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Abstract—We apply both distance-based and kernel-based
mutual dependence measures to independent component anal-
ysis (ICA), and generalize dCovICA to MDMICA, minimizing
empirical dependence measures as an objective function in both
deflation and parallel manners. Solving this minimization prob-
lem, we introduce Latin hypercube sampling (LHS), and a global
optimization method, Bayesian optimization (BO) to improve the
initialization of the Newton-type local optimization method. The
performance of MDMICA is evaluated in various simulation
studies and an image data example. When the ICA model
is correct, MDMICA achieves competitive results compared to
existing approaches. When the ICA model is misspecified, the
estimated independent components are less mutually dependent
than the observed components using MDMICA, while the es-
timated independent components are prone to be even more
mutually dependent than the observed components using other
approaches.

Index Terms—independent component analysis, mutual depen-
dence measures, multivariate analysis, random sampling, global
optimization

I. INTRODUCTION

Since most natural processes have multiple components,
multivariate analysis is more compelling than univariate anal-
ysis. Nevertheless, multivariate analysis is considerably more
complicated than univariate analysis, because it accounts for
the mutual dependence between all variables. Due to the curse
of dimensionality, it becomes essential to interpret multivariate
data through a simplified representation via dimension reduc-
tion.

Independent component analysis (ICA) represents multivari-
ate data by mutually independent components (ICs). Thus,
linear combinations of ICs capture the structure of multivariate
data even when other linear projection methods, such as
principal component analysis (PCA), are not sufficient. As a
classical unsupervised learning method, ICA has been devel-
oped for applications including blind source separation, feature
extraction, brain imaging, etc. [1] provide a comprehensive
overview of ICA approaches for estimating ICs.

Let Y = (Y1, . . . , Yd)′ ∈ Rd be a random vector as
observations. Assume that Y has a nonsingular, continuous
distribution FY , with E(Yj) = 0 and Var(Yj) < ∞, j =
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1, . . . , d. Let X = (X1, . . . , Xd)′ ∈ Rd be a random vector
as ICs. According to the fundamental assumption of ICA, the
univariate components X1, . . . , Xd are mutually independent,
and at most one component Xj is Gaussian. Without loss
of generality, X is assumed to be standardized such that
E(Xj) = 0 and Var(Xj) = 1, j = 1, . . . , d. A linear latent
factor model to estimate X from Y is given by

Y = MX,

where M ∈ Rd×d is a nonsingular mixing matrix.
Prewhitened random variables are uncorrelated and thus

more convenient to work with from both practical and the-
oretical perspectives. Let ΣY = Cov(Y ) be the covariance
matrix of Y , and H = Σ−1/2

Y be an uncorrelating matrix.
Let Z = HY = (Z1, . . . , Zd)′ ∈ Rd be a random vector as
uncorrelated observations, such that ΣZ = Cov(Z) = Id, the
d× d identity matrix. Then the relation between Z and X is

X = M−1Y = M−1H−1Z ! WZ, (1)

where W = M−1H−1 ∈ Rd×d is a nonsingular unmixing
matrix. Given that Z1, . . . , Zd are uncorrelated, W is an
orthogonal matrix, with d(d− 1)/2 free elements rather than
d2. We aim to simultaneously estimate W and X , such
that the components of X satisfy the assumption of mutual
independence.

Many popular ICA approaches minimize the mutual in-
formation or maximize the non-Gaussianity of the estimated
components under the constraint that they are uncorrelated.
Examples include the fourth-moment matrix diagonalization
of JADE [2], the information criterion of Infomax [3], the
maximum negentropy of FastICA [4], and the maximum
likelihood principle of ProDenICA [5] and Spline-LCA [6],
[7].

Some other ICA approaches minimize the mutual depen-
dence between the estimated components using a specific
dependence measure. While dependence measures have been
extensively studied, two classes have attracted a great deal of
attention. One is the distance-based energy statistics [8]. [9]
proposed distance covariance (dCov) to measure pairwise de-
pendence, and [10] extended it to mutual dependence measures
(MDMs). Another is the kernel-based maximum mean dis-
crepancies (MMDs) [11]. [12] proposed Hilbert−Schmidt in-
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dependence criterion (HSIC) to measure pairwise dependence,
and [13] generalized it to d-variable Hilbert−Schmidt indepen-
dence criterion (dHSIC) measuring mutual dependence. [14]
showed that these two classes of measures are equivalent in
the sense that MMDs can be interpreted as energy statistics
with a distance kernel, and energy statistics can be interpreted
as MMDs with a negative-type semimetric.

