Downloaded 04/02/25 to 65.128.79.221 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ABACUS: Unsupervised Multivariate Change Detection via Bayesian Source Separation

Wenyu Zhang*

Daniel Gilbert*

David S. Matteson*

wz258Q@cornell.edu deg257@cornell.edu matteson@cornell.edu
Abstract ‘ir Ww S
Change detection involves segmenting sequential data B e R
such that observations in the same segment share some e R
desired properties. Multivariate change detection con- u ORISR B——
tinues to be a challenging problem due to the variety
of ways change points can be correlated across chan- M “‘“”“’““*EM’””% Y
nels and the potentially poor signal-to-noise ratio on Mixture Ofg nals Noise Observations
individual channels. In this paper, we are interested &
in locating additive outliers (AO) and level shifts (LS) ey
in the unsupervised setting. We propose ABACUS, o T
Automatic BAyesian Changepoints Under Sparsity, a
Bayesian source separation technique to recover latent LS LS Estim: L
. . X . AO AO stimate of source signals
signals while also detecting changes in model param- and changes from ¥
eters. Multi-level sparsity achieves both dimension re- 5 "
duction and modeling of signal changes. We show ABA- M S

CUS has competitive or superior performance in simu-
lation studies against state-of-the-art change detection
methods and established latent variable models. We
also illustrate ABACUS on two real application, model-
ing genomic profiles and analyzing household electricity
consumption.

Keywords: blind source separation; dimension
reduction; latent factor model; multivariate change
points; sparse signal extraction; unsupervised learning

1 Introduction

Change detection segments sequential data such that
observations in each segment share the same character-
istics. We can view it as a specific form of clustering
where sequential data points tend to cluster together.
Two common sequential orderings are time and physi-
cal location. Offline change detection segments the data
retrospectively and is useful for uncovering events and
systematic behaviors in data analysis tasks. It is applied
in a variety of fields including energy consumption [13],
genomics [22] and finance [10]. Furthermore, in the po-
tential presence of change points, utilizing change de-
tection prior to data modeling can help prevent build-
ing inappropriate models under the assumption of data
homogeneity, and consequently supports improved pre-
diction and statistical inference.

In this paper, we study offline multiple change de-
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Figure 1: Given observations generated by the linear mixing
of signals contaminated by noise, ABACUS estimates the source
signals and detect additive outliers (AO, red) and level shifts
(LS, blue). In M, darker and lighter cells represent negative and
positive values respectively, and medium gray cells represent zero.

tection in multivariate data, specifically where the data
exhibit mean changes that can occur simultaneously
in several channels. The direction and magnitude of
change can be different across channels. Here, we re-
fer to mean changes lasting a single time unit with an
immediate return as additive outliers (AO), and mean
changes with duration two or greater as level shifts (LS).
We assume that the multivariate data are generated
by low-dimensional latent source signals through linear
mixing according to the model Y = MS + E, shown
in Figure 1, similar to the general linear setting used in
the blind source separation literature [15,21]. Notation-
wise, M is the mixing matrix, and Y, S and E are
the observations, source signals and noise, respectively.
Observed mean changes manifest from the latent space,
and we detect changes by estimating these latent source
signals, which possess ‘semantic’ meaning of the under-
lying states and are free of noise.

Multivariate data are readily observed in many ap-
plications in today’s world, and mean changes are of
particular interest since the mean is often a salient as-
pect of the system state. Multivariate data can be ob-
servations from multiple channels monitoring a single
system, or a collection of univariate data streams from
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multiple related systems. Examples of the first sce-
nario include household power consumption measured
with sub-meters [13], and wine quality based on physic-
ochemical test variables [1]. Examples of the second
scenario include array comparative genomic hybridiza-
tion measurements from several patients with the same
medical condition [20]. In these and other examples,
change points in multivariate data sometimes occur si-
multaneously in multiple channels because the signals
may be driven by the same underlying processes. It
is of interest to identify these shared change points to
further analyze the relationship between channels. Run-
ning univariate change detection on each channel does
not encourage identification of such shared changes.

