lag order pmax on HLag’s performance. Ideally,
provided that pmax is large enough to capture the system dynamics, its choice should
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Figure 6: Out-of-sample mean squared forecast error for VARs in Scenario 1 to 4 for known
(black) and unknown (gray) order. Error bars of length two standard errors are
in blue.

have little impact on forecast performance. However, we expect regularizers that treat each
coe�cient democratically, like the lasso, to experience degraded forecast performance as
pmax increases.

As an experiment, we simulate from an HLagC10(5) while increasing pmax to substantially
exceed the true L. Figure 7 depicts the coe�cient matrices and its magnitudes in what we
will call Scenario 5. All series in the first 4 rows have L = 2, the next 3 rows have L = 5,
and the final 3 rows have L = 0. We consider varying pmax 2 {1, 5, 12, 25, 50} and show
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Class Method Computation time (in seconds)
HLag Componentwise 17.1

Own-other 6.5
Elementwise 10.9

VAR Lasso 8.4
Lag-weighted lasso 154.2

BVAR BGR 0.4
GLP 348.8
CCM 79.5

Factor DFM 3.5
FAVAR 3.1

Table 1: Average computation times (in seconds), including the penalty parameter search,
for the di↵erent methods in Scenario 1 (T = 100, k = 45, p = 5). The results for
the least squares, sample mean, VAR(1), AR model and random walk are omitted
as their computation time is negligible.

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

Figure 7: Componentwise structure in the Robustness simulation Scenario 5.

the MSFEs of all VAR-based methods requiring a maximal lag order in Figure 8. As pmax
increases, we expect the performance of HLag to remain relatively constant whereas the
lasso and information-criterion based methods should return worse forecasts.

At pmax = 1 all models are misspecified. Since no method is capable of capturing the
true dynamics of series 1-7 in Figure 7, all perform poorly. As expected, after ignoring
pmax = 1, componentwise HLag achieves the best performance across all other choices
for pmax, but is very closely followed by the own-other and elementwise HLag methods.
Among the information-criterion based methods, AIC performs substantially worse than
BIC as pmax increases. This is likely the result of BIC assigning a larger penalty on the
number of coe�cients than AIC. The lasso’s performance degrades substantially as the lag
order increases, while the lag-weighted lasso and Bayesian methods are somewhat more
robust to the lag order, but still achieve worse forecasts than every HLag procedure under
all choices for pmax.

5.3 Lag Order Selection

While our primary intent in introducing the HLag framework is better point forecast perfor-
mance and improved interpretability, one can also view HLag as an approach for selecting
lag order. Below, we examine the performance of the proposed methods in estimating the
maxlag matrix L defined in Section 3.1. Based on an estimate �̂ of the autoregressive
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Figure 8: Robustness simulation scenario: Out-of-sample mean squared forecast errors, for
di↵erent values of the maximal lag order pmax.

coe�cients, we can likewise define a matrix of estimated lag orders:

L̂ij = max{` : �̂(`)
ij 6= 0},

where we define L̂ij = 0 if �̂
(`)
ij = 0 for all `. It is well known in the regularized regres-

sion literature (cf., Leng et al. 2006) that the optimal tuning parameter for prediction is
di↵erent from that for support recovery. Nonetheless, in this section we will proceed with
the cross-validation procedure used previously with only two minor modifications intended
to ameliorate the tendency of cross-validation to select a value of � that is smaller than
optimal for support recovery. First, we cross-validate a relaxed version of the regularized
methods in which the estimated nonzero coe�cients are refit using ridge regression, as de-
tailed in Section C.6 of the appendix. This modification makes the MSFE more sensitive
to L̂ij being larger than necessary. Second, we use the “one-standard-error rule” discussed
in Hastie et al. (2009), in which we select the largest value of � whose MSFE is no more
than one standard error above that of the best performing model (since we favor the most
parsimonious model that does approximately as well as any other).

We consider Scenario 1 to 5 and estimate a V ARk(12). A procedure’s lag order selection
accuracy is measured based on the sum of absolute di↵erences between L and L̂ and the
maximum absolute di↵erences between L and L̂:

kL̂� Lk1 =
X

ij

|L̂ij � Lij | and kL̂� Lk1 = max
i,j

|L̂ij � Lij |. (12)

The former can be seen as an overall measure of lag order error, the latter as a “worst-case”
measure. We present the values on both measures relative to that of the sample mean
(which chooses L̂ij = 0 for all i and j). Figure 9 gives the results on the L1-based measure.
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Figure 9: L1-lag selection performance for Scenario 1 to 5. Error bars of length two standard
errors are in blue; the best performing method is in black.

We focus our discussion on the VAR-methods performing actual lag order selection. We first
discuss these results then summarize the di↵erences in results for the L1-based measure.

L1-lag selection performance. In Scenarios 1-3, the HLag methods geared towards the
design-specific lag structure perform best, as expected. Least squares AIC/BIC always
estimates a V ARk(1) and performs considerably worse than the best performing HLag
method in Scenarios 1-2. In Scenario 3, they attain the best performance since around 82%
of the elements in the true maxlag matrix are equal to one, and hence correctly recovered.
However, the higher order dynamics of the remaining 18% of the elements are ignored,
while elementwise HLag—which performs second best—better captures these dynamics.
This explains why in terms of MSFE, elementwise HLag outperforms the V ARk(1) by a
factor of 10.

In Scenario 4, least squares AIC consistently recovers the true universal order p =
4. Nevertheless, it has, in general, a tendency to select the highest feasible order, which
happens to coincide here with the true order. Its overfitting tendency generally has more
negative repercussions, as can be seen from Scenario 5, and even more importantly from its
poor forecast performance. Componentwise HLag and least squares BIC perform similarly
and are second best. Own-other, elementwise HLag, lasso and lag-weighted lasso perform
similarly but underestimate the lag order of the component series with small non-zero values
at higher order lags. While this negatively a↵ects their lag order selection performance, it
helps for forecast performance as discussed in Section 5.1.

In Scenario 5, componentwise and own-other HLag achieve the best performance. Their
performance is five times better than the least squares AIC, and roughly 1.5 times better
than the lasso, lag-weighted lasso and least squares BIC. Elementwise HLag substantially
outperforms the lasso and least squares AIC, which consistently severely overestimates the
true lag order. The least squares BIC, on the other hand, performs similarly to elementwise
HLag on the lag selection criterion but selects the universal lag order at either 1 or 2 and
thus does not capture the true dynamics of series 5-7 in Figure 7.

In Figure 10, we examine the impact of the maximal lag order pmax on a method’s lag
order error. At the true order (pmax = 5), all methods achieve their best performance. As
pmax increases, we find the methods’ performance to decrease, in line with the findings by
Percival (2012). Yet, the HLag methods and lag-weighted lasso remain much more robust
than the AIC and lasso, whose performance degrade considerably.
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Figure 10: Robustness simulation scenario: Lag order error measures, for di↵erent values
of the maximal lag order pmax.

L1-lag selection performance. Results on the “worst-case” L1-measure are presented
in Figure 11. Di↵erences compared to the L1-measure are: (i) Least squares AIC/BIC are
the best performing. This occurs since the true maximal lag orders are small, as well as the
estimated lag orders by AIC/BIC due to the maximum number of parameters that least
squares can take. Hence, the maximal di↵erence between both is, overall, small. Their
negative repercussions are better reflected through the overall L1-measure, or in case of the
AIC as pmax increases (see Figure 10). (ii) Componentwise and own-other HLag are more
robust with respect to the L1-measure than elementwise HLag. The former two either
add an additional lag for all time series or for none, thereby encouraging low lag order
solutions—and thus controlling the maximum di↵erence with the small true orders—even
more than elementwise HLag. The latter (and the lag-weighted lasso) can flexibly add an
additional lag for each time series separately. Their price to pay for this flexibility becomes
apparent through the L1-measure. (iii) A noticeable di↵erence occurs between the methods
that assume an ordering, like HLag and the lag-weighted lasso, and methods, like the lasso,
that do not encourage low maximal lag orders. The lasso often picks up at least one lag
close to the maximally specified order, thereby explaining its bad performance in terms of
the L1-measure. As pmax increases, its performance deteriorates even more, see Figure
10.

