L)

Check for
updates

ParSEL: Parameterized Shape Editing with Language

ADITYA GANESHAN, Brown University, USA
RYAN Y HUANG, Brown University, USA
XIANGHAO XU, Brown University, USA

R. KENNY JONES, Brown University, USA
DANIEL RITCHIE, Brown University, USA

"Lengthen the drawers ..." "Extend the roof radially”

"Lower the seat
while scaling the back”

"Make the legs taller ..." "Stretch the birdhouse "

"widen the
chair"

-
o ——

(@)

"Bring the front
legs forward ..."

(b)

Fig. 1. We introduce PARSEL, a system that enables controllable editing of 3D assets with natural language. (a) Each subplot shows an input 3D asset (left),
edit request (top) and the parametric editing capability provided by PARSEL (right). (b) The parametric edits produced by PARSEL are composable, allowing
users to explore shape variations of non-parametric models as seamlessly as they would with parametric models.

The ability to edit 3D assets with natural language presents a compelling
paradigm to aid in the democratization of 3D content creation. However,
while natural language is often effective at communicating general intent, it
is poorly suited for specifying exact manipulation. To address this gap, we
introduce PARSEL, a system that enables controllable editing of high-quality
3D assets with natural language. Given a segmented 3D mesh and an editing
request, PARSEL produces a parameterized editing program. Adjusting these
parameters allows users to explore shape variations with exact control over
the magnitude of the edits. To infer editing programs which align with an
input edit request, we leverage the abilities of large-language models (LLMs).
However, we find that although LLMs excel at identifying the initial edit

Authors’ Contact Information: Aditya Ganeshan, adityaganeshan@gmail.com, Brown
University, USA; Ryan Y Huang, ryan_y_huang@brown.edu, Brown University, USA;
Xianghao Xu, xianghao_xu@brown.edu, Brown University, USA; R. Kenny Jones,
russell_jones@brown.edu, Brown University, USA; Daniel Ritchie, daniel_ritchie@
brown.edu, Brown University, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2024/12-ART197

https://doi.org/10.1145/3687922

operations, they often fail to infer complete editing programs, resulting in
outputs that violate shape semantics. To overcome this issue, we introduce
ANALYTICAL EDIT PROPAGATION (AEP), an algorithm which extends a seed
edit with additional operations until a complete editing program has been
formed. Unlike prior methods, AEP searches for analytical editing opera-
tions compatible with a range of possible user edits through the integration
of computer algebra systems for geometric analysis. Experimentally, we
demonstrate PARSEL’s effectiveness in enabling controllable editing of 3D
objects through natural language requests over alternative system designs.

CCS Concepts: « Computing methodologies — Shape analysis; Com-
puter algebra systems; Reasoning about belief and knowledge.

Additional Key Words and Phrases: Shape Editing, Parametric Editing, Large
Language Models, Computer Algebra Systems, Neuro-Symbolic Methods,
Program Synthesis

ACM Reference Format:

Aditya Ganeshan, Ryan Y Huang, Xianghao Xu, R. Kenny Jones, and Daniel
Ritchie. 2024. ParSEL: Parameterized Shape Editing with Language. ACM
Trans. Graph. 43, 6, Article 197 (December 2024), 14 pages. https://doi.org/
10.1145/3687922

1 Introduction

Creating high quality 3D assets is a labour intensive task, requiring
years of training and experience. The ability to edit existing high

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

https://doi.org/10.1145/3687922
https://doi.org/10.1145/3687922
https://doi.org/10.1145/3687922
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3687922&domain=pdf&date_stamp=2024-11-19

197:2 « Ganeshan et al.

quality 3D assets to create new assets greatly lowers this barrier.
However, the process of manually modifying a 3D object, e.g. by ad-
justing individual vertices and/or faces, is often tedious. To address
this challenge, a number of efforts have explored how to design
more use-friendly and intuitive shape editing tools [Shtof et al. 2013;
Yumer et al. 2015].

Following rapid advancements in the field of Natural Language
Processing, a wealth of recent methods have explored techniques for
editing 3D assets with natural language [Achlioptas et al. 2023; Gao
et al. 2023; Michel et al. 2021; Slim and Elhoseiny 2024]. This prof-
fered paradigm is alluring from the perspective of accessibility; spec-
ifying edit intent through natural language requires minimal tool-
specific training. So far, such natural language based editing systems
have shown promising results for retexurizing 3D assets [Huang
et al. 2023], stylizing 3D shapes [Michel et al. 2021] and even modi-
fying shape geometry [Achlioptas et al. 2023].

However, editing shapes in a controlled manner with language is
challenging, particularly when performing geometric edits, i.e. edits
involving sub-part manipulation and spatial rearrangement. For
instance, consider a scenario where a user intends to widen a chair.
Natural language can be used to effectively communicate how to
edit: “scale the seat, reposition the legs and add more back slats”.
Yet, it is difficult to convey how much to edit with natural language.
Terms such as “moderately widen”, “greatly widen” are inherently
subjective, and numerical specification (“by 0.2 units”) often may
not align with the object’s scale. This leads us to a critical insight:
while natural language can effectively convey the edit intent, it is
poorly suited for conveying the edit magnitude. As a result, systems
that depend exclusively on language for shape editing are often
challenging to use in practice.

To facilitate controllable editing of 3D assets using natural lan-
guage, we introduce PARSEL: PARAMETERIZED SHAPE EDITING WITH
LANGUAGE, a system where users define "how" to edit with language
and "how much" with adjustable parameters. Drawing inspiration
from parametric modeling systems, our approach merges the intu-
itiveness of language with the precision of parametric control. Under
this paradigm, users can seamlessly explore a family of shape varia-
tions by adjusting parameters until they find an edit that matches
their intended magnitude. In Figure 1 (a), we showcase qualitative
examples of editing various 3D shapes using our system.

