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Abstract

We observe that several vertex Turan type problems for the hypercube that re-
ceived a considerable amount of attention in the combinatorial community are equiva-
lent to questions about erasure list-decodable codes. Analyzing a recent construction
of Ellis, Ivan and Leader, and determining the Turdn density of certain hypergraph
augmentations we obtain improved bounds for some of these problems.

AMS classification: 05C35, 94B65
Keywords: Erasure codes, list decodable codes, Turdn problems, hypercube

1 Introduction and results

1.1 Erasure codes and Turan hypercube problems

A set C of binary vectors of length n is a (d, L)-list decodable erasure code of length n (a
(d, L,n)-code, for short) if for every codeword w, after erasing any d-bits of w, the remain-
ing part of the vector has at most L possible completions into codewords of C. Erasure
list-decodable codes are considered in [6], see also [2] and the references therein. These
papers deal with codes of rate smaller than 1, that is, the cardinality of C is exponentially
smaller than 2".

Here we consider much denser codes, where the cardinality of C is a constant fraction
of all 2™ vectors. This range of the parameters is not very natural from the information
theoretic point of view, but it is equivalent to a problem that received a considerable
amount of attention in the combinatorial community, see [11], [8], [1], [7], [3], [10], [5], [4].
Indeed, C is a (d, L,n)-code if and only if it is a subset of vertices of the discrete n-cube
., that contains at most L vertices of any d-dimensional subcube of (),,. In this language,
for example, the result of [11], proved independently in [8], is that the maximum possible
cardinality of a (2, 3,n)-code is [27F1/3].
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1.2 (d,2% —1,n)-codes

An intriguing special case of the general problem of determining or estimating the maxi-
mum possible cardinality of (d, L, n)-codes is the cases L = 2¢ — 1 corresponding to codes
C that contain no full copy of a d-subcube. Here it is more natural to consider the comple-
ment and denote by g(n,d) the smallest cardinality of a subset of the vertices intersecting
every d-subcube. Let 4 denote the limit lim,, ;. g(n,d)/2" (it is easy to see that the
limit exists as for any fixed d, g(n,d)/2" is a monotone increasing function of n). Triv-
ially, v1 = 1/2, and the result of [11] and [8] mentioned above is that v2 = 1/3. In [1]
it is shown that 74 > logy(d + 2)/29%2. It has been a folklore conjecture (see [3]) that
va = 1/(d+1) but this is refuted in a very strong sense in a recent paper of Ellis, Ivan and
Leader [4], where it is shown that (v4)/¢ < 2-1/8+°(1) " As mentioned in [4] we observed
that their argument can be improved to show that (v4)/¢ < 2-1/2+°(1)| This is stated in
the following proposition.

Proposition 1.1. For every large k and every n there is a subset of less than a fraction of
27F of the vertices of the n-cube that intersects the set of vertices of any cube of dimension
d =2k + 3logy k.

1.3 Codes of positive density

Another range of the parameters of (d, L,n)-codes that has been studied in quite a few
combinatorial papers deals with the minimum possible L = L(d) so that there exists
infinitely many (d, L,n)-codes of positive density. More precisely, let L(d) denote the
smallest possible L so that there exists an € = £(d) > 0 such that for every n there is a
(d, L,n)-code of cardinality at least £2". The problem of determining or estimating d(L)
is considered in [10] (where it is denoted by p(d).) A conjecture suggested in [3] asserts
that L(d) = (Ld%j)' It is easy to see that this is always an upper bound for L(d), and
that it holds as equality for d < 3. However, somewhat surprisingly this conjecture too
is refuted by the recent construction of [4] which shows that L(d) is at most (5/ 6)(L d% J)
for every d > 4. The authors of [10] proved a lower bound for L(d), showing that it is
at least to(d) + t3(d), where to(d) is 0 if [d/3] is odd and 1 otherwise, and t3(d) is 3%/3
for d = 0mod 3, is 4 - 3=9/3 for d = 1 mod 3 and is 2 - 3(4=2/3 for 3 = 2mod 3. In
particular, this shows that

L(5) >7,L(6) > 10,L(7) > 12, L(8) > 18, L(9) > 27, L(10) > 37.
Here we improve the lower bounds for all d > 5, proving, in particular, the following
Proposition 1.2.

