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Helium cluster ions: coherent charge sharing and the general
trimerization trend
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The coupled-monomers model views any molecular system as a coherent network of interacting monomers. Developed as
DOI: 10.1039/x0xx00000x a self-consistent density-matrix adaptation of the Hiickel MO theory, it has been applied to various X;*r cluster ions, where X
is an inert (closed-shell) neutral monomer. Rather than keeping the bond integrals constant, the model considers their
variation with the bond orders y using a bonding function B(y). In this work, high-level ab initio data are used to obtain the
bonding function for He},. As the simplest inert species, helium is used to illustrate the general X% bonding trends on the
most elementary example. Two alternative approaches to the bonding function are described. One is based on the HeZ
potential, the other on the “multicluster” training points obtained by analysing several special He;: structures. Each approach
is tested in two regimes: by considering only the local bonds, and by including both local and remote pairwise interactions.
The remote forces in He;f, n > 3 are destabilising and account for approximately —5% of total covalent energy. Each model
variation yields similar structural results, indicating a general trend for trimer-ion formation. In the absence of geometric
constraints, this appears to be a universal feature of the X,J—: covalent networks, resulting from the enthalpy-driven competi-
tion between charge sharing and localisation. Therefore, many currently unknown trimer-ions are likely to be found in cold
environments, such as exoplanetary atmospheres and outer space.

monomers. The trimer ions emerge as the optimal outcome of
1. Introduction two competing drives: on the one hand, extended charge sharing

Helium is the simplest closed-shell neutral species. It is inert in allows more covalent bonds to form; on the other, thinly spread-

the neutral state but becomes reactive with the addition of a '"8°0¢ bonding agent diminishes the strength of each bond.

charge, as exemplified by the formation of a>2 &V covalent bond To describe the universal features of charge-induced interac-

in HeZ . The reactivity is generally due to the electron (o, in tions, we put forth a simplified version of the molecular-orbital
this case, its opposite—the hole) acting as the elementary agent
of covalent forces, the “glue” of the chemical bond.

The addition of such glue transforms helium clusters into a

fundamental laboratory of chemical bonding. He;' is the simplest

(MO) theory, the coupled-monomers model.’> The model is not
intended to compete with high-level ab initio methods. Instead,
it aims to provide simple descriptions of chemical bonding in
supramolecular systems, focusing on fundamental insight rather
than quantitative precision. The model views any molecular sys-
tem as a network of coupled monomers, regardless of their intrin-
sic structures. The model approximations are appropriate for the
X3 networks, where the sharing of one bonding agent results in
fairly weak IM bonds with large equilibrium lengths.

These bonds are treated using a self-consistent density-matrix
adaptation® of the Hiickel MO theory.3*35 The original Hiickel
theory describes covalent bonding between all adjacent atoms in
terms of constant bond integrals (£). This assumption is valid
when all the bonds considered are equivalent, as is approxi-
mately the case for & electrons in conjugated hydrocarbons—the
Hiickel theory’s original domain. However, it is unphysical for

case of X& covalent networks, where X is a closed-shell mono-
mer.’ The inter-monomer (IM) couplings in such systems illumi-
nate the competition between coherent charge sharing and local-
isation,®!? which is central to chemistry. When sterically possi-
ble,” many X3, n > 3 clusters (including He;,) form trimer-ion
cores,! 61826 with the rest of the monomers remaining in the
neutral state, bound to the cluster by noncovalent forces.?’?® The
tendency of a charge to localise on not one, not two, but specifi-
cally three monomers is both common and intriguing.

Indeed, trimer ions have been observed or predicted in many
X¥ systems, with X ranging from rare-gas atoms (cations),!20-
22 to organic molecules (anions).>*?° The diversity of these

5,7 - 5 -
systems implies that the trimerization trend is due the universal many other systems.>' The coupled-monomers model,” there

features of covalent bonding, not the intrinsic properties of the ff)rce., employs variable bond integrals. It consut.lers that the equi-
librium bond lengths and, therefore, the bond integrals, do vary
with local Hiickel (Coulson)*3-¢ bond orders y. The latter are de-

scribed by a bonding function S(x). Examples of such functions

o Department of Chemistry and Biochemistry, The University of Arizona, Tucson,

_ 4 ! for He;! are shown in Fig. 1. A variety of B() curves within the
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Fig. 1. Examples of He;; bonding functions (solid curves in various colours). All
curves are defined by eqn (6) with the training-point constraint ﬂ(1/2\/§) =
—0.750 (blue circle). Dashed curves show the boundaries of the bonding space
considered, with (by, b,) = (0.6, 0.6) and (1.7, 1.7).

dashed boundaries were considered,’ but to be applicable, the
bonding function must satisfy the universal boundaries plus the
training point shown by the circle in the figure.

Under realistic assumptions, the coupled-monomers model
has confirmed the trimerization trend in sterically permitting X3
clusters. This outcome was demonstrated for several cationic and
anionic systems with diverse monomer types, from rare gases to
organics.® In each case, the trimer prediction proved to be quite
robust with respect to the exact choice of f(x). For example, eve-
ry solid curve in Fig. 1 yields a trimer-ion core in He;}.

The goal of the present work is to demonstrate that the empi-
rical form of the bonding function proposed previously® is con-
sistent with ab initio theory. We use a variety of high-level cal-
culations to devise the bonding function for He;, but the specific
case of X = He is used here to illustrate the general X3 bonding
trends on the most elementary example. The results show that
under reasonable assumptions S(x) for He; indeed falls within
the empirical boundaries of the bonding space in Fig. 1.

The next section gives an overview of the coupled-monomers
model, followed by the presentation of ab initio results for seve-
ral special He; structures in Sec. 3. These results power two
alternative methods of deriving the bonding function in Sec. 4
and 5. The first is based on the HeZ potential and the second on
several multicluster training points. The final section summa-
rizes the findings and outlines future directions.

2. The coupled-monomers model

The formalism used in this work has been described previously.’
In short, our model relies on some of the Hiickel theory’s original
assumptions, but includes adaptable bond and Coulomb integ-
rals. The variability of the former is especially key in weakly
bonded X3 systems, where the Hiickel assumption of constant
bond integrals does not hold, even approximately.