PARSEL takes as input a semantically labeled 3D mesh and a
user edit request. As output, it exposes an adjustable parameter
which the user can interact with to flexibly explore shape varia-
tions. We geometrically realize these edits by propagating part-level
bounding proxy deformations to the underlying mesh geometry
with cage-based deformation techniques [Joshi et al. 2007], while
simultaneously adapting part-level symmetry group. Critically, to
ensure that the geometry remains consistent under a range of pa-
rameter variations, we represent all edit operations as closed-form
analytical functions of the adjustable control parameters. In order to
create such parameterized editing functions, we introduce a custom
domain specific language. Programs in our DSL specify how to edit
the shape with numerical parameters, and how much to edit with
algebraic expressions of the control parameters. Our DSL offers
multiple benefits, including the ability to provide a fluid (solver-less)

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

edit exploration experience to the users, even on consumer laptops,
allowing them to effortlessly explore shape variations.

PARSEL converts language-based edit requests into editing pro-
grams with a module that integrates large-language models (LLMs)
with the algebraic reasoning capabilities of computer algebra sys-
tems (CAS). We found that this coupled neurosymbolic approach
was necessitated as current state-of-the-art LLMs struggled to di-
rectly infer editing programs from input edit requests. Due to their
poor geometric reasoning capabilities, LLMs would often fail to
infer the appropriate adjustments required for multiple input shape
parts, resulting in editing programs which produced inconsistent
outputs (we explore this phenomenon further in Section 4.3).

To overcome this limitation, we present an algorithm that extends
partial editing programs with additional operators from our DSL by
considering the geometric relations between object parts. We term
this technique ANALYTICAL EDIT PROPAGATION (AEP). While similar
in spirit to prior edit-propagation methods [Gal et al. 2009; Zheng
et al. 2011], previous techniques explicitly optimize part modifica-
tions in response to a user edit. In contrast, we search for analytical
editing functions compatible with a range of possible user edits us-
ing a sophisticated CAS solver [Meurer et al. 2017]. Furthermore, by
integrating LLMs with AEP, we address a key limitation of all edit
propagation-based editing methods - the requirement of manual
adjustments to the shape’s structure to support different editing
intents. By leveraging LLMs, we dynamically modify the shape’s
structure based on the edit requests, thereby alleviating the need
for manual adjustments.

We evaluate PARSEL’s ability to edit 3D objects from language by
sourcing (shape, edit request) pairs from assets in CoMPaT3D++ [Slim
et al. 2023] and PartNet [Mo et al. 2019b]. On pairs from CoM-
PaT3D++, we compare PARSEL’s hybrid approach for producing an
editing program against two alternative formulations: (i) asking an
LLM to directly author the program, and (ii) using the LLM and
AFP to infer full program without dynamically altering the shape
structure. We design a perceptual study to assess how well these
variants accomplish the intended task and find that participants
greatly prefer the edits produced by PARSEL. To provide further
analysis on the design decisions behind PARSEL, we create expert-
designed editing programs for PartNet pairs. Treating these manual
annotations as ‘ground-truth’, we perform isolated ablation experi-
ments on the LLM prompting workflow and the CAS solver. We also
investigate two extensions of our method. First, we demonstrate
how PARSEL can aid in creating (approximate) parametric models
of non-parametric assets by composing a series of edit requests (Fig-
ure 1, (b)). Then, we explore how PARSEL can produce a multitude
of shape variations from a single user editing request.

In summary, we make the following contributions:

(1) We introduce PARSEL: PARAMETERIZED SHAPE EDITING WITH
LANGUAGE, a novel shape editing system which combines
the intuitiveness of natural language with the precision of
parametric control.

(2) We design a neurosymbolic module which couples a LLM
prompting workflow with CAS solvers to translate edits ex-
pressed in natural language into shape editing programs.

(3) To successfully solve the above inference task, we introduce
ANALYTICAL EDIT PROPAGATION an algorithm to search for
analytical editing functions to extend partial editing programs
by considering inter-part geometric relationships.

The code for our system is available at the following link:
https://github.com/Bard0fCodes/parSEL.

2 Related Work

In this section, we review prior works in 3D shape editing, focusing
on analyze-and-edit techniques and language-based editing. We
compare our approach to existing parameterized editing methods,
highlighting key differences. Additionally, we explore the role of
large language models (LLMs) in visual program synthesis.

Analyse-and-edit approaches: Shape editing using space defor-
mation has a long history in computer graphics, traditionally em-
ploying simpler control objects like cages to manipulate underlying
meshes [Coquillart 1990; Sederberg and Parry 1986]. This method
evolved significantly with the development of analyze-and-edit tech-
niques [Gal et al. 2009; Singh and Fiume 1998; Sumner et al. 2007;
Zheng et al. 2011], which provide better control by aligning control
objects more closely with the shape’s structure. Consequently, part-
decomposition and symmetry group-aware control objects are con-
structed to facilitate structure preservation during editing [Bokeloh
et al. 2011; Wang et al. 2011].

Various approaches have been proposed within this paradigm, tai-
lored for tasks such as resizing non-homogeneous shapes [Kraevoy
et al. 2008], editing articulated objects [Xu et al. 2009], modifying
architectural scenes [Cabral et al. 2009; Lin et al. 2011], and manipu-
lating 2D SVG patterns [Guerrero et al. 2016]. Please refer to [Mitra
et al. 2013] for a more complete review. Typically, these methods re-
quire the user to perform an initial edit, usually through a visual user
interface (like dragging a point), after which the system propagates
corrective adjustments throughout the shape via computationally
intensive numerical optimization. This optimization process must
be repeated even for simple adjustments in the magnitude of the
intended edit. In contrast, our technique precomputes analytical edit-
ing programs that align with the user’s intent, and enables real-time
adjustments to the edit’s magnitude. Additionally, these methods
often support only a subset of the edits we offer, necessitate manual
adjustments to the shape’s structure (such as deleting symmetry
relations), and do not facilitate editing with natural language.