Stability across time. We verified the stability in lag order selection across time with
a rolling window approach. We estimate the di↵erent models for the last 40 time points
(20%), each time using the most recent 160 observations. For each of these time points,
the lag matrices are obtained and the lag selection accuracy measures in equation (12) are
computed. For all methods, we find the lag order selection to be very stable across time
with no changes in their relative performance.
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Figure 11: L1-lag selection performance for Scenario 1 to 5. Error bars of length two
standard errors are in blue; the best performing method is in black.

6. Data Analysis

We demonstrate the usefulness of the proposed HLag methods for various applications. Our
first and main application is macroeconomic forecasting (Section 6.1). We investigate the
performance of the HLag methods on several VAR models where the number of time series
is varied relative to the fixed sample size. Secondly, we use the HLag methods for forecast
applications with high sampling rates (Section 6.2).

For all applications, we compare the forecast performance of the HLag methods to their
competitors. We use the cross-validation approach from Section 4 for penalty parameter
selection on time points T1 to T2: At each time point t = T1 � h, . . . , T2 � h (with h the
forecast horizon), we first standardize each series to have sample mean zero and variance
one using the most recent T1 � h observations. We do this to account for possible time
variation in the first and second moment of the data. Then, we estimate the VAR with
pmax and compute the weighted Mean Squared Forecast Error

wMSFE =
1

k(T2 � T1 + 1)

kX

i=1

T2�hX

t=T1�h

0

@y(s)i,t+h � ŷ(s)i,t+h

b�i

1

A
2

,

where b�i is the standard deviation of the ith to be forecast series, computed over the forecast
evaluation period [T1, T2] for each penalty parameter. We use a weighted MSFE to account
for the di↵erent volatilities and predictabilities of the di↵erent series when computing an
overall forecast error measure (Carriero et al., 2011). The selected penalty parameter is the
one giving the lowest wMSFE.

After penalty parameter selection, time points T3 to T4 are used for out-of-sample rolling
window forecast comparisons. Again, we standardize each series separately in each rolling
window, estimate a VAR on the most recent T3 � h observations and evaluate the overall
forecast accuracy with the wMSFE of equation (13), averaged over all k time series and
time points of the forecast evaluation period. Similar results are obtained with an expanding
window forecast exercise and available from the authors upon request.

Finally, to assess the statistical significance of the results, we use the Model Confidence
Set (MCS) procedure of Hansen et al. (2011). It separates the best forecast methods
with equal predictive ability from the others, who perform significantly worse. We use
the MCSprocedure function in R to obtain a MCS that contains the best model with 75%
confidence as done in Hansen et al. (2011).
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6.1 Macroeconomic Forecasting

We apply the proposed HLag methods to a collection of US macroeconomic time series
compiled by Stock and Watson (2005) and augmented by Koop (2013). The full data
set, publicly available at The Journal of Applied Econometrics Data Archive, contains 168
quarterly macroeconomic indicators over 45 years: Quarter 2, 1959 to Quarter 4, 2007, hence
T = 195. Following Stock and Watson (2012), we classify the series into 13 categories, listed
in Table 6 of the appendix. Further details can be found in Section D of the appendix.

Following Koop (2013), we estimate four VAR models on this data set: The Small-
Medium VAR (k = 10) which consists of GDP growth rate, the Federal Funds Rate, and
CPI plus 7 additional variables, including monetary variables. The Medium VAR (k = 20)
which contains the Small-Medium group plus 10 additional variables containing aggregated
information on several aspects of the economy. The Medium-Large VAR (k = 40) which
contains the Medium group plus 20 additional variables, including most of the remaining
aggregate variables in the data set. The Large VAR (k = 168) which contains the Medium-
Large group plus 128 additional variables, consisting primarily of the components that
make up the aggregated variables. Note that the number of parameters quickly increases
from 4⇥ 102 + 10 = 410 (Small-Medium VAR) over 4⇥ 202 + 20 = 1,620 (Medium VAR),
4⇥ 402 + 40 = 6,440 (Medium-Large VAR), to 4⇥ 1682 + 168 = 113,064 (Large VAR).

6.1.1 Forecast Comparisons

We compare the forecast performance of the HLag methods to their competitors on the four
VAR models with pmax = 4, following the convention from Koop (2013). Quarter 3, 1977
(T1) to Quarter 3, 1992 (T2) is used for penalty parameter selection; Quarter 4, 1992 (T3)
to Quarter 4, 2007 (T4) are used for out-of-sample rolling window forecast comparisons. We
start with a discussion on the forecast accuracy for all series combined, then break down
the results across di↵erent VAR sizes for specific variables.

Forecast performance across all series. We report the out-of-sample one-step-ahead
weighted mean squared forecast errors for the four VAR groups with forecast horizon h = 1
in Figure 12. We discuss the results for each VAR group separately since the wMSFE are
not directly comparable across the panels of Figure 12, as an average is taken over di↵erent
component series which might be more or less di�cult to predict.

With only a limited number of component series k included in the Small VAR, the
univariate AR attains the lowest wMSFE, but own-other HLag, the lasso and FAVAR
have equal predictive ability since they are included in the MCS. As more component
series are added in the Medium and Medium-Large VAR, own-other and elementwise HLag
outperform all other methods. The more flexible own-other and elementwise structures
perform similarly, and better than the componentwise structure. While the MCS includes
own-other HLag, elementwise HLag and the lasso for the Medium VAR, only own-other
HLag survives for the Medium-Large VAR. This supports the widely held belief that in
economic applications, a components’ own lags are likely more informative than other lags
and that maxlag varies across components. Furthermore, the Bayesian and factor models
are never included in the MCS, nor are the least squares methods, or univariate methods.
For the Medium VAR, the information criteria AIC and BIC always select three lags. Since
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Figure 12: Rolling out-of-sample one-step-ahead wMSFE for the four VAR sizes. For each
VAR size, forecast methods in the 75% Model Confidence Set (MCS) are in
black.

a relatively large number of parameters need to be estimated, their estimation error becomes
large, and this, in turn, severely impacts their forecast accuracy.

Next, consider the Large VAR, noting that the VAR by AIC, BIC and VAR(1) are
overparametrized and not included. As the number of component series k further increases,
the componentwise HLag structure becomes less realistic. This is especially true in high-
dimensional economic applications, in which a core subset of the included series is typically
most important in forecasting. In Figure 12 we indeed see that the more flexible own-other
and elementwise HLag perform considerably better than the componentwise HLag. The
MCS confirms the strong performance of elementwise HLag.

HLag’s good performance across all series is confirmed by forecast accuracy results bro-
ken down by macroeconomic category. The flexible elementwise HLag is the best performing
method; for almost all categories, it is included in the MCS, which is not the case for any
other forecasting method. Detailed results can be found in Figure 18 of the appendix.

