
  

 

PAPER 

  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

 

Helium cluster ions: coherent charge sharing and the general 
trimerization trend 

Laura Van Dorn and Andrei Sanov *a 

The coupled-monomers model views any molecular system as a coherent network of interacting monomers. Developed as 

a self-consistent density-matrix adaptation of the Hückel MO theory, it has been applied to various X௡
േ cluster ions, where X 

is an inert (closed-shell) neutral monomer. Rather than keeping the bond integrals constant, the model considers their 

variation with the bond orders 𝜒 using a bonding function 𝛽(𝜒). In this work, high-level ab initio data are used to obtain the 

bonding function for He௡
ା. As the simplest inert species, helium is used to illustrate the general X௡

േ bonding trends on the 

most elementary example. Two alternative approaches to the bonding function are described. One is based on the Heଶ
ା 

potential, the other on the “multicluster” training points obtained by analysing several special He௡
ା structures. Each approach 

is tested in two regimes: by considering only the local bonds, and by including both local and remote pairwise interactions. 

The remote forces in He௡
ା, 𝑛  3 are destabilising and account for approximately 5% of total covalent energy. Each model 

variation yields similar structural results, indicating a general trend for trimer-ion formation. In the absence of geometric 

constraints, this appears to be a universal feature of the X௡
േ covalent networks, resulting from the enthalpy-driven competi-

tion between charge sharing and localisation. Therefore, many currently unknown trimer-ions are likely to be found in cold 

environments, such as exoplanetary atmospheres and outer space. 

 

1. Introduction 

Helium is the simplest closed-shell neutral species. It is inert in 
the neutral state but becomes reactive with the addition of a 
charge, as exemplified by the formation of a >2 eV covalent bond 
in Heଶ

ା.1-4 The reactivity is generally due to the electron (or, in 
this case, its opposite—the hole) acting as the elementary agent 
of covalent forces, the “glue” of the chemical bond. 

The addition of such glue transforms helium clusters into a 
fundamental laboratory of chemical bonding. He௡

ା is the simplest 
case of X௡

േ covalent networks, where X is a closed-shell mono-
mer.5 The inter-monomer (IM) couplings in such systems illumi-
nate the competition between coherent charge sharing and local-
isation,6-19 which is central to chemistry. When sterically possi-
ble,7 many X௡

േ, 𝑛  3 clusters (including He௡
ା) form trimer-ion 

cores,1-4,6,18-26 with the rest of the monomers remaining in the 
neutral state, bound to the cluster by noncovalent forces.27,28 The 
tendency of a charge to localise on not one, not two, but specifi-
cally three monomers is both common and intriguing.  

Indeed, trimer ions have been observed or predicted in many 
X௡
േ systems, with X ranging from rare-gas atoms (cations),1-4,20-

22 to organic molecules (anions).5,6,29 The diversity of these 
systems implies that the trimerization trend is due the universal 
features of covalent bonding, not the intrinsic properties of the 

monomers. The trimer ions emerge as the optimal outcome of 
two competing drives: on the one hand, extended charge sharing 
allows more covalent bonds to form; on the other, thinly spread-
ing one bonding agent diminishes the strength of each bond.  

To describe the universal features of charge-induced interac-
tions, we put forth a simplified version of the molecular-orbital 
(MO) theory, the coupled-monomers model.5 The model is not 
intended to compete with high-level ab initio methods. Instead, 
it aims to provide simple descriptions of chemical bonding in 
supramolecular systems, focusing on fundamental insight rather 
than quantitative precision. The model views any molecular sys-
tem as a network of coupled monomers, regardless of their intrin-
sic structures. The model approximations are appropriate for the 
X௡
േ networks, where the sharing of one bonding agent results in 

fairly weak IM bonds with large equilibrium lengths. 
These bonds are treated using a self-consistent density-matrix 

adaptation5 of the Hückel MO theory.30-35 The original Hückel 
theory describes covalent bonding between all adjacent atoms in 
terms of constant bond integrals (𝛽). This assumption is valid 
when all the bonds considered are equivalent, as is approxi-
mately the case for  electrons in conjugated hydrocarbons—the 
Hückel theory’s original domain. However, it is unphysical for 
many other systems.5,7 The coupled-monomers model,5 there-
fore, employs variable bond integrals. It considers that the equi-
librium bond lengths and, therefore, the bond integrals, do vary 
with local Hückel (Coulson)35,36 bond orders 𝜒. The latter are de-
scribed by a bonding function 𝛽(𝜒). Examples of such functions 
for He௡

ା are shown in Fig. 1. A variety of 𝛽(𝜒) curves within the 
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dashed boundaries were considered,5 but to be applicable, the 
bonding function must satisfy the universal boundaries plus the 
training point shown by the circle in the figure.  

Under realistic assumptions, the coupled-monomers model 
has confirmed the trimerization trend in sterically permitting X௡

േ 
clusters. This outcome was demonstrated for several cationic and 
anionic systems with diverse monomer types, from rare gases to 
organics.5 In each case, the trimer prediction proved to be quite 
robust with respect to the exact choice of 𝛽(𝜒). For example, eve-
ry solid curve in Fig. 1 yields a trimer-ion core in He௡

ା. 
The goal of the present work is to demonstrate that the empi-

rical form of the bonding function proposed previously5 is con-
sistent with ab initio theory. We use a variety of high-level cal-
culations to devise the bonding function for He௡

ା, but the specific 
case of X = He is used here to illustrate the general X௡

േ bonding 
trends on the most elementary example. The results show that 
under reasonable assumptions 𝛽(𝜒) for He௡

ା indeed falls within 
the empirical boundaries of the bonding space in Fig. 1. 

The next section gives an overview of the coupled-monomers 
model, followed by the presentation of ab initio results for seve-
ral special He௡

ା structures in Sec. 3. These results power two 
alternative methods of deriving the bonding function in Sec. 4 
and 5. The first is based on the Heଶ

ା potential and the second on 
several multicluster training points. The final section summa-
rizes the findings and outlines future directions. 

2.  The coupled-monomers model 

The formalism used in this work has been described previously.5 
In short, our model relies on some of the Hückel theory’s original 
assumptions, but includes adaptable bond and Coulomb integ-
rals. The variability of the former is especially key in weakly 
bonded X௡

േ systems, where the Hückel assumption of constant 
bond integrals does not hold, even approximately. 

2.1 MMO basis set 

For a system of 𝑛 identical monomers, the inter-monomer orbi-
tals (IMO) 𝜙௞  are described as linear combinations of the 
monomer orbitals (MMO) 𝜓௜, one per monomer: 𝜙௞ ൌ

∑ 𝑐௜
ሺ௞ሻ𝜓௜௜ , 𝑖, 𝑘 = 1, …, 𝑛. For He௡

ା, 𝜓௜ are the 1s orbitals of the 

Heሺ௜ሻ, monomers, sketched in Fig. 2(a). Linear chains are 
favoured energetically for He௡

ା, so we limit modelling to such 
structures.5 

The {𝜓௜} MMO set serves as a minimal basis for treating the 
interactions in He௡ caused by the addition of one hole. The hole 
is described by an effective Hamiltonian 𝐻෡.5 Like in the Hückel 
theory,35 we rely only on its matrix representation in the {𝜓௜} 
basis. The diagonal elements 𝐻௜,௜ = ൻ𝜓௜ห𝐻෡ห𝜓௜ൿ are the Coulomb 

integrals, which here we continue treating as constants. The off-
diagonal elements 𝐻௜,௝ = ൻ𝜓௜ห𝐻෡ห𝜓௝ൿ, 𝑖 ് 𝑗 are the bond integrals. 

