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Abstract

The symmetric difference of two graphs G, G2 on the same set of vertices V is
the graph on V' whose set of edges are all edges that belong to exactly one of the two
graphs G1,Gy. For a fixed graph H call a collection G of spanning subgraphs of H
a connectivity code for H if the symmetric difference of any two distinct subgraphs
in G is a connected spanning subgraph of H. It is easy to see that the maximum
possible cardinality of such a collection is at most 25 (H) < 20(H) where k'(H) is
the edge-connectivity of H and §(H) is its minimum degree. We show that equality
holds for any d-regular (mild) expander, and observe that equality does not hold in
several natural examples including any large cubic graph, the square of a long cycle
and products of a small clique with a long cycle.

1 Introduction

The symmetric difference of two graph G = (V, E1) and G2 = (V, E») on the same set of
vertices V' is the graph (V, E1 @ E3) where Ej @ FEj is the symmetric difference between
FEq and Es, that is, the set of all edges that belong to exactly one of the two graphs.

An intriguing variant of the well studied theory of error correcting codes (see, e.g., [10])
is the investigation of collections G of graphs on the set of vertices V' in which the symmetric
difference of every distinct pair satisfies a prescribed property. The systematic study of
this topic was initiated in [3], see also [2], [6] for two recent subsequent papers. If all
graphs in the collection G are subgraphs of a fixed graph H, and the property considered
is connectivity, we call G a connectivity code for H. Let m(H) denote the maximum
possible cardinality of a connectivity code for H. It is clear that no two distinct members
of such a code G can have exactly the same intersection with the set of edges of any
nontrivial cut of H, implying that m(H) < 2¥() where k'(H) is the edge-connectivity
of H. In [3] it is shown that equality holds if H is the complete graph K,, that is,
m(K,) = 2""%. In [6] it is proved that equality holds also for the 3 by 3 torus C3 x Cj.

This is the (Cartesian) product of two cycles of length 3 in which two vertices are adjacent
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iff they are equal in one coordinate and adjacent in the other. The edge connectivity (and
degree of regularity) here is 4, and it is shown in [6] that m(C3 x C3) = 2% = 16.

Our main result in this note is that for any d-regular graph H satisfying appropriate
expansion properties, m(H) = 2¢.

Theorem 1.1. There exists an absolute constant ¢ so that the following holds. Let d and n
be integers and let H be a d-regular graph on n vertices. Suppose that for every connected
induced subgraph of H on a set W of w < n/2 wvertices, there are at least cwlogd edges
connecting W to its complement. Then m(H) = 2¢, that is, the mazimum cardinality of

a connectivity code for H is 2¢.

We also observe that for several natural examples of d-regular graphs H which are
d-edge-connected, m(H) < 2971, In particular, for all t > 36, m(C3 x Cy) < 8. This
answers a problem suggested in [6].

The proofs are presented in the next sections. Throughout the note, all logarithms are
in base 2, unless otherwise specified. To simplify the presentation we omit all floor and
ceiling signs, whenever these are not crucial.

2 Expanders

In this section we prove Theorem 1.1. We make no attempt to optimize the absolute
constant c in the statement and the related constants in the proofs. The code we construct
is a linear code. This means that the set of graphs in it forms a linear subspace of the
space Z¥ of all subgraphs of H = (V, E), where each subgraph is identified with the
characteristic vector of its set of edges, represented by a binary vector of length |E|. We
start with the following simple lemma.

Lemma 2.1. Let H = (V,E) be a graph. Assign each edge e € E a vector v(e) € F,
where F' is a vector space of dimension r over Zy. Suppose that for every cut (S,V —S) =
{e€e E:enS #0,en(V—25) # 0} the set of vectors {v(e),e € (S,V — S)} spans F.
Then m(H) > 2".

