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Summary. We propose a novel class of dynamic shrinkage processes for Bayesian time series
and regression analysis. Building on a global–local framework of prior construction, in which
continuous scale mixtures of Gaussian distributions are employed for both desirable shrinkage
properties and computational tractability, we model dependence between the local scale param-
eters.The resulting processes inherit the desirable shrinkage behaviour of popular global–local
priors, such as the horseshoe prior, but provide additional localized adaptivity, which is impor-
tant for modelling time series data or regression functions with local features. We construct a
computationally efficient Gibbs sampling algorithm based on a Pólya–gamma scale mixture
representation of the process proposed. Using dynamic shrinkage processes, we develop a
Bayesian trend filtering model that produces more accurate estimates and tighter posterior
credible intervals than do competing methods, and we apply the model for irregular curve fit-
ting of minute-by-minute Twitter central processor unit usage data. In addition, we develop an
adaptive time varying parameter regression model to assess the efficacy of the Fama–French
five-factor asset pricing model with momentum added as a sixth factor. Our dynamic analysis of
manufacturing and healthcare industry data shows that, with the exception of the market risk,
no other risk factors are significant except for brief periods.

Keywords: Asset pricing; Dynamic linear model; Stochastic volatility; Time series; Trend
filtering

1. Introduction

The global–local class of prior distributions is a popular and successful mechanism for provid-
ing shrinkage and regularization in a broad variety of models and applications. Global–local
priors use continuous scale mixtures of Gaussian distributions to produce desirable shrinkage
properties, such as (approximate) sparsity or smoothness, often leading to highly competitive
and computationally tractable estimation procedures. For example, in the variable-selection
context, exact sparsity inducing priors such as the spike-and-slab prior become intractable for
even a moderate number of predictors. By comparison, global–local priors that shrink towards
sparsity, such as the horseshoe prior (Carvalho et al., 2010), produce competitive estimators
with greater scalability and are validated by theoretical results, simulation studies and a variety
of applications (Datta and Ghosh, 2013; van der Pas et al., 2014). Unlike non-Bayesian coun-
terparts such as the lasso (Tibshirani, 1996), shrinkage priors also provide adequate uncertainty
quantification for parameters of interest (Kyung et al., 2010; van der Pas et al., 2014).
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Global–local priors define a joint distribution for a set of variables {ωt}T
t=1 and induce shrink-

age via two key components: a global scale parameter τ , which controls the shrinkage that is
common to all {ωt}, and local scale parameters {λt}T

t=1, which control the shrinkage for each
individualωt . Careful choice of priors forλ2

t and τ2 provides both the flexibility to accommodate
large signals and adequate shrinkage of noise (e.g. Carvalho et al. (2010)). Most commonly, the
local scale parameters {λt} are assumed to be a priori independent and identically distributed
(IID). However, it can be advantageous to forgo the independence assumption. In the dynamic
setting, in which the observations are time ordered, it is natural to allow the local scale parame-
ter λt to depend on the history of the shrinkage process {λs}s<t . Such model-based dependence
may improve the ability of the model to adapt dynamically, which is important for time series
estimation, forecasting and inference.

For a motivating example, consider the minute-by-minute Twitter central processor unit
(CPU) usage data in Fig. 1 (James et al., 2016). The data (Fig. 1(a)) show an overall smooth
trend interrupted by irregular jumps throughout the morning and early afternoon, with an in-
crease in volatility from 16.00 to 18.00 hours. It is important to identify both abrupt changes as
well as slowly varying intraday trends. To model these features, consider the following Gaussian
dynamic linear model (DLM):

yt =βt + εt , [εt|σt ]
indep∼ N.0,σ2

t /,

∆2βt+1 =ωt , [ωt|τ ,λt ]
indep∼ N.0, τ2λ2

t /

.1/

where ∆2βt+1 =∆βt −∆βt−1 for differencing operator ∆. Model (1) is a Bayesian adaptation of
the trend filtering model of Kim et al. (2009) and Tibshirani (2014), also proposed by Faulkner
and Minin (2018), and includes stochastic volatility (SV) for the observation error variance σ2

t
with a global–local shrinkage prior for the second differences of the conditional mean, ∆2βt+1 =
ωt . The shrinkage behaviour of ωt determines the path of βt : when ωt is pulled towards zero, βt

is locally linear, whereas large innovations |ωt| correspond to large changes in the slope of βt

(Fig. 1(b)). Naturally, the global and local scale parameters τ and λt play a vital role in deter-
mining the magnitude of each ωt , and thus the smoothness and adaptability of the conditional
mean βt .

Fig. 1 illustrates model (1) applied to the Twitter CPU usage data based on a dynamic horseshoe
prior for {ωt}, which is introduced in Section 2. Unlike the classical horseshoe prior of Carvalho
et al. (2010), the dynamic extension proposed incorporates dependence between the local scale
parameters λt , so that the shrinkage behaviour at time t is informed by {λs}s<t . Notably, the
resulting posterior expectation of βt and credible bands for the posterior predictive distribution
of yt adapt to both irregular jumps and smooth trends (Fig. 1(b)). The horseshoe-like shrinkage
behaviour of λt is evident: values of λt are either near 0, corresponding to aggressive shrinkage
of ωt = ∆2βt to 0, or large, corresponding to large absolute changes in the slope of βt (Fig.
1(d)). Importantly, Fig. 1 also provides motivation for a dynamic shrinkage process: there is
clear volatility clustering of {λt}, in which the shrinkage that is induced by λt persists for con-
secutive time points. The volatility clustering reflects—and motivates—the temporally adaptive
shrinkage behaviour of the dynamic shrinkage process.

More broadly, we introduce a framework for modelling dependence between the local scale
parameters {λt}. Using a novel log-scale representation of a broad class of shrinkage priors, we
gain the ability to incorporate a variety of widely successful models for dependent data, such
as (vector) auto-regressions, linear regressions, Gaussian processes and factor models, in the
shrinkage process model. Focusing on the case of dynamic dependence, we demonstrate that the
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additional structure in the shrinkage process produces more accurate point estimates as well as
substantially tighter and more adaptive credible intervals for both real and simulated data. To
accompany the log-scale representation of global–local shrinkage priors proposed, we design
new parameter expansion techniques using Pólya–gamma random variables for efficient and
scalable posterior inference.