For electrons (e), the couplings between all basis MMOs in 
Fig. 2(a) are attractive, described by negative bond integrals 𝐻௜,௝

௘  

< 0, for all 𝑖 ് 𝑗. Indeed, to a chemist’s eye, the MMO chain in 
Fig. 2(a) forms a bonding-throughout IMO. However, this holds 
only if the IMO is occupied by an electron. That is, the above 
interactions are e-bonding, rather than simply bonding. Using the 
same MMOs to describe a hole (h) results in an opposite, h-anti-
bonding effect, with 𝐻௜,௝

௛  > 0, 𝑖 ് 𝑗. 

Following Hückel,30-35 we treat the MMO basis as orthonor-

mal. The IMOs 𝜙௞ ൌ ∑ 𝑐௜
ሺ௞ሻ𝜓௜௜  and their energies 𝐸௞, 𝑘 = 1, …, 

𝑛 are then obtained by diagonalising the Hamiltonian matrix. 
The solution yields 𝑛 eigenvalues 𝐸௞, 𝑘 = 1, …, 𝑛 and eigenvec-

tors |𝜙௞, which contain the 𝑐௜
ሺ௞ሻ coefficients. Focusing on the 

lowest-energy IMO, 𝜙 ൌ 𝜙ଵ, we drop index 𝑘 = 1 for brevity. 

2.2 Charge-sharing stabilisation 

IM bonding is described by the monomerization energy EM, i.e. 
the energy change in the X௡

േ → Xേ + (𝑛  1)X process. For a 
bound system, EM > 0, with bonding and antibonding interac-
tions making positive and negative contributions, respectively.  

In the general MO theory, total bond orders and stabilisation 
energies are defined by the combined contributions of all occu-
pied orbitals. Here, we consider only systems bonded by a single 

 

Fig. 1. Examples of He௡
ା bonding functions (solid curves in various colours). All

curves are defined by eqn (6) with the training-point constraint 𝛽(1/2√2) =

0.750 (blue circle). Dashed curves show the boundaries of the bonding space
considered, with (𝑏ଵ, 𝑏ଶ) = (0.6, 0.6) and (1.7, 1.7). 

 

Fig. 2. (a) Sketch of the 1s MMOs of the Heሺ௜ሻ, 𝑖 = 1, …, 𝑛 atoms, 𝜓௜, comprising
the basis set used to describe the linear He௡

ା chain. All basis-pair couplings in

this basis are antibonding for holes, as reflected by positive bond integrals.

(b) Sketch of lowest-energy h-IMO. Only the signs of the MMO contributions

are shown, not their amplitudes. This orbital is e-antibonding but h-bonding

with respect to all nearest-neighbour interactions. The character of the
remote forces alternates along the chain. 
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bonding agent: one electron (in X௡
ି) or one hole (in X௡

ା). In He௡
ା, 

in particular, there are (2𝑛  1) electrons distributed among 𝑛 
molecular orbitals (IMOs). Such a system can be viewed as a 
combination of two contributions: a closed-shell 2𝑛-electron 
configuration and a single hole populating the IMO in Fig. 2(b). 

The first of the above contributions amounts to zero in terms 
of covalent bond orders and energy, as in the He௡ van der Waals 
cluster. Therefore, instead of considering the (2𝑛  1) electrons 
in the 𝑛 IMOs of He௡

ା, we can view it, equivalently, as a single-
hole system with only one populated IMO. Both the stabilisation 
energy and all bond orders are then defined by this IMO only. 
With the additional assumption of constant Coulomb integrals 
(set arbitrarily to zero), EM is then given by the negative of the 
one IMO energy, i.e., the lowest energy eigenvalue of the 
Hamiltonian matrix. Alternatively, it can be expressed as:5  

 Δ𝐸M ൌ െ෍ 2𝜌𝑖 ,𝑗 ℎ𝑖 ,𝑗
𝑖൏𝑗

  (1) 

where ℎ௜,௝ are the equilibrium values of the bond integrals, i.e., 
𝐻௜,௝ for the relaxed cluster structure, and 𝜌௜,௝ ൌ 𝑐௜

∗𝑐௝ are the ele-
ments of the density matrix 𝛒 ൌ |𝜙⟩⟨𝜙|.5,7 The off-diagonal 𝜌௜,௝, 
𝑖 ് 𝑗 are the Hückel (Coulson) bond orders.35 The diagonal ele-
ments 𝜌௜,௜, which do not figure in eqn (1), represent hole density 

on respective Heሺ௜ሻ monomers, i.e., the partial charges: 𝑞௜ = 𝜌௜,௜. 
Under the basis set definition in Fig. 2(a), all h-bond integrals 

are positive, either at equilibrium (ℎ௜,௝ > 0) or at an arbitrary geo-
metry (𝐻௜,௝ > 0). The resulting lowest-energy h-IMO is sketched 

in Fig. 2(b) (amplitudes not shown, only signs). Since the signs 
of 𝑐௜ alternate along the chain, this IMO is e-antibonding but h-
bonding throughout. 

The h-bonding interactions resulting from the opposite-sign 
adjacent IMO coefficients correspond to negative local (nearest-
neighbour) bond orders, 𝜌௜,௜േଵ < 0. All other (remote) pairwise 

interactions alternate, as illustrated in Fig. 2(b), between h-anti-
bonding (𝜌௜,௜േ௦ > 0) and h-bonding (𝜌௜,௜േ௦ < 0) for even and odd, 

respectively, degrees of separation 𝑠: 

 𝑠 = |𝑖 െ 𝑗| (2) 

Since the remote (𝑠 > 1) interactions are much weaker than the 
local (𝑠 = 1) bonds, the latter (with ℎ௜,௜േଵ > 0 and 𝜌௜,௜േଵ < 0) 

define the positive sign of EM, per eqn (1). That is, the chain is 
bound overall in its ground state. 

Eqn (1) offers an intuitive perspective on the relationship bet-
ween covalent bond energy and bond integrals. While EM is a 
sum over all IM bonds, each bond’s energy is given by the mag-
nitude of its bond integral, weighted by twice the bond order. In 
the valence bond theory, a single bond consists of two electrons 
or holes. The above weight then corresponds to the number of 
contributing bonding agents and each 2𝜌௜,௝ℎ௜,௝ term can be 

understood as the bond integral scaled by the fractional number 
of electrons (holes) residing on the particular bond. 

2.3 Dimer units 

Most results in this work are reported in terms of dimer units 
(d.u.), which allow for a straightforward generalisation of the 
results to any X௡

േ system.5 In this work, specifically, the dimer 

unit of energy is defined as the bond dissociation energy of He2
+: 

1 d.u. = 2.446 eV. Similarly, the dimer unit of length is defined 
as the equilibrium bond length of He2

+: 1 d.u. = 1.083 Å.

2.4 Bond lengths and bond integrals 

Hückel’s assumption of constant bond integrals is valid only 
when all bonds considered can be treated as exactly or approxi-
mately equivalent. This holds for  electrons added to a frame-
work of  bonds in conjugated hydrocarbons—the Hückel theo-
ry’s original domain, but is unphysical for most systems.5,7 This 
approximation certainly cannot be used for weakly bonded clus-
ters, such as He௡

ା or similar. When the entirety of the bonding is 
due to one delocalised electron or hole, the bond lengths and, 
therefore, bond integrals vary significantly from bond to bond.  