Proof. Choose a basis of r vectors of F and express each vector v(e) as a linear combination
of the elements of this basis. In this expression v(e) is a vector in Zj. For each vector
u € Zj, let G, be the subgraph of H consisting of all edges e € E for which the inner
product of u and v(e) (over Zy ) is nonzero (that is, 1). The symmetric difference of any
two distinct graphs G, and G, consists of all edges e € E for which the inner product of
v(e) with the nonzero vector u @ v’ is nonzero. Since for every cut of H the vectors v(e)
for e in the cut span F', this symmetric difference must have at least one edge in each cut,
implying it is connected. O



Remark: It is not difficult to see that the condition in the last lemma is equivalent to
the existence of a linear connectivity code of size 2" for H. This equivalence is not needed
for our purpose here.

In order to prove Theorem 1.1 using the above lemma our objective is to show that
for any graph H as in the theorem it is possible to assign each edge e a vector v(e) € Z‘Qi
so that the vectors assigned to the edges of each cut of H span Zg. In particular, the
vectors assigned to all edges incident with any single vertex must form a basis. The
expansion properties of the graph ensure that the cuts which are not 1-vertex cuts have
significantly more edges than the 1-vertex cuts, and hence it seems intuitively simpler to
ensure their vectors span the whole space. The rigorous proof is probabilistic, assigning
vectors randomly to most (but not to all) of the edges of H. Since, however, the probability
that d random vectors of Z¢ form a basis is exactly H?Zl(l —27%), which is bounded away
from 1 (indeed smaller than 1/2), special care is needed to ensure that the vectors assigned
to all edges in every 1-vertex cut form a basis. To do so, we do not assign vectors randomly
to all edges, but only to most of them, and complete the assignment using the following

lemma.

Lemma 2.2. Let H = (V, E) be a d-regular graph, let E' be a subset of E and let v(e),e €
E' be an assignment of a vector in Z§ for any edge e € E'. Suppose that for every vertex
u the set of vectors v(e) assigned to all edges in E' that are incident with u is linearly
independent. Then it is possible to complete the given partial assignment by assigning a
vector v(e) € Z5 to every edge e € E — E', so that for every vertex u, the set of vectors
v(e) assigned to all d edges incident with it forms a basis of Z.

Proof. Define the required vectors greedily in an arbitrary order, maintaining the property
that the vectors assigned to all edges incident with any vertex are linearly independent.

24=1 _ 1 nonzero vectors

When we have to assign a vector to an edge uu’ there are at most
that are forbidden in order to ensure that the vectors assigned to edges incident with
w will stay independent. Similarly, «’ forbids at most 2~ — 1 nonzero vectors. Since
2(2971 — 1) < 2% — 1 there is always a way to choose a vector that can be assigned to uu’

maintaining the required property. This completes the proof. O
We also need the following immediate consequence of Petersen’s Theorem.

Lemma 2.3. For every even k and every d > k, any d-reqular graph contains a spanning
subgraph in which every degree is either k or k — 1

Proof. If d is even this follows by a repeated application of Petersen’s Theorem [14] that
asserts that any d-regular (multi)graph contains a 2-factor. If d is odd, add to it a perfect
matching (repeating existing edges if needed), apply the previous case to the resulting
graph, and remove the edges of the added matching chosen to the spanning subgraph. [



The main technical lemma we need for the proof of Theorem 1.1 will be established
using the (asymmetric) Lovész Local Lemma, which we state next.

Lemma 2.4 (The Lovdsz Local Lemma, c.f., [4], Chapter 5). Let A;,i € I be a finite
collection of events in an arbitrary probability space. A dependency graph for these events is
a graph D whose set of vertices is the events A;, where each event is mutually independent
of all the events that are its non-neighbors. Let D be such a dependency graph, and let
N(A;) denote the set of all neighbors of A; in D. Suppose that for each event A; there is

a real number x; € [0,1) so that for each i € I

Prob(A;) < x; H (1—z)
jEI,AjGN(Ai)

Then, with positive probability none of the events A; occurs.

We can now state and prove the main lemma, in which the constants 1000 and 8 can

be easily improved.

Lemma 2.5. Let H = (V, E) be a d-regular graph on a set V' of n vertices, where d > 1000.
Suppose that for every connected induced subgraph of H on a set W of w < n/2 vertices,
there are at least w(8logd + 2) edges connecting W to its complement. Then there is
a spanning subgraph H' = (V,E') of H in which the degree of every vertex is at least
d —3logd — 2 and an assignment of a vector v(e) € Z4 for every edge e € E' so that the
following two properties hold.