Shrinkage priors have been applied successfully and broadly for time series modelling. Bel-
monte et al. (2014), Korobilis (2013) and Bitto and Frühwirth-Schnatter (2019) proposed
(global) shrinkage priors for DLMs and time series regression but did not allow for (local)
time-specific shrinkage for each variable. Discrete mixture and spike-and-slab models offer an
alternative approach but suffer from inherent computational challenges. One option is to restrict
the space of models under consideration: Chan et al. (2012) included or excluded a variable for all
times, whereas Frühwirth-Schnatter and Wagner (2010) also considered whether each variable
is globally static or dynamic. The extensions in Huber et al. (2019) and Uribe and Lopes (2017)
allowed for locally static or dynamic variables, whereas Nakajima and West (2013) provided a
procedure for local thresholding of dynamic coefficients. Rockova and McAlinn (2017) devel-
oped an optimization approach for dynamic variable selection, which provides point estimates.

Perhaps most comparable with the methodology proposed, Kalli and Griffin (2014) proposed
a class of priors which exhibit dynamic shrinkage by using normal–gamma auto-regressive pro-
cesses. The Kalli and Griffin (2014) prior is a dynamic extension of the normal–gamma prior
of Griffin and Brown (2010) and provides improvements in forecasting performance relative to
non-dynamic shrinkage priors. However, the Kalli and Griffin (2014) model requires careful
specification of several hyperparameters and hyperpriors, and the computation requires so-
phisticated adaptive Markov chain Monte Carlo (MCMC) techniques, which results in lengthy
computation times. By comparison, our proposed class of dynamic shrinkage processes is far
more general and includes the dynamic horseshoe process as a special case—which notably
does not require tuning of hyperparameters. Empirically, for time varying parameter regression
models with dynamic shrinkage, the Kalli and Griffin (2014) MCMC sampler requires several
hours, whereas our proposed MCMC sampler runs in only a few minutes (see Section 4.1 for
details and a comparison of these methods).

We introduce dynamic shrinkage processes in Section 2. In Section 3, we apply the processes
to develop a more adaptive Bayesian trend filtering (BTF) model for irregular curve fitting.
The procedure proposed is compared with state of the art alternatives through simulations
and the CPU usage data. In Section 4, we propose a time varying parameter regression model
with dynamic shrinkage processes for adaptive regularization and evaluate the model by using
simulations and an asset pricing example. In Section 5, we discuss the details of the Gibbs
sampling algorithm, and we conclude in Section 6. Proofs and additional details are in the
on-line supplement.

2. Dynamic shrinkage processes

Model (1) features a global–local scale mixture of Gaussian distributions for the innovations:

[ωt|τ ,λt ]
indep∼ N.0, τ2λ2

t /: .2/

Global–local priors are particularly well suited for sparse data: τ determines the global level
of sparsity for {ωt}T

t=1, whereas large λt allow large absolute deviations of ωt from its prior
mean (0) and small λt provide extreme shrinkage to 0. We propose to model dependence of the
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Table 1. Special cases of the inverted beta prior

Parameters Prior Reference

α=β= 1
2 Horseshoe Carvalho et al. (2010)

α= 1
2 ,β=1 Strawderman–Berger Strawderman (1971)

α=1,β= c−2, c> 0 Normal–exponential–gamma Griffin and Brown (2005)
α=β→0 (Improper) normal–Jeffreys Figueiredo (2003)

log-variance process ht = log.τ2λ2
t / by using the general dependent data model

ht =µ+ψt +ηt , ηt
IID∼ Z.α,β, 0, 1/, .3/

where µ= log.τ2/ corresponds to the global scale parameter, ψt +ηt = log.λ2
t / corresponds to

the local scale parameter and Z.α,β, µz,σz/ denotes the Z-distribution with density function

[z]={σzB.α,β/}−1 exp{.z−µz/=σz}α[1+ exp{.z−µz/=σz}]−.α+β/, z∈R,

where B.·, ·/ is the beta function. In model (3), the local scale parameter λt = exp{.ψt +ηt/=2}
has two components: ψt , which models dependence (see below), and ηt , which corresponds to
the usual IID (log-) local scale parameter. When ψt = 0, model (3) reduces to the static setting
and implies an inverted beta prior for λ2

t (see Section 2.1). Notably, the class of priors that is
represented in model (3) includes the important shrinkage distributions in Table 1, in each case
extended to the dependent data setting.

The role of ψt in model (3) is to provide locally adaptive shrinkage by modelling dependence.
For dynamic dependence, we propose the dynamic shrinkage process

ht+1 =µ+φ.ht −µ/+ηt , ηt
IID∼ Z.α,β, 0, 1/, .4/

which is equivalent to model (3) with ψt = φ.ht−1 − µ/. Relative to static shrinkage priors,
model (4) adds only one parameter φ and reduces to the static setting when φ=0. Importantly,
the proposed Gibbs sampler for the parameters in process (4) is linear in the number of time
points, T , and therefore is scalable. Other examples of model (3) include linear regression,
ψt = z′

tα for a vector of predictors zt , Gaussian processes and various multivariate models (see
expression (7) in Section 4). We focus on dynamic dependence, but our modelling framework and
computational techniques may be extended to incorporate more general dependence between
shrinkage parameters.

2.1. Log-scale representations of global–local priors
Models (3) and (4) do not automatically induce desirable locally adaptive shrinkage properties:
we must consider appropriate distributions for µ and ηt . To illustrate this point, suppose that
ηt ∼IID N.0,σ2

η/ in process (4), which is a common assumption in SV modelling (Kim et al.,
1998). For the likelihood [yt|ωt ]∼indep N.ωt , 1/ and the prior (2), the posterior expectation of ωt

is E[ωt|{ys}, τ ]= .1−E[κt|{ys}, τ ]/yt , where

κt ≡
1

1+var.ωt|τ ,λt/
= 1

1+ τ2λ2
t

.5/

is the shrinkage parameter. As noted by Carvalho et al. (2010), E[κt|{ys}, τ ] is interpretable as
the amount of shrinkage towards 0 a posteriori: κt ≈ 0 yields minimal shrinkage (for signals),
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Fig. 2. Simulation-based estimate of the stationary distribution of κt for various AR(1) coefficients φ ( ,
density of κt in the static (φD0) horseshoe, [κ]!beta. 1

2 , 1
2 //: (a) φD0.25; (b) φD0.5; (c) φD0.75; (d) φD0.99

whereas κt ≈1 yields maximal shrinkage to 0 (for noise). For the standard SV model and fixing
φ=µ=0 for simplicity, λt =exp.ηt=2/ is log-normally distributed, and the shrinkage parameter
has density

[κt ]∝
1

κt.1−κt/
exp

{
− 1

2σ2
η

log
(

1−κt

κt

)2
}

:

Notably, the density for κt approaches 0 as κt →0 and as κt →1. As a result, direct application
of the Gaussian SV model may overshrink true signals and undershrink noise.