Instead, the local equilibrium bond lengths 𝑟௜,௜േଵ can be as-

sumed to depend explicitly on the corresponding bond orders:5 

 𝑟௜,௜േଵ ൌ 𝑟(𝜒௜,௜േଵ) (3) 

𝑟(𝜒) is a function of the absolute bond order between adjacent 
monomers. Here, “absolute” means independent of the basis set 
definition. Absolute order 𝜒 is always positive for bonds and 
negative for antibonds and can, therefore, differ in sign from the 
Hückel (Coulson) definition.35,36 For bonding interactions, 𝜒௜,௜േଵ 
= |𝜌௜,௜േଵ| = |𝑐௜

∗𝑐௝| > 0 and 𝑟ሺ𝜒ሻ   for 𝜒  0. For antibonding, 
𝜒௜,௜േଵ = െ|𝜌௜,௜േଵ| < 0 and 𝑟(𝜒) is infinite for any 𝜒  0. The basis 

set in Fig. 2(a) implies that the Hückel and absolute h-bond or-
ders are opposite in sign throughout this article:  

 𝜒௜,௝ = െ𝜌௜,௝ (4) 

as indicated for the lowest-energy h-IMO in Fig. 2(b).  
Implicit in eqn (3) is the assumption that the equilibrium geo-

metry is defined by local interactions only. Since the bond integ-
rals depend explicitly on the distance between the monomers, it 
also follows that the local equilibrium bond integrals ℎ௜,௜േଵ must 

vary with the corresponding bond orders. We postulate that 
|ℎ௜,௜േଵ| = |𝛽ሺ𝜒௜,௜േଵሻ|, where 𝛽(𝜒) is no longer a Hückel constant 

but a negatively-valued (for 𝜒 > 0) function. We call it the bond-
ing function.5 Given that all bond integrals in the this work must 
be positive under the basis-set definition in Fig. 2(a), we have: 

 ℎ௜,௜േଵ ൌ െ𝛽ሺ𝜒௜,௜േଵሻ (5) 

The universal (independent of the monomer identity) features 
of 𝑟(𝜒) and 𝛽(𝜒) were discussed previously.5 Both functions are 
expected to be well-behaved and monotonic on the 𝜒 ∈ [0, 0.5] 
interval. The left boundary corresponds to the nonbonding (non-
covalent) limit and the right represents the largest bond order 
attributable to one electron or hole. 

Since the stronger the bond, the shorter it is, 𝑟(𝜒) must be a 
decreasing function of 𝜒. Since shorter bonds result in stronger 
IM couplings, 𝛽(𝜒) is expected to increase in magnitude with in-
creasing 𝜒. Since the bonding function is defined to be nega-
tively-valued or zero, it varies from 𝛽(0) = 0 (the nonbonding 
limit) to 𝛽(0.5) = 1 d.u. (the dimer limit).5 However, the above 
nonbonding (noncovalent) limit assumes an infinite IM separa-
tion, and this assumption will be modified in Sec. 3.2. 

These requirements are satisfied by the empirical function 
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 𝛽ሺ𝜒ሻ ൌ െሾ1 െ ሺ1 െ 2𝜒ሻ௕మሿଵ/௕భ (6) 

defined for 𝜒 ∈ [0, 0.5], where 𝑏ଵ, 𝑏ଶ > 0 are parameters.5 For 
example, (𝑏ଵ, 𝑏ଶ) = (1, 1) corresponds to the linear function 𝛽 = 
െ2𝜒 connecting the nonbonding and dimer limits, while the 
dashed boundaries shown in Fig. 1 are defined by (𝑏ଵ, 𝑏ଶ) = (0.6, 
0.6) and (1.7, 1.7), as labelled. It was previously speculated5 that 
all or most relevant bonding scenarios fall within the region of 
the bonding space defined by eqn (6) with 𝑏ଵ, 𝑏ଶ ∈ [0.6, 1.7], i.e., 
in between the two dashed curves in Fig. 1. 

Indeed, the 12 solid curves shown in Fig. 1 in various colours 
are all defined by eqn (6) with 𝑏ଵ ranging from 0.6 to 1.7 and the 
corresponding 𝑏ଶ values determined so that each 𝛽(𝜒) function 
pass through the blue training point 𝛽(1/(2√2)) = 0.750.5 This 
constraint “trains” the model to reproduce the Heଷ

ା energy.  

2.4 Search for self-consistent solutions 

As evident from eqn (1), the energy eigenvalues and hence the 
IMO coefficients 𝑐௜, 𝑖 = 1, …, 𝑛, depend on the density matrix 
elements 𝜌௜,௝. Since 𝜌௜,௝ ൌ 𝑐௜

∗𝑐௝, those elements themselves re-

present the model solution, leading to a conundrum that the very 
statement of the problem to be solved depends on the solution.  

This issue is resolved via an iterative search for a self-consis-
tent solution.5 Given the bonding function 𝛽ሺ𝜒ሻ, the search is 
initiated with an arbitrary set of the initial {𝑐௜} coefficients. Each 
iteration then includes the following steps: 

(1) From {𝑐௜}, compute 𝜌௜,௝ = 𝑐௜
∗𝑐௝ and 𝜒௜,௝ = െ𝜌௜,௝. 

(2) Set all Coulomb integrals to the same constant (e.g., zero) 
and evaluate the local bond integrals from the bonding function 
and local bond orders using eqn (5). The remote integrals ℎ௜,௝, 
|𝑖 െ 𝑗| ൐ 1, are either set to zero (local bonding approximation) 
or evaluated using the method in Sec. 4. 

(3) Find the eigenvalues and eigenvectors of matrix h from 
the previous step.  

(4) Check for convergence and proceed to the next iteration 
(Step 1) or exit the loop.  

The convergence check is based on two criteria. The energy 
change must be <10-6 dimer units (2.5 eV), compared to the 
previous iteration, and the norm of the eigenvector change must 
be <10-7. Most reported calculations involved <200 iterations.  

3. Ab initio predictions for special structures 

We now turn to Hen
+ cluster ions for ab initio insight into the 𝑟(𝜒) 

and 𝛽(𝜒) functions. Both can be evaluated explicitly by analys-
ing the interaction potentials for various bond orders. 

3.1. Covalent interactions 

In this part, we consider several Hen
ା structures shown in Fig. 3 

along with their respective IMOs. Not all of them correspond to 
stable clusters: (a) and (b) do, but (c)-(e) do not. These structures 
were chosen because they each include only equivalent (by sym-
metry) local bonds. That is, the local bond orders are constant 
within each structure but vary among them.  

All IMOs in Fig. 3 are completely antibonding if occupied by 
an electron (e-antibonding) but become bonding if populated by 

a hole (h-bonding). In terms of the coupled-monomers model, 
the Heଶ

ା structure in (a) has an absolute bond order of 𝜒 = 0.5. 
Each of the trimer bonds in (b) is described by 𝜒 = 1/(2√2)  
0.354, as obtained from the 𝑐௜ = (1/2, 1/√2, 1/2) IMO coeffici-
ents dictated by the model and by the original Hückel theory, 
regardless of the assumed bonding function or bond length. Simi-
larly, all bonds in square He4

ା (c) correspond to 𝜒 = 1/4, in hexa-
gonal He6

ା (d) to 1/6, and in hendecagonal He10
ା  (e) to 1/10.  