Meanwhile, [15] applied a characteristic function-based
dependence measure to ICA, for which [10] provided a closed-
form expression as an MDM and studied its asymptotic
properties. [16] applied a kernel-based dependence measure
to ICA, which was formulated as an HSIC in [12]. Motivated
by the properties of HSIC, [17] proposed FastKICA based
on a mutual dependence measure extension, which is the
sum of all pairwise HSIC while its 0 value does not imply
mutual independence. Inspired by the properties of dCov,
[18] proposed dCovICA based on another mutual dependence
measure extension, which is a sum of squared dCov and equals
0 if and only if mutual independence holds.

However, [18] only demonstrated the results of a single
measure from the class of energy-statistics, using multiple
values to initialize the local optimization without any com-
parison. Thus, in this paper, we generalize dCovICA to a
new approach, MDMICA, by applying the mutual dependence
measures proposed in [10] and [13], and make two contri-
butions as follows. First, we extend its ICA framework to
accommodate mutual dependence measures from both classes
of energy statistics and MMDs, and compare the performance
of these measures in numerical studies. Second, we study the
non-convex optimization problem when estimating ICs under
this ICA framework, and investigate the improvement of using
multiple values over a single value for initialization through
Latin hypercube sampling, a random sampling method. In
addition, we introduce a global optimization method, Bayesian
optimization, to further improve the initialization of local
optimization.

The rest of this paper is organized as follows. We generalize
the ICA framework of dCovICA in Section II. In Section III,
we give a brief overview of dCov and MDMs, propose the
new ICA approach, MDMICA, based on MDMs, and derive
its asymptotic properties. In Section IV, we introduce Latin
hypercube sampling and Bayesian optimization to aid the
initialization of subsequent local optimization method when
estimating ICs. We present the simulation results in Section V,
and a real data example in Section VI1 Finally, Section VII
summarizes our work.

II. ICA FRAMEWORK

For d ≥ 2, the group of d×d orthogonal matrices is denoted
by O(d), and its subgroup with determinant 1 is denoted by
SO(d). For i &= j, we start with the identity matrix Id, and
substitute cos(ψ) for the (i, i) and (j, j) elements, − sin(ψ)
for the (i, j) element, and sin(ψ) for the (j, i) element, then
we obtain a Givens rotation matrix denoted by Gi,j(ψ).

1An accompanying R package EDMeasure [19] is available on CRAN.

Let θ = {θi,j : 1 ≤ i < j ≤ d} denote a vector of rotation
angles with length p = d(d − 1)/2, and let θi = {θi,j : i <
j ≤ d} such that θ = {θi : 1 ≤ i ≤ d − 1}. Then any
rotation matrix W ∈ SO(d) can be parameterized via θ as
W (θ), or equivalently a product of p Givens rotation matrices
determined by θ as

W (θ) = G(d−1)(θd−1) . . . G
(1)(θ1),

where G(k)(θk) = Gk,d(θk,d) . . . Gk,k+1(θk,k+1) represents
the rotations of the kth row with respect to all the #th rows,
# > k. We observe that the kth row of W (θ) is the same
as the kth row of the partial product G(k)(θk) . . . G(1)(θ1).
As a result, let X(θ) = W (θ)Z, then the subset of angles in
{θi,j : 1 ≤ i ≤ k, i < j ≤ d} = {θi : 1 ≤ i ≤ k} fully
determines the kth element of X . We define a support of θ as

Θ =

{
θi,j :

{
0 ≤ θ1,j ≤ 2π,
0 ≤ θi,j < π, i &= 1.

}
, (2)

and its subset with respect to θi as Θi.
Unfortunately, the non-identification issue regarding W and

X still exists because the sign and order of the components
are not identifiable. Given any signed permutation matrix P±,
(1) is equivalent to

(P±X) = P±X = P±WZ = (P±W )Z,

where P±X and P±W become an alternative to X and W , as
the new ICs and unmixing matrix. However, the identification
up to a signed permutation is adequate in terms of modeling
multivariate data by linear combinations of ICs. To make a fair
comparison between different estimates, a metric invariant to
the three ambiguities, scale, sign, and order of the ICs will be
presented in Section V.