By comparison, consider the horseshoe prior of Carvalho et al. (2010), which combines
distribution (2) with [λt ]∼IID C+.0, 1/, where C+ denotes the half-Cauchy distribution. For
fixed τ = 1, the half-Cauchy prior on λt is equivalent to κt ∼IID beta. 1

2 , 1
2 /, which induces a

‘horseshoe’ shape for the shrinkage parameter (Fig. 2). The horseshoe-like behaviour is ideal in
sparse settings, since the prior density allocates most of its mass near 0 (minimal shrinkage of
signals) and 1 (maximal shrinkage of noise).

To emulate the robustness and sparsity properties of the horseshoe and other shrinkage priors
in the dynamic setting, we represent a general class of global–local shrinkage priors on the log-
scale. As a motivating example, consider the special case of expressions (2) and (4) with φ=0, so
log.λ2

t /= ηt . This example is illuminating: we equivalently express the (static) horseshoe prior
by letting ηt =D log.λ2

t /, where ‘=D’ denotes equality in distribution. In particular, λt ∼C+.0, 1/
implies that [λ2

t ]∝ .λ2
t /−1=2.1+λ2

t /−1 which implies that [ηt ]=π−1 exp.ηt=2/{1+exp.ηt/}−1 is Z
distributed withηt ∼Z. 1

2 , 1
2 , 0, 1/. Importantly, Z-distributions may be written as mean–variance

scale mixtures of Gaussian distributions (Barndorff-Nielsen et al., 1982), which produces a
useful framework for a parameter-expanded Gibbs sampler.

More generally, consider the inverted beta prior, denoted IB.β,α/, for λ2 with density [λ2]∝
.λ2/α−1.1+λ2/−.α+β/, λ>0, using the parameterization of Polson and Scott (2012a, b). Special
cases of the inverted beta distribution are provided in Table 1. This broad class of priors may be
equivalently constructed via the variancesλ2

t , the shrinkage parametersκt or the log-variancesηt .
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Proposition 1. The following distributions are equivalent:

(a) λ2 ∼ IB.β,α/;
(b) κ=1=.1+λ2/∼beta.β,α/;
(c) η= log.λ2/= log.κ−1 −1/∼Z.α,β, 0, 1/.

Note that the ordering of the parameters α and β is identical for the inverted beta and beta
distributions but reversed for the Z-distribution.

Now consider the dynamic setting in which φ )=0. Model (4) implies that the conditional prior
variance for ωt is

exp.ht/= exp{µ+φ.ht−1 −µ/+ηt}= τ2λ2φ
t−1λ̃

2
t ,

where τ2 = exp.µ/, λ2
t−1 = exp.ht−1 −µ/ and λ̃

2
t = exp.ηt/∼IID IB.β,α/, as in the non-dynamic

setting. This prior generalizes the IB.β,α/ prior via the local variance term λ2φ
t−1, which incor-

porates information about the shrinkage behaviour at the previous time t −1 in the prior for ωt .
We formalize the role of this local adjustment term with the following result.

Proposition 2. Suppose thatη∼Z.α,β, µz, 1/ forµz ∈R. Thenκ=1={1+exp.η/}∼TPB{β,α,
exp.µz/}, whereκ∼TPB.β,α,γ/ denotes the three-parameter beta (TPB) distribution with den-
sity [κ]=B.α,β/−1γβκβ−1.1−κ/α−1{1+ .γ−1/κ}−.α+β/ for κ∈ .0, 1/,γ> 0.

The TPB distribution (Armagan et al., 2011) generalizes the beta distribution: γ=1 produces
the beta.β,α/ distribution, whereas γ>1 and γ<1 allocate more mass near 0 and 1 respectively
relative to the beta.β,α/ distribution. In section B of the on-line supplementary material, we
generalize for a Z-distribution with σz )=1, which produces a new class of shrinkage priors with
additional flexibility in the distribution of κ, especially near 0 and 1.

For dynamic shrinkage processes, the TPB distribution arises as the conditional prior distri-
bution of κt+1 given {κs}s!t .

Theorem 1. For the dynamic shrinkage process (4), the conditional prior distribution of
the shrinkage parameterκt+1 =1=.1+τ2λ2

t+1/ is [κt+1|{κs}s!t ,φ, τ ]∼TPB[β,α, τ2.1−φ/{.1−
κt/=κt}φ] or, equivalently, [κt+1|{λs}s!t ,φ, τ ]∼TPB.β,α, τ2λ2φ

t /.

The previous value of the shrinkage parameter κt , together with the AR(1) coefficient φ,
informs the magnitude and direction of the distributional shift of κt+1.

Theorem 2. For the dynamic horseshoe process (4) with α= β = 1
2 and fixed τ = 1, the

conditional prior distribution in theorem 1 satisfies P.κt+1 < "|{κs}s!t ,φ/→1 as κt →0 for
any "∈ .0, 1/ and fixed φ )=0.

The mass of the conditional prior distribution for κt+1 concentrates near 0—corresponding
to minimal shrinkage of signals—when κt is near 0, so the shrinkage behaviour at time t informs
the (prior) shrinkage behaviour at time t +1.

We similarly characterize the posterior distribution of κt+1 given {κs}s!t in the following
theorem, which extends the results of Datta and Ghosh (2013) to the dynamic setting.

Theorem 3. Under the likelihood [yt|ωt ]∼indep N.ωt , 1/, the prior (2) and the dynamic horse-
shoe process (4) withα=β= 1

2 and fixedφ )=0, the posterior distribution ofκt+1 given {κs}s!t

satisfies the following properties.

(a) For any fixed " ∈ .0, 1/, P.κt+1 > 1 − "|yt+1, {κs}s!t ,φ, τ / → 1 as γt → 0 uniformly in
yt+1 ∈R, where γt = τ2.1−φ/{.1−κt/=κt}φ.
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(b) For any fixed "∈ .0, 1/ and γt < 1, P.κt+1 <"|yt+1, {κs}s!t ,φ, τ /→1 as |yt+1|→∞.

Theorem 3, part (a), demonstrates that the posterior mass of [κt+1|{κs}s!t ] concentrates near
1 as τ →0, as in the non-dynamic horseshoe, but also as κt →1. Therefore, the dynamic horse-
shoe process provides an additional mechanism for shrinkage of noise, besides the global scale
parameter τ , via the previous shrinkage parameterκt . Moreover, theorem 3, part (b), shows that,
despite the additional shrinkage capabilities, the posterior mass of [κt+1|{κs}s!t ] concentrates
near 0 for large absolute signals |yt+1|, which indicates responsiveness of the dynamic horseshoe
process to large signals analogously to the static horseshoe prior.