Furthermore, our findings remain stable when we increase the maximal lag order pmax.
In line with Banbura et al. (2010), we re-estimated all models with pmax = 13. Detailed
results are reported in Figure 19 of the appendix. For the Small-Medium VAR, own-
other HLag performs comparable to the AR benchmark, while it outperforms all other
methods for larger VARs. The lasso (and to a lesser extent the lag-weighted lasso) loses
its competitiveness vis-a-vis the HLag approaches as soon as the maximal lag order pmax
increases, in line with the results of Section 5.2.

Finally, we re-did our forecast exercise for longer forecast horizons h = 4 and h = 8.
Detailed results are reported in Figure 20 of the appendix. All forecast errors increase with
distant forecast horizons. Nonetheless, own-other HLag remains among the best forecast
methods: it is the only method that is always included in the MCS. Its performance gets
closer to the sample mean as the forecast horizon increases.

Comparing forecast performance across di↵erent VAR sizes. To investigate whether
large VARs improve forecast accuracy over smaller VARs, we turn to the MSFEs of the
individual component series obtained with the multivariate forecast methods. We focus
on Real Gross Domestic Product (GDP251 ), Consumer Price Index (CPIAUSL), and the
Federal Funds Rate (FYFF ) which are generally of primary interest to forecasters and
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Figure 13: Rolling out-of-sample one-step ahead mean squared forecast error of GDP251,
CPIAUSL and FYFF for the di↵erent VAR sizes (bars from left to right: Small-
Medium, Medium, Medium-Large, Large). For each method, the lowest MSFE
is indicated in black.

policymakers. Figure 13 gives the MSFEs of these three component series in the four VAR
models.

Despite the fact that the Small-Medium VAR forecasts well for some component series,
like CPIAUSL, we often find, similar to Koop (2013), that moving away from small VARs
leads to improved forecast performance. Consider, for instance, GDP251 and FYFF where
half of the forecast methods give the best MSFE in the Large VAR. Across the k = 10
component series included in all four VARs, HLag, the lasso and factor methods produce
the best MSFEs mainly for the Medium-Large or Large VARs; the Bayesian methods mainly
for the Small-Medium or Medium VARs.

Furthermore, the loss in forecast accuracy when adding variables to the VAR, if it occurs,
remains relatively limited for HLag methods (on average, only 5%) but is severe for Bayesian
methods (on average, 46%). Although Bayesian methods perform shrinkage, all component
series remain included in the larger VARs, which can severely impede forecast accuracy.
HLag methods, in contrast, do not use all component series but o↵er the possibility to
exclude possibly irrelevant or redundant variables from the forecast model.

While factor-based models produce good forecasts for larger VARs, as the factors can be
estimated more precisely as the number of component series increases, the factors themselves
do not carry, in many cases, economic interpretation. The HLag methods, in contrast,
facilitate interpretation by providing direct insight into the component series that contribute
to the good forecast performance, as discussed next.

6.1.2 Lag Order Selection

The HLag methods provide direct insight into the series contributing to the forecasting of
each individual component. As an example, consider the estimated lag orders of the three
main component series (GDP251, CPIAUSL and FYFF ) from a fitted HLagE40 model of the
Medium-Large group in Figure 14. Elementwise HLag finds, for instance, that the Federal
Funds Rate FYFF is an important predictor of Gross Domestic Product since two of its
lagged components are included in the equation for forecasting GDP251.
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Figure 14: The first three rows of L̂E , the estimated elementwise maxlag matrix in the
Medium-Large VAR for the HLagE method. Components with zero maxlag are
left empty.

Generally speaking, the lag selection results are considerably stable across time. Figure
21 in Section D of the appendix gives, for each end point of the rolling window, the fraction of
non-zero coe�cients in each of the 13 macroeconomic categories when forecasting GDP251,
CPIAUSL, and FYFF. To forecast GDP growth, for instance, GDP components, employ-
ment, interest rates and stock prices have a stable and important contribution throughout
the entire forecast evaluation period.

6.2 Applications with High Sampling Rates

The HLag methods can also be used for applications with high sampling rates. To illustrate
this, we consider a financial and energy data set.

6.2.1 Financial Application

We apply the HLag methods to a financial data set containing realized variances for k = 16
stock market indices, listed in Table 7 of the appendix. Daily realized variances based on
five minute returns are taken from Oxford-Man Institute of Quantitative Finance (publicly
available on http://realized.oxford-man.ox.ac.uk/data/download). Our data set consists of
T = 4,163 trading days between January 4, 2000 and December 30, 2019.

We compare the HLag methods to their competitors on estimated VARs with pmax = 22
(one trading month). The number of parameters is thus 22⇥ 162 + 16 = 5, 648. December
7, 2018 to June 26, 2019 (104 observations) are used for penalty parameter selection; June
27, 2019 to December 30, 2019 (104 observations) for forecast comparisons.

Figure 15, panel (a) presents the one-step-ahead weighted mean squared forecast errors.1

All three HLag methods are, together with the lasso, among the best performing methods,
as confirmed through the MCS. The HLag methods and lasso attain considerable forecast
gains over all other methods. The HLag methods’ performance remains stable across dif-
ferent values of the maximal lag order, unlike the performance of the lasso. Furthermore,
elementwise HLag achieves its good forecast accuracy using a more parsimonious, more in-

1. We excluded the BVAR methods GLP and CCM as they are too time consuming for large-scale VARs.
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(a) Finance (k=16) (b) Elementwise HLag (c) Lasso

Figure 15: Financial application. Panel (a): Rolling out-of-sample one-step-ahead
wMSFE with the forecast methods in the 75% MCS in black. Panel (b): Esti-
mated maxlag matrix for elementwise HLag and Panel (c): for the lasso.

terpretable description of the data than the lasso as can be seen from the estimated maxlag
matrices in Figure 15 panel (b) and (c) respectively.

6.2.2 Energy Application

We apply the HLag methods to an energy data set (Candanedo et al., 2017) containing
information on k = 26 variables related to in-house energy usage, temperature and humidity
conditions. The energy data was logged every 10 minutes for about 4.5 months, giving
T = 19,735 observations in total. A list of all variables and a short description is provided in
Table 8 of the appendix. Data are taken from the publicly available UCI Machine Learning
Repository (https://archive.ics.uci.edu/ml/data sets/Appliances+energy+prediction).

To evaluate the forecast performance of HLag, we estimate VAR models with pmax = 6
(one hour), thus containing 6 ⇥ 262 + 26 = 4,082 parameters. May 16, 18:10 to May 17,
2016 18:00 (144 observations) are used for penalty parameter selection; May 17, 18:10 to
May 27, 2016 18:00 (1440 observations) for forecast comparisons.

Figure 16 presents the one-step-ahead weighted mean squared forecast errors.2 As the
sample size is large, the least squares VAR-based methods do not su↵er as much from
the curse of dimensionality. Still, HLag has an advantage by not imposing a universal
maximal lag order. On the whole data set (panel a), componentwise and elementwise
HLag outperform all other methods apart from the lasso and lag-weighted lasso. Yet, a
subsample analysis reveals the dominance of elementwise HLag. We split the data set into
ten consecutive subperiods of equal length and repeated the same forecast exercise. Results
are displayed in panels (b)-(k). Elementwise HLag maintains its good performance across
the subperiods and performs best. It is included in the MCS for all subperiods except for
the second, making it a valuable addition to a forecaster’s toolbox.

2. We excluded the BVAR methods GLP and CCM as they are too time consuming for large-scale VARs.
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(f) Subperiod 5
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(h) Subperiod 7
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(i) Subperiod 8
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(j) Subperiod 9
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(k) Subperiod 10
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Figure 16: Energy application. Rolling out-of-sample one-step-ahead wMSFE on the data
set and on ten subperiods. Forecast methods in the 75% MCS are indicated in
black in each panel.