2.1 MMO basis set

For a system of n identical monomers, the inter-monomer orbi-
tals (IMO) ¢; are described as linear combinations of the

monomer orbitals (MMO) ;, one per monomer: ¢ =
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Fig. 2. (a) Sketch of the 1s MMOs of the He(i), i=1,..,natoms, y;, comprising
the basis set used to describe the linear He;: chain. All basis-pair couplings in
this basis are antibonding for holes, as reflected by positive bond integrals.
(b) Sketch of lowest-energy h-IMO. Only the signs of the MMO contributions
are shown, not their amplitudes. This orbital is e-antibonding but h-bonding
with respect to all nearest-neighbour interactions. The character of the
remote forces alternates along the chain.

Zici(k)l,bi, i,k=1,..,n. For He}, ; are the 1s orbitals of the
He®,
favoured energetically for He;, so we limit modelling to such

monomers, sketched in Fig. 2(a). Linear chains are

structures.’

The {1;} MMO set serves as a minimal basis for treating the
interactions in He,, caused by the addition of one hole. The hole
is described by an effective Hamiltonian H.5 Like in the Hiickel
theory,*> we rely only on its matrix representation in the {1;}
basis. The diagonal elements H;; = (1/),-|17 |1/)l-) are the Coulomb
integrals, which here we continue treating as constants. The off-
diagonal elements H; ; = (¢i|ﬁ|1,b,-), i # j are the bond integrals.

For electrons (e), the couplings between all basis MMOs in
Fig. 2(a) are attractive, described by negative bond integrals Hf;
<0, for all i # j. Indeed, to a chemist’s eye, the MMO chain in
Fig. 2(a) forms a bonding-throughout IMO. However, this holds
only if the IMO is occupied by an electron. That is, the above
interactions are e-bonding, rather than simply bonding. Using the
same MMOs to describe a hole (h) results in an opposite, h-anti-
bonding effect, with HY; > 0, i # j.

Following Hiickel, 33 we treat the MMO basis as orthonor-
mal. The IMOs ¢, = Y ; ci(k)lpi and their energies E, k=1, ...,
n are then obtained by diagonalising the Hamiltonian matrix.

The solution yields n eigenvalues Ey, k =1, ..., n and eigenvec-
Q)

tors |¢y), which contain the ¢;”" coefficients. Focusing on the

lowest-energy IMO, ¢ = ¢, we drop index k = 1 for brevity.

2.2 Charge-sharing stabilisation

IM bonding is described by the monomerization energy AEwm, i.e.
the energy change in the Xf — X* + (n — 1)X process. For a
bound system, AEm > 0, with bonding and antibonding interac-
tions making positive and negative contributions, respectively.
In the general MO theory, total bond orders and stabilisation
energies are defined by the combined contributions of all occu-
pied orbitals. Here, we consider only systems bonded by a single
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bonding agent: one electron (in X};) or one hole (in X}}). In He;",
in particular, there are (2n — 1) electrons distributed among n
molecular orbitals (IMOs). Such a system can be viewed as a
combination of two contributions: a closed-shell 2n-electron
configuration and a single hole populating the IMO in Fig. 2(b).
The first of the above contributions amounts to zero in terms
of covalent bond orders and energy, as in the He,, van der Waals
cluster. Therefore, instead of considering the (2n — 1) electrons
in the n IMOs of He;!, we can view it, equivalently, as a single-
hole system with only one populated IMO. Both the stabilisation
energy and all bond orders are then defined by this IMO only.
With the additional assumption of constant Coulomb integrals
(set arbitrarily to zero), AEwm is then given by the negative of the
one IMO energy, i.e., the lowest energy eigenvalue of the
Hamiltonian matrix. Alternatively, it can be expressed as:>

AEy = —Z 2p;jhy (1)
i<

where h; ; are the equilibrium values of the bond integrals, i.e.,
H; ; for the relaxed cluster structure, and p; ; = c{¢; are the ele-
ments of the density matrix p = |¢)(¢|.>7 The off-diagonal p; ;,
i # j are the Hiickel (Coulson) bond orders.?® The diagonal ele-
ments p; ;, which do not figure in eqn (1), represent hole density
on respective He™® monomers, i.c., the partial charges: q; = p; ;.

Under the basis set definition in Fig. 2(a), all h-bond integrals
are positive, either at equilibrium (h; ; > 0) or at an arbitrary geo-
metry (H;; > 0). The resulting lowest-energy h-IMO is sketched
in Fig. 2(b) (amplitudes not shown, only signs). Since the signs
of ¢; alternate along the chain, this IMO is e-antibonding but h-
bonding throughout.

The h-bonding interactions resulting from the opposite-sign
adjacent IMO coefficients correspond to negative local (nearest-
neighbour) bond orders, p; ;+; < 0. All other (remote) pairwise
interactions alternate, as illustrated in Fig. 2(b), between h-anti-
bonding (p; ;+s > 0) and h-bonding (p; ;45 < 0) for even and odd,
respectively, degrees of separation s:

s=li—j| (@)
Since the remote (s > 1) interactions are much weaker than the
local (s = 1) bonds, the latter (with h;;4; > 0 and p; ;41 < 0)
define the positive sign of AEwm, per eqn (1). That is, the chain is
bound overall in its ground state.

Eqn (1) offers an intuitive perspective on the relationship bet-
ween covalent bond energy and bond integrals. While AEwm is a
sum over all IM bonds, each bond’s energy is given by the mag-
nitude of its bond integral, weighted by twice the bond order. In
the valence bond theory, a single bond consists of two electrons
or holes. The above weight then corresponds to the number of
contributing bonding agents and each 2p; ;h;; term can be
understood as the bond integral scaled by the fractional number
of electrons (holes) residing on the particular bond.

2.3 Dimer units

Most results in this work are reported in terms of dimer units
(d.u.), which allow for a straightforward generalisation of the
results to any X3 system.5 In this work, specifically, the dimer
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unit of energy is defined as the bond dissociation energy of Hej:
1 d.u. = 2.446 eV. Similarly, the dimer unit of length is defined
as the equilibrium bond length of Hej: 1 d.u. = 1.083 A.