When |φ|<1, the log-variance process {ht} is stationary, which implies that {κt} is stationary.
In Fig. 2, we plot a simulation-based estimate of the stationary distribution of κt for various
values of φ under the dynamic horseshoe process. The stationary distribution of κt is similar to
the static horseshoe distribution (φ=0) for φ<0:5, whereas for large values of φ the distribution
becomes more peaked at 0 (less shrinkage of ωt) and 1 (more shrinkage of ωt). The result is
intuitive: larger |φ| corresponds to greater persistence in shrinkage behaviour, so marginally we
expect states of aggressive shrinkage or little shrinkage.

2.2. Scale mixtures via Pólya–gamma processes
For efficient computations, we develop a parameter expansion of model (3) by using a condi-
tionally Gaussian representation for ηt . In doing so, we may incorporate Gaussian models—and
accompanying sampling algorithms—for dependent data in model (3). Given a conditionally
Gaussian parameter expansion, a Gibbs sampler for model (3) proceeds as follows:

(a) draw the log-variances ht , for which the conditional prior (3) is Gaussian, and
(b) draw the parameters in µ and ψt , for which the conditional likelihood (3) is Gaussian.

For the log-variance sampler, we represent the likelihood for ht on the log-scale and approxi-
mate the resulting distribution by using a known discrete mixture of Gaussian distributions (see
Section 5). This approach is popular in SV modelling (e.g. Kim et al. (1998)), which is anal-
ogous to the dynamic shrinkage process (4). Importantly, the proposed parameter expansion
inherits the computational complexity of the samplers for ht and ψt : for the dynamic shrink-
age processes (4), the proposed parameter expansion implies that the log-variance {ht}T

t=1 is
a Gaussian DLM and therefore {ht}T

t=1 may be sampled jointly in O.T/ computations (see
Section 5).

The algorithm proposed requires a parameter expansion of ηt ∼Z.α,β, 0, 1/ in process (4) as
a scale mixture of Gaussian distributions. The representation of a Z-distribution as a mean–
variance scale mixture of Gaussian distributions is due to Barndorff-Nielsen et al. (1982). For
implementation, we build on the framework of Polson et al. (2013), who proposed a Pólya–
gamma scale mixture of Gaussian distributions representation for Bayesian logistic regression.
A Pólya–gamma random variable ξ with parameters b>0 and c∈R, denoted ξ∼PG.b, c/, is an
infinite convolution of gamma random variables:

ξ
D=.2π2/−1

∞∑
k=1

gk{.k − 1
2 /2 − c2=.4π2/}−1

where gk ∼IID gamma.b, 1/. Properties of Pólya–gamma random variables may be found in
Barndorff-Nielsen et al. (1982) and Polson et al. (2013). Our interest in Pólya–gamma random
variables derives from their role in representing the Z-distribution as a mean–variance scale
mixture of Gaussian distributions.
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Theorem 4. The random variable η∼ Z.α,β, 0, 1/, or equivalently η= log.λ2/ with λ2 ∼
IB.β,α/, is a mean–variance scale mixture of Gaussian distributions with

[η|ξ]∼N{ξ−1.α−β/=2, ξ−1}

and [ξ]∼PG.α+β, 0/. Moreover, the conditional distribution of ξ is [ξ|η]∼PG.α+β, η/.

When α=β, the Z-distribution is symmetric and E[η|ξ] = 0. Polson et al. (2013) proposed
a sampling algorithm for Pólya–gamma random variables, which is extremely efficient when
b= 1. In our setting, this corresponds to α+β= 1, for which the horseshoe prior is the prime
example. Importantly, this representation enables us to construct an efficient sampling algorithm
that combines an O.T/ sampling algorithm for the log-volatilities {ht}T

t=1 with a Pólya–gamma
sampler for the mixing parameters.

3. Bayesian trend filtering with dynamic shrinkage processes

Dynamic shrinkage processes are particularly appropriate for DLMs. DLMs, such as model (1),
combine an observation equation, which relates the observed data to latent state variables, and
an evolution equation, which allows the state variables—and therefore the conditional mean of
the data—to be dynamic. By construction, DLMs contain many parameters and therefore may
benefit from structured regularization. The dynamic shrinkage processes proposed offer such
regularization and, unlike existing methods, do so adaptively.

The DLM (1) may be generalized to a Dth-order random-walk model: ∆Dβt+1 =ωt , for
D∈Z+ andβt+1 =ωt ∼N.0, τ2λ2

t / for t =0, : : : , D−1, where D∈Z+ is the degree of differencing.
We refer to model (1) as a BTF model, with various choices available for the distribution of the
innovation standard deviations τλt . Here, we propose a dynamic horseshoe process for the inno-
vationsωt . The aggressive shrinkage of the horseshoe prior forces small values of |ωt|=|∆Dβt+1|
towards 0, whereas the responsiveness of the horseshoe prior permits large values of |∆Dβt+1|.
When D=2, model (1) will shrink the conditional mean βt towards a piecewise linear function
with breakpoints determined adaptively, while allowing large absolute changes in the slopes.
Further, using the dynamic horseshoe process, the shrinkage effects that are induced by λt are
time dependent, which provides localized adaptability to regions with rapidly or slowly chang-
ing features. Following Carvalho et al. (2010) and Polson and Scott (2012b), we assume a
half-Cauchy prior for the global scale parameter τ ∼C+.0,σε=

+
T/, in which we scale by the ob-

servation error variance and the sample size (Piironen and Vehtari, 2016). Using Pólya–gamma
mixtures, the implied conditional prior on µ= log.τ2/ is [µ|σε, ξµ] ∼ N{log.σ2

ε / − log.T/, ξ−1
µ }

with ξµ ∼ PG.1, 0/. We include the details of the Gibbs sampling algorithm for model (1) in
Section 5, which is notably linear in the number of time points T : the full conditional posterior
precision matrices for β = .β1, : : : ,βT /′ and h = .h1, : : : , hT /′ are D banded and tridiagonal re-
spectively, which admit highly efficient O.T/ back-band substitution sampling algorithms (see
section C of the on-line supplement for empirical evidence).

3.1. Bayesian trend filtering: simulations
To assess the performance of the BTF model (1) with dynamic horseshoe innovations (model
BTF-DHS), we compared the proposed methods with several competitive alternatives by using
simulated data. We considered the following variations on BTF model (1): normal–inverse
gamma innovations (model BTF-NIG) via τ−2 ∼ gamma.0:001, 0:001/ with λt = 1; (static)
horseshoe priors for the innovations (model BTF-HS) via τ ,λt ∼IID C+.0, 1/. In addition, we
include the (non-Bayesian) trend filtering model of Tibshirani (2014) implemented by using
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the R package genlasso (Arnold and Tibshirani, 2014), for which the regularization tuning
parameter is chosen by using cross-validation (trend filtering). For all trend filtering models,
we select D = 2, but the relative performance is similar for D = 1. Among non-trend filter-
ing models, we include a smoothing spline estimator implemented via smooth.spline() in
R (R Core Team, 2017); the wavelet-based estimator of Abramovich et al. (1998) (BayesThresh)
implemented in the wavethresh package (Nason, 2016) and the nested Gaussian process
model nGP of Zhu and Dunson (2013), which relies on a state space model framework
for efficient computations, comparable with—but empirically less efficient than—the BTF
model (1).