7. Discussion

By incorporating the property that more recent lags convey more information than distant
lags, the HLag framework o↵ers substantial forecast improvements as well as greater insight
into lag order selection than existing methods. In addition, throughout our simulation sce-
narios, we see that each method is fairly robust to deviations from its particular hierarchical
structure. The substantial improvements in forecasting accuracy in data applications pro-
vide justification for the widely held belief that as the number of component series included
in a model increases, the maximal lag order is not symmetric across series.

To enforce the hierarchical lag structures, we use the nested group structure of Zhao
et al. (2009). Alternatively, one could leverage the latent overlapping group lasso (LOG)
proposed by Jacob et al. (2009). While Yan and Bien (2017) indicate that the nested group
structures might su↵er from a more aggressive shrinkage of parameters deep in the hierarchy
(i.e. higher-order autoregressive coe�cients), in the VAR model, large amounts of shrinkage
on the more distant lags versus small amounts of shrinkage on the more recent lags may
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be desirable (Song and Bickel, 2011). In our simulation studies, the nested group lasso
structures significantly outperformed the LOG structures in the large majority of cases.
Especially as the maximal lag order increases, the nested group lasso turned out to be more
robust. Detailed results are available in Section C.3 of the appendix.

Implementations of our methods are available in the R package BigVAR, which is hosted
on the Comprehensive R Archive Network (cran). Despite the more challenging compu-
tational nature of overlapping group lasso problems compared to conventional sparsity or
non-overlapping group sparsity problems (e.g., Chen et al., 2014, Yuan et al., 2011, Mairal
et al., 2010), our methods scale well and are computationally feasible in high dimensions.
For instance, for the Large VAR (k = 168, T = 195, and 113,064 parameters) estimated
on the Stock and Watson data, the HLag methods only require (on an Intel Xean Gold
6126 CPU @ 2.60GHz machine) around 1.5 (Own-Other), 2 (Componentwise) and 3.5 min-
utes (Elementwise), including penalty parameter selection. This requires estimating the
VAR 610 times (61 time points⇥ 10 penalty parameters). For fixed penalty parameter, the
HLag methods can be computed in less than a second. The computational bottleneck of
our implementation thus concerns the penalty parameter selection. Alternatives (informa-
tion criteria or a time series cross-validation search where the models are not re-estimated
every single time point but at a lower sampling frequency) can be considered to reduce the
penalty parameter search for applications with high sampling rates. To be widely adopted
by practitioners, we do think that our methods have a considerable advantage compared to
more computationally intensive methods such as the lag-weighted lasso, the Bayesian CCM
and GLP approaches requiring around 33 minutes (Lag-weighted lasso) or even more than
2 hours (Bayesian methods) for one model fit of the Large Stock and Watson VAR. At the
very least, one of the proposed HLag approaches can be quickly run to provide numerous
insights before a more computationally demanding method is adopted.

The HLag framework is quite flexible and can be extended in various ways. For example,
more complicated weighting schemes (see e.g., Jenatton et al., 2011a, Bien et al., 2016) could
be adopted to address the more aggressive shrinkage of parameters deep in the hierarchy,
but these make computation more involved (Yan and Bien, 2017) and our simulations in
Section C.3 of the appendix indicate that this may not be beneficial in the VAR setting.
Furthermore, if the practitioner prefers to summarize the information content in large data
sets by constructing few factors, HLag penalties can, for instance, be applied with minimal
adaption to the factors augmenting the VAR in a FAVAR. The HLag framework would allow
one to flexibly vary the number of factors in each marginal equation of the FAVAR and to
automatically determine the lag order of the factors, in addition to the lag structure of
the autoregressive components. Finally, building on Basu and Michailidis (2015), we derive
preliminary theoretical results on prediction consistency for HLag in a high-dimensional
regime. Given the complicated nested group structure of the HLag penalty, work is needed
to further explore its theoretical properties. To this end, recent advances in the theory of the
hierarchical group lasso (e.g., Yan and Bien, 2017; Yu and Bien, 2017) could be leveraged.
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Appendix A. Theoretical properties: Proofs

We start by proving two auxiliary results, then we combine these in the proof of Theorem
1. For ease of notation and without loss of generality, we omit the intercept vector ⌫ from
the VAR model (1).
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Proof of Lemma 2. In the middle of page 20 of Basu and Michailidis (2013)3 (a prelimi-
nary version of Basu and Michailidis, 2015), it is shown that,
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3. S. Basu and G. Michailidis. Estimation in High-dimensional Vector Autoregressive Models.
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where the last approximation follows from the assumption that pk2 � 1.
Thus, for the choice of � given above, we have that
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Proof of Theorem 1. Combining the results from Lemma 1 and 2, we have for T >
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p
log(pk2)/T , that

MSFEin  tr(⌃u) + 4�PE
HLag(�)

or alternatively

1

T

TX

t=1

�����

pX

`=1

(�̂
(`) ��(`))yt�`

�����

2

2

 4�PE
HLag(�)

with probability at least 1� 12

(pk2)23/2
.

Assuming that all coe�cients are bounded by M , we have that

k�(`:Lij)

ij k2 M
p
Lij � `+ 1 M

p
Lij ,

so

PE
HLag(�) =

kX

i=1

kX

j=1

LijX

`=1

k�(`:Lij)

ij k2 M
kX

i=1

kX

j=1

L3/2
ij ,

and finally,

1

T

TX

t=1

�����

pX

`=1

(�̂
(`) ��(`))yt�`

�����

2

2

. Mv(�,⌃u)

r
log(pk2)

T

kX

i=1

kX

j=1

L3/2
ij .

Appendix B. Comparison Methods

B.1 Least Squares VAR

A standard method in lower dimensional settings is to fit a V ARk(`) with least squares for
0  `  pmax and then to select a universal lag order ` using AIC or BIC. Per Lütkepohl
(2007), the AIC and BIC of a V ARk(`) are defined as

AIC(`) = log det(⌃̂`
u) +

2k2`

T
,

BIC(`) = log det(⌃̂`
u) +

log(T )k2`

T
,
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in which ⌃̂`
u is the residual sample covariance matrix having used least squares to fit the

V ARk(`). The lag order ` that minimizes AIC(`) or BIC(`) is selected. This method of lag
order selection is only possible when k`  T since otherwise least squares is not well-defined.
In simulation Scenarios 1-3 (T = 100), we cannot use least squares for ` > 1, thus for a
simple benchmark we instead estimate a V ARk(1) by least squares:

min
⌫,�

⇢
1

2T
kY � ⌫1> ��(1)Z(1)k22

�
,

where Z(1) = [y0 · · · yT�1].

B.2 Lasso VAR

We also include two well-known lasso-based VAR regularization approaches. The lasso
estimates the VAR using an L1-penalty:

min
⌫,�

⇢
1

2T
kY � ⌫1> ��Zk22 + �k�k1

�
,

where k�k1 denotes kvec(�)k1. The lasso does not intrinsically consider lag order, hence
Song and Bickel (2011) propose a lag-weighted lasso penalty in which a weighted L1-penalty
is used with weights that increase geometrically with lag order:

min
⌫,�

(
1

2T
kY � ⌫1> ��Zk22 + �

pX

`=1

`↵k�(`)k1

)
.

The tuning parameter ↵ 2 [0, 1] determines how fast the penalty weight increases with
lag. While this form of penalty applies greater regularization to higher order lags, it is less
structured than our HLag penalties in that it does not necessarily produce sparsity patterns
in which all coe�cients beyond a certain lag order are zero. The regularization parameters
� and ↵ are jointly selected using a two-dimensional penalty parameter search. We have
implemented these methods in R, the code is available as Supplementary Material.