Beginning with the dimer ion, its potential is represented by 
the blue curve in Fig. 4. The specific curve shown is a Morse-

 

Fig. 4. Ab initio results for (a) He2
ା (absolute bond order 𝜒 = 1/2); (b) linear 

He3
ା (𝜒 = 1/2√2); (c) square He4

ା (𝜒 = 1/4); (d) hexagonal He6
ା (𝜒 = 1/6); (e) 

hendecagonal He6
ା (𝜒 = 1/10); and (f) He2

⬚ (neutral van der Waals dimer, 𝜒 = 

0). The filled symbols for (a) and (f) represent the results referenced in the
text. Solid blue and orange curves are the respective Morse and Lennard-

Jones potential fits to these data. The series of black open circles are results 

of symmetry-constrained potential energy scans. Red open circles are the

potential minima of the respective structures. 

 

Fig. 3. Geometries and lowest-energy h-IMOs of special Hen
ା structures that

include only all-equivalent bonds. The structures were optimised subject to

the symmetry constraints. (a) and (b) correspond to stable clusters, but (c)-
(e) do not. All IMOs shown are h-bonding. 
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potential fit to the full-CI results for He2
+ by Gadea and Paidaro-

vá1 (filled blue squares). The black open circles overlaying this 
curve are from our CCSD/aug-cc-pVTZ calculations using Q-
Chem 5.1.37 They are nearly indistinguishable from full-CI: the 
full-CI potential has a minimum of 2.448 eV at 1.085 Å, while 
our calculations yield 𝑉௠௜௡ = –2.446 eV at 𝑟 ൌ 1.083 Å. Given 
the agreement, we will rely on our CCSD results, to be consistent 
with the other calculations in this work. The (𝑟, 𝑉௠௜௡ሻ  = (1.083 
Å, –2.446 eV) minimum for He2

+ is equivalent to (𝑟, 𝑉௠௜௡ሻ  = (1, 
1) in dimer units.5 It is represented by red circle ‘a’ in Fig. 4 
describing a 𝜒 = 0.5 bond. 

Turning to smaller bond orders, Fig. 4 displays additional 
per-bond potential minima b-e for the larger Hen

ା structures in 
the respective parts of Fig. 3. In detail, black-circles ‘b’ in Fig. 4 
represent the per-bond energy of He3

ା from a CCSD/aug-cc-
pVTZ potential energy scan under the D2h symmetry constraint. 
The values plotted were obtained by dividing the trimer energy 
relative to the He+ + 2He limit by the number of local bonds (2), 
to yield the energy attributable to each bond.  

The (𝑟, 𝑉௠௜௡ሻ = (1.238 Å, 1.304 eV) minimum for He3
ା cor-

responds to (1.143, 0.533) in dimer units. It is indicated by red 
circle ‘b’ in Fig. 4. These results are in agreement with the earlier 
works on He3

ା.1,2,4,21,38 The above 𝑟 = 1.238 Å compares to 1.238 
Å determined by Gadea and Paidarová1 and 1.241 Å predicted 
by Knowles and Murrell.4 The 𝑉௠௜௡ value of 1.304 eV corre-
sponds to a 2.608 eV monomerization energy, which compares 
to 2.598 eV calculated by Rosi and Bauschlicher2 and 2.659 eV 
predicted by Knowles and Murrell.4 

Datasets (c), (d), and (e) in Fig. 4 represent the results of simi-
lar per-bond calculations for the respective structures in Fig. 3, 
all carried out under the appropriate symmetry constraints. To 
avoid clutter, Fig. 4 omits the detailed He4

ା (c) and He10
ା  (e) scans 

but the (𝑟, 𝑉௠௜௡ሻ minima are indicated by red circles in each case.  
The 𝑟 and 𝑉௠௜௡ values, along with the monomerization ener-

gies of these structures are summarised in Table 1. The decreas-
ing  for 𝑛 > 3 reflect the diminishing stabilities of the con-
strained cyclic geometries with artificially delocalised charges. 
In the unconstrained ground states of Hen

ା, the charge localises 
on no more than three monomers, and all unconstrained 𝑛 > 3 
structures have (𝑛)  (3).5 

3.2. The noncovalent limit 

The orange curve in Fig. 4 is the van der Waals (vdW) potential 
of He2, corresponding to a covalent bond order of zero. The 

specific curve shown is a Lennard-Jones potential fit to the data 
of Clementi and Corongiu,39,40 shown by filled orange squares 
(some datapoints fall outside the graph’s energy bounds). The 
minimum at 𝑟 = 2.9 Å = 2.7 d.u. (approximately twice the vdW 
radius)41 is too shallow to be discerned but represented by red 
circle (f) in the figure. 

In all 𝜒 > 0 cases (Sec. 3.1), we ignored noncovalent forces. 
If we continue to do so as 𝜒  0, the relaxed covalent bond 
length will approach infinity. This trend will cause the bond 
integral, i.e., the coupling between the basis functions, to vanish 
as well: 𝛽(𝜒)  0 as 𝜒  0 and 𝑟  ∞.5 

However, noncovalent interactions cannot be ignored in the 
𝜒  0 limit: no matter how weak, they become the only remain-
ing IM force. The very existence of van der Waals clusters im-
plies that 𝑟 remains finite even as 𝜒 vanishes. Minimum (f) in 
Fig. 4 sets a maximum of 𝑟, maxሺ𝑟ሻ = 2.9 Å (2.7 d.u.), achieved 
in the 𝜒  0 limit. An immediate consequence of this boundary 
is that the bond integral for charge-induced covalent interactions 
cannot vanish even for 𝜒  0. It remains limited by the He2

+ 
potential value at the above maxሺ𝑟ሻ. 

3.3. The bond-length function 

The optimised local bond lengths for the special Hen
ା structures 

a-e in Fig. 3 are plotted versus the corresponding bond orders in 
Fig. 5 (red circles). The discrete 𝑟(𝜒) data from Table 1 are sup-
plemented with the noncovalent limit 𝑟(0) = 2.7 d.u. (point ‘f’) 
discussed in Sec. 3.2.  

The blue curve in Fig. 5 represents a bi-exponential fit to the 

Table 1. Results of the CCSD/aug-cc-pVTZ optimizations of the He௡
ା, 𝑛 = 2, 3, 4, 6, 10 cluster structures shown in Fig. 5. The EM, bond energy, 𝛽, and equilibrium 

bond length 𝑟 values are all in dimer units (1 d.u. of energy = 2.446 eV, 1 d.u. of length = 1.083 Å). 

Casea Clusterb 𝜒c 𝑟 EM(𝑛) Energy per 
bond, െ𝑉௠௜௡ 𝛽 (local)d 𝛽 (all)e 

a He2
ା 0.500 1 1 1 1 1 

b He3
ା 0.354  1.143 1.066 0.533 754 0.791 

c He4
ା 0.250 1.350 0.871 0.218 436 0.554 

d He6
ା 0.167 1.496 0.666 0.111 333 0.375

e He10
ା  0.100 1.712 0.408 0.0408 204 0.229

a As labelled in Figs. 2-4.  b Structures shown in Fig. 4.  c As defined in the coupled monomers model. The exact 𝜒 values in cases a-e are 1/2, 1/(2√2), 1/4, 1/6, 

and 1/10, respectively.  d These 𝛽 values (uncorrected for remote interactions) are calculated as 𝛽 ൌ 𝑉௠௜௡/ሺ2𝜒ሻ.  e 𝛽 values corrected for remote interactions, 
as described in the text. 