We simulated 100 data sets from the model yt = yÅ
t + εt , where yÅ

t is the true function and
εt ∼indep N.0,σ2

Å/. We use the following true functions yÅ
t from Donoho and Johnstone (1994):

Doppler, Bumps, Blocks and Heavisine, implemented in the R package wmtsa (Constantine
and Percival, 2016). The noise variance σ2

Å is determined by selecting a root signal-to-noise ratio
RSNR and computing σÅ = sd.yÅ

t /=RSNR, where sd.yÅ
t / is the sample standard deviation of

{yÅ
t }T

t=1. As in Zhu and Dunson (2013), we select RSNR = 7 and use a moderate length time
series, T =128.

In Fig. 3, we provide an example of each true curve yÅ
t , together with the proposed BTF-DHS

posterior expectations and credible bands. Notably, the BTF model (1) with dynamic horseshoe
innovations provides an exceptionally accurate fit to each data set. Importantly, the posterior
expectations and the posterior credible bands adapt to both slowly and rapidly changing be-
haviour in the underlying curves. The implementation is also efficient: the computation time
for 10000 iterations of the Gibbs sampling algorithm, implemented in R (on a MacBook Pro,
2.7-GHz Intel Core i5), is about 45 s.

To compare the aforementioned procedures, we compute the root-mean-squared errors

RMSE.ŷ/=
√{

1
T

T∑
t=1

.yÅ
t − ŷt/

2
}

for all estimators ŷ of the true function, yÅ. The results are displayed in Fig. 4. The proposed
BTF-DHS implementation substantially outperforms all competitors, especially for rapidly
changing curves (Doppler and Bumps). The exceptional performance of BTF-DHS is paired
with comparably small variability of RMSE, especially relative to the non-dynamic horseshoe
model BTF-HS. Interestingly, the magnitude and variability of the RMSEs for BTF-DHS are
related to the auto-regressive AR(1) coefficient φ: the 95% highest posterior density intervals
(corresponding to Fig. 3) are .0:77, 0:97/ (Doppler), .0:81, 0:97/ (Bumps), .0:76, 0:96/ (Blocks)
and .−0:04, 0:74/ (Heavisine). For the smoothest function, Heavisine, there is less separation
between the estimators. Nonetheless, BTF-DHS performs the best, even though the highest
posterior density interval for φ is wider and contains zero.

We are also interested in uncertainty quantification, and in particular how the dynamic horse-
shoe prior compares with the horseshoe prior. We compute the mean credible intervals widths

MCIW= 1
T

T∑
t=1

.β̂
.97:5/
t − β̂

.2:5/
t /

where β̂
.97:5/
t and β̂

.2:5/
t are the 97.5% and 2.5% quantiles respectively of the posterior distribution

of βt in model (1) for BTF-DHS and BTF-HS. The results are in Fig. 5. The dynamic horseshoe
provides massive reductions in MCIW, again in all cases except for Heavisine, for which the
methods perform similarly. Therefore, in addition to more accurate point estimation (Fig. 4),
the BTF-DHS model produces significantly tighter credible intervals—while maintaining the
correct nominal (frequentist) coverage.
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3.2. Bayesian trend filtering: application to central processor unit usage data
To demonstrate the adaptability of the dynamic horseshoe process for model (1), we consider
the CPU usage data in Fig. 1. The data exhibit substantial complexity: an overall smooth
intraday trend but with multiple irregularly spaced jumps, and an increase in volatility from
16.00 to 18.00 hours. Our goal is to provide an accurate measure of the trend, including jumps,
with appropriate uncertainty quantification. For this, we employ the BTF-DHS model (1), with
a Gaussian AR(1) model on log.σ2

t /. For the additional sampling of the SV parameters, we
use the algorithm of Kastner and Frühwirth-Schnatter (2014) implemented in the R package
stochvol (Kastner, 2016).

We augment the simulation study of Section 3.1 with an out-of-sample comparison for the
CPU usage data. We fit each model using 90% (T = 1296) of the data selected randomly for
training and the remaining 10% (T = 144) for testing, which was repeated 100 times. Models
were compared by using RMSE and MCIW.

Unlike the simulation study in Section 3.1, the subsampled data are not equally spaced. We
employ a model-based imputation scheme for the unequally spaced data yti , i=1, : : : , T , which
is similar to Elerian et al. (2001) and valid for missing observations. We expand the operative
data set to include missing observations along an equally spaced grid, tÅ =1, : : : , T Å, such that,
for each observation point i, yti = ytÆ for some tÅ. Although T Å ! T , possibly with T Å , T ,
all computations within the sampling algorithm, including the imputation sampling scheme
for {ytÆ : tÅ )= ti}, are linear in the number of (equally spaced) time points, T Å. Therefore, we
may apply the same Gibbs sampling algorithm as before, with the additional step of drawing
ytÆ ∼indep N.βtÆ ,σ2

tÆ / for each unobserved tÅ )= ti. Implicitly, this procedure assumes that the
unobserved points are missing at random, which is satisfied by the aforementioned subsampling
scheme.

The results of the out-of-sample estimation study are displayed in Fig. 6. The BTF proce-
dures are notably superior to the non-BTF and smoothing spline estimators, and, as with the
simulations of Section 3.1, the proposed BTF-DHS model substantially outperforms all com-
petitors. Importantly, the significant reduction in MCIW by BTF-DHS indicates that the poste-
rior credible intervals for the out-of-sample points ytÆ are substantially tighter for our method.
By reducing uncertainty—while maintaining the approximately correct nominal (frequentist)
coverage—the proposed BTF-DHS model provides greater power to detect local features. In
addition, the MCMC algorithm for BTF-DHS is fast, despite the imputation procedure: 10000
iterations runs in about 80 s (in R on a MacBook Pro, 2.7-GHz Intel Core i5).