L(5) > 8,L(6) > 12, L(7) > 20, L(8) > 32, L(9) > 48, L(10) > 80.



For large d we prove that L(d) > d - 3(4=6)/3 for d divisible by 3 and obtain a similar
bound for d that is not divisible by 3. The improved lower bounds are obtained by applying
the simple result about graph and hypergraph augmentations described in the following
subsection.

We also improve the upper bounds as follows:

Theorem 1.3.
L(5)=8,L(6) <16, L(7) < 28

and for large d,

L(d) < (¢ +o(1)) <Ldi2j>

— 1 (28 —2)(2F —4)... (2t — 2t
c= t»lglo (2t _ 1)t—1

where

is roughly 0.29.

Note that by the results above the exact values of L(d) for 1 < d <5 are given by the
sequence 1, 2, 3,5, 8.

1.4 Graph and hypergraph augmentations

For a graph G = (V,E) and an integer r > 2, let the r-augmentation of G, denoted
by G(r), be the r-uniform hypergraph (V U S,{eUS : e € E}), where SNV = ) and
|S| = r—2. Thus G(r) is obtained from G by adding the same set of r — 2 vertices to each
edge of G. This set is called the stem of G(r). More generally, for a k-uniform hypergraph
H = (V,E) and an integer r > k, let the r-augmentation of H, denoted H(r), be the
r-uniform hypergraph (VU S, {eUS :e € E}), where SNV =0 and |S| =r — k.

For a fixed r-uniform hypergraph F' and for an integer n let ex(n,F') denote the
maximum possible number of edges in an r-uniform hypergraph on n vertices that contains
no copy of F. The Turdn density m(F') of F' is the limit, as n tends to infinity, of the
ratio ex(n,F)/(7). It is easy and well known that this limit always exists, and lies in
[0,1]. Indeed the expected number of edges on a random set of n — 1 vertices among the

n vertices of an F-free r-uniform hypergraph with ex(n, F') edges is
ex(n, F) (";1)
R
T
Therefore this quantity is a lower bound for ex(n — 1, F') implying that the ratio

ex(n, F)

()



is a monotone decreasing function of n. Therefore the limit exists (and is obviously in
[0,1].)

The recent construction of Ellis, Ivan and Leader in [4] implies that if the chromatic
number of a graph G satisfies x(G) > 4, then the Turdn density of G(r) is at least 0.29 for
every r. (The construction in [4] is described for G = Ky, but it is not difficult to check
that it works for every graph G of chromatic number at least 4).

Here we observe that if x(G) < 3 then the Turan density of G(r) tends to zero as r
tends to infinity. This gives a full characterization of all the fixed graphs G that must
appear as links in any r-uniform hypergraph of positive density (with at least 2r + 1
vertices, say), provided r is sufficiently large. This result has been proved independently
by Robert Johnson [9]

Proposition 1.4. For every fived graph G with chromatic number at most 3, the limit of
the Turdn density of G(r) as r tends to infinity is 0.

The argument easily extends to augmentations of hypergraphs, giving the following

Proposition 1.5. For any fized k-uniform hypergraph H in which the set of vertices is
the disjoint union of k41 subsets, so that every edge contains at most one vertex in each
subset, the Turdan density of H(r) tends to 0 as r tends to infinity

Remark: By averaging over r, Proposition 1.4 implies that for every fixed ¢ > 0 and
every fixed graph G of chromatic number at most 3, if n > ng(G,¢) then any family of at
least £2™ subsets of [n] = {1,2,...,n} contains a copy of G(r) for some r. Here, too, the
construction in [4] implies that this is false for graphs G of chromatic number at least 4.

Similarly, Proposition 1.5 implies the corresponding result for the hypercube.

2 Proofs

2.1 Augmentations

In this subsection we describe the short proof of Proposition 1.4. The proof of Proposition
1.5 is essentially identical.