2.4 Bond lengths and bond integrals

Hiickel’s assumption of constant bond integrals is valid only
when all bonds considered can be treated as exactly or approxi-
mately equivalent. This holds for 7 electrons added to a frame-
work of ¢ bonds in conjugated hydrocarbons—the Hiickel theo-
ry’s original domain, but is unphysical for most systems.>’ This
approximation certainly cannot be used for weakly bonded clus-
ters, such as He;' or similar. When the entirety of the bonding is
due to one delocalised electron or hole, the bond lengths and,
therefore, bond integrals vary significantly from bond to bond.
Instead, the local equilibrium bond lengths 7;;,, can be as-
sumed to depend explicitly on the corresponding bond orders:>

Tiiv1 = T(Xiit1) 3)

r(x) is a function of the absolute bond order between adjacent
monomers. Here, “absolute” means independent of the basis set
definition. Absolute order y is always positive for bonds and
negative for antibonds and can, therefore, differ in sign from the
Hiickel (Coulson) definition.333¢ For bonding interactions, x; ;41
=|piiz1] =lcicj| > 0and r(x) — oo for y — 0. For antibonding,
Xii+1 = —|Pii+1] <0 and r(x) is infinite for any y < 0. The basis
set in Fig. 2(a) implies that the Hiickel and absolute h-bond or-
ders are opposite in sign throughout this article:

Xij=—Pij @

as indicated for the lowest-energy h-IMO in Fig. 2(b).

Implicit in eqn (3) is the assumption that the equilibrium geo-
metry is defined by local interactions only. Since the bond integ-
rals depend explicitly on the distance between the monomers, it
also follows that the local equilibrium bond integrals h; ;4 ; must
vary with the corresponding bond orders. We postulate that
|hiis1] = |B(Xii+1)|, where B(x) is no longer a Hiickel constant
but a negatively-valued (for y > 0) function. We call it the bond-
ing function.’ Given that all bond integrals in the this work must
be positive under the basis-set definition in Fig. 2(a), we have:

hiir1 = —B(Xii+1) (5)

The universal (independent of the monomer identity) features
of r(x) and B() were discussed previously.> Both functions are
expected to be well-behaved and monotonic on the y € [0, 0.5]
interval. The left boundary corresponds to the nonbonding (non-
covalent) limit and the right represents the largest bond order
attributable to one electron or hole.

Since the stronger the bond, the shorter it is, r(y) must be a
decreasing function of y. Since shorter bonds result in stronger
IM couplings, S () is expected to increase in magnitude with in-
creasing y. Since the bonding function is defined to be nega-
tively-valued or zero, it varies from [(0) = O (the nonbonding
limit) to £(0.5) = —1 d.u. (the dimer limit).’ However, the above
nonbonding (noncovalent) limit assumes an infinite IM separa-
tion, and this assumption will be modified in Sec. 3.2.

These requirements are satisfied by the empirical function
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BOO = —[1—(1-20)"]/" (6)

defined for y € [0, 0.5], where by, b, > 0 are parameters.> For
example, (b, by) = (1, 1) corresponds to the linear function § =
—2x connecting the nonbonding and dimer limits, while the
dashed boundaries shown in Fig. 1 are defined by (b;, b,) = (0.6,
0.6) and (1.7, 1.7), as labelled. It was previously speculated’ that
all or most relevant bonding scenarios fall within the region of
the bonding space defined by eqn (6) with by, b, € [0.6, 1.7], i.e.,
in between the two dashed curves in Fig. 1.

Indeed, the 12 solid curves shown in Fig. 1 in various colours
are all defined by eqn (6) with b, ranging from 0.6 to 1.7 and the
corresponding b, values determined so that each S(x) function
pass through the blue training point B(1/(24/2)) = —0.750.5 This
constraint “trains” the model to reproduce the HeZ energy.

2.4 Search for self-consistent solutions

As evident from eqn (1), the energy eigenvalues and hence the
IMO coefficients ¢;, i = 1, ..., n, depend on the density matrix
elements p; ;. Since p;; = ¢/ c;, those elements themselves re-
present the model solution, leading to a conundrum that the very
statement of the problem to be solved depends on the solution.

This issue is resolved via an iterative search for a self-consis-
tent solution.> Given the bonding function B(x), the search is
initiated with an arbitrary set of the initial {c;} coefficients. Each
iteration then includes the following steps:

(1) From {c;}, compute p; ; = ¢/ ¢j and x; ; = —p; ;.

(2) Set all Coulomb integrals to the same constant (e.g., zero)
and evaluate the local bond integrals from the bonding function
and local bond orders using eqn (5). The remote integrals h; j,
|i — j|] > 1, are either set to zero (local bonding approximation)
or evaluated using the method in Sec. 4.

(3) Find the eigenvalues and eigenvectors of matrix h from
the previous step.

(4) Check for convergence and proceed to the next iteration
(Step 1) or exit the loop.

The convergence check is based on two criteria. The energy
change must be <10 dimer units (2.5 peV), compared to the
previous iteration, and the norm of the eigenvector change must
be <1077. Most reported calculations involved <200 iterations.

3. Ab initio predictions for special structures

We now turn to He,, cluster ions for ab initio insight into the 7(x)
and S(x) functions. Both can be evaluated explicitly by analys-
ing the interaction potentials for various bond orders.

3.1. Covalent interactions

In this part, we consider several He} structures shown in Fig. 3
along with their respective IMOs. Not all of them correspond to
stable clusters: (a) and (b) do, but (c)-(e) do not. These structures
were chosen because they each include only equivalent (by sym-
metry) local bonds. That is, the local bond orders are constant
within each structure but vary among them.

All IMOs in Fig. 3 are completely antibonding if occupied by
an electron (e-antibonding) but become bonding if populated by

4 | PCCP, 2024, 00, 1-3
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Fig. 3. Geometries and lowest-energy h-IMOs of special He} structures that
include only all-equivalent bonds. The structures were optimised subject to

the symmetry constraints. (a) and (b) correspond to stable clusters, but (c)-
(e) do not. All IMOs shown are h-bonding.