 

Fig. 5. Red circles: Optimised bond lengths of the Hen
ା structures (a-e) in Fig.

3 and the neutral van der Waals dimer (f), plotted versus the corresponding
bond orders. Solid blue curve: a bi-exponential fit to the data, excluding (c). 
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ab initio data. It arms us with a continuous 𝑟ሺ𝜒ሻ function to use 
in further modelling. The fit shown was obtained excluding point 
‘c’ (𝜒 = 1/4), which deviates slightly from the general 𝑟(𝜒) trend. 

The deviation is due to the remote interactions in square He4
ା, 

which are stronger than in any other structures in Fig. 3. With the 
distance between the opposing monomers only √2 times the 
shortest bond length, the remote integrals amount to almost half 
of their local counterparts. While the energetic effect of the 
remote forces can be estimated easily (see Supplementary Infor-
mation), the geometric effect was not pursued. Qualitatively, the 
strong diagonal couplings in Fig. 3(c) are h-antibonding in char-
acter and lengthen the local bonds. This results in the perceptible 
displacement of point ‘c’ from the general 𝑟(𝜒) trend in Fig. 5.  

4. Dimer-based modelling 

In this section, we assume that the bond integrals of any Hen
ା, 𝑛 

 3 cluster can be deduced from the He2
ା potential. This is similar 

to the basic idea of the diatomics-in-molecules theory42 proposed 
by Ellison in 1963.43,44 It was used with varying success to model 
various polyatomic systems, including rare-gas cluster 
ions.1,3,4,18,19,23,25,45 

In a way, we aim to predict the charge-induced couplings bet-
ween monomers in larger settings by observing their one-on-one 
interaction in the dimer ion. Despite significant quantitative 
errors, this approximation will allow us to reach—simply and 
with considerable insight—correct qualitative conclusions. 

4.1. The dimer-based bonding function 

Quantitatively, we assume that all X-X coupling elements—the 
local and remote bond integrals in any X௡

േ structure, whether at 
equilibrium or not—depend explicitly on IM distance only. That 
is, 𝐻௜,௝ = 𝑓(𝑅௜,௝) for 𝑖  𝑗, where 𝑓 is assumed to be the same for 

any X௡
േ with a given X. Then at equilibrium (𝑅௜,௝ = 𝑟௜,௝, 𝐻௜,௝ = 

ℎ௜,௝), ℎ௜,௝ = 𝑓(𝑟௜,௝). Note that 𝑓 is defined in a different variable 

space than 𝛽 in eqn (5). 
Now apply the above to the specific case of He2

ା. In the cou-
pled-monomers framework, its potential energy 𝑉 at any 𝑅 is 
equal to the negative bond integral magnitude at that 𝑅 (true only 
because the Hückel-like effective Hamiltonian and hence the 
bond integrals incorporate nuclear repulsion). In our basis, all 
bond integrals are positive, and therefore 𝑉(𝑅) = 𝐻ଵ,ଶ(𝑅) or, 

equivalently, 𝑉(𝑅) = 𝑓(𝑅), where 𝑓 is the function from the pre-
vious paragraph. Combined with ℎ௜,௝ = 𝑓(𝑟௜,௝), this yields: 

 ℎ௜,௝ ൌ െ𝑉ሺ𝑟௜,௝ሻ,       𝑖 ് 𝑗 . (7) 

where 𝑉ሺ𝑅ሻ is the He2
ା potential (the blue curve in Fig. 4). 

Even though eqn (7) uses the He2
ା potential, it applies to all 

monomer pairs in any He௡
ା. This is unlike eqn (5), which is 

defined for local bonds only. Specifically for nearest neighbours 
(𝑗 = 𝑖 േ 1), 𝑟௜,௝ in eqn (7) can be expressed in terms of the bond-
length function from Fig. 5, as 𝑟௜,௜േଵ = 𝑟(𝜒௜,௜േଵ). This results in 

 ℎ௜,௜േଵ ൌ െ𝑉ሾ𝑟(𝜒௜,௜േଵ)] (8) 

Together with eqn (5), this gives 

 𝛽ሺ𝜒ሻ = 𝑉ሾ𝑟(𝜒)] (9) 

Eqn (9) allows an explicit calculation of the local bond integ-
rals. The corresponding bonding function is plotted by the blue 
curve in Fig. 6. To obtain it, 𝑟 for every 𝜒 was determined using 
the 𝑟(𝜒) function in Fig. 5. The 𝛽(𝜒) value was then found from 
the corresponding 𝑉(𝑟) value using the He2

ା curve in Fig. 4.  

4.2. Local bonding approximation 

Sample self-consistent solutions obtained using the above bond-
ing function (including local couplings only) are presented in 
Fig. 7 and 8 (black symbols and annotations). The two figures 
correspond to He3

ା and He10
ା , respectively. 

The black circles in each figure represent the converged IMO 
amplitudes |𝑐௜ |, plotted vs. the monomer number 𝑖. The values 
plotted next to the symbols in same-colour font are the partial 
charges, determined as 𝑞௜ = |𝑐௜ |2. The monomerization energy 
EM in dimer units (1 d.u. = 2.446 eV) is indicated in the 
matching-colour (black) font in the top-right corner of each plot.  

Green asterisks in each figure represent the magnitudes of the 
initial {𝑐௜} guess in each calculation. Note that the guess for each 
calculation was chosen to contain no symmetry. This is to avoid 
constraining the solutions to either odd- or even-numbered clus-
ter cores.5 As in the previous work,5 we emphasize the model 
divergence from the Hückel theory. To highlight the difference, 
a continuous form of the Hückel (constant 𝛽) solution is shown 
for comparison in each figure as a dashed curve that looks like 
the ground-state wavefunction of the particle in a box.  

The original trimer-core prediction5 is clearly borne out in the 
present results. In the case of He3

ା (Fig. 7), with only the local 
interactions considered, the model charge distribution 𝑞௜ = 0.250 
| 0.500 | 0.250 follows the Hückel model exactly. In contrast, the 
He10

ା  solution (Fig. 8) obtained under the same assumptions devi-
ates significantly from the Hückel model. Even though the 
starting state in this example distributes the charge over the entire 
10-membered chain, the converged solution is localised, placing 
99.7% of the charge on three core monomers (𝑖 = 4-6 in Fig. 8). 
It corresponds to a He3

ାHe଻ cluster structure. 
The charge distribution within the trimer core of He10

ା  (𝑞௜ = 

 

Fig. 6. Solid blue curve: the dimer-based He௡
ା bonding function obtained using 

the (𝜒, 𝑟)  (𝜒, 𝛽) transform of the 𝑟(𝜒) curve in Fig. 5 (blue) using eqn (9) 

and the He2
ା potential 𝑉(𝑟) in Fig. 4. Red circles a-f: the respective datapoints 

from Fig. 5 following the same transformation. Shaded green area: the bond-

ing space defined by the dashed boundaries in Fig. 1. Solid grey curves: the
original bonding functions shown in Fig. 1 in various colours. 
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0.250 | 0.497 | 0.250) is nearly identical to that in an isolated He3
ା 

(Fig. 7). As discussed previously, a minor charge spillage from 
the trimer to adjacent monomers (𝑖 = 3 and 7) is due to the bond-
ing function trend in the 𝜒  0 limit.5 In this case, it is specifi-
cally due to the finite value of 𝛽(0). 