B.3 Bayesian VAR

We consider three Bayesian benchmarks: the method of Banbura et al. (2010), Giannone
et al. (2015) and Carriero et al. (2019). These approaches are also applicable to a situation
like ours where many parameters need to be estimated but the observation period is lim-
ited. However, in contrast to the HLag methods, these methods are not sparse (parameter
estimates are only shrunken towards zero) and do not perform lag order selection.

Banbura et al. (2010) use a modified Minnesota prior which leads to a posterior for
the autoregressive parameters, conditional on the error variance-covariance matrix, that is
normal. As we transformed all variables for stationarity, we set all prior means in the BGR
implementation to zeros. Following Banbura et al. (2010), we select the hyperparameter
that controls the degree of regularization as that which minimizes the h-step ahead MSFE
across the k component series. We have implemented this method in R, the code is available
as Supplementary Material.
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Giannone et al. (2015) choose the informativeness of the priors in an “optimal” way
by treating the priors as additional parameters, as in hierarchical modeling. We use the
authors’ replication files (Matlab-code) publicly available at https://www.newyorkfed.

org/research/economists/giannone/pub.
Carriero et al. (2019) use a general Minnesota-based independent prior to allow for

a more flexible lag choice. Note that the authors also allow for stochastic volatility, but
we compare the HLag methods to their “homoscedastic” BVAR that does not allow for
stochastic volatility, in line with the other methods considered in this paper. We adapt the
authors’ code (publicly available at http://didattica.unibocconi.eu/mypage/index.

php?IdUte=49257&idr=27515&lingua=eng) to this homoscedastic setting by combining it
with Matlab code for BVAR using Gibbs sampling available at https://sites.google.

com/site/dimitriskorobilis/matlab/code-for-vars. For full technical details on the
Bayesian methods, we refer the reader to Banbura et al. (2010), Giannone et al. (2015) and
Carriero et al. (2019) respectively.

B.4 Factor Models

We consider two factor-based benchmarks: a Dynamic Factor Model (DFM, see e.g. Forni
et al., 2000; Stock and Watson (2002)) and a Factor Augmented VAR Model (FAVAR,
Bernanke et al., 2005). In contrast to the HLag methods, these methods do not achieve
dimension reduction by sparsity. Instead, the information contained in the large predictor
set is summarized by few factors. We estimate the factors by Principal Component Analysis
and follow McCracken and Ng (2016) in using the PCp2 criterion, developed in Bai and Ng
(2002), to select the number of factors

Regarding the DFM, the time series are regressed on lagged values of the factors. The
factors are obtained from the whole data set and their lag order is determined via AIC. Sim-
ilar results are obtained with BIC and available from the authors upon request. Regarding
the FAVAR model, we regress each time series on its own lagged values and lagged values of
the factors. The factors are obtained from the data set of all other variables. Lag selection
is done via AIC, while similar results are obtained with BIC. We have implemented both
methods in R, the code is available as Supplementary Material.

B.5 Other Methods

Finally, we compare against three simple baselines. The unconditional sample mean corre-
sponds to the intercept-only model,

min
⌫

1

2T
kY � ⌫1>k22,

which makes one-step-ahead forecasts of the form ŷt+1 = 1

t

Pt
`=1

y`. The vector random
walk model, which corresponds to

⌫̂ = 0, �̂
(1)

= Ik, �̂
(2:p)

= 0,

and makes one-step-ahead forecasts of the form ŷt+1 = yt. Finally, we consider a separate
autoregressive model for each time series. To simultaneously obtain parameter estimates
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and select the lag order, we use the univariate analogue of equation (4)

min
�i

(
1

2T
kYi � �iXk22 + �i

pX

`=1

||�(`:p)
i ||2

)
.

for each component series i = 1, . . . , k withX = [x1 · · · xT ] 2 Rp⇥T , xt = [yi,t�1 · · · yi,t�p]>

2 Rp⇥1 and �i 2 R1⇥p. As such, the univariate AR is a special univariate case of the mul-
tivariate elementwise HLag introduced in Section 3.2. For each individual autoregression,
we take the maximal autoregressive order equal to the true VAR order p in the simulations.
In the empirical application we take four as maximal autoregressive order.

Appendix C. Simulation Study

C.1 Simulation Scenarios

Simulation Scenario 1: Componentwise Lag Structure. In this scenario, we simulate accord-
ing to an HLagC

45
(5) structure. In particular, we choose the maxlag matrix

L = [1, 2, 3, 4, 5]> ⌦ (191
>
45).

This 45 ⇥ 45 maxlag matrix is row-wise constant, meaning that all components within a
row have the same maxlag; we partition the rows into 5 groups of size 9, each group taking
on a distinct maxlag in {1, 2, 3, 4, 5}. A coe�cient matrix � with maxlag matrix L is used
in Scenario 1’s simulations and its magnitudes are depicted in Figure 4, panel (1) of the
manuscript.

Simulation Scenario 2: Own-Other Lag Structure. In this scenario, we create the matrix
� in such a manner that it di↵erentiates between own and other coe�cients. The coe�cients
of a series’ “own lags” (i.e., �(`)

ii ) are larger in magnitude than those of “other lags” (i.e.,

�(`)
ij with i 6= j). The magnitude of coe�cients decreases as the lag order increases. The

HLagO
45
(2) model we simulate is depicted in Figure 4, panel (2) of the manuscript. The first

15 rows can be viewed as univariate autoregressive models in which only the own term is
nonzero; in the next 15 rows, for the first k coe�cients, the coe�cient on a series’ own lags
is larger than “other lags,” and, for the next k coe�cients, only own coe�cients are nonzero;
the final 15 rows have nonzeros throughout the first 2k coe�cients, with own coe�cients
dominating other coe�cients in magnitude.

Simulation Scenario 3: Elementwise Lag Structure. In this scenario, we simulate under
an HLagE

45
(4) model, meaning that the maxlag is allowed to vary not just across rows but

also within rows. Each marginal series in each row is randomly assigned a maxlag of either
1 (with 90 percent probability) or 4 (with 10 percent probability). The coe�cient matrices
are depicted in Figure 4, panel (3).

Simulation Scenario 4: Data-based Lag Structure. Similar to Carriero et al. (2012), we
carry out a simulation by bootstrapping the actual Medium-Large macroeconomic data set
with k = 40 and T = 195 as discussed in Section 6 of the manuscript. We start from the
estimates obtained by applying the Bayesian approach of Giannone et al. (2015) to this data
set with pmax = 4. The obtained estimates of the autoregressive matrices are visualized
in Figure 4, panel (4) and the autoregressive matrices verify the VAR stability conditions.
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Simulation Scenarios
Order HLag 1. Componentwise 2. Own-Other 3. Elementwise 4. Data 5. Robustness
Known Componentwise 1.036 0.980 0.946 1.019 1.004

Own-other 1.048 1.000 0.944 1.006 0.986
Elementwise 1.037 1.001 0.944 1.010 1.005

Unkown Componentwise 1.138 1.235 1.094 1.051 1.030
Own-other 1.119 1.171 1.064 1.031 1.014
Elementwise 1.053 1.142 1.030 1.028 1.037

Table 2: Out-of-sample mean squared forecast errors of the LOG relative to that of the
nested group lasso in Scenario 1 to 5. Outperformance (as confirmed with paired
t-tests) by the nested group lasso is indicated in bold.