999

a hole (h-bonding). In terms of the coupled-monomers model,
the HeJ structure in (a) has an absolute bond order of y = 0.5.
Each of the trimer bonds in (b) is described by y = 1/(2v2) =
0.354, as obtained from the ¢; = (1/2, —1/+/2, 1/2) IMO coeffici-
ents dictated by the model and by the original Hiickel theory,
regardless of the assumed bonding function or bond length. Simi-
larly, all bonds in square Hej (c) correspond to y = 1/4, in hexa-
gonal He{ (d) to 1/6, and in hendecagonal Hef (e) to 1/10.
Beginning with the dimer ion, its potential is represented by
the blue curve in Fig. 4. The specific curve shown is a Morse-

R/A
20 25 30 35

05 10 15

Energy /dimer units
Energy/eV

L :
05 1.0 L5 20 25 3.0
R / dimer units

Fig. 4. Ab initio results for (a) He7 (absolute bond order y = 1/2); (b) linear
Hed (x = 1/2v2); (c) square He} (x = 1/4); (d) hexagonal He{ (x = 1/6); (e)
hendecagonal He! (y = 1/10); and (f) Hez (neutral van der Waals dimer, y =
0). The filled symbols for (a) and (f) represent the results referenced in the
text. Solid blue and orange curves are the respective Morse and Lennard-
Jones potential fits to these data. The series of black open circles are results
of symmetry-constrained potential energy scans. Red open circles are the
potential minima of the respective structures.
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potential fit to the full-CI results for He; by Gadea and Paidaro-
va! (filled blue squares). The black open circles overlaying this
curve are from our CCSD/aug-cc-pVTZ calculations using Q-
Chem 5.1.37 They are nearly indistinguishable from full-CI: the
full-CI potential has a minimum of —2.448 eV at 1.085 A, while
our calculations yield Vy,;,, = —2.446 eV at r = 1.083 A. Given
the agreement, we will rely on our CCSD results, to be consistent
with the other calculations in this work. The (7, Vi) = (1.083
A, —2.446 eV) minimum for He} is equivalent to (7, Vi) = (1,
—1) in dimer units.® It is represented by red circle ‘a’ in Fig. 4
describing a y = 0.5 bond.

Turning to smaller bond orders, Fig. 4 displays additional
per-bond potential minima b-e for the larger He;' structures in
the respective parts of Fig. 3. In detail, black-circles ‘b’ in Fig. 4
represent the per-bond energy of Hei from a CCSD/aug-cc-
pVTZ potential energy scan under the D2, symmetry constraint.
The values plotted were obtained by dividing the trimer energy
relative to the He* + 2He limit by the number of local bonds (2),
to yield the energy attributable to each bond.

The (7, Vipin) = (1.238 A, —1.304 V) minimum for He3 cor-
responds to (1.143, —0.533) in dimer units. It is indicated by red
circle ‘b’ in Fig. 4. These results are in agreement with the earlier
works on Hed .!-242138 The above r = 1.238 A compares to 1.238
A determined by Gadea and Paidarova' and 1.241 A predicted
by Knowles and Murrell.* The V,,;,, value of —1.304 eV corre-
sponds to a 2.608 eV monomerization energy, which compares
to 2.598 eV calculated by Rosi and Bauschlicher? and 2.659 eV
predicted by Knowles and Murrell.*

Datasets (c), (d), and (e) in Fig. 4 represent the results of simi-
lar per-bond calculations for the respective structures in Fig. 3,
all carried out under the appropriate symmetry constraints. To
avoid clutter, Fig. 4 omits the detailed He} (c) and He{, (e) scans
but the (', V,;,;) minima are indicated by red circles in each case.

The r and V,,;, values, along with the monomerization ener-
gies of these structures are summarised in Table 1. The decreas-
ing AEw for n > 3 reflect the diminishing stabilities of the con-
strained cyclic geometries with artificially delocalised charges.
In the unconstrained ground states of He}', the charge localises
on no more than three monomers, and all unconstrained n > 3
structures have AEm(n) = AEv(3).”

3.2. The noncovalent limit

The orange curve in Fig. 4 is the van der Waals (vdW) potential
of He,, corresponding to a covalent bond order of zero. The

r / dimer units

0.1

0.2 0.3
Bond order, y

Fig. 5. Red circles: Optimised bond lengths of the He structures (a-e) in Fig.
3 and the neutral van der Waals dimer (f), plotted versus the corresponding
bond orders. Solid blue curve: a bi-exponential fit to the data, excluding (c).

specific curve shown is a Lennard-Jones potential fit to the data
of Clementi and Corongiu,>%? shown by filled orange squares
(some datapoints fall outside the graph’s energy bounds). The
minimum at r = 2.9 A = 2.7 d.u. (approximately twice the vdW
radius)*! is too shallow to be discerned but represented by red
circle (f) in the figure.

In all y > 0 cases (Sec. 3.1), we ignored noncovalent forces.
If we continue to do so as y — 0, the relaxed covalent bond
length will approach infinity. This trend will cause the bond
integral, i.e., the coupling between the basis functions, to vanish
aswell: B(x) > 0as y - 0and r — .5

However, noncovalent interactions cannot be ignored in the
x — 0 limit: no matter how weak, they become the only remain-
ing IM force. The very existence of van der Waals clusters im-
plies that r remains finite even as y vanishes. Minimum (f) in
Fig. 4 sets a maximum of r, max(r) =2.9 A (2.7 d.u.), achieved
in the y — 0 limit. An immediate consequence of this boundary
is that the bond integral for charge-induced covalent interactions
cannot vanish even for y — 0. It remains limited by the He}
potential value at the above max(r).

3.3. The bond-length function

The optimised local bond lengths for the special He;' structures
a-e in Fig. 3 are plotted versus the corresponding bond orders in
Fig. 5 (red circles). The discrete r(y) data from Table 1 are sup-
plemented with the noncovalent limit (0) = 2.7 d.u. (point ‘f”)
discussed in Sec. 3.2.