Language based shape editing: The advancement in text-to-image
modeling capabilities has led to many language-based editing sys-
tems [Brooks et al. 2022; Lin et al. 2023]. Works such as [Kim et al.
2022; Wang et al. 2023b] have introduced tools to edit images with
natural language, although these edits are often limited to stylization.
Due to the weak spatial and geometric understanding of text-to-
image models, such approaches typically fail at geometric editing.
This trend extends to language-based 3D shape editing, where tools
for editing asset textures [Huang et al. 2023], stylizing a mesh, in-
cluding its geometry [Gao et al. 2023; Michel et al. 2021] have seen
success. However, approaches using text-to-image models have yet
to demonstrate impressive performance for geometric editing of 3D
shapes.

ParSEL: Parameterized Shape Editing with Language « 197:3

i i
™
"Shorten the /egs L [e—]
Input Prior Neural Approaches Ours

Fig. 2. While prior language-based 3D shape editing methods [Achlioptas
et al. 2023] support a broader range of operations on unsegmented shapes,
PARSEL delivers controllable, disentangled editing of high-quality textured
3D assets. Each approach is tailored to suit different needs.

Another line of research [Achlioptas et al. 2023; Slim and Elho-
seiny 2024] has focused on training shape-editing models on datasets
comprising 3D shapes paired with editing requests and the corre-
sponding edited shapes. While these results are promising, they have
not scaled to the quality required for real-world 3D asset editing,
often manipulating only low-resolution point clouds [Achlioptas
et al. 2023] or implicit functions [Slim and Elhoseiny 2024]. Addi-
tionally, these approaches struggle with the inherent challenge of
using natural language to specify an edit’s magnitude. Furthermore,
while end-to-end modeling allows these models to handle a wide
variety of edits, this flexibility often results in entangled edits, where
parts that should remain unchanged are inadvertently modified. In
contrast, our work avoids these drawbacks by inferring analytical
editing programs, enabling precise and disentangled geometric edits
in real-time, while eliding the requirement of a training dataset. We
show an example contrasting our approach to [Achlioptas et al.
2023] in Figure 2, highlighting the discussed drawbacks.

Parameterized editing of shapes: Lilicon [Bernstein and Li 2015]
introduced an SVG icon editing system that allows users to perform
parameterized edits on SVG icons independently of the drawing’s
construction. Our editing system aims to offer similar functionality
for 3D shapes by inferring parameterized editing programs based on
the user’s request. However, while Lilicon uses differential manipu-
lation to maintain inter-part relationships, we instead search and
utilize analytical edits that maintain these relationships. Recently,
coupling of parametric control with natural language has also been
explored for image editing [Cheng et al. 2024; Guerrero-Viu et al.
2024], though the edits are closer to stylization than geometric
editing.

The need for high-level parametric control for shape editing has
also been approached from a shape-abstraction perspective [Jones
etal. 2021, 2023], aiming to discover program abstractions that allow
users to edit shapes meaningfully with a few parameters. These
data-driven methods, although effective to model shape variation
within a dataset, may not capture a user’s desired edit. Furthermore,
such systems often provide unlabeled parameters, requiring users
to experiment to understand each control’s effect. In contrast, our
system offers user controls that are directly inferred based on the
user’s specified intent, providing more intuitive and precise editing
capabilities.

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

https://github.com/BardOfCodes/parSEL

197:4 « Ganeshan et al.

We also find an interesting contrast with approaches such as [Cas-
caval et al. 2022; Kodnongbua et al. 2023; Michel and Boubekeur
2021], which propose techniques to make editing of parametric
models easier, whereas our approach makes parameterized edit-
ing of non-parametric models easier. Similarly, our work contrasts
with approaches such as [Liu et al. 2021; Mehr et al. 2019; Wei et al.
2020], which edit shapes by mapping edits in a learned embedding
space onto input shapes. Unlike these methods, our approach does
not entail learning to embed shapes and enables discrete structural
changes, such as altering the number of back slats in a chair, which
are challenging for these methods to capture. One of our applica-
tions relates to inverse parametric modeling [Aliaga et al. 2007].
However, unlike prior approaches [Aliaga et al. 2007; Bokeloh et al.
2012], which create inverse parametric models strictly based on geo-
metric analysis, our approach leverages natural language editing
intent to explore different procedural models for the same geometry.

Using LLMs for Visual Program Synthesis: The use of LLMs for
visual tasks has proliferated in the recent years. Starting from ear-
lier works employing LLMs for visualQA [Gupta and Kembhavi
2023; Suris et al. 2023], they have now been employed for image-
editing [Feng et al. 2023], scene generation [Hu et al. 2024; Yang
et al. 2023], inverse computer graphics [Kulits et al. 2024], gener-
ating images [Yamada et al. 2024] and material modeling [Huang
et al. 2024]. Though initial works such as [Gupta and Kembhavi
2023] tried to rely purely on LLMs for their tasks, the subsequently
winning model has been combining LLMs with domain specific
structural-aware processing modules [Huang et al. 2024]. Our work
also applies this formula but for shape editing.

