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a b s t r a c t

Wepropose three newmeasures ofmutual dependence betweenmultiple random vectors.
Each measure is zero if and only if the random vectors are mutually independent. The
first generalizes distance covariance from pairwise dependence to mutual dependence,
while the other two measures are sums of squared distance covariances. The proposed
measures share similar properties and asymptotic distributions with distance covariance,
and capture non-linear and non-monotone mutual dependence between the random vec-
tors. Inspired by complete and incomplete V-statistics, we define empirical and simplified
empirical measures as a trade-off between the complexity and statistical power when
testing mutual independence. The implementation of corresponding tests is demonstrated
by both simulation results and real data examples.
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1. Introduction

Let X = (X1, . . . , Xd) be a set of variables where each component is a random vector, and let X = {X1, . . . , Xn} be a
random sample from FX , the joint distribution of X . We are interested in testing the hypotheses

H0 : X1, . . . , Xd are mutually independent vs. HA : X1, . . . , Xd are dependent.

This problem has many applications, including independent component analysis [16,26], graphical models [8,10,22,23],
naive Bayes classifiers [38,40], causal inference [5,25], etc. It has been studied under different settings and assumptions,
including pairwise (d = 2) and mutual (d → 2) independence, univariate (X1, . . . , Xd ↑ R) and multivariate (X1 ↑
Rp1 , . . . , Xd ↑ Rpd ) components, and more. Here we consider the general case where X1, . . . , Xd are not assumed jointly
normal.

The most extensively studied case is pairwise independence with univariate components (X1, X2 ↑ R). Rank correlation
is considered as a nonparametric counterpart to Pearson’s product–moment correlation [28], including Kendall’s tau [19],
Spearman’s rho [32], etc. Bergsma andDassios [2] proposed a test based on an extension of Kendall’s tau, testing an equivalent
condition to H0. Additionally, Hoeffding [15] proposed a nonparametric test based on marginal and joint distribution
functions, testing a necessary condition to investigate H0.
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For pairwise independence with multivariate components (X1 ↑ Rp1 , X2 ↑ Rp2 ), Székely et al., Székely and Rizzo [37,34]
proposed a test based on distance covariance with fixed p1, p2 and n ↓ ↔ testing an equivalent condition to H0; this has
been extended tomartingale difference divergence in [31]with [17] testing conditionalmean independence. Under the same
setting, Gretton et al. [13] proposed a test based on Hilbert↗Schmidt independence criterion (HSIC), which is 0 if and only
if pairwise independence holds. Further, Székely and Rizzo [35] proposed a t-test based on a modified distance covariance
for the setting in which n is finite and p1, p2 ↓ ↔, testing an equivalent condition to H0 as well.

For mutual independence with univariate components (X1, . . . , Xd ↑ R), one natural way to extend the pairwise rank
correlation to multiple components is to collect the rank correlations between all pairs of components, and examine the
norm (L2,L↔) of this collection. Leung and Drton [21] proposed a test based on the L2 norm with n, d ↓ ↔, and
d/n ↓ ω ↑ (0, ↔), and Han et al. [14] proposed a test based on the L↔ norm with n, d ↓ ↔, and d/n ↓ ω ↑ [0, ↔]. Each
is testing a necessary condition to H0, in general.

The challenging scenario of mutual independence with multivariate components (X1 ↑ Rp1 , . . . , Xd ↑ Rpd ) has not been
well studied. Using a combinatorial formula of Möbius, Genest and Rémillard [12], Genest et al. [11] and Kojadinovic and
Holmes [20] proposed tests based on ranks and Cramér↗von Mises statistics, testing a necessary and sufficient condition to
H0. Bilodeau and Lafaye de Micheaux [3] proposed a test based on characteristic functions under the assumption of normal
margins and made a connection to V-statistics, Beran et al. [1] proposed a test based on half-space probabilities, Bilodeau
and Nangue [4] and Fan et al. [9] proposed tests based on characteristic functions, testing an equivalent condition to H0,
all with fixed d, p1, . . . , pd and n ↓ ↔. Under the same setting, Pfister et al. [30] proposed a test based on d-variable
Hilbert↗Schmidt independence criterion (dHSIC), which originates from HSIC and is 0 if and only if mutual independence
holds. Yao et al. [39] proposed a test based on distance covariance between all pairs of components with n, d ↓ ↔,
testing a necessary condition to H0. Inspired by distance covariance in Székely et al. [37], we propose new tests based on
three measures of mutual dependence, i.e., complete measure, asymmetric measure and symmetric measure, with fixed
d, p1, . . . , pd and n ↓ ↔ in this paper, testing an equivalent condition to H0. All computational complexities in this paper
make no reference to the dimensions d, p1, . . . , pd, as they are treated as constants.

Our measures of mutual dependence involve V-statistics, and are 0 if and only if mutual independence holds. They
belong to energy statistics [36], and share many statistical properties with distance covariance. Our complete measure and
dHSIC [30] both contain V-statistics with a similar structure. The main difference is that Pfister et al. [30] pursue kernel
methods and overcome the computation bottleneck by resampling and Gamma approximation, while we take advantage
of characteristic functions and resort to incomplete V-statistics. Our asymmetric and symmetric measures, and measures
in Bilodeau and Nangue [4] and Fan et al. [9] all use characteristic functions. Themain difference is that Bilodeau and Nangue
[4] and Fan et al. [9] include all pairwise dependences from the Möbius decomposition, while we only consider a subset of
pairwise dependences from it.

The weakness of testing mutual independence by a necessary condition, all pairwise independences, motivates our
work on measures of mutual dependence, which is demonstrated by examples in Section 6: If we directly test mutual
independence based on the measures of mutual dependence proposed in this paper, we successfully detect mutual de-
pendence. Alternatively, if we check all pairwise independences based on distance covariance, we fail to detect any pairwise
dependence, and mistakenly conclude that mutual independence holds probably because the mutual effect averages out
when we narrow down to a pair.

The rest of this paper is organized as follows. In Section 2, we give a brief overview of distance covariance. In Section 3, we
generalize distance covariance to completemeasure of mutual dependence, with its properties and asymptotic distributions
derived. In Section 4, we propose asymmetric and symmetric measures of mutual dependence, defined as sums of squared
distance covariances. We present simulation results in Section 5, followed by synthetic and real data analysis in Section 6;
an accompanying R package EDMeasure [18] is available on CRAN. Finally, Section 7 is the summary of our work. All proofs
have been moved to Appendix.

The following notations will be used throughout this paper. Let (·, . . . , ·) denote a concatenation of (vector) components
into a vector. Let t = (t1, . . . , td), t0 = (t01 , . . . , t

0
d ), X = (X1, . . . , Xd) ↑ Rp, where for each j ↑ {1, . . . , d}, tj, t0j , Xj ↑ Rpj and

p = p1 + · · · + pd is the total dimension.
The assumed ‘‘X ’’ underH0 is denoted by)X = ()X1, . . . ,)Xd), where for each j ↑ {1, . . . , d},)Xj

d= Xj,)X1, . . . ,)Xd aremutually
independent, and X,)X are independent. Let X ↘, X ↘↘ be independent copies of X , i.e., X, X ↘, X ↘↘ iid≃ FX , and)X ↘,)X ↘↘ be independent
copies of)X , i.e.,)X,)X ↘,)X ↘↘ iid≃ F)X .

The Euclidean norm of vector X ↑ Rp is denoted by |X |p. Let the weighted L2 norm ⇐ ·⇐w of complex-valued function ε(t)
be defined by ⇐ε(t)⇐2

w =
[
Rp |ε(t)|2w(t) dt where |ε(t)|2 = ε(t)ε(t), ε(t) is the complex conjugate of ε(t), and w(t) is any

positive weight function for which the integral exists.
Given the iid sample X from FX , let Xj = {Xk

j : k ↑ {1, . . . , n}} denote the corresponding iid sample from FXj , with
j ↑ {1, . . . , d}, such that X = {X1, . . . ,Xd}. Denote the joint characteristic functions of X and)X as

ϑX (t) = E(ei⇒t,X⇑) and ϑ)X (t) =
d]

j=1

E(ei⇒tj,Xj⇑),
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and denote the empirical versions of ϑX (t) and ϑ)X (t) as

ϑn
X (t) = 1

n

n⌊

k=1

ei⇒t,X
k⇑ and ϑn

)X (t) =
d]

j=1

⌋
1
n

n⌊

k=1

ei⇒tj,X
k
j ⇑

⌈
.

For illustration purpose, we make a toy example with two components (d = 2), two dimensions each (p = 4), and two
samples (n = 2), to exemplify the definitions of empirical measures proposed in this paper.

2. Distance covariance

Székely et al. [37] proposed distance covariance to capture non-linear and non-monotone pairwise dependence between
two random vectors (X1 ↑ Rp1 , X2 ↑ Rp2 ). The vectors X1, X2 are pairwise independent if and only if ϑX (t) = ϑX1 (t1)ϑX2 (t2),
for all t , which is equivalent to

[
Rp |ϑX (t) ↗ ϑ)X (t)|2w(t) dt = 0 for all w(t) > 0 if the integral exists. The weight functions of

the form

w0(t,m) =
⌉
K (p1;m)K (p2;m)|t1|p1+m

p1 |t2|p2+m
p2

{↗1

make the integral a finite and meaningful quantity composed of mth moments according to Lemma 1 in [33], where
K (q,m) = 2ϖ q/2ϱ (1 ↗ m/2)/[m2mϱ {(q + m)/2}], and ϱ is the gamma function.

The non-negative distance covariance V(X) is defined by

V
2(X) = ⇐ϑX (t) ↗ ϑ)X (t)⇐2

w0
=

}

Rp
|ϑX (t) ↗ ϑ)X (t)|2w0(t) dt,

where

w0(t) =
⟨
Kp1Kp2 |t1|p1+1

p1 |t2|p2+1
p2

⟩↗1
,

withm = 1 and Kq = K (q, 1), while any following result can be generalized tom ↑ (0, 2). If E|X |p < ↔, then V(X) ↑ [0, ↔),
and V(X) = 0 if and only if X1, X2 are pairwise independent.

The non-negative empirical distance covariance Vn(X) is defined by

V
2
n (X) = ⇐ϑn

X (t) ↗ ϑn
)X (t)⇐

2
w0

=
}

Rp
|ϑn

X (t) ↗ ϑn
)X (t)|

2
w0(t) dt.