4. Joint shrinkage for time varying parameter models

Dynamic shrinkage processes are appropriate for multivariate time series and functional data
models that may benefit from locally adaptive shrinkage properties. As outlined in Dangl and
Halling (2012), models with time varying parameters are particularly important in financial
and economic applications, because of the inherent structural changes in regulations, monetary
policy, market sentiments and macroeconomic interrelationships that occur over time. Consider
the following time varying parameter regression model with multiple dynamic predictors xt =
.x1,t , : : : , xp,t/

′:

yt =x′
tβt + εt , [εt|σε]

indep∼ N.0,σ2
ε /,

∆Dβt+1 =ωt , [ωj,t|τ0, {τk}, {λk,s}]
indep∼ N.0, τ2

0 τ
2
j λ

2
j,t/

.6/
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Fig. 6. (a) Root-mean-squared error and (b) mean credible interval widths for out-of-sample CPU usage
data (non-overlapping notches indicate significant differences between medians; the BTF estimators differ
in their innovation distributions, which determine the shrinkage behaviour of the second-order differences;
normal–inverse gamma, NIG, horseshoe, HS, and dynamic horseshoe, DHS

where βt = .β1,t , : : : ,βp,t/
′ is the vector of dynamic regression coefficients and D ∈ Z+ is the

degree of differencing. Model (6) is also a (discretized) concurrent functional linear model (e.g.
Ramsay and Silverman (2005)) and a varying-coefficient model (Hastie and Tibshirani, 1993)
in the index t and therefore is broadly applicable. The prior for the innovations ωj,t incorpo-
rates three levels of global–local shrinkage: a global shrinkage parameter τ0, a predictor-specific
shrinkage parameter τj and a predictor- and time-specific local shrinkage parameter λj,t . Rel-
ative to existing time varying parameter regression models, our approach incorporates an ad-
ditional layer of dynamic dependence: not only are the parameters time varying, but also the
relative influence of the parameters is time varying via the shrinkage parameters—which are
dynamically dependent themselves.

To provide jointly localized shrinkage of the dynamic regression coefficients {βj,t} analogous
to the BTF model of Section 3, we extend process (4) to allow for multivariate time dependence

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/81/4/781/7048377 by guest on 02 April 2025



796 D. R. Kowal, D. S. Matteson and D. Ruppert

via a vector auto-regression on the log-variance:

[ωj,t|τ0, {τk}, {λk,s}]
indep∼ N.0, τ2

0 τ
2
j λ

2
j,t/,

hj,t = log.τ2
0 τ

2
j λ

2
j,t/, j =1, : : : , p, t =1, : : : , T ,

ht+1 =µ+Φ.ht −µ/+ηt , ηj,t
IID∼ Z.α,β, 0, 1/,






.7/

where ht = .h1,t , : : : , hp,t/
′, µ = .µ1, : : : , µp/′, ηt = .η1,t , : : : , ηp,t/

′ and Φ is the p × p vector
auto-regression coefficient matrix. We assume that Φ = diag.φ1, : : : ,φp/ for simplicity, but
non-diagonal extensions are available. Contemporaneous dependence may be introduced via a
copula model for ηt but may reduce computational and MCMC efficiency. As in the univariate
setting, we use Pólya–gamma mixtures for the log-variance evolution errors, [ηj,t|ξj,t ]∼indep

N{ξ−1
j,t .α−β/=2, ξ−1

j,t } with ξj,t ∼IID PG.α+β, 0/ and α=β= 1
2 . We augment model (7) with

half-Cauchy priors for the predictor-specific and global parameters, τj ∼indep C+.0, 1/ and
τ0 ∼C+{0,σε=

+
.Tp/}.

4.1. Time varying parameter models: simulations
We conducted a simulation study to evaluate competing variations of the time varying parameter
regression model (6), in particular relative to the proposed dynamic shrinkage process DHS in
expression (7). Similarly to the simulations of Section 3.1, we focus on the distribution of the
innovations ωj,t and again include the normal–inverse gamma (model NIG) and the (static)
horseshoe HS as competitors, in each case selecting D = 1. We also include Belmonte et al.
(2014), which uses the Bayesian lasso (model BL) as a prior on the innovations. Lastly, we include
Kalli and Griffin (2014), which offers an alternative approach for dynamic shrinkage (model
KG). Among models with non-dynamic regression coefficients, we include a lasso regression
(Tibshirani, 1996) and an ordinary linear regression. These non-dynamic methods were non-
competitive and have been excluded from the figures.

We simulated 100 data sets of length T =200 from the model yt =x′
tβ

Å
t + εt , where the p=20

predictors are x1,t = 1 and xj,t ∼ N.0, 1/ for j > 2, and εt ∼ N.0,σ2
Å/ independently. We also

consider auto-correlated predictors xj,t in section D.2 of the on-line supplement with similar
results. The true regression coefficients βÅ

t = .βÅ
1,t , : : : ,βÅ

p,t/
′ are as follows: βÅ

1,t =2 is constant;
βÅ

2,t is piecewise constant with βÅ
2,t =0 everywhere except βÅ

2,t =2 for t =41, : : : , 80 and βÅ
2,t =−2

for t = 121, : : : , 160; βÅ
3,t = .1=

+
100/Σt

s=1Zs with Zs ∼IID N.0, 1/ is a scaled random walk for
t "100 and βÅ

3,t =0 for t>100; βÅ
j,t =0 for j =4, : : : , p=20. The predictor set contains a variety

of functions: a constant non-zero function, a locally constant function, a slowly varying function
that thresholds to 0 for t> 100, and 17 true 0s. The noise variance σ2

Å is determined by selecting
a root signal-to-noise ratio RSNR and computing σÅ = sd.yÅ

t /=RSNR, where yÅ
t = x′

tβ
Å
t and

sd.yÅ
t / is the sample standard deviation of {yÅ

t }T
t=1. We select RSNR=3.

We evaluate competing methods using RMSEs for both yÅ
t and βÅ

t defined by

RMSE.ŷ/=
√{

1
T

T∑
t=1

.yÅ
t − ŷt/

2
}

and

RMSE.β̂/=
√{

1
Tp

T∑
t=1

p∑
j=1

.βÅ
j,t − β̂j,t/

2
}
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Fig. 7. (a) Root-mean-squared errors for the regression coefficients β*
j,t and (b) true curves, y*

t Dx0
tβ

*
t for

simulated data: non-overlapping notches indicate significant differences between medians

for all estimators β̂t of the true regression functions, βÅ
t with ŷt =x′

tβ̂t . The results are displayed
in Fig. 7. The proposed BTF-DHS model substantially outperforms the competitors in both
recovery of the true regression functions βÅ

j,t and estimation of the true curves yÅ
t . Our closest

competitor is Kalli and Griffin (2014), which also uses dynamic shrinkage, yet is less accurate
in estimating the regression coefficients βÅ

j,t and the fitted values yÅ
t . In addition, our MCMC

algorithm is vastly more efficient: for 10000 MCMC iterations, the Kalli and Griffin (2014)
sampler ran for 3 h 40 min (using MATLAB code from Professor Griffin’s web site), whereas
our algorithm completed in 6 min (on a MacBook Pro, 2.7-GHz Intel Core i5).
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4.2. Time varying parameter models: the Fama–French asset pricing model
Asset pricing models commonly feature highly structured factor models to model the co-
movement of stock returns parsimoniously. Such fundamental factor models identify common
risk factors among assets, which may be treated as exogenous predictors in a time series regres-
sion. Popular approaches include the one-factor capital asset pricing model (Sharpe, 1964) and
the three-factor Fama–French model FF-3 (Fama and French, 1993). Recently, the five-factor
Fama–French model FF-5 (Fama and French, 2015) was proposed as an extension of FF-3 to
incorporate additional common risk factors. However, outstanding questions remain regarding
which, and how many, factors are necessary. Importantly, an attempt to address these questions
must consider the dynamic component: the relevance of individual factors may change over
time, particularly for different assets.