3 Overview

PARSEL takes 3D assets and natural language edit requests as input,
exposing adjustable parameters to control the magnitude of the
edit. Specifically, it processes an instance-level segmented 3D mesh
paired with a natural language editing request to infer an editing
program parameterized by user-controlled parameters. Users can
then interactively adjust the parameters to explore a wide array of
shape variations reflecting different editing magnitudes.

Figure 3 provides a schematic overview of our system. In Sec-
tion 4, we detail our approach for parameterized shape editing,
outlining the shape representation and our custom Domain Specific
Language (DSL) that facilitates parameterized shape editing. Our
goal is to translate natural language edit requests into editing pro-
grams within our DSL that accurately reflect the user’s intent. While
Large Language Models (LLMs) offer a promising solution for this
translation, they struggle with the complexity of composing editing
programs, as these often involve multiple interdependent editing
operations. Consequently, although LLMs can correctly identify
the initial operation, known as the seed-edit, they often fail to infer
complete editing programs.

To address this limitation, in Section 5, we introduce ANALYTICAL
Ep1T ProPAGATION (AEP), which takes the seed-edit inferred by
an LLM and introduces additional editing operations to complete
the editing program. This approach simplifies the task for the LLM,
requiring it to infer only the initial seed edit. Additionally, by em-
ploying computer algebra systems for geometric reasoning, AEP

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

ensures that the resulting editing programs have high geometric
fidelity and respect essential shape features such as connectivity and
symmetry. Integrating LLMs with AEP significantly enhances our
system’s capability to meet user expectations by effectively bridg-
ing the gap between interpreting the primary edit and performing
comprehensive shape adjustments.

Finally, Section 6 discusses our LLM Augmented Inference ap-
proach. A key limitation of all edit propagation methods [Gal et al.
2009; Zheng et al. 2011] is the need for manual adjustments to the
shape’s structure to support different editing intents. This section
introduces our solution to this challenge: leveraging LLMs to dy-
namically modify the shape’s structure based on the edit requests.
We end this section by briefly discussing our prompting workflow
and the techniques we employ to boost the robustness and accuracy
of LLM responses, ensuring reliable edits across diverse inputs.

4 Parameterized Shape Editing

In this section, we present our framework for enabling parameter-
ized editing of 3D shapes. First, we detail the shape representation
employed in our system in Section 4.1. Next, we describe our Do-
main Specific Language (DSL) for creating programs that facilitate
parameterized shape editing in Section 4.2. Finally, in Section 4.3,
we discuss the limitations of directly inferring complete editing
programs in this DSL using LLMs, highlighting the need for Ana-
LYTICAL EDIT PROPAGATION (AEP).

4.1 Structured Shape Abstraction

Our system processes 3D meshes that are annotated at the instance
level. We first transform these meshes into a structured representa-
tion to facilitate parametric editing. This representation is inspired
by shape representations such as 3D part graphs [Mo et al. 2019a]
and Sym-Hierarchy [Wang et al. 2011].

Specifically, we model the input shape S as an undirected graph
G(N, L), where each node n € N corresponds to a semantically
labeled mesh sub-part, and edges | € L denote inter-part geometric
relations such as connectivity or symmetry. To preserve the detailed
geometric features of the input mesh while simplifying the complex-
ity of edits, each part P; is abstracted into a hexahedron H;. This
hexahedron, initialized with the part’s oriented bounding box, acts
as the control cage for the underlying part-mesh. Edits made to the
hexahedrons are then propagated to deform the vertices of the part
mesh using harmonic coordinates [Joshi et al. 2007].

Our system support two types of inter-part relations, namely
Symmetry Relation, which models inter-part symmetry groups com-
monly found in man-made objects and Attachment Relation which
constrain the relative movement between parts, ensuring that edits
do not violate the physical connections of the object. Additionally,
we automatically enhance each part’s label with verbal directional
phrases such as "front" and "back" to capture its relative position-
ing among other instances with the same label. Figure 3 illustrates
the conversion of a chair model into this structured shape abstrac-
tion. We provide a more detailed overview in the supplementary
materials.

ParSEL: Parameterized Shape Editing with Language -

197:5

ParSEL

Program Inference

Editing Program (Section 4.2)

Shape Abstraction (Section 4.1)

| ‘* " " = d
1. ScalelD("seat", amt=X, r
LLM Augmented
| o g 2 dir=(1, 0, 0), ...) L —
Trans(pack bars) a er.ence 3. Translate("leg_front left", amt=0.3 * X, -_—m
: l (Section 6) 4. dir=(-1, 0, 8), ...)
‘ @)—/ 5. ScalelD("bar_center", amt=0.98 * X,
Ref{jeg bars) R ﬂ'b» —> .) —>| 6 dir=(1, 0, 0), ...)
“ __,,m—-q_: I 7. ChangeCount(TransRel("back_bars"),
| ; = *
‘ ‘] . amtjkgo(réﬁil*x : ") 3
' - = o . X . sqr s(0. = sao))p
tidtan e dhal f(legs front) Ul | Edit ProPagatlon 0.)
' (Section 5)

Fig. 3. Overview: Given a segmented 3D chair and an edit request to "widen the chair," we first convert the shape into a structured representation: hexahedrons
and inter-part relations. This abstraction is illustrated on the left, with symmetry relations annotated on the right and attachment relations depicted with
red points on the shape. Our neuro-symbolic approach (center) uses an LLM, to interpret the natural language input, and ANALYTICAL EDIT PROPAGATION, to
perform geometric reasoning, in order to infer a parameterized editing program (right) that aligns with the edit request.

Bar

Fig. 4. Edit Propagation: Starting with a seed-edit, scaling the seat, new edits are incrementally introduced to rectify the broken relations. (left) Initially the
seat-leg and seat-back attachments are broken. (middle) New edits, shifting the legs and scaling the back, are introduced to restore these broken relations.
Consequently, the leg-bar and back-bar attachments are broken. This process continues until no relation remains broken, or all parts are edited.