The He3
ା monomerization energy (EM = 1.305 d.u.), based 

on the solution in Fig. 7, is >20% larger than the correct value of 
1.066 d.u. (Table 1 and refs. 2,4). This discrepancy will be dis-
cussed shortly. The He10

ା  monomerization energy is only 0.002 
d.u. (5 meV) higher than that of He3

ା. The model accounts for 
covalent energy only and the addition of noncovalently bonded 
neutral monomers does not affect EM. Its minor increase from 
𝑛 = 3 (Fig. 7) to 𝑛 = 10 (Fig. 8) is due to the weak couplings 
between monomers 3-4 and 7-8 in Fig. 8, activated by the charge 

spillage from the trimer core to the adjacent monomers.
The top parts of Fig. 7 and 8 show the converged geometries 

of the He3
ା and He10

ା  chains, respectively. The IM distances (not 
to scale in the figure) are indicated in dimer units (1 d. u. = 1.083 
Å), with the black font corresponding to the local-bonds-only 
solutions discussed here. The bond lengths within the trimer core 
of He10

ା  (Fig. 8) are essentially the same as in the isolated trimer 
ion (Fig. 7). The 2.696 d.u. distances between nonbonded neutral 
monomers correspond to the vdW separation (Sec. 3.2).  

4.3. All pairwise interactions on an equal footing 

Eqn (7) allows us to bypass the local bonding function 𝛽(𝜒) alto-
gether. Instead, we can treat all bond integrals—local and remote
—in a uniform fashion. To do this, at each iteration, we use the 
IMO coefficients 𝑐௜ to calculate the local bond orders 𝜒௜,௜േଵ. 
From these, using eqn (3) with 𝑟(𝜒) from Fig. 5, the 𝑟௜,௜േଵ bond 

lengths are determined. Then all IM distances in the He௡
ା chain 

are calculated as 𝑟௜,௝ ൌ ∑ 𝑟௞,௞ାଵ
୫ୟ୶ሺ௜,௝ሻିଵ
௞ୀ୫୧୬ ሺ௜,௝ሻ . The bond integrals for 

all 𝑖-𝑗 pairs are then determined via eqn (7).  
Sample results of this approach for He3

ା and He10
ା , are shown 

in Fig. 7 and 8, respectively, in red. Since the remote interactions 
in the ground states of He௡

ା are overall destabilising [Fig. 2(b)], 
their inclusion lowers the He3

ା and He10
ା  monomerization 

energies, by 0.052 d.u. (0.127 eV) or about 4% in each case. The 
change is in the right direction, but EM(3) = 1.253 d.u. is still 
17.5% larger than the true value, 1.066 d.u. 

The inclusion of remote interactions has a minor effect on the 
cluster geometry and charge distribution. The antibonding nature 
of these interactions in the trimer core results in a slight but 
perceptible narrowing of the charge distribution, from 𝑞௜ = 0.25 
| 0.50 | 0.25 to 0.24 | 0.52 | 0.24. This redistribution helps mini-
mize the antibonding coupling between the terminal monomers 
in the trimer, with little or no effect on the local bond orders. 

4.4. Conclusions from the dimer-based approach 

The approach tested in this section correctly predicts some key 
properties of Hen

ା clusters. Among them is the key structural 
feature: all 𝑛  3 species possess trimer-ion cores.2,4,21,38  

The bonding function calculated using this approach (Fig. 6) 
does fall within the initially defined bonding space,5 although it 
comes close to its lower boundary for 𝜒 = 0.35-0.5. It is primarily 
due to this significant deviation from the original trimer training 
point (blue in Fig. 1, greyed out in Fig. 6) that this bonding func-
tion overestimates the cluster stability by 17.5%. 

This discrepancy is due to the assumption that pairwise cou-
plings are unaffected by other monomers. The performance of 
the model overall depends sensitively on the bonding in the tri-
mer ion,5 but this approach does not use the trimer energetics as 
an input. Instead, it assumes that the pairwise integrals in He3

ା 
are the same as they would be at the same distance in He2

ା. This 
is not strictly correct, as the effective Hamiltonians of the two 
systems are different. This results in the bonding function in Fig. 
6 missing the original trimer training point by a lot, causing the 
model to miscalculate the core-ion energy. 

To rectify this, next we modify how the bonding function is 
calculated. The model performance is improved by including not 

 

Fig. 7. Sample solutions for He3
ା obtained using the dimer-based bonding

approximation. Black symbols and annotations: only local couplings included.

Red: all pairwise interactions included on an equal footing. Green asterisks:
the magnitudes of the initial guess. Dashed curve: a continuous form of the

Hückel (constant 𝛽) solution, shown for comparison. 

 

Fig. 8. Sample solutions for He10
ା  obtained using the dimer-based bonding

approximation. See Fig. 7 caption for details. Top: the converged geometry of

the monomer chain. The bond lengths values are indicated but the structure

is not drawn to scale. Monomers shaded in red correspond to the cluster core
(𝑞௜  > 0.01). Solid red lines represent covalent bonds with 𝜒  0.1, dotted red

lines bonds with 0.01  𝜒 < 0.1. 
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only the dimer, but also the trimer, and larger-cluster energetics. 

5. Multicluster bonding function 

In this section, we use the He௡
ା structures shown in Fig. 3 plus 

the van der Waals dimer to parameterise the bonding function 
𝛽(𝜒). The corresponding bond energies provide necessary data 
to determine 𝛽 values for a discrete 𝜒 series ranging from 𝜒 = 0.5 
to 0. The results are presented in Fig. 9. 

5.1. Local bond integrals  

The monomerization energy of He2
+ (𝜒 = 0.5) is EM = 1 d.u., by 

definition of the dimer unit. On the other hand, diagonalisation 
of the dimer 2×2 Hamiltonian yields EM = ℎଵ,ଶ, where ℎଵ,ଶ is 

the relaxed bond integral. It then follows from eqn (5) that 𝛽(0.5) 
= 1 d.u.5 This is included in Table 1 and represented by red 
circle ‘a’ in Fig. 6 and, again, symbol (a) in Fig. 9.   

For He3
+ (𝜒 = 0.354), the per-bond minimum (b) in Fig. 4 

corresponds to 𝑉௠௜௡ = 1.304 eV = 0.533 d.u. (Table 1). If only 
local interactions are included, then per eqn (1) and (4), it is 
related to the bond integral via 𝛽 = 𝑉௠௜௡/ሺ2𝜒ሻ = 0.754 d.u. This 
value of 𝛽 for 𝜒 = 0.354 is represented by black square ‘b’ in Fig. 
9. It is nearly indistinguishable from the trimer training point 𝛽 
= 0.750 d.u. introduced previously5 for He௡

ା clusters (the blue 
circle in Fig. 1, greyed out in Fig. 9). The miniscule difference is 
due to the EM(3) = 2.608 eV (1.066 d.u.) monomerization ener-
gy from the CCSD/aug-cc-pVTZ calculations used here, instead 
of the published1,2,4,24 EM(3) = 2.598 eV (1.061 d.u.) result that 
was used to determine the original training point.5 

Black squares c, d, and e in Fig. 9 show the results of similar 
per-bond calculations for the square He4

ା (c), hexagonal He6
ା (d), 

and hendecagonal He10
ା  (e) structures in Fig. 3. The per-bond 

𝑉௠௜௡ values for each structure (Table 1) were used to calculate 
the corresponding 𝛽ሺ𝜒ሻ values as 𝛽 = 𝑉௠௜௡/ሺ2𝜒ሻ.  