Calculating V
2
n (X) via the symmetry of Euclidean distances has the time complexity O(n2). Some asymptotic properties of

Vn(X) are as follows when E|X |p < ↔.

(i) Vn(X)
a.s.↗↓ V(X) as n ↓ ↔.

(ii) Under H0, nV2
n (X) ↭ ⇐ς (t)⇐2

w0
as n ↓ ↔, where ς (t) is a complex-valued Gaussian process with mean zero and

covariance function

R(t, t0) =
⌉
ϑX1 (t1 ↗ t01 ) ↗ ϑX1 (t1)ϑX1 (t

0
1 )

{⌉
ϑX2 (t2 ↗ t02 ) ↗ ϑX2 (t2)ϑX2 (t

0
2 )

{
.

(iii) Under HA, nV2
n (X)

a.s.↗↓ ↔ as n ↓ ↔.

3. Complete measure of mutual dependence

Generalizing the idea of distance covariance, we propose complete measure of mutual dependence to capture non-
linear and non-monotone mutual dependence between multiple random vectors (X1 ↑ Rp1 , . . . , Xd ↑ Rpd ). Such vectors
X1, . . . , Xd are mutually independent if and only if ϑX (t) = ϑX1 (t1) · · · ϑXd (td) = ϑ)X (t), for all t , which is equivalent to[
Rp |ϑX (t) ↗ ϑ)X (t)|2w(t) dt = 0 for all w(t) > 0 if the integral exists. In the following, we will present two weights w1(t),

w2(t), and elaborate on the reason why we disregard w2(t) for computational efficiency later.
We put all components together instead of separating them, and choose the weight function

w1(t) = (Kp|t|p+1
p )↗1.

Definition 1. The complete measure of mutual dependence Q(X) is defined by

Q(X) = ⇐ϑX (t) ↗ ϑ)X (t)⇐2
w1

=
}

Rp
|ϑX (t) ↗ ϑ)X (t)|2w1(t) dt.

We can show an equivalence to mutual independence based on Q(X) according to Lemma 1 in [33].
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Theorem 1. If E|X |p < ↔, then Q(X) ↑ [0, ↔), and Q(X) = 0 if and only if X1, . . . , Xd are mutually independent. In addition,
Q(X) has an interpretation as expectations

Q(X) = E|X ↗)X ↘|p + E|X ↘ ↗)X |p ↗ E|X ↗ X ↘|p ↗ E|)X ↗)X ↘|p.
It is straightforward to estimateQ(X) by replacing the characteristic functions with the empirical characteristic functions

from the sample.

Definition 2. The empirical complete measure of mutual dependence Qn(X) is defined by

Qn(X) = ⇐ϑn
X (t) ↗ ϑn

)X (t)⇐
2
w1

=
}

Rp
|ϑn

X (t) ↗ ϑn
)X (t)|

2
w1(t) dt.

Lemma 1. Qn(X) has an interpretation as a complete V-statistic, viz.

Qn(X) = 2
nd+1

n⌊

k,ϕ1,...,ϕd=1

|Xk ↗ (Xϕ1
1 , . . . , Xϕd

d )|p + 1
n2

n⌊

k,ϕ=1

|Xk ↗ Xϕ|p

↗ 1
n2d

n⌊

k1,...,kd,ϕ1,...,ϕd=1

|(Xk1
1 , . . . , Xkd

d ) ↗ (Xϕ1
1 , . . . , Xϕd

d )|p,

whose naive implementation has the time complexity O(n2d).

With respect to the toy example, the first summation term inQn(X) contains 8 summands |(Xk
1 ↗ Xϕ1

1 , Xk
2 ↗ Xϕ2

2 )|4, for all
k, ϕ1, ϕ2 ↑ {1, 2}, including |(X1

1 ↗ X1
1 , X1

2 ↗ X2
2 )|4 and |(X1

1 ↗ X2
1 , X1

2 ↗ X2
2 )|4.

In view of the definition of distance covariance, it seems natural to define the measure using the weight function

w2(t) = (Kp1 · · · Kpd |t1|p1+1
p1 · · · |td|pd+1

pd )↗1,

which equals w0(t) when d = 2. Given the weight function w2(t), we can define the squared distance covariance of mutual
dependence U(X) = ⇐ϑX (t) ↗ ϑ)X (t)⇐2

w2
and its empirical counterpart Un(X) = ⇐ϑn

X (t) ↗ ϑn
)X (t)⇐

2
w2

, which equal V2(X) and
V

2
n (X) when d = 2. The naive implementation of Un(X) has the time complexity O(nd+1).
The reason to favor w1(t) instead of w2(t) is a trade-off between the moment condition and time complexity. We

often cannot afford the time complexity of Qn(X) or Un(X), and have to simplify them through incomplete V-statistics. An
incomplete V-statistic is obtained by sampling the terms of a complete V-statistic, where the summation extends over only a
subset of the tuple of indices. To simplify by replacing complete V-statistics with incomplete V-statistics, Un(X) requires the
additional dth moment condition E(|X1|p1 · · · |Xd|pd ) < ↔, while Qn(X) does not require any other condition in addition to
the firstmoment condition E|X |p < ↔. Thus, we can reduce the complexity ofQn(X) toO(n2) with aweaker condition, which
makes Q(X) and Qn(X) from w1(t) a more general solution. As an example, suppose X1 = · · · = Xd ↑ R1, then E|X |p < ↔
only requires finite first moment as E|X1| < ↔, while E(|X1|p1 · · · |Xd|pd ) < ↔ requires finite dth moment as E|X1|d < ↔.

Moreover, we define the simplified empirical version of ϑ)X (t) as

ϑn↼
)X (t) = 1

n

n⌊

k=1

ei
/d

j=1⇒tj,Xk+j↗1
j ⇑ = 1

n

n⌊

k=1

ei⇒t,(X
k
1 ,...,Xk+d↗1

d )⇑,

in order to substitute ϑn
)X (t) for simplification, where Xn+k

j is interpreted as Xk
j for k > 0.

Definition 3. The simplified empirical complete measure of mutual dependence Q
↼
n(X) is defined by

Q
↼
n(X) = ⇐ϑn

X (t) ↗ ϑn↼
)X (t)⇐2

w1
=

}

Rp
|ϑn

X (t) ↗ ϑn↼
)X (t)|2w1(t) dt.

Lemma 2. Q
↼
n(X) has an interpretation as an incomplete V-statistic, viz.

Q
↼
n(X) = 2

n2

n⌊

k,ϕ=1

|Xk ↗ (Xϕ
1 , . . . , X

ϕ+d↗1
d )|p + 1

n2

n⌊

k,ϕ=1

|Xk ↗ Xϕ|p

↗ 1
n2

n⌊

k,ϕ=1

|(Xk
1 , . . . , X

k+d↗1
d ) ↗ (Xϕ

1 , . . . , X
ϕ+d↗1
d )|p,

whose naive implementation has the time complexity O(n2).

With respect to the toy example, the first summation term inQ
↼
n(X) contains 4 summands |(Xk

1 ↗ Xϕ
1 , X

k
2 ↗ Xϕ+1

2 )|4, for all
k, ϕ ↑ {1, 2}, including |(X1

1 ↗ X1
1 , X1

2 ↗ X2
2 )|4 but not |(X1

1 ↗ X2
1 , X1

2 ↗ X2
2 )|4.
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Using a similar derivation to Theorems 2 and 5 in [37], some asymptotic distributions of Qn(X),Q↼
n(X) are obtained as

follows.

Theorem 2. If E|X |p < ↔, then, as n ↓ ↔, Qn(X)
a.s.↗↓ Q(X) and Q

↼
n(X)

a.s.↗↓ Q(X).

Theorem3. If E|X |p < ↔, then under H0, we have, as n ↓ ↔, nQn(X) ↭ ⇐ς (t)⇐2
w1

and nQ↼
n(X) ↭ ⇐ς ↼(t)⇐2

w1
, where ς (t), ς ↼(t)

are complex-valued Gaussian processes with mean zero and covariance functions

R(t, t0) =
d]

j=1

ϑXj (tj ↗ t0j ) + (d ↗ 1)
d]

j=1

ϑXj (tj)ϑXj (t
0
j ) ↗

d⌊

j=1

ϑXj (tj ↗ t0j )
]

ϕ⇓=j

ϑXϕ
(tϕ)ϑXϕ

(t0ϕ ),

R↼(t, t0) = 2R(t, t0).

Under HA, we have nQn(X)
a.s.↗↓ ↔ and nQ↼

n(X)
a.s.↗↓ ↔ as n ↓ ↔.

Theorems 2 and 3 are closely connected in the sense that nQn(X), nQ↼
n(X) diverges to infinity under HA as Qn(X),Q↼

n(X)
converges to Q(X),Q↼(X). Furthermore, nQn(X), nQ↼

n(X) converges to a proper random variable under H0, which implies
Qn(X),Q↼

n(X) converges to 0 under H0.
Therefore, a mutual independence test can be proposed based on the weak convergence of nQn(X), nQ↼

n(X) in Theorem 3.
Since the asymptotic null distributions of nQn(X), nQ↼

n(X) depend on FX , they will not be used in practice, and a permutation
procedure will be used to approximate them instead.

4. Asymmetric and symmetric measures of mutual dependence

As an alternative, we now propose the asymmetric and symmetric measures of mutual dependence to capture mutual
dependence via aggregating pairwise dependences. The subset of components on the right of Xc is denoted by Xc+ =
(Xc+1, . . . , Xd), with tc+ = (tc+1, . . . , td) for c ↑ {0, . . . , d ↗ 1}. The subset of components except Xc is denoted by
X↗c = (X1, . . . , Xc↗1, Xc+ ), with t↗c = (t1, . . . , tc↗1, tc+ ) for c ↑ {1, . . . , d ↗ 1}.

We denote pairwise independence by ⇔⇔. The collection of pairwise independences implied by mutual independence
includes ‘‘one versus others on the right’’

{X1 ⇔⇔ X1+ , X2 ⇔⇔ X2+ , . . . , Xd↗1 ⇔⇔ Xd}, (1)

‘‘one versus all the others’’

{X1 ⇔⇔ X↗1, X2 ⇔⇔ X↗2, . . . , Xd ⇔⇔ X↗d}, (2)

and many others, e.g., (X1, X2) ⇔⇔ X2+ . In fact, the number of pairwise independences resulting from mutual independence
is at least 2d↗1 ↗ 1, which grows exponentially with the number of components d. Therefore, we cannot test mutual
independence simply by checking all pairwise independences even with moderate d.