Fix an € > 0, suppose n > 2r 4+ 1 and let H be an r-uniform hypergraph on n vertices
with at least 5(?) edges. By averaging there is a subset U of 2r 4+ 1 vertices so that H
contains at least 5(2Tj1) edges in U. Let W be a random subset of size r + 1 of U. The
expected number of edges contained in W is at least e(r + 1). If W contains k > 3 edges,
then any collection of 3 of them gives a copy of K3(r). Thus we get (lg) such copies on the
set of vertices W. By convexity (assuming, say, €(r + 1) > 10) this implies that the total
number of copies of K3(r) that are contained in U is at least

<2Tr:11) ‘ (5(7“; 1)>.
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2r+1

r—2) possible stems we get that there is one common stem for at

e ()-50)

copies of K3(r), where here we assumed, say, r > 10/e. This gives the existence of a graph

By averaging over the (
least

F on a subset of r 4+ 3 vertices of U so that F' contains more than %(g) triangles and

our hypergraph contains a copy of F(r). By the known results about the Turédn density
of 3-uniform, 3-partite hypergraphs first proved in [12], for every s and every sufficiently
large r > ro(e, s), F' contains a complete 3-partite graph 7" with s vertices in each vertex
class. Since F'(r) contains 7'(r) this completes the proof of the proposition. O

2.2 Hitting subcubes

In this subsection we describe the proof of Proposition 1.1. The proof is identical to the
one in [4] with one modification, replacing a naive estimate for the maximum possible
number of k-wise independent vectors in Fi5 by the Plotkin bound [15], which is a classical
result in the theory of Error Correcting Codes.

For simplicity we omit all floor and ceiling signs whenever these are not crucial. All
logarithms are in base 2 unless otherwise specified.

Following the notation in [4], for integers t > s and r > s, let D,(s,t) denote the r-
uniform hypergraph obtained by adding a stem of size r — s to every edge of the complete
s-uniform hypergraph 7" on t vertices. In the notation of the previous subsection D,(s,t)
is T(r). In [4], Theorem 6, it is proved that for every fixed k and every (large) r, the
Turan density of D, (k,8k + 1) is at least 1 — O(27%). The following lemma provides a

quantitative improvement.

Lemma 2.1. For every fized (large) integer k and every (large) r, the Turdn density of
D, (k + 2logk, 2k + 3logk) is larger than 1 — 27F,

Proof. Suppose 7 is large and consider the hypergraph H on a set of 2"T% — 1 vertices
indexed by the nonzero vectors in F + where an r-set forms an edge iff it is linearly
independent. It is easy to see that the density of this hypergraph is larger than 1 — 2%,
We claim that it contains no copy of D, (s,t) where s = k+2log k,t = 2k+3log k. Indeed,
as in the proof in [4], the existence of such a set would give a collection of ¢ binary vectors
in FQI"’JrS so that every subset of s of them is linearly independent. For completeness we

describe the argument. Let vi,vo,...,v,—s € F27"+k be the vectors corresponding to the
(r — s) vertices of the stem of a copy of D = D,(s,t) and let uj,ug,...,u; € F2T+k be

the vectors corresponding to the other t vertices of D. Then the vectors v; are linearly
independent and span a subspace V' of dimension r—s. The space Fj tk /V is isomorphic to
F2k+s and for each subset of s of the vectors u;, the cosets u; +V are linearly independent
in this space, providing the desired collection of t vectors.



Let A be the k 4+ s by ¢ matrix whose columns are these t vectors and consider the
linear code whose parity check matrix is A. This is the code consisting of all binary vectors
of length t that are orthogonal to every row of A. The dimension of this code is at least
t — (k+ s) = logk and hence the number of vectors in it is at least k. However, the
minimum distance of this code is at least s+ 1, since every set of s columns of A is linearly

independent. By the Plotkin bound it follows that the number of vectors in the code

(s+2)
254+2—t

D,(s,t). The assertion of the lemma follows by considering blow ups of this hypergraph,

cannot exceed 2

< k, contradiction. Therefore this hypergraph contains no copy of

which for large r hardly change the density. Here is an explicit description of this blow up.
For n > 2"t% — 1 take, for each vertex w of H, a set of vertices X, of either [n/(2"t* —1)]
or [n/(2" % —1)] copies of w, so that the total number of vertices is n. A set of r vertices
forms an edge iff they are copies of r distinct vertices of H that form an edge of H. Since
no edge contains more than a single vertex from each fixed set X,,, any subgraph of this
new hypergraph is also a subgraph of H, and thus the new hypergraph contains no copy
of D,(s,t). Since 2"¥ — 1 is much bigger than r2, almost every set of r vertices of the
new hypergraph contains at most one vertex from each set X,,, implying that the density
of the new hypergraph is at least that of H minus 72/(2"t* — 1), which tends to 0 as r
tends to infinity. O