1. For every vertex u € V, the set of vectors v(e) assigned to the edges of H' incident

with u is linearly independent.

2. For every integer w, 2 < w < n/2, and for every set W of w vertices so that the
induced subgraph of H on W is connected (in H), the set of vectors v(e) for the
edges e in H' that connect W to its complement span Zg.

Proof. Let k be the smallest even number which is at least d — 3logd — 1. By Lemma 2.3
there is a spanning subgraph H' = (V, E’) of H in which every degree is either k or k — 1.
Thus every degree of H' is at least d — 3logd — 2 and at most d — 3logd.

Fixing this subgraph H’, choose for every edge e of H’, independently, a vector v(e) €
Zg uniformly at random among all 2¢ vectors of Zg (including the 0 vector, to simplify
the computation). To complete the proof we show, using the asymmetric Lovész Local
Lemma (Lemma 2.4 above) that with positive probability this random choice satisfies the
properties stated in the lemma. We proceed with the details.

For each vertex u € V, let A(u) denote the event that the set of random vectors v(e)
assigned to the edges of H’ incident with u are not linearly independent.

For every integer w, 2 < w < n/2, and for every set W of w vertices of H such that
the induced subgraph of H on W is connected (in H), let B(W) denote the event that



the set of vectors v(e) for the edges e in H' that connect W to its complement does not
span Z4. If [W| = w call B(W) an event of type w.
It is not difficult to upper bound the probabilities of these events. For each vertex
ueV,
Prob(A(u)) < 273184, (1)

Indeed, let the edges of H' incident with u be ey, es,...,es, where the numbering is
arbitrary. Then s < d — 3logd. The probability that the vector v(e;) lies in the span of
the previous vectors v(ey),...,v(e;_1) is at most 2°71/2%. The required estimate follows
by summing over all 7, using the fact that s < d — 3logd.

Next we show that for every event B(W) of type w

Prob(B(W)) < 27 4wlosd, (2)

It is convenient to split the possible values of w into two ranges. If 2 < w < d/5 then
every vertex of W has at least d — w + 1 > 0.8d neighbors in H that do not lie in W.
Among these edges, at most 3logd + 2 edges incident with each vertex of W belong to H
and not to H', implying that there are at least w(0.8d —3logd —2) edges of H' connecting

vertices of W to its complement. For every nonzero vector z € Z2d, the probability that all
0.8d—3logd—2)

vectors v(e) corresponding to these edges are orthogonal to z is at most 2~ w(
9~ (d+dwlogd) " where here we used the fact that for d > 1000 and w > 2,

w(0.8d — 3logd — 2) > d + 4wlogd.

The desired estimate for this case follows by the union bound over all 2¢ — 1 < 2¢ choices
for the vector z.

If d/5 < w < n/2 then, by assumption, there are at least w(8logd + 2) edges of H
connecting W and its complement. Among these edges, at most 3log d + 2 edges incident
with each vertex of W belong to H and not to H', implying that there are at least 5w log d
edges of H' that connect W and its complement. For every nonzero vector z € Zgl, the
probability that all vectors v(e) corresponding to these edges are orthogonal to z is at most
9—bwlogd < 9~ (dt+dwlogd) where the last inequality holds since for w > d/5 and d > 1000,
Swlogd > d+4wlogd. The desired estimate follows, as in the previous case, by the union
bound over all 2¢ — 1 < 2¢ choices for the vector z.

In order to apply the local lemma we need to define a dependency graph D for all
events A(u), B(W). To do so we need the known fact (c.f., e.g., [1]) that for every graph
with maximum degree d, for every integer w, and for every vertex u of the graph, the
number of sets of w vertices that contain v and induce a connected subgraph is smaller
than (ed)™. Note that each event A(u) is determined by the random vectors assigned to
the edges of H' incident with it. Similarly, each event B(W) is determined by the random
vectors assigned to the edges of H' connecting W and its complement. It is clear that



the graph on the events in which two events are connected iff the edge sets whose vectors
determine them intersect is a dependency graph.