Fortunately, we have two options to test only a small subset of all pairwise independences to fulfill the task. The first one
is thatH0 holds if and only if (1) holds, which can be verified via the sequential decomposition of distribution functions. This
option is asymmetric and not unique, having d! feasible subsets with respect to different orders of X1, . . . , Xd. The second
one is that H0 holds if and only if (2) holds, which can be verified via the stepwise decomposition of distribution functions
and the fact that Xj ⇔⇔ X↗j implies Xj ⇔⇔ Xj+ . This option is symmetric and unique, having only one feasible subset.

To shed light on why these two options are necessary and sufficient conditions to mutual independence, we present the
following inequality that the mutual dependence can be bounded by a sum of several pairwise dependences as

\\\\\\
ϑX (t) ↗

d]

j=1

ϑXj (tj)

\\\\\\
↖

d↗1⌊

c=1

|ϑ(Xc ,Xc+ ){(tc, tc+ )} ↗ ϑXc (tc)ϑXc+ (tc+ )|2.

In consideration of these two options, we test a set of pairwise independences in place of mutual independence, where
we use V

2(X) to test pairwise independence.

Definition 4. The asymmetric and symmetric measures of mutual dependence R(X), S(X) are defined by

R(X) =
d↗1⌊

c=1

V
2{(Xc, Xc+ )} and S(X) =

d⌊

c=1

V
2{(Xc, X↗c)}.

We can show an equivalence to mutual independence based on R(X), S(X) according to Theorem 3 in [37].

Theorem 4. If E|X |p < ↔, then R(X), S(X) ↑ [0, ↔), and R(X), S(X) = 0 if and only if X1, . . . , Xd are mutually independent.
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It is straightforward to estimate R(X), S(X) by replacing the characteristic functions with the empirical characteristic
functions from the sample.

Definition 5. The empirical asymmetric and symmetric measures of mutual dependence Rn(X), Sn(X) are defined by

Rn(X) =
d↗1⌊

c=1

V
2
n {(Xc,Xc+ )} and Sn(X) =

d⌊

c=1

V
2
n {(Xc,X↗c)}.

The implementations of Rn(X), Sn(X) have the time complexity O(n2). Using a similar derivation to Theorems 2 and 5
in [37], some asymptotic properties of Rn(X), Sn(X) are obtained as follows.

Theorem 5. If E|X |p < ↔, then Rn(X)
a.s.↗↓ R(X) and Sn(X)

a.s.↗↓ S(X) as n ↓ ↔.

Theorem 6. If E|X |p < ↔, then under H0, we have, as n ↓ ↔,

nRn(X) ↭
d↗1⌊

j=1

⇐ς R
j {(tj, tj+ )}⇐

2
w0

and nSn(X) ↭
d⌊

j=1

⇐ς S
j {(tj, t↗j)}⇐2

w0
,

where ς R
j {(tj, tj+ )}, ς S

j {(tj, t↗j)} are complex-valued Gaussian processes corresponding to the limiting distributions of nV2
n

{(Xj,Xj+ )}, nV2
n {(Xj,X↗j)}. Under HA, we have nRn(X)

a.s.↗↓ ↔ and nSn(X)
a.s.↗↓ ↔ as n ↓ ↔.

It is surprising to find that the variables V
2
n {(Xc,Xc+ )} defined for all c ↑ {1, . . . , d ↗ 1} are mutually independent

asymptotically, and that the variables V
2
n {(Xc,X↗c)} defined for c ↑ {1, . . . , d} are mutually independent asymptotically

as well, which is a crucial discovery behind Theorem 6. Theorems 5 and 6 are also closely connected in a similar way to
Theorems 2 and 3. Similar to Theorem 3, the asymptotic results in Theorem 6 will not be used, but will be approximated by
a permutation procedure in the tests.

Rn(X), Sn(X) only contain a subset of pairwise dependences from theMöbius decomposition used in [4,9,12], but we still
obtain an equivalent condition to mutual independence. On the one hand,Rn(X), Sn(X) have much lower complexity when
d gets large. On the other hand, we probably cannot narrow down to the smallest pair with significant dependence, while we
can still find clues about the dependence structure. For example, the dependence between X1 and X2 is not directly included
inRn(X), Sn(X), but it is expected to be captured by the dependence between X1 and X1+ included inRn(X), Sn(X). Thus, we
can observe the dependence between X1 and X1+ , but not between X1 and X2 without further investigation.

Alternatively, we can plug in Q(X) instead of V
2(X) in Definition 4 and Qn(X) instead of V

2
n (X) in Definition 5, and

define the asymmetric and symmetric measures J (X), I(X) accordingly, which equal Q(X),Qn(X) when d = 2. The naive
implementations of Jn(X), In(X) have the time complexity O(n4). Similarly, we can replace Qn(X) with Q

↼
n(X) to simplify

them, and define the simplified empirical asymmetric and symmetric measures J
↼
n (X), I↼

n(X), reducing their complexities
to O(n2) without any other condition except the first moment condition E|X |p < ↔. Through the same derivations, we can
show that Jn(X),J ↼

n (X), In(X), I↼
n(X) have similar convergences as Rn(X), Sn(X) in Theorems 5 and 6.

5. Simulation studies

In this section, we evaluate the finite sample performance of proposed measures Qn,Rn, Sn, Jn, In,Q
↼
n,J

↼
n , I↼

n by
performing simulations similar to Székely et al. [37], and compare them with benchmark measures V

2
n [37], BNh, BNd [4],

dHSIC [30], and HL↽ ,HL⇀ [14] respectively in various scenarios. Note that BNh is based on HSIC, BNd is based on distance
covariance, HL↽ is based on Kendall’s ↽ , and HL⇀ is based on Spearman’s ⇀. We also include permutation tests based on
finite-sample extensions of HL↽ ,HL⇀ , denoted by HL↽

n,HL
⇀
n . Moreover, dHSIC is implemented in the R package dHSIC [29]

using the Gaussian kernel with a median heuristic to choose the bandwidth.
We test the null hypothesis H0 with significance level ⇁ = 0.1 and examine the empirical size and power of each

measure. In each scenario, we run 1000 repetitions with the adaptive permutation size B = ↙200 + 5000/n∝ where n is the
sample size, for all empirical measures that require a permutation procedure to approximate their asymptotic distributions,
i.e., Qn,Rn, Sn,Jn, In,Q

↼
n,J

↼
n , I↼

n,V
2
n , BN

h, BNd, dHSIC,HL↽
n,HL

⇀
n .

In the following two examples, we fix d = 2 and change n from 25 to 500, and compare Qn,Rn, Sn,Jn, In,Q
↼
n,J

↼
n , I↼

n to
V

2
n .

Example 1 (Pairwise Multivariate Normal). X1, X2 ↑ R5, (X1, X2)′ ≃ N10(0, ↪), where ↪ii = 1. Under H0, ↪ij = 0, i ⇓= j.
Under HA, ↪ij = 0.1, i ⇓= j. The results are in Tables 1 and 2.

Example 2 (PairwiseMultivariate Non-normal). X1, X2 ↑ R5, (Y1, Y2)′ ≃ N10(0, ↪), where↪ii = 1. X1 = ln(Y 2
1 ), X2 = ln(Y 2

2 ).
Under H0, ↪ij = 0, i ⇓= j. Under HA, ↪ij = 0.4, i ⇓= j. The results are in Tables 3 and 4.
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Table 1
Empirical size (⇁ = 0.1) in Example 1 with 1000 repetitions and d = 2.

n V2
n ,Rn,Sn Qn,Jn,In Q↼

n,J
↼
n I↼

n

25 0.106 0.102 0.108 0.111
30 0.098 0.115 0.086 0.114
35 0.095 0.101 0.084 0.101
50 0.101 0.101 0.111 0.106
70 0.114 0.109 0.090 0.102

100 0.104 0.105 0.118 0.117

Table 2
Empirical power (⇁ = 0.1) in Example 1 with 1000 repetitions and d = 2.

n V2
n ,Rn,Sn Qn,Jn,In Q↼

n,J
↼
n I↼

n

25 0.273 0.246 0.160 0.182
50 0.496 0.448 0.259 0.300

100 0.807 0.751 0.442 0.514
150 0.943 0.922 0.604 0.720
200 0.979 – 0.749 0.836
300 1.000 – 0.889 0.954
500 1.000 – 0.978 0.995

Table 3
Empirical size (⇁ = 0.1) in Example 2 with 1000 repetitions and d = 2.

n V2
n ,Rn,Sn Qn,Jn,In Q↼

n,J
↼
n I↼

n

25 0.088 0.093 0.091 0.092
30 0.098 0.104 0.108 0.110
35 0.104 0.102 0.104 0.099
50 0.097 0.098 0.093 0.097
70 0.094 0.097 0.089 0.097

100 0.092 0.092 0.114 0.099

Table 4
Empirical power (⇁ = 0.1) in Example 2 with 1000 repetitions and d = 2.

n V2
n ,Rn,Sn Qn,Jn,In Q↼

n,J
↼
n I↼

n

25 0.181 0.185 0.141 0.152
50 0.352 0.339 0.200 0.239

100 0.610 0.607 0.372 0.413
150 0.793 0.792 0.474 0.588
200 0.885 – 0.604 0.711
300 0.989 – 0.803 0.892
500 0.999 – 0.953 0.988

Table 5
Empirical size (⇁ = 0.1) in Example 3 with 1000 repetitions and d = 3.

n BNh BNd dHSIC Qn Q↼
n Rn Sn Jn J ↼

n In I↼
n

25 0.103 0.106 0.097 0.095 0.103 0.093 0.096 0.101 0.100 0.091 0.101
30 0.114 0.106 0.101 – 0.110 0.110 0.114 0.108 0.118 0.111 0.125
35 0.101 0.095 0.090 – 0.108 0.106 0.102 0.109 0.106 0.104 0.092
50 0.098 0.100 0.106 – 0.083 0.113 0.108 0.110 0.090 0.105 0.085
70 0.114 0.102 0.107 – 0.107 0.104 0.104 0.098 0.101 0.108 0.109

100 0.127 0.125 0.099 – 0.085 0.106 0.108 0.104 0.103 0.109 0.096

For both Examples 1 and 2, the empirical size of all measures is close to ⇁ = 0.1. The empirical power of Qn, Rn, Sn, Jn,
In is almost the same as that of V2

n , while the empirical power of Q↼
n,J

↼
n , I↼

n is lower than that of V2
n , which makes sense

because we trade-off testing power and time complexity for simplified measures.
In the following two examples, we fix d = 3 and change n from 25 to 500, and compare Qn, Rn, Sn, Jn, In, Q↼

n, J ↼
n , I↼

n to
BNh, BNd, dHSIC.