5.2. Corrections for remote interactions 

The ab initio monomerization energies in Table 1 include all IM 
interactions: pairwise and many-body, local and remote. In con-
trast, the determinations of the local bond integrals in Sec. 5.1 
were performed as if only the first-degree (𝑠 = |𝑖 െ 𝑗| = 1) coupl-
ings contributed to EM. We will continue disregarding many-
body interactions but will now include the effect of remote (𝑠 > 
1) pairwise couplings on EM. Since the remote interactions in 
He௡

ା are overall destabilising, the analysis in Sec. 5.1 must have 
underestimated the local bonds.  

A crucial distinction between the 𝑠 = 1 and 𝑠 > 1 interactions 
is that for 𝑠 > 1, the corresponding specific bond orders 𝜌௜,௝ or 
𝜒௜,௝ have only a minor effect on the 𝑟௜,௝ distance, and therefore, 
ℎ௜,௝. For example, the 𝑟ଵ,ଷ distance in He3

ା [Fig. 3(b)] is twice the 
local bond length, 𝑟ଵ,ଷ = 2𝑟ଵ,ଶ. That is, 𝑟ଵ,ଷ is determined mainly 
by 𝜒ଵ,ଶ, while 𝜒ଵ,ଷ has only a small effect. For this reason, the 

remote couplings cannot be defined in a manner similar to eqn 
(5), which is used for their local counterparts. Hence, we will 
continue describing the remote bond integrals using the dimer-
based approach expressed in eqn (7), treating these (weak) cou-
plings as a perturbative correction for the local bonds. The latter 
will be described by eqn (5) with a multicluster bonding function.  

We illustrate this approach on the simplest case of He3
ା [Fig. 

3(a)]. The ab initio (CCSD) value of its monomerization energy 
is of EM = 1.066 d.u. (Table 1). On the other hand, per eqn (1),  

 EM = 2×2𝜌ଵ,ଶℎଵ,ଶ  2𝜌ଵ,ଷℎଵ,ଷ, (10) 

which takes into account that 𝜌ଵ,ଶ = 𝜌ଶ,ଷ and ℎଵ,ଶ = ℎଶ,ଷ, by sym-

metry. The IMO coefficients 𝑐௜ = (1/2, 1/√2, 1/2) (Sec. 3.1) 
yield 𝜌ଵ,ଶ = 𝑐ଵ

∗𝑐ଶ = 1/(2√2) and 𝜌ଵ,ଷ = 𝑐ଵ
∗𝑐ଷ = 1/4. The signs of 

𝜌௜,௝ reflect the fact that the IMO in Fig. 3(b) is h-bonding with 
respect to the local interactions (𝜌ଵ,ଶ, 𝜌ଶ,ଷ < 0), but h-antibonding 
for the remote 1-3 pair (𝜌ଵ,ଷ > 0).  

The local integrals in eqn (10) are presumed to be defined by 
eqn (5). Namely, ℎଵ,ଶ = ℎଶ,ଷ = െ𝛽(𝜒ଵ,ଶ), with 𝜒ଵ,ଶ = |𝑐ଵ

∗𝑐ଶ| = 

1/(2√2)  0.354, while the weaker remote interactions are de-
scribed using the dimer-based eqn (7). Using 𝑟 from Table 1 for 
the local bond length 𝑟ଵ,ଶ yields 𝑟ଵ,ଷ = 2𝑟ଵ,ଶ = 2.286 d.u. Eqn (7) 
and the 𝑉(𝑅) curve for He2

ା in Fig. 3 (blue) then give ℎଵ,ଷ = 
െ𝑉(𝑟ଵ,ଷ) = 0.104 d.u. Substituting all these quantities into eqn 

(10), results in 𝛽(0.354) = 0.791 d.u. 
This empirical 𝛽 value for the trimer ion was obtained assum-

ing that its CCSD monomerization energy is determined by a 
combination of the local and remote pairwise interactions. As 
expected, it is slightly larger in magnitude than the initial 0.754 
d.u. result (Table 1), which was obtained by ignoring the slightly 
destabilizing remote forces. The corrected value of 𝛽 = 0.791 
d.u. for 𝜒 = 0.354 is included in Table 1 and indicated by red 
circle ‘b’ in Fig. 9. 

The above estimate shows that the 1-3 remote interaction in 
He3

ା amounts to about 10% of each of the 1-2 and 2-3 bonds 
(𝜌ଵ,ଷℎଵ,ଷ/𝜌ଵ,ଶℎଵ,ଶ = 0.1). That is, it is 10 times weaker and oppo-

site in character (antibonding) compared to the local bonds. 
Since there are two such bonds and only one remote pair, the 
overall destabilising effect of the remote forces in He3

ା is ~5% of 
EM. The relative small magnitude affirms the validity of our 

 

Fig. 9. Black squares a-f: 𝛽(𝜒) values determined from the respective per-

bond potential minima in Fig. 4, assuming that only local bonds contribute to

the overall cluster energy. Red circles a-f: the same, but with the remote
couplings considered. Solid blue curve: the continuous multicluster He௡

ା

bonding function obtained by fitting eqn (11) to red circles a-f. Shaded green

area: the bonding space defined by the dashed boundaries in Fig. 1. Solid grey

curves: the original bonding functions shown in Fig. 1 in various colours. 
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perturbative approach to these interactions. 
Similar calculations for square He4

ା, hexagonal He6
ା, and 

hendecagonal He10
ା  are detailed in Supplementary Information. 

The corrected values of the bond integrals, represented by the 𝛽 
values for = 1/4, 1/6, and 1/10, are included in Table 1 and Fig. 
9 (red circles c-e). Implicit in this analysis is the assumption 
underlying eqn (3): that remote interactions do not affect cluster 
geometry, necessitating no changes to the 𝑟(𝜒) datapoints in Fig. 
5. The noncovalent limit of the bonding function (point ‘f’ in Fig. 
9) is assumed to be the same as in Sec. 4: 𝛽(0) = 0.042 d.u.  

5.3. Continuous multicluster bonding function 

We now have six discrete 𝛽(𝜒) datapoints represented by red 
circles a-f in Fig. 9. To obtain a continuous bonding function to 
be used in model calculations, we performed a least-squares fit 
to these data using the analytical expression: 

 𝛽ሺ𝜒ሻ ൌ 𝛽଴ െ ሺ1 ൅ 𝛽଴ሻሾ1 െ ሺ1 െ 2𝜒ሻ௕మሿଵ/௕భ (11) 

This function differs from the original5 expression in eqn (6) by 
the inclusion of 𝛽଴ to account for the finite value of 𝛽 at 𝜒 = 0 
(point ‘f’ in Fig. 9). This constant (not a variable parameter) 
equals the covalent bond integral evaluated at a vdW distance, 
i.e., 𝛽଴ = 𝛽(0) = 0.042 d.u. per Sec. 4. 

The blue curve in Fig. 9 is defined by this 𝛽଴ value, with the 
optimal fit parameters 𝑏ଵ = 0.744 and 𝑏ଶ = 1.461. The resulting 
explicit 𝛽(𝜒) function was used in the following calculations. 