We apply model (6) to extend these fundamental factor models to the dynamic setting, in which
the factor loadings are permitted to vary—perhaps rapidly—over time. For further generality,
we append the momentum factor of Carhart (1997) to FF-5 to produce a fundamental factor
model with six factors and dynamic factor loadings. Importantly, the shrinkage towards sparsity
that is induced by the dynamic horseshoe process enables the model effectively to select out
unimportant factors, which also may change over time. As in Section 3.2, we modify model (6)
to include SV for the observation error.

To study various market sectors, we use weekly industry portfolio data from the web site of
Kenneth R. French, which provide the value-weighted return of stocks in the given industry.
We focus on manufacturing, Manuf, and healthcare, Hlth. For a given industry portfolio, the
response variable is the returns in excess of the risk-free rate, yt = Rt − RF,t, with predictors
xt = .1, RM,t −RF,t, SMBt , HMLt , RMWt , CMAt , MOMt/

′, defined as follows: the market risk
factor RM,t −RF,t is the return on the market portfolio RM,t in excess of the risk-free rate RF,t;
the size factor SMBt (small minus big) is the difference in returns between portfolios of small
and large market value stocks; the value factor HMLt (high minus low) is the difference in
returns between portfolios of high and low book-to-market value stocks; the profitability factor
RMWt is the difference in returns between portfolios of robust and weak profitability stocks; the
investment factor CMAt is the difference in returns between portfolios of stocks of low and high
investment firms; the momentum factor MOMt is the difference in returns between portfolios of
stocks with high and low prior returns. These data are publicly available on Kenneth R. French’s
web site, which provides additional details on the portfolios. We standardize all predictors and
the response to have unit variance.

We conduct inference on the time varying regression coefficients βj,t by using simultaneous
credible bands. Unlike pointwise credible intervals, simultaneous credible bands control for
multiple testing and may be computed as in Ruppert et al. (2003). Letting Bj,t.α/ denote the
.1−α/% simultaneous credible band for predictor j at time t, we compute the simultaneous band
score (SIMBAS) (Meyer et al., 2015), Pj,t = min{α : 0 )∈ Bj,t.α/}. The SIMBAS Pj,t indicates
the minimum level for which the simultaneous bands do not include zero, while controlling for
multiple testing, and therefore may be used to detect which predictors j are important at time t.
Globally, we compute global Bayesian p-values (GBPVs) (Meyer et al., 2015), Pj =mint{Pj,t} for
each predictor j, which indicate whether or not a predictor is important at any time t. SIMBAS
and GBPVs have proven useful in functional regression models but also are suitable for time
varying parameter regression models to identify important predictors. We validate the selection
ability of SIMBAS in section D.1 of the on-line supplementary material for the simulated data
of Section 4.1.

In Fig. 8, we plot the posterior expectation and credible bands for the time varying regression
coefficients and observation error SV for the weekly manufacturing industry data, from April
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1st, 2007, to April 1st, 2017 (T =522); an analogous plot for the healthcare industry data is in
the on-line supplementary material (section E). For the manufacturing industry, the important
factors that were identified by the GBPVs at the 5% level are the market risk (RM,t −RF,t; GBPV
0.000), investment (CMAt ; GBPV 0.024) and momentum (MOMt ; GBPV 0.019). However, the
SIMBAS Pj,t for CMAt and MOMt is below 5% only for brief periods (the red lines), which
suggests that these important effects are intermittent. For the healthcare industry, the GBPVs
identify market risk (GBPV 0.001) and value (HMLt ; GBPV 0.023) as the only important
factors. Notably, the only common factor that is flagged by GBPVs in both the manufactur-
ing and healthcare industries under model (6) over this time period is the market risk. This
result suggests that the aggressive shrinkage behaviour of the dynamic shrinkage process is im-
portant in this setting, since several factors may be effectively irrelevant for some or all time
points.

5. Markov chain Monte Carlo sampling algorithm and computational details

We design a Gibbs sampling algorithm for the dynamic shrinkage process. The sampling algo-
rithm is both computationally and MCMC efficient, and builds on two main components:

(a) a log-variance sampling algorithm (Kastner and Frühwirth-Schnatter, 2014) augmented
with a Pólya–gamma sampler (Polson et al., 2013);

(b) a Cholesky factor algorithm (Rue, 2001) for sampling the state variables in a DLM.

Importantly, computations for each component are linear in the number of time points, which
produces an efficient sampling algorithm.

The general sampling algorithm is as follows:

(a) sample the dynamic shrinkage components (the log-volatilities {ht}, the Pólya–gamma
mixing parameters {ξt}, the unconditional mean of the log-variance µ, the AR(1) coeffi-
cient of the log-variance φ and the discrete mixture component indicators {st});

(b) sample the state variables {βt};
(c) sample the observation error variance σ2

ε .

We provide details of the dynamic shrinkage process sampling algorithm in Section 5.1 and
include the details for sampling steps (b) and (c) in the on-line supplement (section C).