Example 3 (Mutual Multivariate Normal). X1, X2, X3 ↑ R5, (X1, X2, X3)′ ≃ N15(0, ↪) where ↪ii = 1. Under H0, ↪ij = 0,
i ⇓= j. Under HA, ↪ij = 0.1, i ⇓= j. The results are in Tables 5 and 6.

Example 4 (Mutual Multivariate Non-normal). X1, X2, X3 ↑ R5. (Y1, Y2, Y3)′ ≃ N15(0, ↪) where ↪ii = 1. Xk = ln(Y 2
k ),

k = 1, 2, 3. Under H0, ↪ij = 0, i ⇓= j. Under HA, ↪ij = 0.4, i ⇓= j. The results are in Tables 7 and 8.
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Table 6
Empirical power (⇁ = 0.1) in Example 3 with 1000 repetitions and d = 3.

n BNh BNd dHSIC Qn Q↼
n Rn Sn Jn J ↼

n In I↼
n

25 0.992 0.998 0.982 0.383 0.220 0.402 0.418 0.360 0.199 0.384 0.228
50 1.000 1.000 1.000 – 0.378 0.707 0.719 0.651 0.338 0.671 0.389

100 1.000 1.000 1.000 – 0.707 0.956 0.961 0.940 0.643 0.946 0.767
150 1.000 1.000 1.000 – 0.873 0.996 0.996 0.993 0.830 0.994 0.921
200 1.000 1.000 1.000 – 0.946 1.000 1.000 – 0.930 – 0.972
300 1.000 1.000 1.000 – 0.997 1.000 1.000 – 0.996 – 0.999
500 1.000 1.000 1.000 – 1.000 1.000 1.000 – 1.000 – 1.000

Table 7
Empirical size (⇁ = 0.1) in Example 4 with 1000 repetitions and d = 3.

n BNh BNd dHSIC Qn Q↼
n Rn Sn Jn J ↼

n In I↼
n

25 0.099 0.105 0.102 0.089 0.098 0.096 0.097 0.096 0.099 0.092 0.108
30 0.092 0.089 0.087 – 0.098 0.102 0.100 0.094 0.099 0.095 0.108
35 0.105 0.104 0.087 – 0.116 0.116 0.122 0.123 0.117 0.123 0.113
50 0.098 0.096 0.107 – 0.091 0.112 0.109 0.102 0.097 0.113 0.088
70 0.127 0.127 0.101 – 0.084 0.103 0.105 0.096 0.112 0.102 0.116

100 0.105 0.103 0.110 – 0.112 0.105 0.105 0.109 0.099 0.104 0.107

Table 8
Empirical power (⇁ = 0.1) in Example 4 with 1000 repetitions and d = 3.

n BNh BNd dHSIC Qn Q↼
n Rn Sn Jn J ↼

n In I↼
n

25 0.285 0.268 0.267 0.289 0.164 0.294 0.287 0.291 0.154 0.287 0.169
50 0.479 0.479 0.441 – 0.280 0.504 0.510 0.490 0.278 0.501 0.320

100 0.768 0.760 0.745 – 0.521 0.824 0.826 0.807 0.498 0.816 0.579
150 0.919 0.929 0.906 – 0.689 0.942 0.942 0.937 0.679 0.941 0.770
200 0.982 0.987 0.963 – 0.838 0.987 0.986 – 0.826 – 0.905
300 0.999 0.999 0.997 – 0.957 0.999 0.999 – 0.956 – 0.982
500 1.000 1.000 1.000 – 1.000 1.000 1.000 — 1.000 – 1.000

Table 9
Empirical size (⇁ = 0.1) in Example 5 with 1000 repetitions and n = 100.

d HL↽ HL⇀ HL↽
n HL⇀

n Q↼
n Rn Sn J ↼

n I↼
n

5 0.076 0.066 0.113 0.105 0.097 0.091 0.091 0.094 0.104
10 0.077 0.070 0.104 0.097 0.107 0.092 0.094 0.119 0.107
15 0.094 0.087 0.116 0.113 0.109 0.093 0.093 0.108 0.100
20 0.077 0.066 0.089 0.089 0.096 0.099 0.118 0.115 0.101
25 0.074 0.058 0.086 0.091 0.097 0.090 0.082 0.095 0.097
30 0.091 0.082 0.110 0.114 0.109 0.092 0.104 0.105 0.109
50 0.080 0.061 0.088 0.087 0.087 0.091 0.088 0.095 0.087

For both Examples 3 and 4, the empirical size of all measures is close to ⇁ = 0.1. The empirical power of Qn, Rn, Sn,
Jn, In is almost the same, the empirical power of Q↼

n, J ↼
n , I↼

n is almost the same, while the empirical power of Q↼
n, J ↼

n , I↼
n is

lower than that ofQn,Rn, Sn, Jn, In, whichmakes sense since we trade-off testing power and time complexity for simplified
measures. BNh, BNd, dHSIC outperform all other measures in normal Example 3, while Qn, Rn, Sn, Jn, In achieve slightly
better performance than BNh, BNd, dHSIC in non-normal Example 4.

To compare the computation time of these measures, we evaluate one case in Example 4 with n = 25 under H0. When
running on Dell PowerEdge 2650 with 16GB RAM using a single core, Rn, Sn, Q↼

n, J ↼
n , I↼

n take 164.09, 117.57, 51.66, 71.39,
94.96 s respectively, while BNh, BNd, dHSIC take 207.16, 204.42, 70.40 s respectively.

In the last example, we change d from 5 to 50 and fix n = 100, and compare Rn, Sn, Q↼
n, J ↼

n , I↼
n to HL↽ , HL⇀ , HL↽

n , HL
⇀
n .

Example 5 (Mutual Univariate Normal High-Dimensional). X1, . . . , Xd ↑ R1. (X1, . . . , Xd)′ ≃ Nd(0, ↪), where ↪ii = 1. Under
H0, ↪ij = 0, i ⇓= j. Under HA, ↪ij = 0.1, i ⇓= j. The results are in Tables 9 and 10.

The empirical size of HL↽ ,HL⇀ is much lower than ⇁ = 0.1 and too conservative, while that of other measures is fairly
close to ⇁ = 0.1. The reason is probably that the convergence to asymptotic distributions of HL↽ ,HL⇀ requires larger sample
size n and number of components d. The measures Rn, Sn have the highest empirical power, and outperform the simplified
measuresQ↼

n,J ↼
n , I↼

n . The empirical power of simplifiedmeasures is similar to or even lower than that of benchmarkmeasures
when d = 5. However, the empirical power of simplifiedmeasures converges much faster than that of benchmarkmeasures
as d grows.
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Table 10
Empirical power (⇁ = 0.1) in Example 5 with 1000 repetitions and n = 100.

d HL↽ HL⇀ HL↽
n HL⇀

n Q↼
n Rn Sn J ↼

n I↼
n

5 0.317 0.305 0.410 0.405 0.298 0.545 0.557 0.245 0.318
10 0.426 0.416 0.500 0.510 0.557 0.896 0.915 0.409 0.497
15 0.513 0.481 0.593 0.602 0.822 0.975 0.982 0.538 0.643
20 0.558 0.534 0.625 0.634 0.924 0.996 0.999 0.586 0.647
25 0.593 0.539 0.645 0.634 0.977 0.999 0.999 0.663 0.689
30 0.605 0.556 0.675 0.664 0.980 1.000 1.000 0.711 0.700
50 0.702 0.641 0.742 0.731 0.998 1.000 1.000 0.775 0.717

Moreover, Q
↼
n shows significant advantage over J

↼
n , I↼

n . The reason is probably that Q
↼
n is based on truly mutual

dependence while J
↼
n , I↼

n are based on pairwise dependences, and large d compared to n introduces much more noise to
J

↼
n , I↼

n because of their summation structures, which makes them more difficult to detect mutual dependence.
The asymptotic analysis of our measures only allows small d compared to n, while our measures work well with large d

compared to n in Example 5. However, this success relies on the underlying dependence structure, which is dense since each
component is dependent on any other component. In contrast, if the dependence structure is sparse as each component is
dependent on only a few of other components, then all measures are likely to fail.

6. Illustrative examples

Westartwith twoexamples comparing differentmethods to show the value of ourmutual independence tests. In practice,
people usually check all pairwise dependences to test mutual independence, due to the lack of reliable and universal mutual
independence tests. It is very likely to miss the complicated mutual dependence structure, and make unsound decisions in
corresponding applications assuming that mutual independence holds.

6.1. Synthetic data

We define a triplet of random vectors (X, Y , Z) on Rq ∞Rq ∞Rq, where X, Y ≃ N (0, Iq),W ≃ E(1/
∈
2), the first element

of Z is Z1 = sign(X1Y1)W and the remaining q↗1 elements are Z2:q ≃ N (0, Iq↗1), and X , Y ,W , Z2:q aremutually independent.
Clearly, (X, Y , Z) is a pairwise independent but mutually dependent triplet.

An iid sample of (X, Y , Z) is randomly generated with sample size n = 500 and dimension q = 5. On the one hand, we
test the null hypothesis H0 : X, Y , Z are mutually independent using proposed measures Rn, Sn, Q↼

n, J ↼
n , I↼

n . On the other
hand, we test the null hypotheses H(1)

0 : X ⇔⇔ Y , H(2)
0 : Y ⇔⇔ Z , and H

(3)
0 : X ⇔⇔ Z using distance covariance V

2
n . An adaptive

permutation size B = 210 is used for all tests.
As expected, mutual dependence is successfully captured, as the p-values of mutual independence tests are 0.0143 (Q↼

n),
0.0286 (J ↼

n ), 0 (I↼
n), 0.0381 (Rn) and 0 (Sn). Meanwhile, the p-values of pairwise independence tests are 0.2905 (X, Y ), 0.2619

(Y , Z), and 0.3048 (X, Z). According to the Bonferroni correction for multiple tests among all the pairs, the significance level
should be adjusted as ⇁/3 for pairwise tests. As a result, no signal of pairwise dependence is detected, and we cannot reject
mutual independence.