Finding changes in multidimensional data is known
to be a difficult problem. If the magnitude of change as
measured by symmetric Kullback-Leibler divergence is
kept constant, detectability of the change worsens when
the data dimension P increases. This can hinder detec-
tion even at dimensions as low as P = 10 [1]. Another
issue arises when the data dimensions P exceeds the
sample size N. If one wishes to use hypothesis testing
to test for homogeneity, naive calculations of familiar
test statistics such as the Hotelling’s t-squared statis-
tic are prohibitive. Several approaches tackle multivari-
ate data by incorporating a dimensionality reduction
step [25,26], but these either project the data onto a
single dimension or require the user to select the re-
duced dimensionality.

Our main contribution is to successfully integrate
sparse Bayesian blind source separation with a change
detection framework. No previous work on latent vari-
able modeling explicitly considered source signals with
unconstrained mean changes. Bayesian variations of
principle component analysis (PCA) are capable of au-
tomatic dimensionality selection [4,28], and shrinkage
priors also achieve desirable properties in trend filter-
ing [19]. In our Bayesian latent model, we use horse-
shoe priors to recover the lower-dimensional source sig-
nals and to simultaneously model the change points.
The two tasks complement each other since the source
signals exhibit changes. We propose ABACUS, Auto-
matic BAyesian Changepoint Under Sparsity, an auto-
matic procedure that simultaneously detects additive
outliers and level shifts via estimating components from
the source separation problem. Figure 1 gives an ex-
ample where ABACUS recovers the true latent change
space of size three by estimating values in the appro-
priate dimensions of M and S to zero, and ABACUS
also locates relevant change points. We show through
simulations and real data applications that ABACUS
achieves better performance in both change detection
and source recovery.

2 Related Works

Authors of [6] formulated multivariate change detection
as a group fused Lasso, and showed empirically that
detection probability approaches one with increasing P
when noise is small. Variants of binary segmentation
produce approximately optimal segmentations by itera-
tively detecting single change points [20,22]. Dynamic
programming with a suitable multivariate goodness-of-
fit metric can recursively the data [27]. The above meth-
ods directly segment the observations and some assume
independence across channels [11,25]. We recover the
latent change space with prior belief that only the latent
signals are independent given model parameters.

Some works use a two-step procedure with compres-
sion onto a low dimension K <« P followed by change
detection. Projection onto one dimension enables uni-
variate change detection [11]. For K > 1, [23] applies
univariate change detection on each latent signal after
Independent Component Analysis (ICA). Fixed or time-
varying random projection is paired with hypothesis
testing [26]. Using compressive measurements, where
the projection matrix is a random projection or drawn
from a Gaussian ensemble, [2] derives the number of ob-
servations required for a target detection delay. For the
above methods, the user has to specify the compression
ratio through K. Our proposed method ABACUS is
more robust to the specification of K due to automatic
dimensionality selection by our sparsity assumptions.
In contrast to the latent variable model that we employ,
these methods also ignore estimating the mixing matrix.

Bayesian approaches in change detection typically
rely on using indicator variables to denote the presence
of change points. The BCP method [3,10] assumes that
observations in each segment are independent and iden-
tically distributed as Gaussian, and updates posterior
segment means conditional on the segmentation at each
iteration of an MCMC scheme. A uniform prior U(0, q)
is put on the change point probabilities, and the user
tunes the chances of discovering shorter or longer seg-
ments through ¢. In [13], given the segmentation in-
formed by the indicator variables, a Wilcoxon rank sum
test is performed at each index of the data and the re-
sulting p-values are modeled as a Beta-Uniform mixture.
The data likelihood is written as a composite marginal
likelihood of the p-values. The formulation makes no
assumption on the distributional form of the data.