Let Y ∈ Rn×d be an i.i.d. sample of observations from
FY , where Yj ∈ Rn is an i.i.d. sample of observations
from FYj , j = 1, . . . , d. Let Σ̂Y be the sample covariance
matrix of Y, and Ĥ = Σ̂−1/2

Y be the estimated uncorrelating
matrix. Although ΣY is unknown in practice, the sample
covariance is a consistent estimate under the finite second-
moment assumption, i.e., Σ̂Y

a.s.−→ ΣY as n → ∞. Let
Ẑ = YĤ ′ ∈ Rn×d be the estimated uncorrelated observations,
such that Σ̂Ẑ = Id, and ΣẐ

a.s.−→ Id as n→∞.
To simplify notation, we assume that Z, an uncorrelated

i.i.d. sample is given, with mean zero and unit variance. Let
X(θ) = ZW (θ)′ ∈ Rn×d be a sample of X . Then we estimate
W (θ) through θ, and define an ICA estimator as

θ̂ = argmin
θ∈Θ

f(X(θ)) = argmin
θ∈Θ

f(ZW (θ)′), (3)

where f is an objective function measuring the mutual de-
pendence among X(θ). Given the estimate θ̂, the estimated
unmixing matrix is Ŵ = W (θ̂), and the estimated ICs are
X̂ = X(θ̂) = ZŴ ′ = ZW (θ̂)′.
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III. APPLYING MDM TO ICA

We reduce the estimation of ICs to the problem of choosing
the function f in (3), which is expected to be a measure of
mutual dependence. Following [18], we primarily focus on
distance-based energy statistics because of their compact rep-
resentations as expectations of pairwise Euclidean distances,
while all the results can be easily extended to kernel-based
MMDs according to the equivalence between these two classes
in [14].

We use (·, ·, . . . , ·) to concatenate (vector) components into
a vector. Let t = (t1, . . . , td), X = (X1, . . . , Xd) ∈ Rp where
tj , Xj ∈ Rpj , pj is a marginal dimension, j = 1, . . . , d, and
p =

∑d
j=1 pj is the total dimension. The subset of components

to the right of Xc is denoted by Xc+ = (Xc+1, . . . , Xd),
c = 0, 1, . . . , d − 1. The subset of components excluding Xc

is denoted by X−c = (X1, . . . , Xc−1, Xc+), c = 1, . . . , d− 1.
The “X” under the assumption that X1, . . . , Xd are mutually
independent is denoted by X̃ = (X̃1, . . . , X̃d), where X̃j

D
=

Xj , j = 1, . . . , d, X̃1, . . . , X̃d are mutually independent, while
X, X̃ are independent. Let X ′, X ′′ be independent copies of X
such that X ′, X ′′ have the same distribution as X , while they
are all independent, i.e., X,X ′, X ′′ i.i.d.∼ FX , and X̃ ′ be an
independent copy of X̃ . The Euclidean norm of X is denoted
by |X|. The weighted L2 norm ‖ · ‖w of any complex-valued
function η(t) is defined by ‖η(t)‖2w =

∫
Rp |η(t)|2w(t) dt

where |η(t)|2 = η(t)η(t), η(t) is the complex conjugate of
η(t), and w(t) is any positive weight function for which the
integral exists.

Let X = {Xk = (Xk
1 , . . . , X

k
d ) : k = 1, . . . , n} be

an i.i.d. sample from FX , the joint distribution of X , then
Xj = {Xk

j : k = 1, . . . , n} is an i.i.d. sample from
FXj , the marginal distribution of Xj , j = 1, . . . , d, such
that X = {X1, . . . ,Xd}. Denote the joint characteristic
function of X as φX(t) = E[ei〈t,X〉] and its empirical
version as φnX(t) = 1

n

∑n
k=1 e

i〈t,Xk〉, and the joint charac-
teristic function of X̃ as φX̃(t) =

∏d
j=1 E[ei〈tj ,Xj〉], and its

empirical version as φn
X̃
(t) =

∏d
j=1(

1
n

∑n
k=1 e

i〈tj ,Xk
j 〉). In

addition, a simplified empirical version of φX̃(t) is defined by
φn"
X̃
(t) = 1

n

∑n
k=1 e

i〈t,(Xk
1 ,...,X

k+d−1
d )〉 to substitute φn

X̃
(t) as

a simplification, where Xn+k
j is interpreted as Xk

j for k > 0.
We will first review dCov [9] and MDMs [10] in Sec-

tion III-A, III-B and III-C, and then propose a new ICA
approach, MDMICA based on MDMs in Section III-D.

A. Distance Covariance (d = 2)

[9] proposed distance covariance to capture non-linear
and non-monotone pairwise dependence between two random
vectors, i.e., X = (X1, X2).

The nonnegative distance covariance V(X) is defined by
V2(X) = ‖φX(t) − φX̃(t)‖2w1

where the weight w1(t) =

(Kp1Kp2 |t1|p1+1|t2|p2+1 )−1, Kq = 2πq/2Γ(1/2)
2Γ((q+1)/2) , and Γ is

the gamma function. If E|X| <∞, then V(X) ∈ [0,∞), and
V(X) = 0 if and only if X1, X2 are pairwise independent.