4.2 A Language for parameterized shape editing

In the preceding section, we introduced our structured shape rep-
resentation, which is comprised of individual parts (abstracted as
hexahedrons) and inter-part geometric relations. Building upon this,
we now present a Domain Specific Language (DSL) crafted to facili-
tate parametric editing of these components using user-controlled
parameters.

Our DSL, enables common transformations on individual parts,
including translation, rotation, scaling, and shearing. These can also
be targeted at specific part features such as a face, edge, or corner.
Additionally, the DSL supports modifications to symmetry group
parameters, like the number of elements and their spacing. A key
feature of our DSL is the parameterization of editing operations
via user-controlled parameters. This functionality is encapsulated
with multiple atomic editing operators, collectively referred to as
EprtOp, and defined as follows:

Ep1TOP(OPERAND, AMOUNT, **PARAMS),

where Ep1TOP signifies the operation, OPERAND the target (part,
feature, or symmetry relation), and PARAMS additional numerical

parameters specific to each operation (e.g., a R® vector for scaling
origin). Central to these operators is AMOUNT, the parameter dic-
tating the magnitude of edits. Unlike the other static parameters,
AMOUNT is specified as a symbolic mathematical expression of the
user-controlled parameters, and dynamically evaluated as the user
alters these parameters. As a result, adjusting the user-controlled
parameter alters the edit magnitude, and subsequently helps explore
shape variations. We denote a sequence of these operations as a
parameterized editing program. In Figure 3 (right), we display a pro-
gram designed to increase the width of a chair while proportionally
adjusting other parts of the chair.

We design our DSL to achieve our goal of enabling controllable
shape editing. We highlight a few pivotal aspects of our DSL: (i) Un-
like prior editing systems, our DSL handles a comprehensive range
of operations. For example, [Bokeloh et al. 2012] only supports cou-
pling of translation symmetries with part deformations, [Zheng et al.
2011] does not edit symmetry hierarchies, and [Wang et al. 2011]
only supports editing of symmetry hierarchies. (i) The AMOUNT
expression supports arbitrarily complex mathematical expressions,
as demonstrated in the translation symmetry group edit in Figure 3

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

197:6 « Ganeshan et al.

(right). (iii) The ability to apply the transforms on part features facil-
itates non-affine transformations, such as tapering, which is useful
in many edits (see Figure 6 (c)), (iv) Each part’s edits are independent
of the state of other parts. Consequently, these edits can be executed
in parallel across all parts, enabling real-time parametric shape edit-
ing even on consumer-grade laptops. (v) The edits are composable;
parts modified by one operation can seamlessly serve as inputs to
subsequent operations. This capability is explored further in Sec-
tion 8.1, where we demonstrate an exciting application of our DSL.
For a comprehensive discussion on the design and execution model
of our DSL, please refer to our supplementary materials.

4.3 Limitations of Direct LLM Inference

As we briefly discussed in Section 3, inferring complete editing
programs directly with LLMs often fails to produce results that
align with the intended edits. LLMs typically succeed at interpreting
primary edits explicitly requested—for example, when asked to
‘widen the chair’s seat, they correctly infer the edit operators to
scale the seat. However, they often neglect necessary secondary edits
crucial for maintaining geometric coherence, such as modifying
related components like the chair’s legs and back to accommodate
the scaled seat. Additionally, even when LLMs identify the need
for these secondary adjustments, they struggle to accurately infer
the appropriate edit types and their magnitudes. As illustrated in
Figure 3 (right), editing programs can contain many operations that
require careful adjustment of parameters to edit the shape cohesively.
Consequently, the AMOUNT parameter of different edit operations
often involves complex mathematical expressions, making accurate
inference challenging. As a result, we find that only the initial seed-
edit operation inferred by the LLM is generally reliable.

This limitation is overcome by ANALYTICAL EDIT PROPAGATION
(AEP), which performs the geometric analysis that LLMs cannot.
Since the geometric relations driving these secondary edits are
compatible with algebraic reasoning, AEP employs Computer Al-
gebra System (CAS) solvers to identify the necessary secondary
edits, thereby extending the editing program to better align with
the user’s overall intent.

5 Analytical Edit Propagation

We now present our approach to extending a seed-edit inferred by
the LLM using CAS solvers for geometric reasoning. In Section 5.1,
we explain how edit propagation works and why parameterized
editing operations require a different strategy. Section 5.2 details
our representation of edits, parts, and relations using algebraic
expressions, resulting in parameterized constraints that the shape
must satisfy. Finally, Section 5.3 describes how analytical solvers
are employed to solve these parameterized constraints, thereby
discovering appropriate new parameterized edits to extend the seed
editing program.

5.1 Edit Propagation

When designing shape variations, maintaining the shape’s func-
tional and structural attributes is paramount. We delineate these
attributes through inter-part relations, as introduced in Section 4.1.
Thus, an adept editing program strives to preserve these relations.

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

Isolated part modification, a tendency of the naive strategy discussed
in Section 4.3, generally results in the disruption of these inter-part
relations. We now introduce a edit propagation algorithm which,
starting with one or more seed edits, introduces additional edits to
rectify the compromised relations.