ABACUS similarly utilizes the sparsity of changes
by applying horseshoe priors, modeling the presence
and absence of changes, but also the change directions
and magnitudes. We utilize the horseshoe prior as it is
known for robustness and superior shrinkage properties
[7]. Empirically, differences in neighboring non-change
location means are effectively shrunk to zero.
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3 Problem Formulation

We observe Y € RP*N | a P-dimensional data stream of
length N. Each column take the form Y., = MS.,,+E.,,
where M € RF*X" is the mixing matrix, S., is the r-
dimensional source signal, and F.,, is the P-dimensional
noise vector, at index n. This is the general formulation
of the cocktail party problem with P microphones and
r conversations observed for NV time points. Here, Y is
not necessarily a time series, but data which are indexed
sequentially. S is assumed to have full row rank.

We assume that the source signals are piecewise
constant. Each segment can be of any length, and adja-
cent segments have different means. Latent variables are
driven by the same underlying system state, and hence
may share change locations, but change directions and
magnitudes are not necessarily the same. We assume
that the linearly-mixed signals are corrupted by inde-
pendent Gaussian noise, but noise variances are not nec-
essarily the same across channels. In the cocktail party
analogy, this means that each microphone is subject to
a different amount of noise due to the environment and
microphone quality. The Gaussian assumption is stan-
dard in parametric change detection models [3,22,26].

We aim to decompose Y into its components with-
out further information. Although the decomposition
solution is not unique, [12] reports that sparsity formu-
lations in their Bayesian latent variable model helped
to stabilize fitting. We similarly apply multiple levels of
sparsity in our model, as described in the next section.

4 Proposed Method: ABACUS

We introduce our Bayesian data model and estimation
method, as well as our change detection approach which
makes use of MCMC posterior samples.

4.1 A Bayesian Latent Variable Model We de-
compose source signals further into components consist-
ing of either additive outliers (AO) or level shifts (LS).
Additive outliers are abrupt mean changes lasting for
only one index, while level shifts persist for two or more
indices. This decomposition allows us to naturally dis-
tinguish between the two types of changes, such that
they can be studied separately, e.g., a user may remove
additive outliers and retain level shifts for analysis. Let
K be a user-specified upper bound for rank(S) = r such
that r < K < P. Then our modified formulation is

Y, = MS.,, + E.,
Sp=S89 4+ 5WM
$O — y© 4nq ASH — y D

where M is the P x K mixing matrix, S is the K x N
source signal matrix, E is the P x N error matrix,

S and SM are the K x N component matrices of
S consisting AO and LS respectively, V() and V(1)
are K x N ‘sparse’ matrices, and A is the differencing
operator. The diagonal covariance matrix of E., is
denoted by ¥ = diag (v), so E.,, ~ N(0, U).

We place sparse group priors on the columns of M
and rows of V() and V() for dimensionality reduction
of the latent space. Furthermore, we place sparse group
priors on the columns of V(®) and V() to select a subset
of indices as change locations. We also use elementwise
sparsity on V() and V(1 to allow sparse changes for
each latent variable.

We choose to use horseshoe priors because the
horseshoe-shaped shrinkage profile discovers null values
without diminishing strong signals. [7]. We extend the
global-local shrinkage hierarchy to impose sparsity in
the model at the element and group level.

Forl1<i<Pandl<h<Kandl1l<n<N and
d € {0,1}, we set priors as
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where N() denotes the Gaussian distribution and I'~*()
denotes the Inverse Gamma distribution. Marginally,
the shrinkage parameters (% d) ¢(d and v(d) are
half-Cauchy, as in the horseshoe setup Given the
shrinkage parameters, we impose the prior belief that
the source signals are independent, but the posterior is
not necessarily so.

Let D be the matrix representation of A such
that §M [DM]" = VO and let D© = I such that
SO = v©O_  Now, we define the expression F =
SST + diag (T(O)T(l))\(o))\(l))_l, which appears below.

For1<i< P,1<n<N,andd € {0,1}, we derive
the full conditionals for the posterior distribution of the
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main model components below. First,

M| ~N(F7'SY;., ¢ F1)

N 1
il ~ T (1 + 5 L+ (Y = MuS)T (Y — Mi.s)>

and for V.%d), the full conditional distribution is
() arreen o] [0
where

B™ = MTw—1 M ([D(d)}

n- n
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We use Gibbs sampling to approximate the poste-
rior. The procedure is easily parallelized. Furthermore,
the number of model components and parameters de-
pend on K and correctly setting a small K can signifi-
cantly reduce computational time.