Returning to the proof of Proposition 1.1 we apply the lemma and take the union of
the complement of the construction it provides in every (large) layer r of the hypercube.
In the small layers we simply take all vertices. This gives a set of vertices of the n-
cube that contains less than a fraction of 27% of the vertices and intersects every copy of
D, (k + 2logk, 2k + 3log k). Since every subcube Qg4 of @, of dimension d = 2k + 3logk
fully contains a copy of some D, (k + 2logk, 2k + 3log k) this completes the proof of the
proposition. ]

2.3 List Erasure Codes

In this subsection we describe the proofs of the improved upper and lower bounds for L(d).
The lower bounds follow easily from the results about graph and hypergraph augmenta-
tions proved in subsection 2.1. The upper bounds combine the construction in [4] with
simple tools from linear algebra and a computation of the Lagrangians of appropriately
defined t-uniform hypergraphs.

Starting with the proof of the lower bound define, for any integer d > 2, g(d) to be the

maximum possible value of the expression

k+1

> I

i=1 je[k+1]—i

where the maximum is taken over all integers £ > 1 and over all partitions of d of the



form d = ay + ag + - - - + a1, where a; > 0 are integers. Thus, for example, g(2) = 2 as
demonstrated by the partition 2 = 2 + 0, g(5) = 8 using the partition 5 = 2 + 2 + 1 and
g(10) = 80 using the partition 10 =2 +2 42+ 2+ 2.

Lemma 2.2. For every d > 2, L(d) > g(d).

Proof. Fix a small € > 0 and let C be a collection of at least ¢ - 2" vertices of @,. For
a fixed d > 2 let g(d) = S} [1jept1)— gy @5 Where a; > 0 are integers. Note that this
number is exactly the number of edges of the k-uniform hypergraph H on k + 1 vertex
classes of sizes aj,az, ..., a1 whose edges are all k-tuples containing at most 1 vertex of
each class. (This holds even if some of the numbers a; are 0). By the remark following
Propositions 1.4 and 1.5 if n is sufficiently large as a function of d and ¢, then C must
contain H (r) for some r. The desired result follows as this H(r) is fully contained in some
subcube of dimension d in Q. Indeed, for n > r+d—k, fixaset of d = a1 +as+...+ax+1
coordinates partitioned into k£ + 1 pairwise disjoint subsets I, I, ..., Ix1+1 of cardinalities
ai,az,...,a+1, respectively. Fix a binary vector x of Hamming weight r — k on the other
coordinates. The subcube Qg in which the coordinates outside the set U;I; are fixed to be
z, and the coordinates in U;I; are arbitrary, contains all the vectors of Hamming weight
r that agree with x outside Ul; and have exactly one 1-coordinate in each set I; besides
one of them. This is a copy of H(r), as needed. O

The assertion of Proposition 1.2 follows easily from that of the last lemma. The
bounds for L(d) for 5 < d < 10 are obtained by computing the value of g(d) for these
values of d. For large d divisible by 3, say d = 3(k + 1), it is not difficult to check that
the value of g(d) is obtained by the partition a; = as = ... = ag41 = 3, implying that
L(d) > (k + 1)3 = d . 3603, 0

We proceed with the proof of the upper bounds for L(d) stated in Theorem 1.3, starting
with several preliminary lemmas. For an integer ¢ > 1, let P(t) denote the probability that
t binary vectors vy, va,...,v; in F§, each chosen randomly, uniformly and independently
among all 2! — 1 nonzero vectors in F}, are linearly independent over Fj, that is, form
a basis of F. Clearly P(1) = 1. Choosing the vectors one by one and multiplying the
conditional probabilities that each vector is not spanned by the previously chosen ones

assuming these are linearly independent, it follows that

28 —2.  2t—4 2t—2t—1) (28 —2)(2" —4)--- (28 — 271)