In addition, if E|X1X2| < ∞, V2(X) can be interpreted as
expectations

V2(X) = E|X1 −X ′
1||X2 −X ′

2|
+E|X1 −X ′

1|E|X2 −X ′
2|

− 2E|X1 −X ′
1||X2 −X ′′

2 |.

We estimate V(X) by replacing the characteristic functions
with the empirical characteristic functions. The nonnegative
empirical distance covariance Vn(X) is defined by V2

n(X) =
‖φnX(t) − φn

X̃
(t)‖2w1

, which can be interpreted as complete
V-statistics

V2
n(X) =

1

n2

n∑

k,$=1

|Xk
1 −X$

1||Xk
2 −X$

2|

+
1

n2

n∑

k,$=1

|Xk
1 −X$

1|
1

n2

n∑

k,$=1

|Xk
2 −X$

2|

− 2

n3

n∑

k,$,m=1

|Xk
1 −X$

1||Xk
2 −Xm

2 |.

Calculating V2
n(X) via the symmetry of Euclidian distances

has the time complexity O(n2) . If E|X| <∞, then we have
Vn(X)

a.s.−→ V(X) as n→∞.
[10] generalized distance covariance to three mutual de-

pendence measures capturing any form of mutual dependence
between multiple random vectors, which include the asymmet-
ric, symmetric, and complete measures below.

B. Asymmetric and Symmetric Measures (d ≥ 2)

The asymmetric and symmetric measures of mutual depen-
dence R(X),S(X) are defined by

R(X) =
d−1∑

c=1

V2((Xc, Xc+)), S(X) =
d∑

c=1

V2((Xc, X−c)).

Analogous to V(X), if E|X| < ∞, then R(X),S(X) ∈
[0,∞), and R(X),S(X) = 0 if and only if X1, . . . , Xd are
mutually independent.

Similarly, the empirical asymmetric and symmetric
measures of mutual dependence Rn(X),Sn(X) are de-
fined by Rn(X) =

∑d−1
c=1 V2

n((Xc,Xc+)), Sn(X) =∑d
c=1 V2

n((Xc,X−c)), which can be implemented with the
time complexity O(n2). If E|X| < ∞, then we have
Rn(X)

a.s.−→ R(X) and Sn(X)
a.s.−→ S(X) as n→∞.

C. Complete Measure (d ≥ 2)

The complete measure of mutual dependence Q(X) is
defined by Q(X) = ‖φX(t) − φX̃(t)‖2w2

where w2(t) =

(Kp|t|p+1)−1, Kq = 2πq/2Γ(1/2)
2Γ((q+1)/2) , and Γ is the gamma func-

tion. If E|X| < ∞, then Q(X) ∈ [0,∞), and Q(X) = 0 if
and only if X1, . . . , Xd are mutually independent. In addition,
Q(X) can be interpreted as expectations

Q(X) = E|X − X̃ ′|+E|X ′− X̃|− E|X −X ′|−E|X̃ − X̃ ′|.

We estimate Q(X) using the simplified empirical complete
measure of mutual dependence Q"

n(X), defined by Q"
n(X) =
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‖φnX(t)− φn"
X̃
(t)‖2w2

=
∫
Rp |φnX(t)− φn"

X̃
(t)|2w2(t) dt, which

can be interpreted as incomplete V-statistics

Q"
n(X) =

2

n2

n∑

k,$=1

|Xk − (X$
1, . . . , X

$+d−1
d )|

+
1

n2

n∑

k,$=1

|Xk −X$|

− 1

n2

n∑

k,$=1

|(Xk
1 , . . . , X

k+d−1
d )− (X$

1, . . . , X
$+d−1
d )|.

The naive implementation of Q"
n(X) has the time complex-

ity O(n2). If E|X| <∞, then Q"
n(X)

a.s.−→ Q(X) as n→∞.

D. MDMICA Approach and Its Asymptotic Properties

Inspired by the nice equivalence to mutual independence
and time complexity O(n2) of MDMs, we propose an I-
CA approach, MDMICA based on MDMs. To be specific,
we define three MDMICA estimators, i.e., MDMICA (asy),
MDMICA (sym), and MDMICA (com) by applying f(X) =
Rn(X),Sn(X),Q"

n(X) in (3) respectively as

θ̂asy
n = argmin

θ∈Θ
Rn(X(θ)) = argmin

θ∈Θ
Rn(ZW (θ)′), (4)

and similar expressions follow for θ̂sym
n , θ̂com

n . Further, we
define another estimator, MDMICA (hsic), by applying dHSIC
in the same way.