In our modified Y = M S+ E model, multiple levels
of sparsity regulate the transformations each solution
pair M and S can take to reach a different solution pair,
but we cannot identify the sign and scaling of M and S.
To recover the components and parameters empirically,
we use the median of the posterior samples to provide
robustness against possible movements of the sampling
path between different solutions.

4.2 Change Detection In our data model, V(©) and
V() contain the changes for each latent variable at each
index. The matrices are sparse since only entries which
correspond to changes are nonzero. Let f,(Ld) be the
element with the largest magnitude in V.ﬁf’). At any
index n, f,(Ld) is nonzero if and only if there is a change
of type d in at least one latent variable. Finding all such
indices is equivalent to finding the change locations. We
use the median defined

@gd) = median (ﬁ(ld)>

for robustness with empirical samples.

Since we impose horseshoe priors on V(9 the
entries are shrunk to approximately zero but not exactly
zero. To identify the approximately zero values in the
estimated g%, we apply kernel density estimation on
|9(¥| with a rectangular kernel and set the cutoff to be
at the first minimum in the density function such that
the minimum value is below threshold §. The threshold
ensures that the approximately zero and non-zero values
are sufficiently different. We set § = 10710 for all our
experiments.

5 Implementation

We fit the full Bayesian latent variable model in Section
4.1 by first fitting a partial model. The partial model
differs only in that it does not include S or V(©)
and their associated parameters, and hence we drop
the superscripts when referring to its components and
parameters. Change points cpt detected by the partial
model are a mix of additive outliers (AO) and level shifts
(LS), with the former being detected as two consecutive
mean changes of opposite signs in g. We distinguish
between the two types of changes according to this
observation with Algorithm 1, and produce additive
outliers ¢pt0 and level shifts cptl. We decompose the
estimated components and parameters from the partial
model according to ¢pt0 and cptl, and pass them to
the full model as initialization. For example, V) g
initialized with values from V' at cpt0, and v s
initialized with values from V at cptl.

Algorithm 1: Separating AO and LS changes

Data: Estimated g, ordered change points cpt
Result: Additive outliers cpt0, level shifts cptl

1 cpt0 = eptl = {};

21 =1;

3 while not at end of cpt do

4 condition 1: ¢pt[i + 1] — cpt[i] = 1;
5 condition 2: g corresponding to ¢pt[i] and

cpti + 1] are of opposite signs;

6 if condition 1 and 2 are True then
7 add cpt[i] to cpt0;

8 1=1+2;

9 else
10 add ept[i] to eptl;
11 t=1+1;
12 end
13 end

The partial model is smaller and hence can quickly
estimate components and parameters for initialization.
Empirically, good initialization helps the Gibbs sampler
converge to solutions providing better distinction be-
tween the two types of changes in the full model. The
entire procedure is shown in Figure 2. The final two
boxes in green indicate the final outputs for change de-
tection and source recovery.

6 Simulation Study

We conduct several experiments according to the model
Y = MS + E described in Section 3. We fix the latent
space dimensionality » = 3, and vary N and P. Some
methods require a user-specified K as an estimate for
r, and we test their robustness to K. Entries of M
are drawn independently from Unif(—1,1), and each
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Figure 2: Implementation procedure. From observations Y, a partial model is first fit and its estimations initialize the full Bayesian
model. Final estimates of source signals and change points are obtained from the median of MCMC samples.

noise variance as t; ~ Unif(0.1,5). Given the number
of additive outliers and level shifts, change locations
are sampled uniformly at random from {2,4,6,..., N —
1}.  This ensures that level shifts are at least of
length two and that we do not unintentionally construct
level shifts through consecutive additive outliers. To
construct sparse changes, at each change location, the
number of latent signals experiencing change is selected
uniformly at random. Change magnitudes are drawn
from Unif(1, 5) with a random sign.