P(t) = . R = . 1
It is not difficult to check that for any t > 1
2t —2)
This implies that for any &
. . k
¢= Jim P(t) = infyP(t) > P(R)(1 — O(3)). (3)



The equality (2) can be verified by induction on ¢, using (1). It can also be proved by
the following combinatorial argument that will be useful later too.
The nonzero vectors vy, ve,...,v; form a basis iff the following two events Fy and Ej

hold. The event FE; is that each v; for ¢ > 2 is not chosen to be equal to vy. It is clear that
2t—2
21

has a unique expression as v = x, + y,,, where z,, € {0,v1} lies in the space generated by

its probability is exactly (

)t=1. Given the choice of vy, each nonzero vector v in F}

v1, and y, is orthogonal to this space. Let Fy be the event that the vectors Yy, Yus, - - -, Yo,
form a basis of the (¢ — 1)-dimensional subspace of F} orthogonal to v1. Conditioning
on the event Ej, each nonzero vector of this (¢ — 1)-dimensional space is selected with
uniform probability among these 2/~ — 1 possible vectors. These vectors span the space
with probability P(t — 1), that is Prob[Es|E1] = P(t —1). This implies (2) and hence also
gives that the sequence P(t) is monotone decreasing and thus approaches a limit, which
is denoted by ¢ in Theorem 1.3. It is easy to check that this limit is roughly 0.29.
We need the following simple result.

Lemma 2.3. Lett > 1 and let {p, : v € F{—{0} } be an arbitrary probability distribution
on the nonzero vectors in Fi. Then

Z pv(l _pv)til < (

veFi—{0}

2t —2
2t —1

)tfl

Equality holds for the uniform distribution p, = 1/(2! — 1) for all v € F} — {0}.

Proof. The assertion is trivial for ¢ = 1. For ¢t > 2 put g(z) = 2(1 — 2)~!. For t = 2 the
second derivative of this function is —2 < 0 and hence it is concave in [0, 1], implying the
desired result by Jensen’s inequality. For ¢ > 3 the derivative and second derivative of g(z)
are given by ¢'(2) = (1—2)""2(1—tz) and ¢"(z) = (1—2)'73(—2t+2+t(t—1)z). Therefore,
in [0, 1] the function g(z) is increasing in [0,1/t), attains its maximum at z = 1/¢, and
is decreasing in [1/t,1]. It is concave in [0,2/t) and convex in [2/t,1]. Suppose that
the sum Y, g(p,) considered in the lemma attains its maximum at (p, : v € F} — {0})
(the maximum is clearly attained, by compactness). If there is some p, > 1/t then since
2t — 1 > t there is also some p, < 1/t. Decreasing p, by € and increasing p,s by ¢, for a
sufficiently small £ > 0, strictly increases both g(p,) and g(p,/), contradicting maximality.
Therefore 0 < p, < 1/t for all v. Since the function g(z) is concave in [0, 1/¢] the maximum
value of ), g(py) is obtained when all the values p, are equal, by Jensen’s Inequality. [

Corollary 2.4. Lett > 1 and let {p, : v € F{ — {0} } be an arbitrary probability distri-
bution on the nonzero vectors in Fi. Then the probability that a sequence vi,vs,. .., v of
t random wvectors, where each v; is chosen randomly and independently according to this
distribution, forms a basis of Fi is at most P(t), where P(t) is defined in (1). This is
tight and obtained by the uniform distribution on Fi — {0}.