Since the ICA model only allows scalar components, we
apply a special case of MDMs to ICA where the marginal
dimension pj = 1, j = 1, . . . , d, and the total dimension p =
d. Without loss of generality, we assume that E(Y ) = 0 and
Cov(Y ) = Id, and therefore Z = Y and Z = Y throughout
this section. Let Θ denote a large enough compact subset of
the space Θ defined by (2). The asymptotic properties of the
MDMICA estimators are derived as follows.

Theorem 1: If Y has a nonsingular, continuous distribution
FY with E|Y |2 <∞, if there exists a unique minimizer θ0 ∈
Θ of (4), and if W (θ0) satisfies the conditions for a unique
continuous inverse to exist, then θ̂asy

n
a.s.−→ θ0 as n→∞.

When the ICA model is misspecified, convergence to the
pseudo-true value θ0 is obtained. Under similar conditions,
θ̂sym
n , θ̂com

n also converges a.s. as n → ∞ due to similar
arguments.

We then establish the root-n consistency of the MDMICA
estimators under some regularity conditions no matter whether
the ICA model holds or is misspecified.

Theorem 2: If the assumptions of Theorem 1 hold, and if the
ICA model assumptions hold, then |θ̂asy

n − θ0| = OP (n−1/2).
Theorem 3: If the ICA model is misspecified but the

remaining assumptions stated in Theorem 2 hold, and if
E[ ∂

∂θRn(X(θ))|θ=θ0 ] = oP (n−1/2), where θ0 denotes the
pseudo-true value, then |θ̂asy

n − θ0| = OP (n−1/2).
Under similar conditions, θ̂sym

n , θ̂com
n are also consistent as n→

∞ due to similar arguments.

The proofs of Theorem 1, 2, and 3 are similar to those of
Theorem 2.1, 2.2, and Corollary 2.1 in [18] respectively, con-
sidering the same nature of Rn(X),Sn(X),Q"

n(X) as energy
statistics, and replacing the empirical cumulative distribution
function (ECDF) with the identity function in derivations.

IV. IMPROVING INITIALIZATION OF LOCAL METHODS

In the literature, there are two primary schemes to estimate
ICs with regard to how the optimization is implemented. For
one, the components are extracted one at a time, known as the
deflation scheme. For another, the components are extracted
simultaneously, known as the parallel scheme. The deflation
scheme has the advantage of lower computational cost over the
parallel scheme. However, the parallel scheme enjoys greater
statistical efficiency, as the deflation scheme accumulates
estimation uncertainty at each step in its sequential procedure.

For our ICA framework, the objective function f in (3) has
d(d−1)/2 parameters θi,j ∈ θ, which can be estimated in both
deflation (sequential) and parallel (joint) manners. Specifically,
the deflation scheme estimates all θi,j ∈ θ for each i at a time,
while the parallel scheme estimates all θi,j ∈ θ together at
once.

In view of the special structures of associated measures,
both deflation and parallel schemes are appropriate for MDMI-
CA (asy), denoted by MDMICA (asy, def) and MDMICA (asy,
par), while MDMICA (sym), MDMICA (com), and MDMICA
(hsic) only fit the parallel scheme. The MDMICA algorithms
for both deflation and parallel schemes are described in Alg. 1
below.

Algorithm 1 MDMICA (Z, f )
1. Initialize θ and W (θ) via θ.
2. (deflation scheme)

for i = 1, · · · , d− 1 do
a. Solve θ̂i = argmin

θi∈Θi

f(ZW (θ)′) using newton-type

local
optimization.
b. Update θi ← θ̂i.

end for
2’. (parallel scheme)

Solve θ̂ = argmin
θ∈Θ

f(ZW (θ)′) using newton-type local

optimization.
3. Output θ̂ = {θ̂i : 1 ≤ i ≤ d − 1}, Ŵ = W (θ̂), and
X̂ = ZW (θ̂)′.

Estimating θ through (3) involves minimization of a non-
convex but locally convex objective function f , which requires
initialization and iterative algorithms. The default method for
MDMICA is a Newton-type local optimization method, for
which we explore two ways of finding a good initialization.

The first way is to perform a random sampling method,
Latin hypercube sampling (LHS) [20] uniformly over the space
Θ to obtain a number of parameter values. Then we evaluate
the objective function at each value and record the value
minimizing it, which is used to initialize the subsequent local
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optimization algorithm. Based on our experience, the number
of parameter values sampled should grow with the dimension.

The second way is to take advantage of a global opti-
mization method, Bayesian optimization (BO) [21], where the
objective function f is treated as a black box. It is applicable
when the function is expensive to evaluate, the derivative
is unavailable, or the optimization problem is non-convex.
Bayesian optimization is one of the most efficient approaches
in terms of the number of function evaluations consumed, as
[22] illustrated that it outperforms other state-of-the-art global
optimization algorithms on a number of challenging problems.