We then construct our simulated data using a non-parametric residual bootstrap procedure
(e.g., Kreiss and Lahiri, 2012) with bootstrap errors an i.i.d. sequence of discrete random
variables uniformly distributed on {1, . . . , T}.

C.2 Generation of Simulation Scenarios

All of our simulation structures were generated to ensure a stationary coe�cient matrix,
�. In order to construct a coe�cient matrix for these scenarios, we started by converting
the VARk(p) to a VARk(1) as described in equation 2.1.8 of Lütkepohl (2007)

A =

2

666664

�(1) �(2) . . . �(p�1) �(p)

Ik 0 0 0 0
0 Ik 0 0 0
...

...
. . .

...
...

0 0 0 Ik 0

3

777775
(13)

For A to be stationary, its maximum eigenvalue must be less than 1 in modulus. In general,
it is very di�cult to generate stationary coe�cient matrices. Boshnakov and Iqelan (2009)
o↵er a potentially viable procedure that utilizes the unique structure of equation (13), but it
does not allow for structured sparsity. We instead follow the approach put forth by Gilbert
(2005) in which structured random coe�cient matrices are generated until a stationary
matrix is recovered.

C.3 Sensitivity Analysis: Choice of Group Lasso Formulation

The hierarchical lag structures of the HLag methods can either be enforced via the nested
group structure of Zhao et al. (2009) or via the latent overlapping group lasso (LOG)
proposed by Jacob et al. (2009). We compare the LOG to the nested group structures in
our simulation studies.

In Table 2, we present the MSFEs of the LOG structures relative to those of the nested
group lasso (for each HLag method). In Table 3 their lag order selection performance is
compared. Values above one indicate better performance of the nested group lasso compared
to the LOG. In both Tables, the nested group lasso significantly outperforms the LOG in
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Simulation Scenarios
Measure HLag 1. Componentwise 2. Own-Other 3. Elementwise 4. Data 5. Robustness
L1-lag Componentwise 4.581 7.072 3.145 1.002 1.211
error Own-other 4.837 3.271 3.076 1.001 1.177

Elementwise 1.529 2.342 1.383 1.001 1.058
L1-lag Componentwise 2.418 3.150 1.752 1.281 1.203
error Own-other 2.513 4.979 1.780 1.138 1.741

Elementwise 1.015 3.091 1.683 1.636 1.266

Table 3: Lag order selection of the LOG relative to that of the nested group lasso in Scenario
1 to 5. Outperformance (as confirmed with paired t-tests) by the nested group
lasso is indicated in bold.

Performance Maximal lag order
measure HLag pmax = 5 pmax = 12 pmax = 25 pmax = 50
MSFE Componentwise 1.004 1.030 1.061 1.114

Own-other 0.986 1.014 1.049 1.105
Elementwise 1.005 1.037 1.075 1.151

L1-lag Componentwise 0.912 1.211 1.331 1.969
error Own-other 1.090 1.177 1.226 1.529

Elementwise 0.990 1.058 1.100 1.149

L1-lag Componentwise 0.985 1.203 1.399 2.491
error Own-other 1.127 1.741 2.263 4.130

Elementwise 1.000 1.266 1.898 2.630

Table 4: Robustness simulation scenario: Forecast performance and lag order selection of
the LOG relative to that of the nested group lasso for di↵erent values of the
maximal lag order pmax. Outperformance (as confirmed with paired t-tests) by
the nested group lasso is indicated in bold.

the vast majority of cases. Especially when the maximal lag order pmax increases, the
nested group lasso structures perform better than the LOG structures.

The finding that the nested group lasso structures are more robust than the LOG struc-
tures as pmax increases, is confirmed through the Robustness simulation scenario. In Table
4, we report the MSFEs and lag order measures as pmax increases from its true order (five)
to pmax = 50. On all performance measures, the nested group lasso structures perform,
overall, better than the LOG structures and the margin by which the former outperforms
the latter increases with pmax.

C.4 Sensitivity Analysis: Impact of Increasing the Time Series Length

We investigate the impact of increasing the time series length on our forecast accuracy
results. We use the autoregressive parameter structure of Scenario 5 and increase the time
series length from from T = 200 over T = 500 to T = 1000 while keeping the maximal lag
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Figure 17: Robustness simulation scenario: Out-of-sample mean squared forecast errors,
for di↵erent values of the sample size T . Note that we have not included the
BVAR methods GLP and CCL as they are too time consuming for large-scale
VARs.

order pmax = 5. Figure 17 presents the MSFEs. The forecast errors of all methods decrease
as T increases, in line with our expectations. While the di↵erence between the methods
decreases as the sample size increases, all HLag methods sill significantly outperform the
lasso.

C.5 Sensitivity Analysis: Choice of Error Covariance matrix

We investigate the sensitivity of our forecast accuracy results to the choice of error covariance
matrix. We start from the autoregressive parameter structure of Scenario 5 (pmax = 5)
and consider, in turn, robustness to (i) varying the signal-to-noise ratio, (ii) unequal error
variances and (iii) time variation in the error covariance matrix (i.e. stochastic volatility).

Signal-to-noise ratio. In the paper, we consider ⌃u = 0.01 · Ik, corresponding to a
signal-to-noise ratio4 of around 100. To investigate the sensitivity of the results to a lower
signal-to-noise ratio, we re-ran the simulation study with ⌃u = 0.1 · Ik, corresponding to a
signal-to-noise ratio around 10 and ⌃u = Ik, corresponding to a signal-to-noise ratio around
one.

Unequal error variances. We investigate whether the HLag methods behave comparably
if one group of time series has a large residual variance and another group has a small residual
variance. To this end, we consider one group (series 1 to 5) with residual variance one, and
the other group (series 6 to 10) with residual variance equal to 0.5.

4. Defined as the maximum eigenvalue of the parameter matrix over the maximum eigenvalue of the error

covariance matrix.
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Class Method SNR⇡100 SNR⇡10 SNR⇡1 Unequal Stochastic
(in paper) Variances Volatility

HLag Componentwise 0.0125 (0.0003) 0.1245 (0.0026) 1.1814 (0.0228) 0.9222 (0.0412) 3.5548 (0.2148)
Own-other 0.0128 (0.0003) 0.1278 (0.0027) 1.2075 (0.0234) 0.9414 (0.0421) 3.6507 (0.2188)
Elementwise 0.0126 (0.0003) 0.1262 (0.0026) 1.2000 (0.0230) 0.9414 (0.0421) 3.6122 (0.2168)

VAR Lasso 0.0131 (0.0003) 0.1305 (0.0027) 1.2365 (0.0236) 0.9708 (0.0434) 3.6818 (0.2196)
Lag-weighted lasso 0.0144 (0.0007) 0.1439 (0.0066) 1.5636 (0.1402) 1.0803 (0.0483) 4.2317 (0.2927)
Least squares AIC 0.0136 (0.0003) 0.1358 (0.0029) 1.3250 (0.0261) 1.0134 (0.0453) 3.9678 (0.2260)
Least squares BIC 0.0155 (0.0003) 0.1554 (0.0034) 1.5189 (0.0304) 1.2491 (0.0559) 3.9970 (0.2333)
VAR(1) 0.0164 (0.0004) 0.1643 (0.0035) 1.5859 (0.0312) 1.2555 (0.0276) 4.4612 (0.2248)

BVAR BGR 0.0129 (0.0003) 0.1295 (0.0027) 1.2325 (0.0240) 0.9688 (0.0433) 3.6102 (0.2044)
GLP 0.0125 (0.0003) 0.1253 (0.0026) 1.2054 (0.0232) 0.9312 (0.0194) 3.6572 (0.2282)
CCM 0.0129 (0.0003) 0.1274 (0.0026) 1.2128 (0.0236) 0.9430 (0.0204) 3.5280 (0.2088)

Factor DFM 0.0214 (0.0005) 0.2142 (0.0054) 1.9738 (0.0421) 1.5231 (0.0395) 4.6188 (0.2338)
FAVAR 0.0191 (0.0004) 0.1913 (0.0043) 1.7898 (0.0380) 1.2990 (0.0293) 4.3722 (0.2346)

Other AR 0.0475 (0.0013) 0.4753 (0.0134) 4.5135 (0.1333) 3.4895 (0.0987) 11.9719 (0.6454)
Sample mean 0.2067 (0.0083) 2.0675 (0.0826) 20.0255 (0.8383) 14.5514 (0.6508) 69.9780 (7.4943)
Random walk 0.6268 (0.0256) 6.2679 (0.2561) 61.9335 (2.7009) 44.8748 (2.0068) 223.4107 (26.2932)

Table 5: Robustness to various choices of error covariance matrix: Out-of-sample mean
squared forecast error (standard errors are in parentheses).