The blue curve in Fig. 5 represents a bi-exponential fit to the

Table 1. Results of the CCSD/aug-cc-pVTZ optimizations of the He{, n=2,3,4,6,10 cluster structures shown in Fig. 5. The AEy,, bond energy, 8, and equilibrium
bond length r values are all in dimer units (1 d.u. of energy = 2.446 eV, 1 d.u. of length = 1.083 A).

Case* | Cluster” X r AEy(n) b]::)g?ir,gzl}:irn B (local) B (all)
a Hej 0.500 1 1 1 -1 -1
b He? 0.354 1.143 1.066 0.533 -0.754 —-0.791
c He} 0.250 1.350 0.871 0.218 -0.436 —0.554
d He? 0.167 1.496 0.666 0.111 -0.333 —-0.375
e Hej, 0.100 1.712 0.408 0.0408 —0.204 -0.229

2 As labelled in Figs. 2-4. ° Structures shown in Fig. 4. ©As defined in the coupled monomers model. The exact y values in cases a-e are 1/2, 1/(2\/5), 1/4,1/6,
and 1/10, respectively. ¢ These 8 values (uncorrected for remote interactions) are calculated as f = Vpnin/(2)). © B values corrected for remote interactions,

as described in the text.
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ab initio data. It arms us with a continuous r () function to use
in further modelling. The fit shown was obtained excluding point
‘c’ (x = 1/4), which deviates slightly from the general r(y) trend.
The deviation is due to the remote interactions in square HeJ,
which are stronger than in any other structures in Fig. 3. With the
distance between the opposing monomers only v2 times the
shortest bond length, the remote integrals amount to almost half
of their local counterparts. While the energetic effect of the
remote forces can be estimated easily (see Supplementary Infor-
mation), the geometric effect was not pursued. Qualitatively, the
strong diagonal couplings in Fig. 3(c) are h-antibonding in char-
acter and lengthen the local bonds. This results in the perceptible
displacement of point ‘c’ from the general r(y) trend in Fig. 5.

4. Dimer-based modelling

In this section, we assume that the bond integrals of any He}', n
> 3 cluster can be deduced from the HeZ potential. This is similar
to the basic idea of the diatomics-in-molecules theory*? proposed
by Ellison in 1963.4344 It was used with varying success to model
cluster

various polyatomic including

ions. 1,3.4,18,19,23,25.45

systems, rare-gas

In a way, we aim to predict the charge-induced couplings bet-
ween monomers in larger settings by observing their one-on-one
interaction in the dimer ion. Despite significant quantitative
errors, this approximation will allow us to reach—simply and
with considerable insight—correct qualitative conclusions.

4.1. The dimer-based bonding function

Quantitatively, we assume that all X-X coupling elements—the
local and remote bond integrals in any X3 structure, whether at
equilibrium or not—depend explicitly on IM distance only. That
is, Hy j = f(Ry) for i # j, where f is assumed to be the same for
any X} with a given X. Then at equilibrium (Ryj =1, Hyj =
hi;), hij = f(1;;). Note that f is defined in a different variable
space than 8 in eqn (5).

Now apply the above to the specific case of He}. In the cou-
pled-monomers framework, its potential energy V at any R is
equal to the negative bond integral magnitude at that R (true only
because the Hiickel-like effective Hamiltonian and hence the
bond integrals incorporate nuclear repulsion). In our basis, all
bond integrals are positive, and therefore V(R) = —H; »(R) or,
equivalently, V(R) =—f(R), where f is the function from the pre-
vious paragraph. Combined with h; ; = f (7 ;), this yields:

hij==V(@y), i#j. @)

where V(R) is the HeJ potential (the blue curve in Fig. 4).
Even though eqn (7) uses the He potential, it applies to all
monomer pairs in any He,. This is unlike eqn (5), which is
defined for local bonds only. Specifically for nearest neighbours
(j=izx1),7;ineqn (7) can be expressed in terms of the bond-
length function from Fig. 5, as 7; ;41 = 7(X;,;+1)- This results in

hiisr = =V[r(Xii+1)] (®)
Together with eqn (5), this gives
B =VIr(nl ©)
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Fig. 6. Solid blue curve: the dimer-based He;’ bonding function obtained using
the (x, r) = (x, B) transform of the r(x) curve in Fig. 5 (blue) using eqn (9)
and the Hej potential V(r) in Fig. 4. Red circles a-f: the respective datapoints
from Fig. 5 following the same transformation. Shaded green area: the bond-
ing space defined by the dashed boundaries in Fig. 1. Solid grey curves: the
original bonding functions shown in Fig. 1 in various colours.

Eqn (9) allows an explicit calculation of the local bond integ-
rals. The corresponding bonding function is plotted by the blue
curve in Fig. 6. To obtain it, r for every y was determined using
the r() function in Fig. 5. The S(x) value was then found from
the corresponding V(r) value using the He3 curve in Fig. 4.

4.2. Local bonding approximation

Sample self-consistent solutions obtained using the above bond-
ing function (including local couplings only) are presented in
Fig. 7 and 8 (black symbols and annotations). The two figures
correspond to Hed and He7, respectively.

The black circles in each figure represent the converged IMO
amplitudes |c;|, plotted vs. the monomer number i. The values
plotted next to the symbols in same-colour font are the partial
charges, determined as q; = |c;|>. The monomerization energy
AEwm in dimer units (1 d.u. = 2.446 eV) is indicated in the
matching-colour (black) font in the top-right corner of each plot.

Green asterisks in each figure represent the magnitudes of the
initial {c;} guess in each calculation. Note that the guess for each
calculation was chosen to contain no symmetry. This is to avoid
constraining the solutions to either odd- or even-numbered clus-
ter cores.” As in the previous work,” we emphasize the model
divergence from the Hiickel theory. To highlight the difference,
a continuous form of the Hiickel (constant f8) solution is shown
for comparison in each figure as a dashed curve that looks like
the ground-state wavefunction of the particle in a box.

The original trimer-core prediction® is clearly borne out in the
present results. In the case of Hei (Fig. 7), with only the local
interactions considered, the model charge distribution g; = 0.250
[ 0.500 | 0.250 follows the Hiickel model exactly. In contrast, the
He7, solution (Fig. 8) obtained under the same assumptions devi-
ates significantly from the Hiickel model. Even though the
starting state in this example distributes the charge over the entire
10-membered chain, the converged solution is localised, placing
99.7% of the charge on three core monomers (i = 4-6 in Fig. 8).
It corresponds to a He -He, cluster structure.