6.2. Financial data

Fama and French [6,7] proposed the Fama–French three-factor and five-factor models to explain the stock returns, and
demonstrated that these factors comprising the stock returns are correlated according to long-term market research in
finance. Thus, we apply our tests to a subset of these factors and confirm this argument as an application.

We collect the annual Fama–French five factors in the past 52 years between 1964 and 2015; the data are available
at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. In particular, we are interested in whether
mutual dependence among three factors, X = Mkt-RF (excess return on the market), Y = SMB (small minus big), and Z =
RF (risk-free return) exists, where annual returns are considered as nearly independent observations. Both histograms and
pair plots of X, Y , Z are depicted in Fig. 1.

For one, we apply a single mutual independence testH0 : X, Y , Z are mutually independent. For another, we apply three
pairwise independence tests H(1)

0 : X ⇔⇔ Y , H(2)
0 : Y ⇔⇔ Z , and H

(3)
0 : X ⇔⇔ Z . An adaptive permutation size B = 296 is used

for all tests.
The p-values of mutual independence tests are 0.0236 (Q↼

n), 0.0642 (J ↼
n ), 0.0541 (I↼

n), 0.1588 (Rn) and 0.1486 (Sn),
indicating that mutual dependence is successfully captured. In the meanwhile, the p-values of pairwise independence tests
using distance covariance V

2
n are 0.1419 (X, Y ), 0.5743 (Y , Z) and 0.5405 (X, Z). Similarly, the significance level should be

adjusted as ⇁/3 according to the Bonferroni correction, and thus we cannot reject mutual independence, since no signal of
pairwise dependence is detected.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data%5Flibrary.html
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Fig. 1. Three annual Fama–French factors between 1964 and 2015: Mkt-RF (excess return on the market), SMB (small minus big) and RF (risk-free return).
The correlations are corr(Mkt-RF, SMB)= 0.238, corr(Mkt-RF, RF)= ↗0.161, and corr(SMB, RF)= ↗0.0645. Red lines in the histograms are estimated kernel
densities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Conclusion

Wepropose threemeasures ofmutual dependence for random vectors based on the equivalence tomutual independence
through characteristic functions, following the idea of distance covariance in Székely et al. [37].

When we select the weight function for the complete measure, we trade off between moment condition and time
complexity. Then we simplify it by replacing complete V-statistics by incomplete V-statistics, as a trade-off between testing
power and time complexity. These two trade-offs make the simplified complete measure both effective and efficient. The
asymptotic distributions of our measures depend on the underlying distribution FX . Thus, the corresponding tests are not
distribution-free, and we use a permutation procedure to approximate the asymptotic distributions in practice.

We illustrate the value of ourmeasures through both synthetic and financial data examples, wheremutual independence
tests based on our measures successfully capture the mutual dependence, while checking all pairwise independences as
an alternative independences fails and mistakenly leads to the conclusion that mutual independence holds. Our measures
achieve competitive or even better results than the benchmarkmeasures in simulationswith various examples. Althoughwe
do not allow large d compared to n in asymptotic analysis, ourmeasuresworkwell in a large d example since the dependence
structure is dense. Lastly, it would be interesting to extend current results on continuous variables to categorical variables,
as applied statisticians may rely on such measures to conduct sensitivity analyses [24] correspondingly.
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Appendix

Proof of Theorem 1. By definition, Q(X) =
[
Rp |ϑX (t) ↗ ϑ)X (t)|2w1(t) dt . Since w1(t) is a positive weight function, it is clear

that Q(X) → 0 and that X1, . . . , Xd are mutually independent if and only if Q(X) = 0. By the boundedness property of
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characteristic functions and Fubini’s theorem, we have

|ϑX (t) ↗ ϑ)X (t)|2 = ϑX (t)ϑX (t) + ϑ)X (t)ϑ)X (t) ↗ ϑX (t)ϑ)X (t) ↗ ϑ)X (t)ϑX (t)

= (Ei⇒t,X⇑)E(e↗i⇒t,X⇑) + E(ei⇒t,)X⇑)E(e↗i⇒t,)X⇑) ↗ E(ei⇒t,X⇑)E(e↗i⇒t,)X⇑) ↗ E(ei⇒t,)X⇑)E(e↗i⇒t,X⇑)

= E(ei⇒t,X↗X ↘⇑) + E(ei⇒t,)X↗)X ↘⇑) ↗ E(ei⇒t,X↗)X ↘⇑) ↗ E(ei⇒t,)X↗X ↘⇑)
= E(cos⇒t, X ↗ X ↘⇑) + E(cos⇒t,)X ↗)X ↘⇑) + E(cos⇒t, X ↗)X ↘⇑) + E(cos⇒t,)X ↗ X ↘⇑)
= E(1 ↗ cos⇒t, X ↗)X ↘⇑) + E(1 ↗ cos⇒t,)X ↗ X ↘⇑) ↗ E(1 ↗ cos⇒t, X ↗ X ↘⇑) ↗ E(1 ↗ cos⇒t,)X ↗)X ↘⇑).

Since E|X |p < ↔ implies E|)X |p < ↔, we have E(|X |p + |)X |p) < ↔. Then the triangle inequality implies

max(E|X ↗ X ↘|p, E|)X ↗)X ↘|p, E|X ↗)X ↘|p, E|)X ↗ X ↘|p) < ↔.

Therefore, by Fubini’s theorem and Lemma 1, it follows that

Q(X) =
}

|ϑX (t) ↗ ϑ)X (t)|2 w1(t) dt =
}

E(1 ↗ cos⇒t, X ↗)X ↘⇑)w1(t) dt +
}

E(1 ↗ cos⇒t,)X ↗ X ↘⇑)w1(t) dt

↗
}

E(1 ↗ cos⇒t, X ↗ X ↘⇑)w1(t) dt ↗
}

E(1 ↗ cos⇒t,)X ↗)X ↘⇑)w1(t) dt

= E|X ↗)X ↘|p + E|)X ↗ X ↘|p ↗ E|X ↗ X ↘|p ↗ E|)X ↗)X ↘|p < ↔.

This concludes the argument. ↫

Proof of Lemma 1. After a simple calculation, we have

|ϑn
X (t) ↗ ϑn

)X (t)|
2 = ϑn

X (t)ϑ
n
X (t) ↗ ϑn

X (t)ϑ
n
)X (t) ↗ ϑn

)X (t)ϑ
n
X (t) + ϑn

)X (t)ϑ
n
)X (t)

= 1
n2

n⌊

k,ϕ=1

cos⇒t, Xk ↗ Xϕ⇑ ↗ 2
nd+1

n⌊

k,ϕ1,...,ϕd=1

cos⇒t, Xk ↗ (Xϕ1
1 , . . . , Xϕd

d )⇑

+ 1
n2d

n⌊

k1,...,kd,ϕ1,...,ϕd=1

cos⇒t, (Xk1
1 , . . . , Xkd

d ) ↗ (Xϕ1
1 , . . . , Xϕd

d )⇑ + V

= ↗ 1
n2

n⌊

k,ϕ=1

(1 ↗ cos⇒t, Xk ↗ Xϕ⇑) + 2
nd+1

n⌊

k,ϕ1,...,ϕd=1

{1 ↗ cos⇒t, Xk ↗ (Xϕ1
1 , . . . , Xϕd

d )⇑}

↗ 1
n2d

n⌊

k1,...,kd,ϕ1,...,ϕd=1

{1 ↗ cos⇒t, (Xk1
1 , . . . , Xkd

d ) ↗ (Xϕ1
1 , . . . , Xϕd

d )⇑} + V ,

where V is imaginary and thus 0 as |ϑn
X (t) ↗ ϑn

)X (t)|
2 is real. By Lemma 1 in [33],

Qn(X) = ⇐ϑn
X (t) ↗ ϑn

)X (t)⇐
2
w1

= ↗ 1
n2

n⌊

k,ϕ=1

|Xk ↗ Xϕ|p + 2
nd+1

n⌊

k,ϕ1,...,ϕd=1

|Xk ↗ (Xϕ1
1 , . . . , Xϕd

d )|p

↗ 1
n2d

n⌊

k1,...,kd,ϕ1,...,ϕd=1

|(Xk1
1 , . . . , Xkd

d ) ↗ (Xϕ1
1 , . . . , Xϕd

d )|p.

This concludes the argument. ↫
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Proof of Lemma 2. After a simple calculation, we have

|ϑn
X (t) ↗ ϑn↼

)X (t)|2 = ϑn
X (t)ϑ

n
X (t) ↗ ϑn

X (t)ϑ
n↼
)X (t) ↗ ϑn↼

)X (t)ϑn
X (t) + ϑn↼

)X (t)ϑn↼
)X (t)

= 1
n2

n⌊

k,ϕ=1

cos⇒t, Xk ↗ Xϕ⇑ ↗ 2
n2

n⌊

k,ϕ=1

cos⇒t, Xk ↗ (Xϕ
1 , . . . , X

ϕ+d↗1
d )⇑

+ 1
n2

n⌊

k,ϕ=1

cos⇒t, (Xk
1 , . . . , X

k+d↗1
d ) ↗ (Xϕ

1 , . . . , X
ϕ+d↗1
d )⇑ + V ↼

= ↗ 1
n2

n⌊

k,ϕ=1

{1 ↗ cos⇒t, Xk ↗ Xϕ⇑} + 2
n2

n⌊

k,ϕ=1

{1 ↗ cos⇒t, Xk ↗ (Xϕ
1 , . . . , X

ϕ+d↗1
d )⇑}

↗ 1
n2

n⌊

k,ϕ=1

{1 ↗ cos⇒t, (Xk
1 , . . . , X

k+d↗1
d ) ↗ (Xϕ

1 , . . . , X
ϕ+d↗1
d )⇑} + V ↼,

where V ↼ is imaginary and thus 0 as |ϑn
X (t) ↗ ϑn↼

)X (t)|2 is real. By Lemma 1 in [33],

Q
↼
n(X) = ⇐ϑn

X (t) ↗ ϑn↼
)X (t)⇐2

w1
= ↗ 1

n2

n⌊

k,ϕ=1

|Xk ↗ Xϕ|p + 2
n2

n⌊

k,ϕ=1

|Xk ↗ (Xϕ
1 , . . . , X

ϕ+d↗1
d )|p

↗ 1
n2

n⌊

k,ϕ=1

|(Xk
1 , . . . , X

k+d↗1
d ) ↗ (Xϕ

1 , . . . , X
ϕ+d↗1
d )|p.