We compare ABACUS against state-of-the-art
change detection techniques and popular latent variable
models which are marked by x and o, respectively, in
plots in this section. We use default parameters in soft-
ware packages unless otherwise specified. To find ad-
ditive outliers, the minimum segment length is set to
one where possible. Detected changes are categorized
into additive outliers and level shifts using Algorithm 1
without Condition 2, except for TSO mentioned below
which automatically outputs different types of changes.
For all MCMC procedures, number of iterations is 3000
and burn-in is 500. Each simulation is run 100 times.

Amongst competing multivariate change detection
methods, GFLseg [6] finds candidate mean changes by
group fused Lasso followed by selection via dynamic pro-
gramming. E-divisive [20] uses binary segmentation to
iteratively locate each change point through measuring
between-segment distance by the energy statistic. We
specify its moment index parameter a = 2 to find level
shifts, and min.size = 2 the smallest segment length al-
lowed, which implies E-divisive is unable to find additive
outliers. BCP [10] is a Bayesian method which models
the presence of mean change at each location through
an indicator variable and infers the posterior probability
of change. BCP outputs a set of change points corre-
sponding to each posterior sample, hence for evaluation
we compute the average metric across all these sets. We
also combine BPCA [4] and BCP to obtain a two-step
Bayesian approach to first compress and then detect.

Inspect [25] transforms observations into a univari-
ate series through cumulative sum transformation be-
fore applying wild binary segmentation. We also test
three univariate methods by first applying PCA to
the observations. PELT [18] is a popular paramet-
ric approach that uses dynamic programming to effi-
ciently find the segmentation that minimizes the nega-
tive log-likelihood plus a penalty. We refer to the non-
parametric version as np-PELT, which uses the empir-
ical distribution instead [14]. A third method, TSO,
jointly estimates ARIMA model parameters and change
effects due to additive outliers and level shifts [8].

To fit the latent variable model, we tested against
well-established methods including Independent Com-
ponent Analysis (ICA), Factor Analysis (FA) and
Bayesian Principal Component Analysis (BPCA). Note
that ICA and FA do not impose sparsity assumptions,
whereas BPCA imposes sparsity on the columns of M.
For ICA, we use the FastICA implementation which
measures non-Gaussianity using negentropy [16]. For
FA, we use the factanal function in R [24] which auto-
matically checks for identifiability given K and does not
fit a model if K is too large to fit a unique model.

6.1 Evaluation Criteria We evaluate the detection
of additive outliers and level shifts separately since some
competing methods [20] detect one but not the other.
We report precision and recall, and treat an estimate as
accurate if it is within w of a true change location. We
set w = 1 for the small sample experiment in Section
6.2, and w = 3 for the larger sample experiments in
Section 6.3 and 6.4.

We evaluate the quality of model recovery through
components M and S, and noise variance parameter
1. Given true mixing matrix M and estimate M, we
center and scale each row of the matrices and measure
their dissimilarity using the squared trace metric in [12],

1 o~
e = 5517 (MMT - M]\//IT) .
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The metric €/ is invariant to orthogonal rotation and
allows cases where either MM7T or MMT is singular.
Next, given true source signals S and estimate S we
measure their dissimilarity using a variation of averaged
squared Euclidean distance

T

€s = %Z(l — |pil)

i=1

where p; is the Pearson correlation coefficient between
S;. and some S;., and each pair is found greedily by
descending magnitude of correlation. This measure is
invariant to sign and label switching. Finally, given
true noise variance ¢ and estimate 1, the difference is
measured by their scaled squared norm

1 ~
B =5lv = dl3

6.2 Simulation 1: Variations in P We test the
case of small sample size N = 100 and varying P €
{10, 30,60,90,110}. Each sample has two additive
outliers and two level shifts, and K is set to 5.

Competing methods have high precision but low re-
call on additive outliers. An additive outlier is difficult
to detect in low signal-to-noise ratio settings especially
since the change only lasts for one time unit. ABACUS
has comparatively high recall at the cost of a slight re-
duction in precision. The trade-off can be adjusted, for
instance by changing the cutoff threshold for classifying
change points. As P increases in Figure 3, ABACUS
can locate most of the additive outliers, and is one of
the best-performing methods for level shifts. Both pre-
cision and recall on level shifts decrease as P increases
for BCP, possibly because parameters such as the prior
on change probabilities need to be adjusted. BPCA +
BCP has more consistent performance, indicating the
advantage of detecting changes on latent signals. In
terms of model recovery, our method also gives the low-
est errors for M, S and v, see Figure 4.