The charge distribution within the trimer core of He{, (q; =

This journal is © The Royal Society of Chemistry 2024
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Fig. 8. Sample solutions for Hef, obtained using the dimer-based bonding
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the monomer chain. The bond lengths values are indicated but the structure
is not drawn to scale. Monomers shaded in red correspond to the cluster core
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0.250]0.497 | 0.250) is nearly identical to that in an isolated He?
(Fig. 7). As discussed previously, a minor charge spillage from
the trimer to adjacent monomers (i = 3 and 7) is due to the bond-
ing function trend in the y — 0 limit.> In this case, it is specifi-
cally due to the finite value of £(0).

The He? monomerization energy (AEm = 1.305 d.u.), based
on the solution in Fig. 7, is >20% larger than the correct value of
1.066 d.u. (Table 1 and refs. 2,4). This discrepancy will be dis-
cussed shortly. The He}, monomerization energy is only 0.002
d.u. (5 meV) higher than that of Hei. The model accounts for
covalent energy only and the addition of noncovalently bonded
neutral monomers does not affect AEm. Its minor increase from
n =3 (Fig. 7) to n = 10 (Fig. 8) is due to the weak couplings
between monomers 3-4 and 7-8 in Fig. 8, activated by the charge
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spillage from the trimer core to the adjacent monomers.

The top parts of Fig. 7 and 8 show the converged geometries
of the He3 and Hef chains, respectively. The IM distances (not
to scale in the figure) are indicated in dimer units (1 d. u. = 1.083
A), with the black font corresponding to the local-bonds-only
solutions discussed here. The bond lengths within the trimer core
of HeT, (Fig. 8) are essentially the same as in the isolated trimer
ion (Fig. 7). The 2.696 d.u. distances between nonbonded neutral
monomers correspond to the vdW separation (Sec. 3.2).

4.3. All pairwise interactions on an equal footing

Eqn (7) allows us to bypass the local bonding function S() alto-
gether. Instead, we can treat a// bond integrals—local and remote
—in a uniform fashion. To do this, at each iteration, we use the
IMO coefficients ¢; to calculate the local bond orders x; ;1.
From these, using eqn (3) with () from Fig. 5, the ;;,; bond

lengths are determined. Then a// IM distances in the He;; chain
max(i,j)—1

are calculated as 7y j = 3, = 4~ (i) Tek+1- The bond integrals for

all i-j pairs are then determined via eqn (7).

Sample results of this approach for Hed and He7,, are shown
in Fig. 7 and 8, respectively, in red. Since the remote interactions
in the ground states of He;, are overall destabilising [Fig. 2(b)],
their inclusion lowers the He! and Hef, monomerization
energies, by 0.052 d.u. (0.127 eV) or about 4% in each case. The
change is in the right direction, but AEm(3) = 1.253 d.u. is still
17.5% larger than the true value, 1.066 d.u.

The inclusion of remote interactions has a minor effect on the
cluster geometry and charge distribution. The antibonding nature
of these interactions in the trimer core results in a slight but
perceptible narrowing of the charge distribution, from q; = 0.25
| 0.50 | 0.25 to 0.24 | 0.52 | 0.24. This redistribution helps mini-
mize the antibonding coupling between the terminal monomers
in the trimer, with little or no effect on the local bond orders.

4.4. Conclusions from the dimer-based approach

The approach tested in this section correctly predicts some key
properties of He; clusters. Among them is the key structural
feature: all n > 3 species possess trimer-ion cores.>*?!138

The bonding function calculated using this approach (Fig. 6)
does fall within the initially defined bonding space,’ although it
comes close to its lower boundary for y = 0.35-0.5. It is primarily
due to this significant deviation from the original trimer training
point (blue in Fig. 1, greyed out in Fig. 6) that this bonding func-
tion overestimates the cluster stability by 17.5%.

This discrepancy is due to the assumption that pairwise cou-
plings are unaffected by other monomers. The performance of
the model overall depends sensitively on the bonding in the tri-
mer ion,® but this approach does not use the trimer energetics as
an input. Instead, it assumes that the pairwise integrals in Hed
are the same as they would be at the same distance in He. This
is not strictly correct, as the effective Hamiltonians of the two
systems are different. This results in the bonding function in Fig.
6 missing the original trimer training point by a lot, causing the
model to miscalculate the core-ion energy.

To rectify this, next we modify how the bonding function is
calculated. The model performance is improved by including not
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Fig. 9. Black squares a-f: B(x) values determined from the respective per-
bond potential minima in Fig. 4, assuming that only local bonds contribute to
the overall cluster energy. Red circles a-f: the same, but with the remote
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bonding function obtained by fitting eqn (11) to red circles a-f. Shaded green
area: the bonding space defined by the dashed boundaries in Fig. 1. Solid grey
curves: the original bonding functions shown in Fig. 1 in various colours.

only the dimer, but also the trimer, and larger-cluster energetics.

5. Multicluster bonding function

In this section, we use the He} structures shown in Fig. 3 plus
the van der Waals dimer to parameterise the bonding function
B(x). The corresponding bond energies provide necessary data
to determine f3 values for a discrete y series ranging from y =0.5
to 0. The results are presented in Fig. 9.

5.1. Local bond integrals

The monomerization energy of Hey (y = 0.5) is AEm =1 d.u., by
definition of the dimer unit. On the other hand, diagonalisation
of the dimer 2x2 Hamiltonian yields AEm = h, ,, where h, , is
the relaxed bond integral. It then follows from eqn (5) that £(0.5)
= —1 d.u.’ This is included in Table 1 and represented by red
circle ‘a’ in Fig. 6 and, again, symbol (a) in Fig. 9.