This concludes the argument. ↫

Proof of Theorem 2. Define

Qn = ⇐ϑn
X (t) ↗ ϑn

)X (t)⇐
2
w1

∋ ⇐↩n(t)⇐2
w1

and Q
↼
n = ⇐ϑn

X (t) ↗ ϑn↼
)X (t)⇐2

w1
∋ ⇐↩↼

n (t)⇐2
w1

.

For all ( ↑ (0, 1), define the region

D(() = {t = (t1, . . . , td) : ( ↖ |t|2p = |t1|2p1 + · · · + |td|2pd ↖ 2/(}, (3)

and random variables

Qn,( =
}

D(()
|↩n(t)|2w1(t) dt and Q

↼
n,( =

}

D(()
|↩↼

n (t)|2w1(t) dt.

For any fixed (, the weight function w1(t) is bounded on D((). Hence Qn,( is a combination of V -statistics of bounded
random variables. Similar to Theorem 2 in [37], it follows by the Strong Law of Large Numbers (SLLN) for V -statistics [27]
that almost surely

lim
n↓↔

Qn,( = lim
n↓↔

Q
↼
n,( = Q·,( =

}

D(()
|ϑX (t) ↗ ϑ)X (t)|2w1(t) dt.

Clearly Q·,( ↓ Q as ( ↓ 0. Hence, Qn,( ↓ Q a.s. and Q
↼
n,( ↓ Q a.s. as ( ↓ 0 and n ↓ ↔. In order to show Qn ↓ Q

a.s. and Q
↼
n ↓ Q a.s. as n ↓ ↔, it remains to prove that we have almost surely

lim sup
(↓0

lim sup
n↓↔

|Qn,( ↗ Qn| = lim sup
(↓0

lim sup
n↓↔

|Q↼
n,( ↗ Q

↼
n| = 0.
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To this end, define a mixture of )X and X as Y↗c = ()X1, . . . ,)Xc↗1, Xc+ ) for all c ↑ {1, . . . , d ↗ 1}. By the Cauchy–Schwarz
inequality,

|↩n(t)|2 =

\\\\\\
ϑn
X (t) ↗

d]

j=1

ϑn
Xj (tj)

\\\\\\

2

=

\\\\\\
ϑn
X (t) ↗

d]

j=1

ϑn
Xj (tj) ↗

d↗2⌊

c=1

/
\

⎛

c]

j=1

ϑn
Xj (tj)ϑ

n
Xc+

(tc+ )

⎞
⎡

⎤ +
d↗2⌊

c=1

/
\

⎛

c]

j=1

ϑn
Xj (tj)ϑ

n
Xc+

(tc+ )

⎞
⎡

⎤

\\\\\\

2

↖

⎣

⎦|ϑn
X (t) ↗ ϑn

X1 (t1)ϑ
n
X1+

(t1+ )| +
d↗2⌊

c=1

\\\\\\

/
\

⎛

c]

j=1

ϑn
Xj (tj)ϑ

n
Xc+

(tc+ )

⎞
⎡

⎤ ↗

/
\

⎛

c]

j=1

ϑn
Xj (tj)ϑ

n
Xc+1

(tc+1)ϑn
X(c+1)+

(t(c+1)+ )

⎞
⎡

⎤

\\\\\\

⎢

⎥
2

=
⎧

d↗1⌊

c=1

|ϑn
(Xc ,Y↗c )(tc, t↗c) ↗ ϑn

Xc (tc)ϑ
n
Y↗c (t↗c)|

⎫2

↖ (d ↗ 1)
d↗1⌊

c=1

|ϑn
(Xc ,Y↗c )(tc, t↗c) ↗ ϑn

Xc (tc)ϑ
n
Y↗c (t↗c)|2,

and

|↩↼
n (t)|2 =

\\\\\
1
n

n⌊

k=1

ei⇒t,X
k⇑ ↗ 1

n

n⌊

k=1

ei
/d

j=1⇒tj,Xk+j↗1
j ⇑

\\\\\

2

=
\\\\\
1
n

n⌊

k=1

⌋
ei⇒t,X

k⇑ ↗
d↗1⌊

c=2

ei⇒t,(X
k
1 ,...,Xk+c↗1

c ,Xk
c+ )⇑ +

d↗1⌊

c=2

ei⇒t,(X
k
1 ,...,Xk+c↗1

c ,Xk
c+ )⇑ ↗ ei

/d
j=1⇒tj,Xk+j↗1

j ⇑
⌈\\\\\

2

=
\\\\\
1
n

n⌊

k=1

d↗1⌊

c=1

⎩
ei⇒t,(X

k
1 ,...,Xk+c↗1

c ,Xk
c+ )⇑ ↗ ei⇒t,(X

k
1 ,...,Xk+c

c+1 ,Xk
(c+1)+ )⇑

⎭\\\\\

2

↖ (d ↗ 1)
d↗1⌊

c=1

\\\\\
1
n

n⌊

k=1

ei⇒t↗(c+1),(Xk
1 ,...,Xk+c↗1

c ,Xk
(c+1)+ )⇑(ei⇒tc+1,Xk

c+1⇑ ↗ ei⇒tc+1,Xk+c
c+1 ⇑)

\\\\\

2

↖ (d ↗ 1)
d↗1⌊

c=1

⌋
1
n

n⌊

k=1

|ei⇒tc+1,Xk
c+1⇑ ↗ ei⇒tc+1,Xk+c

c+1 ⇑|
2
⌈

↖ (d ↗ 1)
d⌊

c=2

2
n

n⌊

k=1

(|ei⇒tc ,Xk
c ⇑ ↗ ϑXc (tc)|

2
+ |ϑXc (tc) ↗ ei⇒tc ,X

k+c↗1
c ⇑|

2
)

= 4(d ↗ 1)
d⌊

c=2

1
n

n⌊

k=1

|ei⇒tc ,Xk
c ⇑ ↗ ϑXc (tc)|

2
.

By the inequality sa + (1 ↗ s)b → asb1↗s, valid for all s ↑ (0, 1) when a, b > 0, we have

|t|1+p
p = (|tc |2pc + |t↗c |2p↗c )

(1+p)/2 →
⎩
1 + pc
2 + p

|tc |2pc + 1 + p↗c

2 + p
|t↗c |2p↗c

⎭(1+p)/2

→
⎩

|tc |
2(1+pc )
2+p

pc |t↗c |
2(1+p↗c )

2+p
p↗c

⎭(1+p)/2

= |tc |
1+p↗c
2+p +pc

pc |t↗c |
1+pc
2+p +p↗c
p↗c ∋ |tc |mc+pc

pc |t↗c |m↗c+p↗c
p↗c ,

where p↗c = p ↗ pc ,mc ↑ (0, 1),m↗c ↑ (0, 1) and consequently

w1(t) = 1
K (p, 1)|t|1+p

p
↖ K (pc,mc)K (p↗c,m↗c)

K (p, 1)
1

K (pc,mc)|tc |mc+pc
pc

1
K (p↗c,m↗c)|t↗c |m↗c+p↗c

p↗c

∋ C(p, pc, p↗c)
1

K (pc,mc)|tc |mc+pc
pc

1
K (p↗c,m↗c)|t↗c |m↗c+p↗c

p↗c

,

where C(p, pc, p↗c) is a constant depending only on p, pc, p↗c .
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By the fact that Rp \ D(() △ {|tc |2pc , |t↗c |2p↗c < (} ▽ {|tc |2pc > 1/(} ▽ {|t↗c |2p↗c > 1/(} and similar steps as in the proof of
Theorem 2 in [37], we have almost surely

lim sup
(↓0

lim sup
n↓↔

|Qn,( ↗ Qn| = lim sup
(↓0

lim sup
n↓↔

}

Rp\D(()
|↩n(t)|2w1(t) dt

↖ (d ↗ 1)
d↗1⌊

c=1

lim sup
(↓0

lim sup
n↓↔

}

Rp\D(()
|ϑn

(Xc ,Y↗c )(tc, t↗c) ↗ ϑn
Xc (tc)ϑ

n
Y↗c (t↗c)|2w1(t) dt

↖ C(p, pc, p↗c)(d ↗ 1)
d↗1⌊

c=1

lim sup
(↓0

lim sup
n↓↔

}

Rp\D(()
|ϑn

(Xc ,Y↗c )(tc, t↗c)

↗ ϑn
Xc (tc)ϑ

n
Y↗c (t↗c)|2

1
K (pc,mc)|tc |mc+pc

pc

1
K (p↗c,m↗c)|t↗c |m↗c+p↗c

p↗c

dtc dt↗c

= 0

and

lim sup
(↓0

lim sup
n↓↔

|Q↼
n,( ↗ Q

↼
n| = lim sup

(↓0
lim sup
n↓↔

}

Rp\D(()
|↩↼

n (t)|2w1(t) dt

↖ 4(d ↗ 1)
d⌊

c=2

lim sup
(↓0

lim sup
n↓↔

1
n

n⌊

k=1

}

Rp\D(()
|ei⇒tc ,Xk

c ⇑ ↗ ϑXc (tc)|
2
w1(t) dt

↖ C(p, pc, p↗c)4(d ↗ 1)
d⌊

c=2

lim sup
(↓0

lim sup
n↓↔

1
n

n⌊

k=1

}

Rp\D(()
|ei⇒tc ,Xk

c ⇑ ↗ ϑXc (tc)|
2

∞ 1
K (pc,mc)|tc |mc+pc

pc

1
K (p↗c,m↗c)|t↗c |m↗c+p↗c

p↗c

dtc dt↗c

= 0.

Therefore, we have almost surely

lim sup
(↓0

lim sup
n↓↔

|Qn,( ↗ Qn| = lim sup
(↓0

lim sup
n↓↔

|Q↼
n,( ↗ Q

↼
n| = 0,

and the proof is complete. ↫

Proof of Theorem 3. First assume that H0 holds. Let ς (t) denote a complex-valued Gaussian process with mean zero and
covariance function

R(t, t0) =
d]

j=1

ϑXj (tj ↗ t0j ) + (d ↗ 1)
d]

j=1

ϑXj (tj)ϑXj (t
0
j )

d⌊

j=1

ϑXj (tj ↗ t0j )
]

j↘ ⇓=j

ϑXj↘ (tj↘ )ϑXj↘ (t
0
j↘ ).