Proof. We apply induction of ¢ together with the reasoning described in the derivation of
(2) from (1). The result is trivial for ¢ = 1. Assuming it holds for ¢ — 1 we prove it for

t > 2. Choosing the vectors vy, vs,...,v; one by one, suppose v; = v (this happens with
probability p,.) The vectors vy, va,...,v; form a basis iff no v; for i > 2 is equal to v1 = v
(denote this event by Fj), and the projections of the vectors ve,...,v; on the subspace

orthogonal to v form a basis of this subspace (denote this event by E3). The probability
that v; = v and Fj holds is p,(1 — p,)!~!. The conditional probability that given this F
holds is, by the induction hypothesis, at most P (¢t —1). Summing over v we conclude that

the probability that vy, ve,...,v; form a basis of F} is at most
( Z pv(l_pv)t_l)'P(t_l)'
veFy —{0}

The first factor is at most (g::f)t_l, by Lemma 2.3. This and (2) establish the desired

inequality for ¢, completing the proof of the induction step and of the corollary. ]

For integers 1 < k < d let B(k,d) denote the maximum possible number of non-singular
k by k submatrices in a k by d matrix over Fy. Therefore, B(k,d)/ (z) is the maximum
possible probability that a set of k distinct columns of such a matrix forms a basis of F2'C

Lemma 2.5.

1. For any fized k the function B(k, d)/(Z) is monotone decreasing in d for all d > k,
and is at least P(k) for every admissible d.

2. For any 1 <k <d, B(k,d) = B(d—k,d).

3. Ford>k? i ,
B(k,d) P(k)d k
4. For any 2 < k <d,
Blk.d) < |PPE= LA

Proof.

1. Suppose k < d < d. Let A be a k by d matrix over F, which maximizes the
probability that a random set of k of its columns forms a basis. This probability is
the average, over all choices of a k by d’ submatrix A’ of A, of the probability that
a random set of k columns of A’ forms a basis. The fact that

B(k,d) _ B(k,d)

VR




follows by considering the submatrix A’ maximizing this probability. To prove the
inequality B(k,d)/ (z) > P(k) consider a random k by d matrix A over Fy whose
columns are chosen uniformly and independently in Fy — {0}. Each subset of k
columns of A is a basis with probability P(k) and the desired inequality follows by
linearity of expectation.

2. For a k by d matrix A of rank k over Fy, let A’ denote the (k — d) by d matrix whose
rows form a basis of the subspace orthogonal to the row-space of A. If a set I’ of
(d — k) columns of A’ is of rank smaller than d — k then there is a nonzero linear
combination of the rows of A’ which vanishes on these columns. This nonzero linear
combination is orthogonal to the rows of A, providing a nontrivial linear relation of
the columns I = [d] — I’ of A. This shows that if a set I’ of d — k columns of A’ is
not linearly independent, then the set I = [d] — I’ of k-columns of A is not linearly
independent. By symmetry the converse holds as well, and the desired result follows
by considering the matrices realizing B(k,d) and B(d — k,d).

3. Let A be a k by d matrix over Fy with B(k, d) nonsingular k by k submatrices. It is
clear that A does not contain the 0-column (as it is easy to replace it and increase
the number of nonsingular k by k submatrices). Let {p, : v € F§¥ — {0}} be the
probability distribution assigning to each column of A the same probability 1/d. By
Corollary 2.4 if we select k columns of A according to this probability distribution
(with repetition), the probability we get a basis is at most P (k). On the other hand
this probability is exactly k!(B(k,d)/d*. Therefore % < P(k) implying that

L 2
B(k,d) < P(k)d < P(k)eF(=1/2(d=k+1) < P(k)[1 + dk k]'

d — d -

() R ()
Here we used the fact that Hfz_ol(d/d — i) < eFh=1D/2(d=k+1) and that e* < 14 2z
for x < 1.

4. Let A be a k by d matrix with B(k,d) k by k nonsingular submatrices. Every fixed
column ¢ of A can be contained in at most B(k — 1,d — 1) such nonsigular matrices
corresponding to the (k — 1) by (k — 1) nonsingular submatrices of the (k — 1) by
(d — 1) matrix obtained from A by removing ¢ and by replacing each column by
its projection on the subspace orthogonal to ¢. The result thus follows by double

counting.
O

Corollary 2.6. Put B(d) = max{B(k,d): k < d. Then B(5) =5, B(6) = 16, B(7) = 28
and B(d) = (¢ + 0(1))(Ld72J), where ¢ is as in Theorem 1.3 and the o(1)-term tends to 0
as d tends to infinity.
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Proof. By Lemma 2.5, part 2, B(d) = B(k,d) for some k < d/2. For d = 5 it is clear
that B(1,5) < (‘;’) =5 < 8. B(2,5) is the number of pairs of distinct columns of a 2 by
5 binary matrix in which every column is one of the three nonzero vectors of F2 — {0}.
This is clearly 8. The computation of B(6) = B(3,6) and of B(7) = B(3,7) is also simple
and is obtained by any matrix with distinct columns in F§ — {0}. (The upper bounds for
these quantities also follow by Lemma 2.5, part 4 and the fact that B(2,4) = 5).