We will apply LHS and LHS + BO to improve the perfor-
mance of MDMICA through providing better initialization in
Section V. When it comes to the comparison between LHS
and LHS + BO, LHS leads to less computation time in some
cases, and LHS + BO leads to higher estimation accuracy in
some cases.

V. SIMULATION STUDIES

In this section, we evaluate the performance of our MD-
MICA estimators by performing simulations similar to [18],
and compare them with the FastICA estimator, the Infomax
estimator, and the JADE estimator. MDMICA (asy) is omitted
because it is the same as dCovICA. Moreover, we elaborate
on the implementation and error metric of ICA.

Furthermore, we try various options for each estimator. For
FastICA, we evaluate logarithm of hyperbolic cosine (logcosh)
used to approximate negentropy in both deflation and parallel
schemes, and omit kurtosis (kur) and exponential (exp) since
their performance is similar. For Infomax, we evaluate hyper-
bolic tangent (tanh) as the nonlinear (squashing) function, and
similarly omit logistic (log) and extended Infomax (ext). For
MDMICA (hsic), we use the Gaussian (gau) kernel.

We simulate the ICs X ∈ Rn×d from eighteen distributions
using rjordan in the R package ProDenICA [23] with
sample size n and dimension d. See Figure 1 for the density
functions of the eighteen distributions. Then we generate a
mixing matrix M ∈ Rd×d with condition number between 1
and 2 using mixmat in the R package ProDenICA [23],
and obtain the observations Y = XM ′, which are centered
by their sample mean and then prewhitened by their sample
covariance to obtain uncorrelated observations Z = YĤ ′.
Finally, we obtain the estimate Ŵ based on Z via (3), and
evaluate the estimation accuracy by comparing the estimate Ŵ
to the ground truth W0 = (ĤM)−1. Moreover, the Newton-
type local optimization is implemented by nlm in the R
package stats, and Bayesian optimization is implemented
by mbo in the R package mlrMBO [24] with the Matérn 3/2
kernel.

To take the uncertainty in both prewhitening the observa-
tions and estimating the ICs into account when comparing the
estimates from different approaches, we use the metric MD
proposed by [25] to measure the error between an estimate Ŵ
and the corresponding truth W0, which is defined as

MD(Ŵ ,W0) =
1√
d− 1

inf
P,D

‖PDŴW−1
0 − Id‖F ,

� � � � � �

� � � �� �� ��

�� �� �� �� �� ��

Fig. 1. Density plots of the 18 distributions.

where ‖ · ‖F denotes the Frobenius norm, P is a d × d
permutation matrix, and D is a d × d diagonal matrix with
nonzero diagonal elements. MD is the minimum distance
between components from the estimate and the truth in terms
of matching each component from the truth with the closest
component from the estimate after permutation and scaling. It
is invariant to the three ambiguities associated with ICA as a
result of taking the infimum, and is scaled to a value between
0 and 1 where 0 corresponds to a perfect recovery of the truth.

Experiment 1: [Different distributions of ICs] We sample X
from one distribution in the eighteen distributions, with d = 3,
n = 1000. We obtain 10d points using LHS, and select the
best initial point. See Figure 2 for the error metrics of all
eighteen distributions with 100 trials.

MDMICA achieves competitive results with JADE and
dCovICA, and also outperforms FastICA and Infomax in
most cases. MDMICA (sym) is equal and often better than
dCovICA, while they have similar performance due to their
similar structures. Similarly, MDMICA (hsic) is equal and
often better than MDMICA (com), while they have similar
performance due to their similar structures. Further, MDMICA
(com) and MDMICA (hsic) are less sensitive to different
distributions than dCovICA and MDMICA (sym) in general.
Lastly, there is no remarkable difference between the deflation
and parallel schemes.

Experiment 2: [Different dimensions of ICs] We sample X
from one distribution in the eighteen distributions, with d ∈
{2, 3, 4}, n = 1000. We pick 10d points using LHS, and select
the best initial point. See Figure 3 for the error metrics of the
1st distribution with 100 trials.

The errors of all estimators increase as the dimension
d grows. As in the previous experiment, JADE, dCovICA,
and MDMICA have similar performance, and significantly
outperform FastICA and Infomax. The computational time of
dCovICA and MDMICA grows with the number of param-
eters, e.g., MDMICA (com) takes 4.75s, 11.50s, 33.28s for
d = 2, 3, 4 respectively.