Define nQn = n⇐ϑn
X (t) ↗ ϑn

)X (t)⇐
2
w1

∋ ⇐ςn(t)⇐2
w1

. After a simple calculation, we find E{ςn(t)} = E{ς ↼
n (t)} = 0 and

E{ςn(t)ςn(t0)} =
⎩
1 ↗ 1

nd↗1

⎭ d]

j=1

ϑXj (tj ↗ t0j ) +
⎨
n ↗ 1 ↗ (n ↗ 1)d

nd↗1

⎬ d]

j=1

ϑXj (tj)ϑXj (t
0
j )

↗ (n ↗ 1)d↗1

nd↗1

/
\

⎛

d⌊

j=1

ϑXj (tj ↗ t0j )
]

j↘ ⇓=j

ϑXj (tj)ϑXj (t
0
j )

⎞
⎡

⎤ + on(1),

which converges to R(t, t0) as n ↓ ↔. In particular, E|ςn(t)|2 ↓ R(t, t) ↖ d as n ↓ ↔, and thus E|ςn(t)|2 ↖ d + 1 for
enough large n.

For all ( ↑ (0, 1), define the region D(() as in (3). Given any ) > 0, we choose a partition {D1((), . . . ,DN (()} of D(() into
N()) measurable sets with diameter at most ), and suppress the notation of D((),Dϕ(() as D,Dϕ. Then for any fixed tϕ ↑ Dϕ

with ϕ ↑ {1, . . . ,N}, we define a sequence of random variables

Qn(() =
N⌊

ϕ=1

}

Dϕ

|ςn(tϕ)|2w1(t) dt.
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For any fixed M > 0, let β()) = supt,t0E||ςn(t)|2↗|ςn(t0)|2|, where the supremum is taken over all t = (t1, . . . , td) and
t0 = (t01 , . . . , t

0
d ) such that

max(|t|2p, |t0|
2
p) ↖ M and |t ↗ t0|2p =

d⌊

j=1

|tj ↗ t0j |
2
p ↖ )2.

By the Continuous Mapping Theorem and ςn(t) ↓ ςn(t0) as ) ↓ 0, we have |ςn(t)|2 ↓ |ςn(t0)|2 as ) ↓ 0. By Lebesgue’s
Dominated Convergence Theorem and the fact that E|ςn(t)|2 ↖ d + 1 for large enough n, we have E||ςn(t)|2↗|ςn(t0)|2| ↓ 0
as ) ↓ 0, which leads to β()) ↓ 0 as ) ↓ 0. Thus as ) ↓ 0,

E
\\\\

}

D
|ςn(t)|2w1(t) dt ↗ Qn(()

\\\\ = E

\\\\\

N⌊

ϕ=1

}

Dϕ

{|ςn(t)|2 ↗ |ςn(tϕ)|2}w1(t) dt

\\\\\

↖
N⌊

ϕ=1

}

Dϕ

E
\\|ςn(t)|2 ↗ |ςn(tϕ)|2

\\w1(t) dt ↖ β())
}

D
1w1(t) dt ↓ 0.

By similar steps in Theorem 2, we have, as ( ↓ 0,

E
\\\\

}

D
|ςn(t)|2w1(t) dt ↗ ⇐ςn⇐2

w1

\\\\ ↓ 0 and E
\\\\

}

D
|ς ↼

n (t)|2w1(t) dt ↗ ⇐ς ↼
n ⇐2

w1

\\\\ ↓ 0.

Therefore, E|Qn(() ↗ ⇐ςn⇐2
w1

| ↓ 0 as ), ( ↓ 0 and E|Q ↼
n (() ↗ ⇐ς ↼

n ⇐2
w1

| ↓ 0 as ), ( ↓ 0.
On the other hand, for any fixed tϕ ↑ Dϕ with ϕ ↑ {1, . . . ,N}, define a random variable

Q (() =
N⌊

ϕ=1

}

Dϕ

|ς (tϕ)|2w1(t) dt.

Similarly, we have E|Q (() ↗ ⇐ς⇐2
w1

| ↓ 0 as ), ( ↓ 0. By the multivariate Central Limit Theorem, the delta method and the
Continuous Mapping Theorem, we have, as n ↓ ↔,

Qn(() =
N⌊

ϕ=1

}

Dϕ

|ςn(tϕ)|2w1(t) dt ↭ Q (() =
N⌊

ϕ=1

}

Dϕ

|ς (tϕ)|2w1(t) dt.

Therefore, ⇐ςn⇐2
w1

↓D⇐ς⇐2
w1

as ), ( ↓ 0, n ↓ ↔, since the Qn(()s have the following properties:

(a) Qn(() converges in distribution to Q (() as n ↓ ↔;
(b) E|Qn(() ↗ ⇐ςn⇐2

w1
| ↓ 0 as ), ( ↓ 0;

(c) E|Q (() ↗ ⇐ς⇐2
w1

| ↓ 0 as ), ( ↓ 0.

Analogous to ς (t), ςn(t), β()), Q ((), Qn(() for Qn, we can define ς ↼(t), ς ↼
n (t), β↼()), Q ↼((), Q ↼

n (() for Q
↼
n, and prove that

⇐ς ↼
n ⇐2

w1
↓D⇐ς ↼⇐2

w1
as ), ( ↓ 0, n ↓ ↔ through the same derivations. The only differences are that

E{ς ↼
n (t)ς ↼

n (t0)} = 2R(t, t0) and E|ς ↼
n (t)|2 = 2R(t, t) ↖ 2d + 1

for large enough n.
Finally, assume that HA holds. By Theorems 1 and 2, we have Qn ↓ Q > 0 a.s. as n ↓ ↔. Therefore, nQn ↓ ↔ a.s. as

n ↓ ↔. Similarly, we can prove that nQ↼
n ↓ ↔ a.s. as n ↓ ↔ through the same derivations. ↫

Proof of Theorem 4. First observe that E|X |p < ↔, and hence 0 ↖ V
2(Xc, Xc+ ) < ↔ for all c ↑ {1, . . . , d ↗ 1}. Thus,

0 ↖ R(X) =
d↗1⌊

c=1

V
2(Xc, Xc+ ) < ↔.

Similarly, we have

0 ↖ S(X) =
d⌊

c=1

V
2(Xc, X↗c) < ↔.

We will now show that

R(X) =
d↗1⌊

c=1

V
2(Xc, Xc+ ) = 0 ̸ S(X) =

d⌊

c=1

V
2(Xc, X↗c) = 0 ̸ X1, . . . , Xd are mutually independent.
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First assume that X1, . . . , Xd are mutually independent. Then Xc and Xc+ are independent for all c ↑ {1, . . . , d ↗ 1}. By
Theorem 3 in [37], V2(Xc, Xc+ ) = 0 for all c ↑ {1, . . . , d ↗ 1}. As a result, R(X) = 0. Similarly, we can prove that S(X) = 0,
since Xc and X↗c are independent for all c ↑ {1, . . . , d}.

To show the converse, first assume R(X) = 0, then V
2(Xc, Xc+ ) = 0 for all c ↑ {1, . . . , d ↗ 1}. By Theorem 3 in [37], Xc

and Xc+ are independent, for all c ↑ {1, . . . , d ↗ 1}. Thus, for all t ↑ Rp, we have

ϑ(Xj,Xj+ )(tj, tj+ ) ↗ ϑXj (tj)ϑXj+ (tj+ ) = 0,

where for each j ↑ {1, . . . , d}, ϑXj and ϑXj+ denote the marginal and ϑ(Xj,Xj+ ) denotes the joint characteristic function of Xj
and Xj+ respectively. For all t ↑ Rp, we have

\\\\\\
ϑX (t) ↗

d]

j=1

ϑXj (tj)

\\\\\\
=

\\\\\\
ϑX (t) ↗

d]

j=1

ϑXj (tj) ↗
d↗2⌊

c=1

/
\

⎛

c]

j=1

ϑXj (tj)ϑXc+ (tc+ )

⎞
⎡

⎤ +
d↗2⌊

c=1

/
\

⎛

c]

j=1

ϑXj (tj)ϑXc+ (tc+ )

⎞
⎡

⎤

\\\\\\

↖ |ϑX (t) ↗ ϑX1 (t1)ϑX1+ (t1+ )| +
d↗2⌊

c=1

\\\\\\

c]

j=1

ϑXj (tj)ϑXc+ (tc+ ) ↗
c]

j=1

ϑXj (tj)ϑXc+1 (tc+1)ϑX(c+1)+ (t(c+1)+ )

\\\\\\

↖ |ϑX (t) ↗ ϑX1 (t1)ϑX1+ (t1+ )| +
d↗2⌊

c=1

\\\\\\

c]

j=1

ϑXj (tj)

\\\\\\
|ϑXc+ (tc+ ) ↗ ϑXc+1 (tc+1)ϑX(c+1)+ (t(c+1)+ )|

↖ |ϑX (t) ↗ ϑX1 (t1)ϑX1+ (t1+ )| +
d↗2⌊

c=1

|ϑXc+ (tc+ ) ↗ ϑXc+1 (tc+1)ϑX(c+1)+ (t(c+1)+ )|

=
d↗1⌊

c=1

|ϑ(Xc ,Xc+ )(tc, tc+ ) ↗ ϑXc (tc)ϑXc+ (tc+ )| = 0.

Therefore, for all t ↑ Rp, we have |ϑX (t) ↗ ⎪d
j=1ϑXj (tj)| = 0, which implies that X1, . . . , Xd are mutually independent.

Similarly, we can prove that S(X) = 0 implies that X1, . . . , Xd are mutually independent, since Xc and X↗c are independent
implies that Xc and Xc+ are independent. ↫

Proof of Theorem 5. By Theorem 2 in [37], we have

lim
n↓↔

V
2
n (Xc,Xc+ ) = V

2(Xc, Xc+ )

for all c ↑ {1, . . . , d ↗ 1}, and
lim
n↓↔

V
2
n (Xc,X↗c ) = V

2(Xc, X↗c)

for all c ↑ {1, . . . , d}. Therefore, as n ↓ ↔, the limit of sum converges to the sum of limit as

Rn(X)
a.s.↗↓ R(X) and Sn(X)

a.s.↗↓ S(X).