To estimate B(d) for large d observe, first, that by Lemma 2.5, part 1

B(d) > B(|d/2],d) > P(Ld/2j)<tdc/l2j> > c(LdC/iQJ)'
Next, note that for, say k < d/4, B(k,d) < (dc/l4) is (much) smaller than C(Ld;lzj)’ so

B(d) = B(k,d) for some d/4 < k < d/2. By Lemma 2.5, parts 1, 2 and 3, for any such k
(and d > k + log k):

B(k,d) _ B(k,k+1logk) B(logk,k +logk) log? k
(d) < (k+log k:) = (k+10g k;) < P(logk)(1 + )
k k log k
log k log? k log? d
<L+ 0(N(1+=5) S el +0(=25)),

k
where in the penultimate inequality we used (3).
Therefore for each k in this range

o 2
B(k,d) < C<Z>(1 +ol gd dy

completing the proof. O
We are now ready to prove Theorem 1.3.

Proof. The relevant erasure codes are the ones constructed in [4], the novelty here is only
in their analysis. Here is the description of the codes for a given length n. Let Cy be the
set consisting of the unique vector of weight 0 of @),,. For each fixed r, 1 < r < n, assign
to each coordinate 7 € [n] a uniformly chosen random vector v; in Fj —{0}. Let C, denote
the set of all binary vectors x of length n and Hamming weight r for which the r vectors v;
corresponding to all coordinates ¢ with z; = 1 form a basis of Fj. Note that the expected
cardinality of C, is (7)P(r) > ¢(7), where c is the limit defined in Theorem 1.3 (which is
roughly 0.29).

Fix a choice of vectors v; for each r so that the resulting set C, is of cardinality larger
than ¢(”) and let C be the union of all these sets. Thus |C| > ¢-2".

Given d < n, partition C into d + 1 pairwise disjoint sets, where for each 0 < ¢ < d
the i-th sets consists of all vectors of C whose Hamming weight is ¢ mod (d + 1). Let C(d)
denote the largest among those. Note that |C(d)| > (¢/(d + 1))2™ contains a constant
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fraction of all binary vectors of length n. To complete the proof we prove an upper bound
for the number of vectors of C(d) in any subcube of dimension d of Q.

Fix a subcube D of dimension d, and let I C [n] be the set of the d coordinates that
vary in the subcube. Observe that by the choice of the Hamming weights of the vectors
in C(d), D can contain only vectors of C(d) of one specific Hamming weight. Denote this
weight by r. Let  be the common projection of all points of D on [n] — I and suppose its
Hamming weight is 7 — k. Thus, each of the projections y of all the vectors of C(d) that
lie in D on I has weight k. Let vi1,va,...,v,— be the binary vectors in Fj — {0} that
correspond to the indices ¢ where x; = 1. Then, by the construction of C(r), these vectors
are linearly independent. Moreover, for any vector y that appears as a projection above,
the set of k vectors v; € Fy — {0} that correspond to the coordinates j in which y; =1
complete the vectors vi,ve,...,v,_j to a basis of F3. This means that these vectors form
a basis of the space of cosets of W = span(v1,vg, ..., v,—g) in Fj. This space is isomorphic
to FJ. It follows that the number of such projections y is at most B(k, d).

We have thus proved that the number of vectors of C(d) that lie in D is at most the
maximum, over k < d, of the quantity B(k,d), that is, at most B(d). The desired upper
bound thus follows from the last Corollary. O

2.4 Lagrangians

Some of the discussion in the previous subsection is equivalent to the computation of the
Lagrangians of certain natural hypergraphs. Although this is not needed for the results
here, we briefly describe the connection which may be of independent interest.