It follows that each event A(u) is independent of all other events besides at most d
other events A(w') and besides at most d(ed)” < d?* events B(W) of type w, for each
2 < w < n/2. Similarly, each event B(W) of type w is independent of all other events
besides at most wd events of the form A(u) and at most wd(ed)” < wd?" events B(W')
corresponding to sets W of size r, for every 2 < r < n/2. This is because the set of all
edges of H' connecting a vertex in W with one in its complement cover at most w vertices
of W and less than (d — 1)w vertices of its complement, and each such vertex lies in at
most (ed)” subsets of size r that induce a connected subgraph of H.

To apply the local lemma define, for each event A(u), a real z, = 2721084 = d%. For

— 2—3w logd _

each event B(W) of type w, define xyy d?%w. To complete the proof using

Lemma 2.4 it remains to check the following inequalities.

1. For every vertex wu,

Prob(A(u)) < di d2 T dSw o (3)

w>2

2. For every event B(W) of type w

Prob(B(W)) < ——(1 — )4 [[(1 = —)"" (4)

Inequality (3) follows from (1) and the fact that

2w 1 1 1
1_7dH dSwd 2(1_Q)H(1_d7u)Zl_zﬁ>1/2>1/d'

w>2 w>2 w>1

Inequality (4) follows from (2) and the fact that

dw wd?" —2w/d —2w/d" _ 2wy, ~,1/d" —w —w
| (R ) P
r>2 r>2

This completes the proof of the lemma. O

The proof of the main result, Theorem 1.1, follows quickly from the assertion of the

previous lemmas, as shown next.

Proof. Let H = (V,E) be a graph satisfying the assumptions of Theorem 1.1 with, say,
¢ = 100. Note that by the assumption 100logd < d implying that d > 1000. (It is worth
noting also that the proof works, as it is, for ¢ = 9 and the additional assumption that
d > 1000.) By Lemma 2.1 it suffices to show that there is an assignment of a vector
v(e) € Z§ for every edge e € F, so that the vectors assigned to the edges of any cut



(S,V — 8) of H span Z§. Since any cut contains all edges of a cut in which at least one
side induces a connected subgraph of at most half the vertices, it suffices to ensure that
for every such cut the vectors assigned to its edges span Z¢. By Lemma 2.5 there is a
spanning subgraph H’ of H and an assignment of a vector in Z¢ to each of its edges so
that the conclusion of Lemma 2.5 hold. Lemma 2.2 ensures that this partial assignment
of vectors can be completed to an assignment of vectors v(e) € Zg for every edge e of H
so that the vectors assigned to the edges of any 1-vertex cut form a basis. The vectors
assigned to the edges of any other cut still span, of course, Zg, as they contain all vectors
of edges of H' that belong to the cut, which span Zg. This completes the proof. O

3 Graphs admitting only smaller codes

In this section we observe that there are natural classes of d-regular graphs H with edge
connectivity d so that m(H) is strictly smaller than 2¢ (and is in fact at most half of that).
This follows from the following simple lemma.

Lemma 3.1. Let H = (V, E) be a graph, and let E1, Es, ..., Es be sets of edges of H,
where each E; contains at most t edges. Suppose that for every 1 < i < j < s, the set of
edges E; U E; disconnects H, that is, H — (E; U Ej) is disconnected. If s > (2t 4 1)2t~1
then m(H) < 2t

Proof. Let G be a family of 2 + 1 spanning subgraphs of H. We have to show that it
must contain two distinct members whose symmetric difference is disconnected. By the
pigeonhole principle, for each fixed 7, 1 < i < s, there is a pair {Ggi),Géi)} of distinct
members of G that have the same intersection with the set F;. By a second application of
the pigeonhole principle, since s > ('g‘), there are distinct ¢, j so that

a6y = {6765y,

Therefore, the symmetric difference of these two graphs does not contain any edge of
E; U E; and is thus disconnected. ]

We next describe two families of regular graphs for which the above lemma implies
that the maximum size of a connectivity code is strictly smaller than the trivial bound
that follows from the edge-connectivity.