5.4. Model results 

In this section, we use the bonding function in eqn (11) with the 
optimal parameters determined in Sec. 5.3 to test our model for 
the Hen

ା clusters. Similar to Sec. 4, we consider two approxima-
tions: (1) without and (2) with remote interactions. Since the 
discrete 𝛽(𝜒) datapoints in Fig. 9 were specifically adjusted with 
the second approximation in mind, more superior performance is 
expected in the second case. Comparing the two sets of results 
will allow us to draw conclusions about the quantitative effects 
of the remote forces on cluster structures and stabilities.  

Sample self-consistent coupled-monomers solutions are pre-
sented in Fig. 10 and 11 for He3

ା and He10
ା , respectively. The 

content of these figures is colour-coded and formatted similarly 
to Fig. 7 and 8. In each figure, the solutions shown in black result 
from the local interactions only, while those in red include all 
pairwise couplings. The local interactions in all cases shown in 
Fig. 10 and 11 are treated using the multicluster bonding function 
given by eqn (11) and plotted in Fig. 9 (blue curve). The remote 
couplings for the red datasets are obtained using the dimer-based 
approach defined by eqn (9). 

All solutions shown in Fig. 10 and 11 are structurally very 
similar to those in Fig. 7 and 8, despite the different bonding 
functions used. As predicted previously,5 the charge in all He௡

േ, 
𝑛  3 clusters localises on a core trimer ion in most chemically 
relevant situations. Indeed, the covalently bonded He3

ା structures 
in Fig. 10 are nearly indistinguishable from those in Fig. 7, 
including the very similar charge distributions. The He10

ା  solu-
tion in Fig. 11, similar to Fig. 8, corresponds to a He3

ାHe଻ cluster 
structure, with 99.9% of the charge localised on the trimer core.  

The one significant difference between the model outcomes 
in Sec. 4 and 5 is in the respective cluster stabilities. While the 
dimer-based solution for He3

ା including all interactions (Fig. 7) 
is described by a monomerizations energy that exceeds the ab 
initio value (1.066 d.u.) by 17.5%, the multicluster solution in 
Fig. 10 matches it almost exactly, provided the remote interac-
tions are taken into account. In Fig. 11, the addition of several 
more He monomers to form He10

ା  (with a He3
ାHe଻ structure) 

results in a miniscule increase in EM. The observed increase is 
smaller in this case, compared to the dimer-based case Fig. 8, 
mirroring the smaller charge spillage off the trimer core. 

6. Concluding remarks  

The coupled-monomers model views any molecular system 
as a network of interacting monomers. We have applied this view 

 

Fig. 10. Sample solutions for He3
ା obtained using the multicluster bonding

function. Black symbols and annotations: only local couplings included. Red:

all pairwise interactions included as described in the text. See Fig. 7 caption
for further details. 

 

Fig. 11. Sample solutions for He10
ା  obtained using the multicluster bonding

function. Black symbols and annotations: only local couplings included. Red:

all pairwise interactions included as described in the text. See Fig. 7 and 8
captions for further details. 
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to homogeneous X௡
േ clusters, but it can be extended to heteroge-

neous systems with more than one monomer type. The model 
approximations are most appropriate for weak delocalised bonds 
resulting from the sharing of a single unit of charge. The model 
treats these bonds using a self-consistent density-matrix formal-
ism. It considers that equilibrium bond lengths and, therefore, the 
bond integrals vary with local bond orders 𝜒. This variation is 
described by a bonding function 𝛽(𝜒), which can be determined 
empirically based on experimental and/or ab initio data.  

In this work, we relied on high-level ab initio calculations to 
devise the bonding function for He௡

ା cluster ions. Helium is the 
simplest closed-shell monomer, allowing us to illustrate general 
bonding behaviours in the most elementary case. Two alternative 
approaches to determining the bonding function were described. 
The first is based on the dimer-ion potential, the other on several 
multicluster training points obtained by analysing a series of spe-
cial, not necessarily stable equilibria with all-equivalent bonds. 
The bonding functions determined by either method fall within 
the bonding space defined in the previous work,5 giving extra 
credence to the initial predictions. Each approach was tested in 
two regimes: by considering only the local bonds, and by 
including all—local and remote—pairwise interactions. 

All four model variations yielded similar structural results, 
consistent with the known properties of He௡

ା.1,2,4,21,38 Under most 
realistic assumptions, the charge in any He௡

ା, 𝑛 ≥ 3 system tends 
to localise on three monomers, resulting in the formation of 
trimer-ion cores within larger clusters. This prediction is robust 
with respect to an exact choice of the bonding function.  

Both the dimer-based and multicluster approaches indicate 
that remote interactions in He௡

ା are overall destabilising and 
account for approximately 5% of total covalent energy. There 
is, however, an important distinction between the two when it 
comes to cluster energetics. The dimer-based method overesti-
mates the He௡

ା, 𝑛 ≥ 3 cluster stabilities by 17.5%, even when all 
pairwise interactions are considered. The multicluster method, 
on the other hand, predicts the cluster monomerization energies 
almost exactly. This is because the dimer-based method is based 
on the He2

ା energetics only, while one of the multicluster training 
points corresponds to He3

ା. In our previous work, we showed that 
the trimer training point is key to predicting any correct X௡

േ ener-
getics using the coupled-monomers model.5

There remains one property that our model in its present form 
does not reproduce. It is the exact charge distribution within the 
He3

ା trimer. High-level ab initio calculations by us and other 
authors19,25 show that the charge distribution in Heଷ

ା is broader 
than the 𝑞௜ = 0.25 | 0.50 | 0.25 Hückel limit. The CCSD results 
for the trimer ion in Fig. 3(b) correspond to Mulliken charges of 
𝑞௜ = 0.267 | 0.466 | 0.267. In contrast, the coupled-monomers 
model in its present form, using the multicluster bonding 
function with all pairwise interactions accounted for, predicts a 
narrower distribution of 𝑞௜ = 0.238 | 0.523 | 0.238 (Fig. 10). 

Thus, our model predicts that the destabilising remote forces 
in He௡

ା work to narrow rather than broaden the charge distribu-
tion, which is contrary to the above CCSD prediction. In the 
future, we will show that the answer lies with the Coulomb integ-
rals. So far they were presumed constant, but should also vary 
with respect to the density elements, just like their off-diagonal 

counterparts (the bond integrals) do. 
Finally, we reiterate the overall conclusion that in the absence 

of geometric constraints the charge in various X௡
േ systems tends 

to be shared by three monomers. In this work we focused on 
monoatomic monomers (X = He), but the coupled-monomers 
approach can be and has been similarly used to treat X௡

േ clusters 
of polyatomic species, with similar conclusions.5 We stress that 
the universal trimerization trend in such weakly-bonded covalent 
networks has been revealed in a purely coherent regime. It results 
from the enthalpy-driven competition between charge sharing 
and localisation and is a feature of IM covalent couplings per se, 
largely independent of the intrinsic properties of the monomers. 
Therefore, many other trimer-ion species are likely to be found, 
particularly in cold environments such as exoplanetary atmo-
spheres and outer space. 

Data availability 

Some of the data supporting this article have been included as 
part of the Supplementary Information. The code for self-consis-
tent density-matrix calculations using the coupled-monomers 
model is available from the authors upon request. 
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