The Lagrangian Polynomial of a t-uniform hypergraph H = (V, E) on a vertex set
V ={1,2,...,n} is the polynomial

Py(xy,29,...,2,) = ZHZL‘J

ecF jee

The Lagrangian A(H) of H is the maximum value of Ppg(z1,...,z,) over the simplex
{x; >0,>, x = 1} (this maximum is attained as the simplex is compact).

Lagrangians of hypergraphs were first considered by Frankl and Fiiredi [13] and by
Sidorenko [16], extending the application of this notion for graphs, initiated by Motzkin
and Straus [14].

For each t > 1 let B; denote the t-uniform hypergraph on the vertex set V = F} — {0}
of the 2! — 1 nonzero elements of the vector space of dimension t over F», whose edges
are all bases of this vector space. Let A(B;) denote the Lagrangian of this hypergraph.
Trivially A(B1) = 1 and A\(B2) = 1/3. By Corollary 2.4 for every fixed t, the value of the
Lagrangian of B, satisfies A(B;) = P(t)/t!. Therefore A\(B;) = (c+ o(1))/t! where c is as
in Theorem 1.3 and the o(1)-term tends to 0 as ¢ tends to infinity.
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3 Concluding remarks

e By Theorem 1.3 L(5) = 8. Therefore, for any arbitrarily small ¢ > 0, any set of
at least an e-fraction of the vertices of the n-cube for n > n(e) contains at least
8 vertices in some 5-dimensional subcube. On the other hand, there is a set of at
least ¢/6 > 0.04-fraction of the vertices that does not contain more than 8 vertices
of each such subcube. It is easy to improve this lower bound to ¢/4 > 0.07, since
we can take the union of the subsets C(r) for all Hamming weights r congruent to a
constant modulo 4, instead of a constant modulo 6. It is easy to check that this still
contains at most 8 vertices of any 5-subcube, since the sum of cardinalities of any
two quantities B(k,5) for values of k that differ by at least 4 is at most 8. Similarly,
for large d and any small € > 0, the code containing all collections C'(r) for Hamming
weights r congruent to a constant modulo b(¢)v/d has a fraction of Q.(1/v/d) of all
vertices of the cube and contains at most (¢ + ¢) (L d(/12 J) vertices each d-subcube.

e As mentioned in the proof of Corollary 2.6 it is not difficult to find the exact values
of B(6) = 16 and B(7) = 28. With a bit more work one can determine B(d) precisely
for larger (small) values of d, but since there is no reason to believe that these provide
a tight bound for L(d) we have not done that.

e The problem of determining the precise value of L(d) for d > 5 remains open. It
will be interesting to close the gap between the upper and lower bounds for these
quantities. Another problem is the estimation of the largest possible cardinality of a
(d, L(d),n)-code. As mentioned above, for d = 5 there is a (5,8, n)-code containing
more than ¢/4-2" > 0.07-2" of the binary vectors of length n, but there is no reason
to believe that this is tight. The analogous problem for d = 4, that is, determining
the maximum possible fraction of the set of n-vectors in a (4, 5, n)-code, is also open.
The lower bound here is ¢/3 > 0.09 and the trivial upper bound is 5/16. For smaller
values of d the analogous problem is not difficult. The even vectors are 1/2 of the
vectors, and form a (1, 1,n)-code and also a (2,2, n)-code, and 1/2 is clearly optimal
here. For d = 3 the collection of all vectors of Hamming weight constant modulo 3
provide a (3,3,n)-code with at least 1/3 of all vectors. This 1/3 is asymptotically
optimal by the following argument. Let C be a collection of binary vectors of length
n. If there are more than 2"~ !/n binary vectors v of length n — 1 so that both
v0 and vl are in C, then there are two such vectors v, v’ which differ by at most 2
coordinates, and in this case {v0,v1,v'0,v'1} all lie in the same 3-cube, showing that
C is not a (3,3, n)-code. If not, and, say, |C|/2" > (1/3+ 1/n) then the projection of
C on the first (n — 1)-coordinates is of cardinality exceeding [2"/3]. By the result of
[11] and [8] this projection contains a full 2-cube, implying that C contains at least
4 points in a 3-cube and showing it is not a (3, 3, n)-code.
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