As detailed in Section 4.1, we model the input shape as an undi-
rected graph G(N, L), where each node n € N represents a subpart,
and each edge I € L denotes an inter-part relation. Editing a node,
such as widening a chair’s seat, can break the edges connected to this
node - for example, it might break the attachment relation between
the seat and the legs. Edit propagation is then initiated to restore
the broken edges by applying corrective edits to other, previously
unaltered, nodes within the graph. Importantly, these corrective
edits are derived by considering broken relations with edited parts
only. Consequently, newly introduced edits may subsequently break
additional edges, necessitating further edits. This iterative process
continues, introducing necessary edits until no edges remain broken
or until all nodes have been edited. In Figure 4, we demonstrate
edit propagation in action, incrementally introducing new edits to
eventually result in a cohesive edit of the input shape.

As our seed edits are parameterized with user-controlled parame-
ters, they model a range of potential instantiated seed edits. While
traditional edit propagation techniques [Zheng et al. 2011] can be
applied to the dynamically evaluated instances of these seed edits,
such application results in a laggy user experience. This lag arises
because these techniques involve multiple computationally inten-
sive numerical optimization iterations, dependent on the graph’s
size. Instead, we propose to search for new parameterized edits
that restore and preserve inter-part relations across the range of
control parameters. Consequently, subsequent slider adjustments
require only cheap expression evaluations, offering fluid interaction.
Although our approach requires an initial computationally inten-
sive search, as the analytical part-wise edits can be evaluated in
parallel, it offers a O(1) complexity during runtime even on average
consumer laptops, provided sufficient parallel processing capability.

To search for parameterized edits, we employ a sophisticated
Computer Algebra Systems (CAS) [Meurer et al. 2017]. By repre-
senting parts, relations, and edits as algebraic expressions, we are
able to use CAS solvers to efficiently discover analytical solutions
to the algebraic constraints dictated by the inter-part relations. As
we will see later, this plays a critical role in finding edit parame-
terizations that preserve relations across the control parameter’s
range.

5.2 Expressing the Shape Algebraically

For simplicity, we assume that there is a single control parameter
x and refer to its range as the input range. First, we present the
algebraic form of the part hexahedrons H;. Then, we present how
all inter-part relations are expressed as algebraic constraints on the
hexahedrons.

Each part hexahedron consists of 8 3D points, and is represented
as a matrix of size (8,3). A hexahedron under no edit is expressed
as a constant function H;(x) = H? € RI83} where H? contains
real-valued entries. When a parameterized edit is applied on Hj, its
functional form can be derived based on the type of edit. For instance,

under an edit TRANSLATE(H;, x,), H; can be expressed as H;(x) =
Hlp + x - 0, where 0 represents the direction of translation. Similar
algebraic expressions can be prescribed for all the atomic editing
operators in our DSL, allowing us to express all the hexahedrons
as algebraic functions of the control parameter x. For reference, we
tabulate the algebraic form of all the operators in the supplementary.

For modeling the relations algebraically, we separately handle
the symmetry and attachment relations. Given hexahedrons H; and
Hj under a symmetry group G(T), where T is the transformation
under which the symmetry is held, each symmetry relation can be
expressed as a constraint ||H; — T(Hj)||eo < 6. Similarly, attachment
relations are expressed as ||a— || < J, where a and b are points in
H; and H; respectively which form the attachment. By modeling a
and b with harmonic coordinates, we can rewrite this constraint in
terms of the hexahedron: |[|MyH; — MpHj||co < 8 where M, and M),
are the harmonic coordinates of points a and b respectively. Since
the hexahedrons H; are parameterized by x, these constraints are
also parameterized by x as can be expressed as C;(x). Now, we can
identify if a relation will be broken under the parameterized edits
by checking if the corresponding constraints are maintained across
the input range. More formally, we denote that a constraint is held
by SAT(C), and

SAT(C) = ||Ci(x)|]eo < 8Vx € [0,7], 1)

where [0, 7] is the input range. Ideally, SAT(C) should be checked
analytically, considering the functional form of C(x). However, this
can be computationally expensive. Therefore, we instead numer-
ically check if a constraint is held, by evaluating it over random
values of x sampled uniformly across the input range.

5.3 Analytical Edit Solver

Now, given a set of broken relations, we are tasked with introducing
new parameterized edits which restores and preserves these rela-
tions across the input range. For a single part P;, this problem can
be written as finding an edit E* for P; such that all the constraints
on the part are held:

Find E* s.t. SAT(E, C) @)
SAT(E,C) = {||Ci(x)]le < SI¥C; € C,Vx € (0,7)}, (3)

where C is the set of all constraints derived from the broken relations
of the part.

Restoring symmetry group relations is straightforward as it has a
well defined analytical solution. Given H; and H;j under a symmetry
group G(T), where H; has an edit E, we can introduce a new edit
E* = T(E), on H;j such that the symmetry group is preserved. For
example, to restore reflection symmetry between two parts with one
of them under a parameterized translation, we can introduce a simi-
larly parameterized translation on the other part with its translation
direction reflected about the reflection plane. Following [Zheng et al.
2011], we prioritize symmetry relation over the attachment rela-
tions, and restore them before searching for attachment preserving
edits.

In contrast, restoring attachment relations is uniquely challenging.
The set of constraints derived from attachment relations can be of
arbitrary size (depending on the number of attachments relation
of the part), without well defined analytical solutions. Therefore,

ParSEL: Parameterized Shape Editing with Language « 197:7

| / =
| ——] \ - Y
|y
MoveFace(X, X)
MoveFace(Y, -Y) amount =12x | =
0 = l m—"
0 |

12 b\ | amount = 0.64 x
Rotate(-Z, ...)