6.3 Simulation 2: Variations in N We fix P = 10
and vary N 6 {600, 800, 1000, 1200, 1400 1600}. Each
sample has ﬁ additive outliers and 100 level shifts,
and K is set to 5. Performance of all methods is
consistent across IV, as shown in Figures 5 and 6. BCP
shows deteriorating performance in detecting level shifts
just as it did in Section 6.2, again possibly because
model parameters need to be adjusted according to the
sample size. Overall, ABACUS offers the best balance
of precision and recall on additive outliers while all other
competing change detection methods tend to miss them.
ABACUS has the highest recall for level shifts, and
almost always has the lowest errors for model recovery.

6.4 Simulation 3: Variations in K We fix P =10
and N = 1000. Each sample has ten additive outliers
and ten level shifts. We vary the user-specified estimate
of the latent space dimensionality K between 2 and 9.
The true dimensionality r is 3. The horizontal lines in
Figures 7 and 8 correspond to results of methods which
do not have the parameter K. According to Figure 7,
the change detection results of ABACUS are consistent
across K. From Figure 8, ABACUS has much more
consistent error e€g in S compared to competing latent
variable models, whose €g increases sharply at K > r.

7 Application to Real Data

In both data applications below we set K = 5 and also
study the robustness of ABACUS to different K values.

7.1 aCGH Data Array-based comparative genomic
hybridization (aCGH) is a technique for studying copy
number alterations in event of diseases. We obtain the
dataset from the R package ecp [17], which has already
removed sequences with more than 7% missing values,
and leaves 43 samples of different individuals with
bladder tumor. Each sample has 2215 probes measuring
the log2 ratio between the number of transcribed DNA
copies from tumorous cells and from a healthy reference
[13]. A negative ratio indicates deletion, a positive
ratio indicates amplification, and zero indicates an
unaltered segment. We expect shared change locations
for individuals with the same medical condition.

To reduce computations and ease visualization, we
thin the samples by taking every 20*" value. We arrive
at a dataset with P = 43 and N = 111. ABACUS takes
approximately one minute to run on a standard desktop
computer, and finds three additive outliers and seven
level shifts. An additive outlier here indicates a shorter
segment of genetic aberration compared to a level shift.

Above 99% of the variance of our estimated latent
signals can be explained by four principal components,
while those from ICA and FA require all five. In Figure
9, the third signal recovered exhibits no evident changes.
We map the four other signals to unique sets of genetic
aberrations in different tumor stages in Table 1. For
instance, patients with concurrent genetic aberrations
on chromosome arms 2q, 3q and 20p/q tend to be in
stage pT1, hence the changes detected can be indicative
of diseases for new patients. The mapping is established
based on a bladder tumor research article [5] which lists
the frequent genomic alterations by chromosome arm
in stages pT,, p11 and pTh_4. Stages are determined
pathologically depending on tumor size and location.

ABACUS performs consistently across different K.
Figure 10 shows that for K € {10, 15,20, 25,30}, the
change points and latent source signals recovered are
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Figure 3: Average errors in change detection as data dimensionality P is varied; N = 100 and K = 5 are fixed.
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Figure 7: Average errors in change detection as estimated latent space dimensionality K is varied; fixed N = 1000 and P = 10.
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Figure 8: Average errors in model recovery as latent space dimensionality parameter K is varied; N = 1000 and P = 10 are fixed.
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Figure 9: aCGH: Latent source signals (1-5) recovered (black),

and additive outliers (red) and level shifts (blue) detected. Gray
lines indicate the boundaries between chromosome pairs.