Experiment 3: [Different initializations of local optimiza-
tion] We sample X from d randomly selected distributions
of the eighteen distributions, with d = 4, n = 1000. We
implement three ways to select the initial point for the Newton-
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Fig. 2. Error metrics (mean ± standard error) of all eighteen distributions with 100 trials for Experiment 1.
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Fig. 3. Error metrics (mean ± standard error) of the 1st distribution with
100 trials for Experiment 2.

type local optimization method. The first way is to sample
one point using LHS. The second way is to sample 20d points
using LHS, and then select the point out of 20d with the lowest
objective. The third way is to run 10d iterations using BO, with
its initial points from 10d sampled points using LHS, and then
select the point out of 20d with the lowest objective. Note that
both the second way and third way run 20d evaluations on the
objective function for a fair comparison. See Table I for the
error metrics, objective values, and computational time of the

tuple as the (4th, 11th, 12th, 18th) distributions with 100 trials.
The performance of dCovICA and MDMICA is greatly im-

proved by selecting the best point from multiple initial points,
as LHS and LHS + BO produce smaller objective values
and more accurate estimates than a single initial point. The
reason is two-fold. First, LHS and BO offer the subsequent
local optimization method better initial points in terms of
lower objective, which leads to a better estimate in terms of
lower objective as well. Second, a better estimate with lower
objective is likely to be a better solution with lower MD, since
the objective is a truly mutual dependence measure. Moreover,
LHS + BO has noticeable advantage over LHS alone for
MDMICA (com) and MDMICA (hsic), while it is similar to
LHS alone for dCovICA (def), dCovICA (par), and MDMICA
(sym).

dCovICA and MDMICA take remarkably longer compu-
tational time than the others, which makes sense because
the optimization problem of dCovICA and MDMICA has
d(d − 1)/2 parameters and is much more difficult to solve.
This obstacle in turn motivates us to improve the local op-
timization by choosing a better initialization point. As LHS
and BO provide better initial points for the subsequent local
optimization method, the local optimization time is reduced
and the total time is not necessarily longer compared to using
a single initial point.

Experiment 4: [Misspecified ICA model] We sample X =
(X1,X2) from one distribution in the eighteen distributions,
with n = 1000. Let Y1 = X1, Y2 = (X2)2. We pick 10d
points using LHS, and select the best initial point. See Table II
for the results of the 1st distribution with 1 trial.

We use Rn,Sn,Q"
n to measure the mutual dependence
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TABLE I
ERROR METRICS (MEAN ± STANDARD ERROR), OBJECTIVE VALUES (MEAN ± STANDARD ERROR), COMPUTATIONAL TIME (MEAN) IN INITIALIZATION

(LHS, BO) AND LOCAL OPTIMIZATION (NEWTON-TYPE), AND TOTAL COMPUTATIONAL TIME (MEAN) OF THE TUPLE AS THE (4TH, 11TH, 12TH, 18TH)
DISTRIBUTIONS WITH 100 TRIALS FOR EXPERIMENT 3.

Estimator Initialization MD (10−1) Obj (10−3) Total Time (Init + Local Opt) (s)
FastICA (logcosh, def) LHS (20d) 6.780 ± 0.124 - 0.16 (0.13 + 0.03)
FastICA (logcosh, par) LHS (20d) 6.978 ± 0.106 - 0.18 (0.11 + 0.07)

Infomax (tanh) LHS (1) 6.861 ± 0.113 - 0.05 (0.00 + 0.05)
JADE LHS (1) 3.992 ± 0.156 - 0.01 (0.00 + 0.01)

dCovICA (def)
LHS (1) 1.334 ± 0.105 4.090 ± 0.124 210.76 (0.00 + 210.76)

LHS (20d) 1.133 ± 0.047 3.959 ± 0.047 395.96 (221.19 + 174.77)
LHS (10d) + BO (10d) 1.128 ± 0.050 3.941 ± 0.048 381.18 (207.03 + 174.15)

dCovICA (par)
LHS (1) 1.458 ± 0.111 4.029 ± 0.060 910.03 (0.00 + 910.03)

LHS (20d) 1.356 ± 0.086 3.944 ± 0.047 980.55 (147.49 + 833.06)
LHS (10d) + BO (10d) 1.375 ± 0.099 3.963 ± 0.064 1014.75 (205.96 + 808.79)

MDMICA (sym)
LHS (1) 1.134 ± 0.066 6.961 ± 0.065 1179.84 (0.00 + 1179.84)

LHS (20d) 1.057 ± 0.035 6.947 ± 0.063 1072.22 (196.65 + 875.57)
LHS (10d) + BO (10d) 1.094 ± 0.052 6.952 ± 0.065 1115.78 (258.58 + 857.20)