Stochastic volatility. As stochastic volatility is an important feature for macroeconomic
forecasting (Clark and Ravazzolo, 2015), we investigate the performance of all methods
in the presence of parametric variation in the error covariance matrix. Note that none
of the methods considered in this paper account for stochastic volatility and, hence, their
forecast accuracy is expected to su↵er. Nevertheless, it remains interesting to investigate
their sensitivity to the presence of parametric variation in the VAR errors.

We consider the VAR-SV model of Clark and Ravazzolo (2015) which includes the
conventional macroeconomic formulation of a random walk process for log volatility. In
particular, we take

ut = A�1⇤0.5
t "t,

with "t ⇠ N(0, Ik) , A =


1 0
0.5 Ik�1

�
and ⇤t = diag(�1,t, . . . ,�k,t) where

log(�i,t) = log(�i,t�1) + vi,t,

with vi,t = (v1,t, . . . , vk,t)> ⇠ N(0, 0.01 · Ik).
Table 5 gives the forecast performance of the methods under the various choices of error

covariance matrix. When decreasing the signal-to-noise ratio, the forecast accuracy of all
methods decreases accordingly, as expected. Similarly, under unequal error variances and in
the presence of stochastic volatility, the forecast accuracy of all methods su↵ers compared to
their performance in the original design (column 1). Importantly, the relative performance
of the HLag methods to the other methods is, mainly, una↵ected. One exception concerns
the presence of stochastic volatility where even the homoscedastic BVAR of Carriero et al.
(2019), which does not account for stochastic volatility, outperforms the HLag methods.
Their heteroskedastic BVAR, which accounts for stochastic volatility, is expected to perform
even better in such settings.
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C.6 Relaxed VAR Estimation

Since the lasso and its structured counterparts are known to shrink non-zero regression coef-
ficients, in practice, they are often used for model selection, followed by refitting the reduced
model using least squares (Meinshausen, 2007). In this section, we detail our approach to
refit based on the support selected by our procedures while taking into consideration both
numerical stability as well as computational e�ciency.

Let b� denote the coe�cient matrix recovered from one of our sparsity-imposing algo-
rithms (e.g. HLag, Lasso-VAR) and suppose that it contains r nonzero coe�cients. In order
to take the support recovered into account we introduce V, a k2p⇥ r restriction matrix of
rank r that denotes the location of nonzero elements in �̂. Defining � as the vec of the
nonzero entries of b�, we obtain the relationship

vec(�̂) = V�.

We can then express the Relaxed Least Squares estimator as:

vec(b�Relaxed) = V[V>(ZZ> ⌦ Ik)V]�1V>(Z ⌦ Ik)vec(Y ), (14)

in which ⌦ denotes the Kronecker operator. In general, it is ill-advised to directly form
equation (14). First, performing matrix operations with Z ⌦ Ik, which has dimension
kT ⇥ k2p, can be very computationally demanding, especially if k is large. Second, in
the event that r ⇡ T , the resulting estimator can be very poorly conditioned. To obviate
these two concerns, we propose a slight adaptation of the techniques detailed in Neumaier
and Schneider (2001) that computes a variant of equation (14) using a QR decomposition
to avoid explicit matrix inversion. Additionally, if the resulting matrix is found to be ill-
conditioned, a small ridge penalty should be utilized to ensure numerically-stable solutions.

C.7 Refinements

As opposed to performing a Kronecker expansion we instead consider imposing the restric-
tions by row in b� and define V1, . . . , Vk as kp ⇥ ri restriction matrices of rank r1, . . . , rk,
denoting the number of nonzero elements in each row of �. We can then calculate each row
of b�Relaxed by

b�Relaxedi =
�
Vi(V

>
i ZZ>Vi)

�1V >
i ZY i

�>
.

Now, following Neumaier and Schneider (2001), construct the matrix Ki = [(ViZ)>,Y i].
We then compute a QR factorization of Ki

Ki = QR,

in which Q is an orthogonal matrix and R is upper triangular of the form:

R =

ri 1 �
R11 R12 ri

0 R22 T�ri
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As expanded upon in Neumaier and Schneider (2001), we can compute

b�Relaxedi =
�
ViR

>
12R11(R

>
11R11)

�1
�>

,

=
�
ViR

>
12R11R

�1

11
(R>

11)
�1
�>

,

=
�
ViR

>
12(R

>
11)

�1
�>

,

=
�
Vi(R

�1

11
R12)

>�>,

which can be evaluated with a triangular solver, hence does not require explicit matrix
inversion. In the event that K is poorly conditioned, to improve numerical stability, we
add a small ridge penalty. It is suggested by Neumaier and Schneider (2001) to add a
penalty corresponding to scaling a diagonal matrix D consisting of the Euclidean norms of
the columns of K by (r2i + ri +1)✏machine, in which ✏machine denotes machine precision. The
full refitting algorithm is detailed in Algorithm 3.

Algorithm 3 Relaxed Least Squares

Require: Z,Y , V1, . . . , Vk

for i = 1, 2, . . . , k do
Ki  [(ViZ)>, Yi]
D  (r2i + ri + 1)✏machinediag(kKi·k2)

R,Q QR(


Ki

D

�
)

b�Relaxedi  
�
Vi(R

�1

11
R12)>

�>

end for
return b�Relaxed.

Appendix D. Stock and Watson Application

To make the k = 168 variables of the Stock and Watson data approximately stationary, we
apply the transformation codes provided by Stock and Watson (2005). A brief description of
each variable, along with the transformation code to make them approximately stationary
can be found in the Data Appendix of Koop (2013).

All 168 variables are classified into one of 13 macroeconomic categories, detailed in
Table 6. The good performance of the HLag methods across all variables is confirmed by
a sub-analysis on the 13 macroeconomic categories. Figure 18 breaks down the results
of the Large VAR by the 13 macroeconomic categories. Generally speaking, the flexible
elementwise HLag is the best performing forecasting method; for 10 out of 13 categories, it
is included in the MCS. The second best performing methods are own-other HLag and the
lag-weighted lasso (both for 6 out of 13 categories in the MCS).

Upon examination of the di↵erent categories, three groups can be distinguished. The
first group consists of categories with a single preferred forecast method, always an HLag
method. Elementwise HLag is preferred for interest rates and money; own-other HLag for
employment series. The second group consists of categories with several, but a limited
number (between 2 and 4) of preferred methods. Series in the second group are major
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GDP categories (k=20)

w
M

SF
Es

 

0.0

0.5

1.0

1.5

HLa
g−

C

HLag
−O

O

HLag
−E
La

sso

LW
 Las

soBGR
GLP

CCM
DFM

FA
VA

R AR

Ran
do

m walk

Sam
ple

 m
ea

n

.9
24

.8
92

.9
02

.9
61

.9
02

1.
62

5
1.