MoveFace(Y, X) e _ &

e

= Q(e amount = 0.56 x | py|
RV k
z Move(2)

C Move(X) amount = 0.6 x
Er g
(b) Candidate Proposal (c) Solve Analytically

(a) Gather
Constraints

Fig. 5. Searching for edits: Which edit operations could we use for the
chair leg? (a) First, broken constraints C (highlighted with a red line) are
detected, denoting the relations to be fixed. (b) We then sample parameter-
izations of the edit operators in our DSL to create candidate edits Eg. (c)
Using CAS solvers, we search for AMOUNT expression for each edit candidate
that satisfies the constraints C, resulting in the set of valid edits E.

we need to search for edits that can satisfy all the constraints. This
entails searching for (i) the correct type of edit, with (ii) the correct
edit-specific parameters PARAMS which are defined over R", and
(iii) the correct specification of AMOUNT which can be an arbitrary
algebraic expression of the control parameter x. Naively performing
this search is infeasible. We therefore employ two techniques to
address this challenge. As we detail ahead, our solution relies on
smartly sampling assignments of pARAMS, and using CAS solvers to
infer feasible AMOUNT expressions. To aid exposition, we continue
with the example of widening a chair seat, with an accompanying
illustration in Figure 5. As shown in Figure 5 (a), as the seat is
widened, the attachment relation between the legs and the seat is
broken. We are now tasked with finding a suitable edit for the leg
to restore this attachment relation.

Each edit has numeric parameters PARAMS which can take arbi-
trary values in R". Instead of searching across all possible PARAMS,
we search over a smaller subset of feasible PARAMS assignments.
The feasible PARAMS assigments are created using the hexahedron
features such as its face-center, vertices, and local axis directions.
We enumerate over the (applicable) DSL edit operators, and exhaus-
tively sample feasible assignments of PARAM to create Eg a set of
feasible edit candidates. In Figure 5 (b), we depict the candidate edits
from Eg. Our goal is to now enumerate through the edit candidates,
and ascertain if these edit can satisfy all the constraints.

To check if a edit candidate can satisfy the constraints, we must
specify its AMOUNT. Note that AMOUNT is a algebraic expression
and needs to be set s.t. it satisfies the constraints for all values of
x in the input range. Therefore, we set AMOUNT to be an arbitrary
function f(x) and state this task more formally as:

Find f(x) s.t. SAT(EAMOUNT=f(x)’ C), E € B (4)

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

197:8 « Ganeshan et al.

Here, we leverage the CAS solvers to search for analytical solutions
for f(x). Note that since we can have multiple constraints on a
given part, the constraint set C can be a mixed set of equations
- which CAS solvers may fail to find solutions for. Therefore, we
instead create a set of feasible analytical solutions FF by solving each
constraint independently (i.e. by solving f(x) s.t. ||Ci(x)|| = 0).
Analytical solutions in F which satisfy all constraints (by numerical
check) are then accepted as solutions to equation 4. Note that solving
equation 4 for a given edit E is “embarrasingly” parallel, allowing
us to search solutions for different edits E € Eg in parallel.

With the analytical solutions, we form a set E containing edits
which restore all the constraints E = {SAT(E,C)|E € Eg}. This
set is depicted in Figure 5 (c). Though all the edit candidates in E
restore the currently broken relations, each may cause a different set
of relations to be broken. Therefore, we must carefully select the edit
candidate. Taking inspiration from prior work [Gal et al. 2009], we
design a simple selection criterion for selecting the most suitable edit
from E, which considers the ARAP deformation energy [Sorkine and
Alexa 2007] (lower is better) and the number of intrinsic symmetry
planes of the edit (higher is better). We provide additional details in
the supplementary.

5.3.1 Improving Solver Robustness. Though the technique presented
above succeeds in a majority of analytical edit propagation steps,
we found that it can sometimes fail to find good edits. We now
detail two features which improve the quality of solutions found by
the Solver. As we experimentally verify later in Section 7.3, these
features noticeably improve the program quality.

Extending the Candidate Set. The set Eg of edit candidates can
sometimes fail to contain PARAM assignments which can success-
fully satisfy all the constraints. When none of the edits in Eg satisfy
all the constraints, we introduce additional edits with PARAM as-
signments based on the features of other edited hexahedrons. For
example, if a cabinet door is rotated about its hinge, the handle must
also rotate about the same axis. By introducing edits with PARAM
assignments based on the door’s features, we can discover such
necessary adjustments. For simplicity, these terms are later referred
to in our experiments as nhbd-edits.

Handing Unsatisfiability. qualitativeDespite the extensive search,
sometimes the constraints in C may not be mutually satisfiable. Un-
der such circumstances, we select the minimally constraint breaking
edit, i.e. the edit which breaks the least amount of constraints. This is
done by recording for each solution in F, the number of constraints
it breaks and selecting the one which breaks the fewest constraints.
We simply refer to edits introduced in this way as breaking-edits.

6 LLM Augmented Inference

In the previous section, we introduced ANALYTICAL EDIT PROPA-
GATION (AEP), which utilizes a seed-edit inferred by the LLM to
discover necessary secondary edits. We now explore how we deploy
LLMs in tandem with AEP to infer parameterized editing programs.
First, we address a limitation of naive edit propagation, present also
in traditional techniques [Gal et al. 2009; Zheng et al. 2011], and
propose our solution to overcome it.

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

6.1 A Limitation of Naive Edit Propagation

Edit propagation relies on two key assumptions about the user’s
intent: (i) the user wishes to preserve inter-part relationships as
much as possible, and (ii) the user prefers the simplest possible
secondary modification. However, these assumptions do not always
hold.

During edit propagation, we attempt to restore all inter-part geo-
metric relationships. However, achieving certain edits may require
allowing some relationships to remain broken. For example, even if
the front legs of a chair are symmetric to the back legs, the user may
desire to edit only the back legs in a symmetry-breaking fashion.
Similarly, using the simplest possible secondary modifications, from
an ARAP [Sorkine and Alexa 2007] perspective, might not always
match user intent. For instance, when widening a chair’s seat, the
simplest modification to the legs is to shift them. However, the user
might instead prefer to tilt the legs (cf. Figure 8).