MDMICA (com)
LHS (1) 2.725 ± 0.186 2.037 ± 0.093 92.58 (0.00 + 92.58)

LHS (20d) 2.064 ± 0.097 1.671 ± 0.015 54.88 (16.19 + 38.69)
LHS (10d) + BO (10d) 1.964 ± 0.096 1.673 ± 0.014 112.10 (78.71 + 33.39)

MDMICA (hsic)
LHS (1) 3.981 ± 0.243 1.385 ± 0.091 267.13 (0.00 + 267.13)

LHS (20d) 2.521 ± 0.152 0.834 ± 0.019 306.03 (40.29 + 265.74)
LHS (10d) + BO (10d) 2.208 ± 0.135 0.797 ± 0.017 402.13 (106.10 + 296.03)

TABLE II
MUTUAL DEPENDENCE MEASURES OF OBSERVED COMPONENTS (BEFORE OPTIMIZATION, Z) AND ESTIMATED INDEPENDENT COMPONENTS (AFTER

OPTIMIZATION, X̂) WITH 1 TRIAL FOR EXPERIMENT 4 (MISSPECIFIED ICA MODEL).

Estimator Rn(Z) (10−3) Rn(X̂) Sn(Z) (10−3) Sn(X̂) Q!
n(Z) (10−4) Q!

n(X̂)
FastICA (logcosh, def)

0.548

0.531

1.097

1.062

2.797

3.088
FastICA (logcosh, par) 0.588 1.176 2.786

Infomax (tanh) 0.606 1.212 3.081
JADE 1.031 2.062 3.330

dCovICA (def) 0.441 0.882 2.677
dCovICA (par) 0.441 0.882 2.677

MDMICA (sym) 0.441 0.882 2.677
MDMICA (com) 0.446 0.892 2.672
MDMICA (hsic) 0.443 0.887 2.687

between the components before (w.r.t. Z) and after (w.r.t.
X̂) the optimization. dCovICA and MDMICA successfully
decreases the mutual dependence between the components
through optimization, while FastICA, Infomax, and JADE are
unable to and even increase it. Thus, ICA methods based on
mutual dependence measures outperform others in reducing
the mutual dependence when the ICA model is misspecified.

VI. IMAGE DATA

Fulfilling the task of unmixing vectorized images, we con-
sider the three gray-scale images in the R package ICS [26],
depicting a cat, a forest road, and a sheep respectively. Each
image is represented by a 130 × 130 matrix, where each
element indicates the intensity value of a pixel. We standardize
the three images such that the intensity values across all the
pixels in each image have mean zero and unit variance. Then
we vectorize each image into a vector of length 1302, and
combine the vectors from all three images as a matrix X,
with d = 3, n = 1302.

We use mixmat in the R package ProDenICA [23] again
to generate a mixing matrix A ∈ Rp×p, and mix the three
images to obtain the observations Y = XAT , which are cen-

tered by their sample mean, then prewhitened by their sample
covariance to obtain uncorrelated observations Z = YĤT .

We estimate the intensity values Ŝ initialized from 10d
points using LHS. See Figures 4 for the recovered images,
where the Euclidean norm of vectorized errors is computed
to evaluate the estimation accuracy. Indicated by the estimat-
ed images and errors, dCovICA and MDMICA outperforms
JADE. Moreover, MDMICA (com) achieves the best overall
performance.

VII. CONCLUSION.
Resorting to recently proposed mutual dependence measures

including MDMs in [10] and dHSIC in [13], we generalize
dCovICA in [18] to a new ICA approach, MDMICA, taking
empirical dependence measures as an objective function for
the estimation of ICs. In addition, we study the asymptotic
properties of MDMICA.

When solving the non-convex minimization problem to
estimate ICs, we apply LHS and BO to select a better initial
point for the Newton-type local optimization method, and
improve the performance of MDMICA.

MDMICA achieves competitive results with JADE and
dCovICA, and outperforms FastICA and Infomax in numerical
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Fig. 4. Recovered images with d = 3, n = 1302 for the image data. Each
value on title is the Euclidean norm of the vectorized errors of the recovered
image. A signed permutation is applied to the images for illustration.

studies, under different distributions and dimensions of ICs.
When the ICA model is misspecified, MDMICA decreases
the mutual dependence between components via optimization,
while other approaches cannot and even increase it. We
illustrate the advantage of using multiple initial points from
LHS and BO over a single initial point.

During the image recovery task from mixed image data,
MDMICA not only nicely recovers the true images, but also
achieves lower overall errors than other approaches, which
demonstrates the value of MDMICA in real data applications.
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