For Hej (y = 0.354), the per-bond minimum (b) in Fig. 4
corresponds to Vy,;,, =—1.304 eV =—-0.533 d.u. (Table 1). If only
local interactions are included, then per eqn (1) and (4), it is
related to the bond integral via § =V,,;,/(2x) =—0.754 d.u. This
value of 8 for y = 0.354 is represented by black square ‘b’ in Fig.
9. It is nearly indistinguishable from the trimer training point
= —0.750 d.u. introduced previously® for He;. clusters (the blue
circle in Fig. 1, greyed out in Fig. 9). The miniscule difference is
due to the AEm(3) =2.608 eV (1.066 d.u.) monomerization ener-
gy from the CCSD/aug-cc-pVTZ calculations used here, instead
of the published!>*?* AEM(3) = 2.598 eV (1.061 d.u.) result that
was used to determine the original training point.’

Black squares c, d, and e in Fig. 9 show the results of similar
per-bond calculations for the square HeJ (c), hexagonal Heg (d),
and hendecagonal He}, (e) structures in Fig. 3. The per-bond
Vinin values for each structure (Table 1) were used to calculate
the corresponding B () values as 8 = Vi /(2X).

8 | PCCP, 2024, 00, 1-3

5.2. Corrections for remote interactions

The ab initio monomerization energies in Table 1 include al// IM
interactions: pairwise and many-body, local and remote. In con-
trast, the determinations of the local bond integrals in Sec. 5.1
were performed as if only the first-degree (s = |i — j| = 1) coupl-
ings contributed to AEm. We will continue disregarding many-
body interactions but will now include the effect of remote (s >
1) pairwise couplings on AEwm. Since the remote interactions in
He;, are overall destabilising, the analysis in Sec. 5.1 must have
underestimated the local bonds.

A crucial distinction between the s = 1 and s > 1 interactions
is that for s > 1, the corresponding specific bond orders p; ; or
Xi,j have only a minor effect on the r; ; distance, and therefore,
h; ;. For example, the 74 5 distance in He? [Fig. 3(b)] is twice the
local bond length, 7y 3 = 27 ,. That is, 7y 3 is determined mainly
by x1,2, while x; 3 has only a small effect. For this reason, the
remote couplings cannot be defined in a manner similar to eqn
(5), which is used for their local counterparts. Hence, we will
continue describing the remote bond integrals using the dimer-
based approach expressed in eqn (7), treating these (weak) cou-
plings as a perturbative correction for the local bonds. The latter
will be described by eqn (5) with a multicluster bonding function.

We illustrate this approach on the simplest case of He} [Fig.
3(a)]. The ab initio (CCSD) value of its monomerization energy
is of AEm = 1.066 d.u. (Table 1). On the other hand, per eqn (1),

(10)

which takes into account that p; , = p, 3 and h; , = h; 3, by sym-
metry. The IMO coefficients ¢; = (1/2, —1/7/2, 1/2) (Sec. 3.1)
yield p;, = cicy = —1/(2v2) and P13 = cic3 = 1/4. The signs of
py,j reflect the fact that the IMO in Fig. 3(b) is h-bonding with
respect to the local interactions (p; 2, 2,3 < 0), but h-antibonding
for the remote 1-3 pair (p; 3 > 0).

AEm = =2%2pq1 31y 5 — 2p1 3Ry 3,

The local integrals in eqn (10) are presumed to be defined by
eqn (5). Namely, hy, = hy3 = —f(X1,2), With x4, = [cica| =
1/(2v/2) = 0.354, while the weaker remote interactions are de-
scribed using the dimer-based eqn (7). Using r from Table 1 for
the local bond length 7y , yields 1y 3 = 217 , = 2.286 d.u. Eqn (7)
and the V(R) curve for Hej in Fig. 3 (blue) then give hy3 =
—V(ry3) = 0.104 d.u. Substituting all these quantities into eqn
(10), results in £(0.354) = —-0.791 d.u.

This empirical § value for the trimer ion was obtained assum-
ing that its CCSD monomerization energy is determined by a
combination of the local and remote pairwise interactions. As
expected, it is slightly larger in magnitude than the initial —0.754
d.u. result (Table 1), which was obtained by ignoring the slightly
destabilizing remote forces. The corrected value of f = —0.791
d.u. for y = 0.354 is included in Table 1 and indicated by red
circle ‘b’ in Fig. 9.

The above estimate shows that the 1-3 remote interaction in
He} amounts to about —10% of each of the 1-2 and 2-3 bonds
(p1,3h1,3/p1,2h1,, =—0.1). That s, it is 10 times weaker and oppo-
site in character (antibonding) compared to the local bonds.
Since there are two such bonds and only one remote pair, the
overall destabilising effect of the remote forces in He? is ~5% of
AEwm. The relative small magnitude affirms the validity of our

This journal is © The Royal Society of Chemistry 2024
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perturbative approach to these interactions.

Similar calculations for square Hej, hexagonal He?, and
hendecagonal Hej, are detailed in Supplementary Information.
The corrected values of the bond integrals, represented by the 8
values for = 1/4, 1/6, and 1/10, are included in Table 1 and Fig.
9 (red circles c-e). Implicit in this analysis is the assumption
underlying eqn (3): that remote interactions do not affect cluster
geometry, necessitating no changes to the r(y) datapoints in Fig.
5. The noncovalent limit of the bonding function (point ‘f” in Fig.
9) is assumed to be the same as in Sec. 4: $(0) =—0.042 d.u.

5.3. Continuous multicluster bonding function

We now have six discrete S(y) datapoints represented by red
circles a-f in Fig. 9. To obtain a continuous bonding function to
be used in model calculations, we performed a least-squares fit
to these data using the analytical expression:
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BOO = Bo— (1 + Bo)[1 — (1 — 2)"]"/™ an

This function differs from the original® expression in eqn (6) by
the inclusion of 5, to account for the finite value of § at y =0
(point ‘f* in Fig. 9). This constant (not a variable parameter)
equals the covalent bond integral evaluated at a vdW distance,
i.e., B = £(0) =—-0.042 d.u. per Sec. 4.

The blue curve in Fig. 9 is defined by this 5, value, with the
optimal fit parameters b, = 0.744 and b, = 1.461. The resulting
explicit S(x) function was used in the following calculations.