79
3

1.
67

5
.9

08
.9

67
.9

80
1.

49
7

1.
00

9

Industrial Production (k=15)
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Unemployment rate (k=7)
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Housing (k=6)
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Prices (k=52)
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Wages (k=9)
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Interest rates (k=14)
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Money (k=8)
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Exchange rates (k=5)
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Stock prices (k=5)
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Consumer Expectations (k=1)
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Figure 18: Rolling out-of-sample one-step ahead wMSFE of di↵erent categories of macroe-
conomic indicators in the Large VAR. For each category, forecast methods in
the 75% MCS are in black.
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Group Brief description Examples of series Number
of series

1 GDP components GDP, consumption, investment 20
2 IP IP, capacity utilization 15
3 Employment Sectoral and total employment and hours 20
4 Unemployment rate Unemployment rate, total and by duration 7
5 Housing Housing starts, total and by region 6
6 Inventories NAPM inventories, new orders 6
7 Prices Price indexes, aggregate and disaggregate; commodity prices 52
8 Wages Average hourly earnings, unit labor cost 9
9 Interest rates Treasuries, corporate, term spreads, public-private spreads 14
10 Money M1, M2, business loans, consumer credit 8
11 Exchange rates Average and selected trading partners 5
12 Stock prices Various stock price indexes 5
13 Consumer expectations Michigan consumer expectations 1

Table 6: Macroeconomic categories of series in the 168-variable data set, following the clas-
sification of Stock and Watson (2012) their Table 1.
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Figure 19: Rolling out-of-sample one-step-ahead wMSFE for the four VAR sizes with
pmax = 13. For each VAR size, forecast methods in the 75% Model Confi-
dence Set are in black.

measures of real economic activity (GDP components, industrial production, unemployment
rate, prices), housing, and wages. The strong performance of elementwise and own-other
HLag is re-confirmed in the majority of cases (3 out of 5 categories), but the MCS is extended
by the lag-weighted lasso and DFM (2 out of 5 categories), or componentwise HLag, FAVAR
and random walk (1 out of 5 categories). The third group consists of categories which have
a larger number of preferred forecast methods, like inventories and hard-to-predict series
such as exchange rates, stock prices and consumer expectations. For the latter categories,
in line with Stock and Watson (2012), we find multivariate forecast methods to provide no
meaningful reductions over simple univariate methods (AR or sample mean).

Results on additional sensitivity analyses concerning the choice of the maximal lag order
pmax and forecasts horizon are provided in Figures 19 and 20 respectively. Results on the
stability of the lag selection results are displayed in Figure 21.

We focus on the Stock and Watson macroeconomic data set since it is readily available
and popular in the literature on macroeconomic forecasting. A more recent variant is
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h=4: Small−Medium (k=10)

w
M

SF
Es

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

HLag
−C

HLag
−O

O

HLag
−E
Las

so

LW
 Las

soAICBIC
VA

R(1)
BGR

GLP
CCM

DFM
FA

VA
RAR

Ran
do

m walk

Sam
ple

 m
ea

n

.9
95

.9
92

.9
92

.9
94

.9
93

26
.2

45
1.

49
1

1.
11

6
1.

12
8

1.
09

0
1.

12
7

1.
16

6
1.

13
3

1.
03

7
1.

70
6

1.
06

6

h=4: Medium (k=20)
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h=4: Medium−Large (k=40)
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h=4: Large (k=168)
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h=8: Small−Medium (k=10)
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h=8: Medium (k=20)
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h=8: Medium−Large (k=40)
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h=8: Large (k=168)
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Figure 20: Rolling out-of-sample one-step-ahead wMSFE for the four VAR sizes at forecast
horizon h = 4 (top) and h = 8 (bottom). For each VAR size, forecast methods
in the 75% MCS are in black.

Figure 21: Fraction of non-zero coe�cients in each of the 13 macro-economic categories to
the total number of non-zero coe�cients in the Medium-Large VAR estimated
by elementwise HLag when forecasting GDP251 (GDP growth, left), CPIAUSL
(inflation, middle) and FYFF (Federal Funds Rate, right). The horizontal axis
represents the ending date of a rolling window.
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available as the FRED-QD data set, a quarterly version of the Federal Reserve Economic
Data database introduced in McCracken and Ng (2016). We have performed the same
empirical analysis on the FRED-QD containing k = 210 variables from Quarter 3, 1959 to
Quarter 4, 2018 (T = 238). Similar findings are obtained: (i) Own-other and elementwise
HLag perform comparable to the lasso methods and AR for small VAR sizes, but outperform
all others for the Large VAR and a short forecast horizon. (ii) Own-other HLag is the
preferred forecast method for several major macroeconomic indicators such as national
income and product accounts and industrial production. For di�cult to predict indicators,
such as exchange rates, gains over the AR model are di�cult to attain.

Appendix E. Financial Application

The financial data set contains information on the realized variances of k = 16 stock market
indices listed in Table 7. All time series are log-transformed to make them stationary.

Variable Description
AEX Amsterdam Exchange Index
AORD All Ordinaries Index
BFX Belgium Bell 20 Index
BVSP BOVESPA Index
DJI Dow Jones Industrial Average
FCHI Cotation Assistée en Continu Index
FTSE Financial Times Stock Exchange Index 100
GDAXI Deutscher Aktienindex
HSI HANG SENG Index
IXIC Nasdaq stock index
KS11 Korea Composite Stock Price Index
MXX IPC Mexico
RUT Russel 2000
SPX Standard & Poor’s 500 market index
SSMI Swiss market index
STOXX50E EURO STOXX 50

Table 7: Variables used in the financial application.

Appendix F. Energy Application

The energy data set contains information on k = 26 variables. A brief description of each
variable, taken from https://archive.ics.uci.edu/ml/data sets/Appliances+energy+prediction,
is provided in Table 8, along with the transformation code to make it approximately sta-
tionary. The transformation codes are: 1 = first di↵erence of logged variables, 2 = first
di↵erence.
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Variable Description Code
Appliances energy use in Wh 1
Lights energy use of light fixtures in the house in Wh 2
T1 Temperature in kitchen area, in Celsius 1
RH1 Humidity in kitchen area, in % 1
T2 Temperature in living room area, in Celsius 1
RH2 Humidity in living room area, in % 1
T3 Temperature in laundry room area 1
RH3 Humidity in laundry room area, in % 1
T4 Temperature in o�ce room, in Celsius 1
RH4 Humidity in o�ce room, in % 1
T5 Temperature in bathroom, in Celsius 1
RH5 Humidity in bathroom, in % 1
T6 Temperature outside the building (north side), in Celsius 2
RH6 Humidity outside the building (north side), in % 1
T7 Temperature in ironing room , in Celsius 1
RH7 Humidity in ironing room, in % 1
T8 Temperature in teenager room 2, in Celsius 1
RH8 Humidity in teenager room 2, in % 1
T9 Temperature in parents room, in Celsius 1
RH9 Humidity in parents room, in% 1
To Temperature outside (from Chievres weather station), in Celsius 2
Pressure From Chievres weather station, in mm Hg 1
RHout Humidity outside (from Chievres weather station), in % 1
Wind speed From Chievres weather station in m/s 2
Visibility From Chievres weather station, in km 1
Tdewpoint From Chievres weather station, C 2

Table 8: Variables used in the energy application.
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