The (Cartesian, or box) product H; x Ha of two graphs Hy = (Vi,E;) and Hy =
(Va, E5) is the graph whose vertex set is the set V3 x Vo where (v1,v2) and (u1,us) are
connected iff either v1 = w1 and we,us are connected in Hs or vo = uo and vy, u; are
connected in Hi.

Proposition 3.2. For every clique K; and cycle Cy, where s > (20 +1)2!=1, the graph
Hy s = K; x Cs is (t + 1)-regular and its edge connectivity is t + 1, but m(Hys) < 2.



Proof. 1t is clear that Hy ¢ is (t + 1)-regular. The fact that its edge connectivity is also
t+ 1 is a consequence of the known fact that the edge connectivity of a product is at least
the sum of the edge connectivities of the two factors (see, e.g., [8]). It also follows from the
well known fact that the edge connectivity of any connected, d-regular, vertex transitive
graph is d (see [11] or [9], pp. 38-39). The upper bound for m(H; ) follows from Lemma
3.1 in which the s sets E; are the sets of edges connecting the vertices of H; ¢ in which the
second coordinate is vertex number ¢ of the cycle Cs and the vertices in which the second
coordinate is vertex number i + 1 of the cycle (where addition is modulo s). O

Since K3 = (3, a special case of the above result is that for all s > 36, the maximum
possible cardinality of a connectivity code for the torus C5 x Cy satisfies m(C3 x Cs) < 8.
This answers a question raised in [6], (although the problem of determining m(Cy x Cs)
for all ¢, s remains open.)

Proposition 3.3. For s > 4 let C’§2) denote the graph obtained from the cycle Cs by
connecting any two vertices of distance at most 2 in the cycle. Then C§2) s 4-regular, its

edge-connectivity is 4, and if s > 36 then m(Cﬁg)) <23=8

Proof. 1t is clear that C§2) is 4-regular. The fact that it is 4-edge connected (and in fact
even 4 (vertex) connected) is known, c.f., e.g., [7] pp 48-49 and also follows from vertex
transitivity. In order to prove an upper bound for m(Cs(Q)) we apply Lemma 3.1. For
each edge f of the cycle Cy, let E; denote the set of all edges {u,v} of the graph Cs(z)
for which the unique shortest path in Cs connecting v and v includes the edge f. Then
|E¢| = 3 for each of the s edges f of Cs. It is easy to check that for any two distinct
[, f', Ef U Ey disconnects C§2). The required upper bound for m(C§2)) thus follows from
Lemma 3.1. O

4 Concluding remarks and open problems

e An (n,d, \)-graph H is a d-regular graph on n vertices in which the absolute value
of each nontrivial eigenvalue is at most \. It is well known that if A is significantly
smaller than d then any such H has strong expansion properties. In fact, it suffices
to assume that the second largest eigenvalue of H is at most A (with no assumption
about the most negative eigenvalue). A simple result proved in [5] is that for any
set W of w < n/2 vertices of a d-regular graph on n vertices in which the second
largest eigenvalue is at most A there are at least w(d — \)/2 edges connecting W and
its complement. Theorem 1.1 thus implies that if A < d — 2clogd then m(H) = 2.
Note that this is a pretty mild assumption on A, as it is known that for every d there

are infinitely many bipartite d-regular graphs in which the second largest eigenvalue

is at most 2v/d — 1, see [12].



e Our proof of Theorem 1.1 provides a linear connectivity code of maximum possible
cardinality for any graph H satisfying the assumptions. It will be interesting to
decide if there are interesting examples of graphs H for which non-linear connectivity
codes can be larger than linear ones. We note that the code of maximum possible
cardinality for the complete graph K, described in [3] is linear, and so is the code

of maximum possible cardinality for C3 x C3 given in [6].

e [t may be interesting to study the computational problem of computing or estimating
m(H) for a given input graph H. As mentioned in the introduction, m(H) is always
at most 25" (F) where k' (H) is the edge connectivity of H. On the other hand, m(H)
is always at least 2% (H)/2] | This is because an immediate consequence of the known

result of Nash-Williams about packing edge-disjoint trees in graphs [13] implies that