5.4. Model results

In this section, we use the bonding function in eqn (11) with the
optimal parameters determined in Sec. 5.3 to test our model for
the He;' clusters. Similar to Sec. 4, we consider two approxima-
tions: (1) without and (2) with remote interactions. Since the
discrete S(x) datapoints in Fig. 9 were specifically adjusted with
the second approximation in mind, more superior performance is
expected in the second case. Comparing the two sets of results
will allow us to draw conclusions about the quantitative effects
of the remote forces on cluster structures and stabilities.

Sample self-consistent coupled-monomers solutions are pre-
sented in Fig. 10 and 11 for He? and Hef,, respectively. The
content of these figures is colour-coded and formatted similarly
to Fig. 7 and 8. In each figure, the solutions shown in black result
from the local interactions only, while those in red include all
pairwise couplings. The local interactions in all cases shown in
Fig. 10 and 11 are treated using the multicluster bonding function
given by eqn (11) and plotted in Fig. 9 (blue curve). The remote
couplings for the red datasets are obtained using the dimer-based
approach defined by eqn (9).

All solutions shown in Fig. 10 and 11 are structurally very
similar to those in Fig. 7 and 8, despite the different bonding
functions used. As predicted previously,’ the charge in all Hej,
n = 3 clusters localises on a core trimer ion in most chemically
relevant situations. Indeed, the covalently bonded He? structures
in Fig. 10 are nearly indistinguishable from those in Fig. 7,
including the very similar charge distributions. The HeJ, solu-
tion in Fig. 11, similar to Fig. 8, corresponds to a He¥ -He,, cluster
structure, with 99.9% of the charge localised on the trimer core.

The one significant difference between the model outcomes
in Sec. 4 and 5 is in the respective cluster stabilities. While the
dimer-based solution for He? including all interactions (Fig. 7)
is described by a monomerizations energy that exceeds the ab
initio value (1.066 d.u.) by 17.5%, the multicluster solution in
Fig. 10 matches it almost exactly, provided the remote interac-
tions are taken into account. In Fig. 11, the addition of several
more He monomers to form Hef, (with a He-He, structure)
results in a miniscule increase in AEm. The observed increase is
smaller in this case, compared to the dimer-based case Fig. 8,
mirroring the smaller charge spillage off the trimer core.

6. Concluding remarks

The coupled-monomers model views any molecular system
as a network of interacting monomers. We have applied this view
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to homogeneous X3 clusters, but it can be extended to heteroge-
neous systems with more than one monomer type. The model
approximations are most appropriate for weak delocalised bonds
resulting from the sharing of a single unit of charge. The model
treats these bonds using a self-consistent density-matrix formal-
ism. It considers that equilibrium bond lengths and, therefore, the
bond integrals vary with local bond orders y. This variation is
described by a bonding function (), which can be determined
empirically based on experimental and/or ab initio data.

In this work, we relied on high-level ab initio calculations to
devise the bonding function for He; cluster ions. Helium is the
simplest closed-shell monomer, allowing us to illustrate general
bonding behaviours in the most elementary case. Two alternative
approaches to determining the bonding function were described.
The first is based on the dimer-ion potential, the other on several
multicluster training points obtained by analysing a series of spe-
cial, not necessarily stable equilibria with all-equivalent bonds.
The bonding functions determined by either method fall within
the bonding space defined in the previous work,’> giving extra
credence to the initial predictions. Each approach was tested in
two regimes: by considering only the local bonds, and by
including all—local and remote—pairwise interactions.

All four model variations yielded similar structural results,
consistent with the known properties of He;t .!24-21:38 Under most
realistic assumptions, the charge in any He;;, n > 3 system tends
to localise on three monomers, resulting in the formation of
trimer-ion cores within larger clusters. This prediction is robust
with respect to an exact choice of the bonding function.

Both the dimer-based and multicluster approaches indicate
that remote interactions in He;} are overall destabilising and
account for approximately —5% of total covalent energy. There
is, however, an important distinction between the two when it
comes to cluster energetics. The dimer-based method overesti-
mates the He;}, n > 3 cluster stabilities by 17.5%, even when all
pairwise interactions are considered. The multicluster method,
on the other hand, predicts the cluster monomerization energies
almost exactly. This is because the dimer-based method is based
on the Hej energetics only, while one of the multicluster training
points corresponds to He? . In our previous work, we showed that
the trimer training point is key to predicting any correct X3 ener-
getics using the coupled-monomers model.’

There remains one property that our model in its present form
does not reproduce. It is the exact charge distribution within the
He?} trimer. High-level ab initio calculations by us and other
authors'®2% show that the charge distribution in He is broader
than the q; = 0.25 | 0.50 | 0.25 Hiickel limit. The CCSD results
for the trimer ion in Fig. 3(b) correspond to Mulliken charges of
q; = 0.267 | 0.466 | 0.267. In contrast, the coupled-monomers
model in its present form, using the multicluster bonding
function with all pairwise interactions accounted for, predicts a
narrower distribution of q; = 0.238 ] 0.523 | 0.238 (Fig. 10).

Thus, our model predicts that the destabilising remote forces
in He;, work to narrow rather than broaden the charge distribu-
tion, which is contrary to the above CCSD prediction. In the
future, we will show that the answer lies with the Coulomb integ-
rals. So far they were presumed constant, but should also vary
with respect to the density elements, just like their off-diagonal
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counterparts (the bond integrals) do.

Finally, we reiterate the overall conclusion that in the absence
of geometric constraints the charge in various X systems tends
to be shared by three monomers. In this work we focused on
monoatomic monomers (X = He), but the coupled-monomers
approach can be and has been similarly used to treat X3 clusters
of polyatomic species, with similar conclusions.’> We stress that
the universal trimerization trend in such weakly-bonded covalent
networks has been revealed in a purely coherent regime. It results
from the enthalpy-driven competition between charge sharing
and localisation and is a feature of IM covalent couplings per se,
largely independent of the intrinsic properties of the monomers.
Therefore, many other trimer-ion species are likely to be found,
particularly in cold environments such as exoplanetary atmo-
spheres and outer space.

Data availability

Some of the data supporting this article have been included as
part of the Supplementary Information. The code for self-consis-
tent density-matrix calculations using the coupled-monomers
model is available from the authors upon request.
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