S | Chromosome arm with changes | Tumor stage

1| 2q, 3q, 20p/q T

2 | 17p/q, 18p/q, 19p/q, 20p/q pTh

4 | 10q Pla, pTh, PTo—4
5 | 11p, 20p/q pTa4

Table 1: aCGH: Genetic aberrations corresponding to changes
detected on latent source signals. To read the table, 20p is the
short arm of chromosome 20, and 20q is the long arm. Tumor
stages range from a, 1 to 4 in order of severity.

very similar to those found with K = 5.

7.2 Electric Power Consumption Data This
dataset contains per-minute measurements of electric
power consumption in one household and is available on
the UCI Machine Learning Repository [9]. The data has
seven dimensions: global active power (GAP), global re-
active power (GRP), voltage (V), global intensity (GI),
and three sub-meterings for the kitchen (S1), laundry
room (S2) and heating system (S3). We expect shared
change points since the channels are related arithmeti-
cally, and some electrical appliances tend to be used
simultaneously. For instance, %GAP —S1-S52-S3
is the power consumed by appliances outside of the sub-
metered zones. We analyze a full day’s worth of data,
that is, the observation matrix has P = 7 and N = 1440.
ABACUS takes approximately fifteen minutes to run on
a standard desktop computer.

The data does not follow our model assumptions
exactly since the amount of fluctuations or noise is more
significant in the first half of the day and there are
minor trend changes in the second, but ABACUS is
robust and with post-processing it finds one additive
outlier and sixteen level shifts. We post-process by
dynamic programming to prune the initially estimated

30 v g . wee R e —
gg .e .o cens %82
xlg s - o see ggg
B5i__ee s o sesm 80:5
3 10 17 10 15 20 25 30
Chromosome K

(a) Additive outliers (red) (b) Average correlation to la-
and level shifts (blue) tent signals at K =5

Figure 10: aCGH: Changes and latent source signals recovered
by ABACUS are similar regardless of the specification of K.
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Figure 11: Power: Latent source signals (1-5) recovered (black),
and additive outliers (red) and level shifts (blue) detected.
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Figure 12: Power: Changes and latent source signals recovered
by ABACUS are similar regardless of the specification of K.

level shifts. This is similar to GFLseg [6], except that we
apply the procedure on the latent source signals which
are less contaminated by noise.

The change points are indicative of the household’s
pattern of electricity usage, which concentrates in the
first half of the day as illustrated in Figure 11. The
fourth latent signal reflects the usage fluctuations and
trends which differ across the two halves of the day as
measured by GAP and GI. ABACUS performs consis-
tently across different specifications of K. Figure 12
shows that for K € {2,3,4,6, 7}, the estimated change
points and latent source signals recovered are similar to
those found at K = 5.

Since the sub-meterings S1, S2 and S3 demonstrate
distinct level shifts when the respective appliances are
utilized, we extract ground truths for level shifts by find-
ing positions where these signals deviate from their base
levels. Compared to other change detection methods in
Figure 13 and 14, ABACUS has the best overall perfor-
mance with precision = 1 and recall = 0.889.

8 Conclusion

In this paper, we propose ABACUS, an automatic
change detection procedure which makes use of Bayesian
latent variable modeling. Due to the separation of
additive outlier and level shift effects in the model,

ABACUS{ ¢ ¢¢ [T [T :
GFLseg- X .o wewem se @@ s o e

E-divisive{ ewese ess oo cmmmmes s smmes wese e

BCP{ smes ¢ ¢t = ammes cumms = -

BPCA + BCP-{ +®=tte = ases cssmmmns amms sme  mee
Inspect

PCA + PELT{ #¢ 4+ oo o omn .. .

PCA + mp,PELT- ®s s o5 ®emm om = e m
PCA+TSOd o 4l o 44k iy
0 6 12 18 24

Hour

Figure 13: Power: Additive outliers (red) and level shifts (blue)
estimated vs ground truth level shifts (green).
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Figure 14: Power: Performance in estimating level shifts.

ABACUS naturally identifies these two types of changes
separately, unlike many competing approaches.

In simulations, ABACUS shows competitive or su-
perior performance in both change detection and model
recovery. In two real data applications, ABACUS found
relevant change points and source signals. It is robust
to over-specification of K, an important property since
the true value is rarely known to the user in practice.
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