H has at least k = |k’ (H)/2| pairwise edge disjoint spanning trees T;. The collection

of all 2¥ unions U;cr E(T;) of the edge sets of any subset I of these trees is a (linear)

connectivity code for H. Since k'(H) can be computed in polynomial time, this

supplies an efficient algorithm for approximating the logarithm of m(H) up to a

factor of (roughly) 2.

e By the remark in the previous comment, the smallest possible value of m(H) for
a graph H with an even edge connectivity ¥ = 2k is at least 2¥. It is not too
difficult to give examples showing that this is tight. Indeed, let s be an integer,
s> 2F1(2F 1 1), and let H = H(s, k) be a graph obtained from the vertex disjoint
union of s cliques K(0), K(1),... K(s—1), each of size 2k + 1, by adding a matching
M; of k edges between K (i) and K (i+ 1), for all 0 < < s—1, where K(s) = K(0).
It is worth noting that by choosing the matchings M; appropriately we can ensure
that the graph is nearly regular, that is, every degree in it is either 2k or 2k + 1. It
is easy to see that the edge connectivity of this graph is 2k. Indeed, deleting less
than 2k edges leaves each of the cliques K (i) connected and leaves at least one edge
of every matching M; besides at most one, keeping the graph connected. Thus the
edge connectivity is at least 2k and thus m(H) > 2¥. On the other hand, any union
of two of the matchings M; disconnects H and hence the edge connectivity is exactly
2k. In addition, by Lemma 3.1, m(H) < 2¥ and therefore m(H) = 2*.

e For n > d > 2 with nd even, let f(n,d) denote the maximum possible value of
m(H) where H ranges over all d-regular graphs on n vertices. Then f(n,d) < 2¢
for every n, and the complete graph Kz, shows that f(d + 1,d) = 2%. It is more
interesting to study f(d) defined as the largest f so that there are infinitely many d-
regular graphs H satisfying m(H) = f(d). By Theorem 1.1 there exists an absolute
constant dy so that f(d) = 2% for every d > dp. In the proof given here we have
made no attempt to optimize the value of dy, it is possible that the above holds
for all d > 4 (though our proof here would certainly not give it even if optimized).



On the other hand f(d) < 2¢ for d € {2,3}. Indeed, for d = 2 the only connected
2-regular graph is a cycle. If the number of its vertices is 3, namely it is the triangle
K3, then m(K3) = 2% = 4, showing that f(3,2) = 4. On the other hand, for all
n > 3, f(n,2) = 2. The upper bound is the special case of Proposition 3.2 with
t = 1, and the lower bound follows from the trivial code consisting of the edgeless
subgraph and the whole cycle. For d = 3, if H is a 3-regular graph on n vertices,
then the symmetric difference of any two members in a connectivity code for H must
contain at least n — 1 edges. As n — 1 is odd and as H has 3n/2 edges, the Plotkin
bound (see [15] or [10]) implies that the size of the code is at most 2 Lmj
If the number of vertices n exceeds 6, this provides an upper bound of 4 for m(H).
Thus f(3) < 4. To see that this is an equality and that in fact f(2n,3) = 4 for
every odd n > 3, consider the following cubic bipartite graph H,,. Its two vertex
classes are A = {ag,a1,...,an—1} and B = {bg,b1,...,b,—1}. The edges consist of
three matchings Mo, My, Ma, where M, consists of all edges a;b;yj, 0 <17 <n—1,
with ¢ 4+ j computed modulo n. The 4 members of a connectivity code for H,, are
the edgeless subgraph, and all the three unions of two of the matchings M;. This
is a linear code, and the symmetric difference of any two distinct members of it is
the union of two of the matchings M;. It is easy to check that each such union is a

Hamilton cycle and hence connected.

Recall that a Ramanujan d-regular graph is a d-regular graph in which the absolute
value of each nontrivial eigenvalue is at most 2y/d — 1. By Theorem 1.1 it follows
that for any such Ramanujan graph H, m(H) = 2¢ provided d is at least some dp.
It may be interesting to decide if this holds with dy = 4.

Acknowledgment: I thank Jie Ma for helpful discussions.
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