This concludes the argument. ↫

Proof of Theorem 6. First assume that H0 holds. Define

nRn(X) = n
d↗1⌊

c=1

V
2
n (Xc,Xc+ ) ∋

d↗1⌊

c=1

⇐ς c
n (t(c↗1)+ )⇐2

w0
,

which is the sum corresponding to the pairs (Xd↗1, Xd), (Xd↗2, (Xd↗1, Xd)), (Xd↗3, (Xd↗2, Xd↗1, Xd) ), . . . , (X1(X2, . . . , Xd)). Any
two of them can be reorganized as (X1, X2) and (X4, (X1, X2, X3)) where X3 could be empty.Without loss of generality, wewill
show that ϑn

(X1,X2)(t1, t2) ↗ ϑn
X1 (t1)ϑ

n
X2 (t2) and ϑn

(X1,X2,X3,X4)(s1, s2) ↗ ϑn
(X1,X2,X3)(s1) ∞ϑn

X4 (s2) are uncorrelated. Then it follows
that the variables ς c

n (t(c↗1)+ ) are uncorrelated for all c ↑ {1, . . . , d ↗ 1}.
After a simple calculation, we find

E
⏐
ϑn
(X1,X2)(t1, t2) ↗ ϑn

X1 (t1)ϑ
n
X2 (t2)

⎝
= E

⏐
ϑn
(X1,X2,X3,X4)(s1, s2) ↗ ϑn

(X1,X2,X3)(s1)ϑ
n
X4 (s2)

⎝
= 0

and

E
⏐
ϑn
(X1,X2)(t1, t2) ↗ ϑn

X1 (t1)ϑ
n
X2 (t2)

⎝⏐
ϑn
(X1,X2,X3,X4)(s1, s2) ↗ ϑn

(X1,X2,X3)(s1)ϑ
n
X4 (s2)

⎝
= 0.

As a result

cov{ϑn
(X1,X2)(t1, t2) ↗ ϑn

X1 (t1)ϑ
n
X2 (t2), ϑ

n
(X1,X2,X3,X4)(s1, s2) ↗ ϑn

(X1,X2,X3)(s1)ϑ
n
X4 (s2)} = 0.
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Let p(c↗1)+ = pc + · · · + pd. For all ( > 0, define the region

Dc(() =
⎧
t(c↗1)+ = (tc, tc+ ) = (tc, . . . , td) : ( ↖ |t(c↗1)+|2p(c↗1)+

=
d⌊

j=c

|tj|2pj ↖ 2/(

⎫
.

Given arbitrary ) > 0, we choose a partition {D1
c , . . . ,D

Nc
c } of Dc(() into Nc()) measurable sets with diameter at most ), and

define a sequence of random variables for any fixed tϕ(c↗1)+ ↑ Dϕ
c with ϕ ↑ {1, . . . ,Nc} as

Q c
n (() =

Nc⌊

ϕ=1

}

Dϕ
c

|ς c
n (t

ϕ
(c↗1)+ )|

2
w0(t) dt.

Let ς c(t(c↗1)+ ) = ς c(tc, tc+ ) denote a complex-valued Gaussian process with mean zero and covariance function

Rς
c (t(c↗1)+ , t0(c↗1)+ ) =

⎧
ϑXc (tc ↗ t0c ) ↗ ϑXc (tc)ϑXc (t0c )

⎫⎧
ϑXc+ (tc+ ↗ t0c+ ) ↗ ϑXc+ (tc+ )ϑXc+ (t0c+ )

⎫
.

By the multivariate Central Limit Theorem, the delta method and the Continuous Mapping Theorem, we have
⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎟

Q 1
n (() ↗

N1⌊

ϕ=1

}

Dϕ
1

|ς 1(tϕ)|2w0(t) dt

...

Qd↗1
n (() ↗

Nd↗1⌊

ϕ=1

}

Dϕ
d↗1

|ς d↗1(tϕ(d↗2)+ )|
2
w0(t) dt

⟨

⟩⟩⟩⟩⟩⟩⟩⟩⨆

↭

⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎟

N1⌊

ϕ=1

}

Dϕ
1

|ς 1(tϕ)|2w0(t) dt

...
Nd↗1⌊

ϕ=1

}

Dϕ
d↗1

|ς d↗1(tϕ(d↗2)+ )|
2
w0(t) dt

⟨

⟩⟩⟩⟩⟩⟩⟩⟩⨆

as n ↓ ↔ with asymptotic mutual independence. Thus, the variables Q 1
n ((), . . . ,Qd↗1

n (() are asymptotically mutually
independent. By similar steps in the proof of Theorem 5 in [37], we have E|Q c

n (() ↗ ⇐ς c
n (t(c↗1)+ )⇐2

w0
| ↓ 0 for all c ↑

{1, . . . , d ↗ 1} as ), ( ↓ 0. Hence
⎠

⎜⎜⎟

⇐ς 1
n (t)⇐

2
w0

↗ Q 1
n (()

...

⇐ς d↗1
n (t(d↗2)+ )⇐

2
w0

↗ Qd↗1
n (()

⟨

⟩⟩⨆↓P

⎠

⎜⎟
0
...
0

⟨

⟩⨆

as ), ( ↓ 0. By the multivariate Slutsky’s theorem, we also have
⎠

⎜⎜⎟

⇐ς 1
n (t)⇐

2
w0

...

⇐ς d↗1
n (t(d↗2)+ )⇐

2
w0

⟨

⟩⟩⨆ ↭

⎠

⎜⎜⎟

⇐ς 1(t)⇐2
w0

...

⇐ς d↗1(t(d↗2)+ )⇐
2
w0

⟨

⟩⟩⨆

as ), ( ↓ 0 and n ↓ ↔ with asymptotic mutual independence. Therefore, there is asymptotic mutual independence
between the variables ⇐ς c

n (t(c↗1)+ )⇐2
w0

defined for all c ↑ {1, . . . , d ↗ 1}. Furthermore, as n ↓ ↔,

d↗1⌊

c=1

⇐ς c
n (t(c↗1)+ )⇐2

w0
↭

d↗1⌊

c=1

⇐ς c(t(c↗1)+ )⇐2
w0

.

Analogous to ς c
n (t(c↗1)+ ), ς c(t(c↗1)+ ), R

ς
c (t(c↗1)+ , t0(c↗1)+ ) for Rn(X), we can define εc

n(t), εc(t), Rε
c (t, t0) for Sn(X), and

prove through similar derivations that the variables ⇐εc
n(t)⇐2

w0
defined for all c ↑ {1, . . . , d} are asymptotically mutually

independent, and that as n ↓ ↔,
d⌊

c=1

⇐εc
n(t)⇐2

w0
↭

d⌊

c=1

⇐εc(t)⇐2
w0

.

The only difference is that one now needs to show that the variables ϑn
(X1,X2,X3)(t1, t2, t3) ↗ ϑn

X1 (t1)ϑ
n
(X2,X3)(t2, t3) and

ϑn
(X1,X2,X3)(s1, s2, s3) ↗ ϑn

X2 (s2)ϑ
n
(X1,X3)(s1, s3) are asymptotically uncorrelated.

Finally, suppose that HA holds. By Theorem 4, we then have Rn ↓ R > 0 a.s. as n ↓ ↔. Therefore, nRn ↓ ↔ a.s. as
n ↓ ↔. Similarly, we can prove that nSn ↓ ↔ a.s. as n ↓ ↔ through the same derivations. Further note that under HA,
the variables ς c

n (t(c↗1)+ ) defined for all c ↑ {1, . . . , d ↗ 1} are not asymptotically uncorrelated, and that the variables εc
n(t)

defined for all c ↑ {1, . . . , d} are not asymptotically uncorrelated. ↫
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Complete measure of mutual dependence using weight function w2. Except that Un(X) requires the additional dth moment
condition E(|X1|p1 · · · |Xd|pd ) < ↔ to be simplified, U(X) is in an extremely complicated form. Even when d = 3, U(X)
already has 12 different terms as follows:

U(X) = ⇐ϑX (t) ↗ ϑ)X (t)⇐2
w2

= ↗E|X1 ↗ X ↘
1|p1 |X2 ↗ X ↘

2|p2 |X3 ↗ X ↘
3|p3 + 2E|X1 ↗ X ↘

1|p1 |X2 ↗ X ↘↘
2 |p2 |X3 ↗ X ↘↘↘

3 |p3
↗ E|X1 ↗ X ↘

1|p1E|X2 ↗ X ↘
2|p2E|X3 ↗ X ↘

3|p3
+ E|X1 ↗ X ↘

1|p1 |X2 ↗ X ↘
2|p2 + E|X1 ↗ X ↘

1|p1 |X3 ↗ X ↘
3|p3 + E|X2 ↗ X ↘

2|p2 |X3 ↗ X ↘
3|p3

↗ 2E|X1 ↗ X ↘
1|p1 |X2 ↗ X ↘↘

2 |p2 ↗ 2E|X1 ↗ X ↘
1|p1 |X3 ↗ X ↘↘↘

3 |p3 ↗ 2E|X2 ↗ X ↘↘
2 |p2 |X3 ↗ X ↘↘↘

3 |p3
+ E|X1 ↗ X ↘

1|p1E|X2 ↗ X ↘
2|p2 + E|X1 ↗ X ↘

1|p1E|X3 ↗ X ↘
3|p3 + E|X2 ↗ X ↘

2|p2E|X3 ↗ X ↘
3|p3

= ↗E|X1 ↗ X ↘
1|p1 |X2 ↗ X ↘

2|p2 |X3 ↗ X ↘
3|p3 + 2E|X1 ↗ X ↘

1|p1 |X2 ↗ X ↘↘
2 |p2 |X3 ↗ X ↘↘↘

3 |p3
↗ E|X1 ↗ X ↘

1|p1E|X2 ↗ X ↘
2|p2E|X3 ↗ X ↘

3|p3 +
⌊

1↖i<j↖3

E|Xi ↗ X ↘
i |pi |Xj ↗ X ↘

j |pj

↗ 2
⌊

1↖i<j↖3

E|Xi ↗ X ↘
i |pi |Xj ↗ X ↘↘

j |pj +
⌊

1↖i<j↖3

E|Xi ↗ X ↘
i |piE|Xj ↗ X ↘

j |pj .

In general, the number of different terms in U(X) grows exponentially as d increases. Basically, we will see all combina-
tions of all components in all moments as expectations.
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