5.1. Efficient sampling for the dynamic shrinkage process
Consider the (univariate) dynamic shrinkage process (4) with the Pólya–gamma parameter
expansion of theorem 4. We provide implementation details for the dynamic horseshoe process
with α= β= 1

2 , but extensions to other cases are straightforward. The sampling framework
of Kastner and Frühwirth-Schnatter (2014) represents the likelihood for ht in prior (2) on the
log-scale, and approximates the ensuing log.χ2

1/-distribution for the errors via a known discrete
mixture of Gaussian distributions. In particular, let ỹt = log.ω2

t +c/, where c is a small offset to
avoid numerical issues. Conditionally on the mixture component indicators st , the likelihood is
ỹt ∼indep N.ht +mst , vst / where mi and vi, i= 1, : : : , 10, are the prespecified mean and variance
components of the 10-component Gaussian mixture that was provided in Omori et al. (2007).
Under model (4), the evolution equation is ht+1 =µ+φ.ht −µ/+ηt with initialization h1 =µ+η0
and innovations [ηt|ξt ]∼indep N.0, ξ−1

t / for [ξt ]∼IID PG.1, 0/. Note that model (3) provides a
more general setting, which similarly may be combined with the Gaussian likelihood for ỹt

above.
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To sample h = .h1, : : : , hT / jointly, we directly compute the posterior distribution of h and
exploit the tridiagonal structure of the resulting posterior precision matrix. In particular, we
equivalently have ỹ ∼ N.m + h̃ + µ̃,Σv/ and Dφh̃ ∼ N.0,Σξ/, where m = .ms1 , : : : , msT /′, h̃ =
.h1 −µ, : : : , hT −µ/′, µ̃= .µ, .1−φ/µ, : : : , .1−φ/µ/′, Σv =diag.{vst }T

t=1/, Σξ =diag.{ξ−1
t }T

t=1/
and Dφ is a lower triangular matrix with 1s on the diagonal, −φ on the first off-diagonal and
0s elsewhere. We sample from the posterior distribution of h by sampling from the posterior
distribution of h̃ and setting h= h̃+µ1 for 1 a T -dimensional vector of 1s. The required posterior
distribution is h̃ ∼ N.Q−1

h̃
lh̃, Q−1

h̃
/, where Qh̃ = Σ−1

v + D′
φΣ

−1
ξ Dφ is a tridiagonal symmetric

matrix with diagonal elements d0.Qh̃/ and first off-diagonal elements d1.Qh̃/ defined as

d0.Qh̃/= ..v−1
s1

+ ξ1 +φ2ξ2/, : : : , .v−1
sT−1

+ ξT−1 +φ2ξT /, .v−1
sT

+ ξT //,

d1.Qh̃/= ..−φξ2/, : : : , .−φξT−1//

and

lh̃ =Σ−1
v .ỹ −m − µ̃/

=
(

ỹ1 −ms1 −µ

vs1

,
ỹ2 −ms2 − .1−φ/µ

vs2

, : : : ,
ỹT −msT − .1−φ/µ

vsT

)′
:

Drawing from this posterior distribution is straightforward and efficient, using band back-
substitution described in Kastner and Frühwirth-Schnatter (2014):

(a) compute the Cholesky decomposition Qh̃ =LL′, where L is lower triangle;
(b) solve La = lh̃ for a;
(c) solve L′h̃ =a + e for h̃, where e ∼N.0, IT /.

Conditionally on the log-volatilities {ht}, we sample the AR(1) evolution parameters: the
log-innovation precisions {ξt}, the auto-regressive coefficient φ and the unconditional mean µ.
The precisions are distributed [ξt|ηt ]∼PG.1, ηt/ for ηt =ht+1 −µ−φ.ht −µ/, which we sample
by using Polson et al. (2013). The Pólya–gamma sampler is efficient: using only exponential and
inverse Gaussian draws, Polson et al. (2013) constructed an accept–reject sampler for which the
probability of acceptance is uniformly bounded below at 0.99919, which does not require any
tuning. Next, we assume the prior .φ+1/=2∼beta.aφ, bφ/, which restricts |φ|<1 for stationarity,
and sample from the full conditional distribution of φ by using the slice sampler of Neal (2003).
We select aφ=10 and bφ=2, which place most of the mass for the density ofφ in .0, 1/ with a prior
mean of 2

3 and a prior mode of 4
5 to reflect the likely presence of persistent volatility clustering.

The prior for the global scale parameter is τ ∼ C+.0,σε=
+

T/, which implies that µ= log.τ2/
is [µ|σε, ξµ]∼N{log.σ2

ε =T/, ξ−1
µ } with ξµ ∼PG.1, 0/. Including the initialization h1 ∼N.µ, ξ−1

0 /
with ξ0 ∼ PG.1, 0/, the posterior distribution for µ is µ∼ N.Q−1

µ lµ, Q−1
µ / with Qµ = ξµ + ξ0 +

.1 −φ/2ΣT−1
t=1 ξt and lµ = ξµ log.σ2

ε =T/ + ξ0h1 + .1 −φ/ΣT−1
t=1 ξt.ht+1 −φht/. Sampling ξµ and ξ0

follows the Pólya–gamma sampling scheme above.
Finally, we sample the discrete mixture component indicators st . The discrete mixture prob-

abilities are straightforward to compute: the prior mixture probabilities are the mixing propor-
tions that were given by Omori et al. (2007) and the likelihood is ỹt ∼indep N.ht +mst , vst /; see
Kastner and Frühwirth-Schnatter (2014) for details.

6. Discussion and future work

Dynamic shrinkage processes provide a computationally convenient and widely applicable
mechanism for incorporating adaptive shrinkage and regularization in existing models. By ex-
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tending a broad class of global–local shrinkage priors to the dynamic setting, the resulting
processes inherit the desirable shrinkage behaviour, but with greater time localization. The suc-
cess of dynamic shrinkage processes suggests that other priors may benefit from log-scale or
other appropriate representations, with or without additional dependence modelling.

As demonstrated in Sections 3 and 4, dynamic shrinkage processes are particularly appropriate
for DLMs, including trend filtering and time varying parameter regression. In both settings,
the DLMs with dynamic horseshoe innovations outperform all competitors in simulated data
and produce reasonable and interpretable results for real data applications. Dynamic shrinkage
processes may be useful in other DLMs, such as for modelling seasonality or change points.
Given the exceptional curve fitting capabilities of the BTF model (1) with dynamic horseshoe
innovations (BTF-DHS), a natural extension would be to incorporate BTF-DHS in more general
additive, functional or longitudinal data models to capture irregular or local curve features.
Similarly, models (1) and (6), as well as the dependent shrinkage of model (3), may be extended
for multivariate responses to provide both contemporaneous and dynamic shrinkage.

Another promising area for applications of the methodology proposed is compressive sens-
ing and signal processing, which commonly rely on approximations for estimation and predic-
tion (e.g. Ziniel and Schniter (2013) and Wang et al. (2016)). The linear time complexity of
our MCMC algorithm for BTF-DHS may offer the computational scalability to provide full
Bayesian inference, and perhaps improved prediction and uncertainty quantification, which is
notably absent from Ziniel and Schniter (2013) and Wang et al. (2016).
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Statist. Soc. B, 74, 287–311.
Polson, N. G. and Scott, J. G. (2012b) On the half-Cauchy prior for a global scale parameter. Baysn Anal., 7,

887–902.
Polson, N. G., Scott, J. G. and Windle, J. (2013) Bayesian inference for logistic models using Pólya–Gamma latent
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