Performing these edits with traditional methods requires signifi-
cant manual effort. Users must remove the reflection relationship
between the front and back legs to support the first edit and add
an attachment relationship between the legs and the floor for the
second edit. This underscores a key limitation of traditional edit
propagation: the structure invoked in the shape must be modified
to support different edits. Consequently, with prior methods, users
have to manually adjust the shape’s structure to ensure the edits
generated align with their intent.

6.2 Dynamic Structure Modification Using LLMs

While manually performing these actions is labor-intensive, verbally
specifying them in an edit request is straightforward. As our system
supports unstructured natural language input, we use LLMs to in-
terpret these requirements from the edit request and automatically
update the shape’s structure to facilitate the edit. This approach elim-
inates the need for users to manually adjust the shape’s structure,
leveraging LLMs to perform these tasks instead. Based on the edit
request, the LLM infers (i) the seed-edit, (ii) the relation-validity for
each symmetry relationship in the shape, and (iii) the edit type-hints
for the different parts.

When a relation is deemed invalid, we delete the corresponding
constraints. When a part has a specified type-hint, we use it to
filter the edit candidates generated during edit propagation (i.e.
we filter them out from ER). This enables us to directly target the
specific edits the user desires, unlike prior approaches that require
additional constraints to achieve such complex modifications. With
this approach, we can accommodate edit requests that conflict with
symmetry relationships in the shape or require specific editing
operations for secondary parts.

6.2.1 Prompting Workflows. We infer the three quantities with
three separate prompting workflows. For each task, the LLM is
provided with a verbal description of the parts in the shape, the
user’s edit request, and a set of task-specific instructions. The LLM
returns an executable Python snippet, which is parsed and executed
to receive the LLM’s response. For the seed-edit inference, the LLM
is also given an API to create the edit operators. To avoid confusion
between different relations, relation-validity is inferred for each

One Shot LLM Ours Seed Only Ours

(@)

ParSEL: Parameterized Shape Editing with Language « 197:9

One Shot LLM Ours Seed Only Ours

"Shorten the cabinet by
bringing the top panel down

"Raise the top-front of seat support
without changing the armrests.”

"Radially expand the bottom shelf
while keeping the top as it is."

"Move front frame forward
while keeping the back panel fixed.

Fig. 6. We compare parametric editing of 3D assets across three system variants. The One Shot LLM produces unrealistic part intersections (b, c) and fails to
propagate corrective edits (a, d). The Ours Seed Only variant with ANALYTICAL EDIT PROPAGATION (AEP) produces consistent variations, but can fail to align with
the input edit intent. Our full system (Ours), which includes edit type-hints and relation-validity, produces edits that closely match user requests.

symmetry relation independently with a separate prompt. For infer-
ring explicit type-hints, we found the LLM to be most reliable when
limited to three abstract types: ‘translate’, ‘rotate’, and ‘scale’. We
provide additional details and examples in the supplementary.

We enhance the quality of LLM responses using four key strate-
gies. Chain of Thought (CoT) [Wei et al. 2023] encourages the model
to generate intermediate reasoning steps, improving problem-solving
accuracy. In-context examples [Brown et al. 2020] provide illustrative
cases within the prompt to guide the model towards more relevant
outputs. Task reminders [Makatura et al. 2023] are task-specific
instructions included to help the model avoid common errors. Addi-
tionally, we employ majority voting [Wang et al. 2023a], aggregating
results from multiple independent LLM calls and selecting the most
frequent response, which significantly boosts system reliability with
as few as five samples (refer to Table 3). Since there is no interde-
pendence between the prompts, we prompt the LLM for all tasks in
parallel, maintaining response times comparable to that of a single
API call.

7 Experiments

We now present experiments which evaluate the editing programs
inferred by our system. We additionally perform ablation experi-
ments on the different components of our system to provide more
insights. Note that we utilize OpenAI’s (text-only) GPT-4 [GPT-4
2023] as the LLM for all of our experiments.

7.1 Datasets

We evaluate our method over 3D models sourced from 2 datasets. A
dev-set is curated using 3D mesh models from the PartNet [Mo et al.
2019b] dataset, while the test-set is composed of 3D models from
the CoMPaT3D++ dataset [Slim et al. 2023]. The dev-set includes 51
part-segmented meshes sampled from five categories of man-made

objects: Chair, Table, Couch, Storage Furniture, and Bed. We used the
dev-set as a benchmark while developing the system, and models
in this set contain from 5 to 81 parts (median 17), and from 4 to
318 (median 40) relations, covering simple to complex geometries.
The test-set contains 50 models sourced from 21 different categories
within the CoMPaT3D++ dataset. This set is used to verify the
efficacy of our system beyond the object categories present in the
dev-set. Thus, the test-set also includes objects from uncommon
categories such as Gazebos, Bird Houses, and Fans.

All models are paired with manually written natural language
edit requests to create (shape, edit request) pairs used as input to our
system. As we show in the qualitative examples, the edit requests en-
compass a wide variety of modifications. Additionally, we annotate
each pair in the dev-set with a "ground-truth’ (GT) editing program
derived through a Human-Solver inference process, where the LLM
is replaced by an expert user. Note that both the GT programs and
the programs inferred by each variant we consider are written in
the DSL introduced in Section 4.2.

7.2 Language-based Parameterized Editing of 3D Assets

First, we evaluate our system’s efficacy in enabling natural-language-
based parametric editing of 3D assets. As described earlier, our
system achieves this by inferring parameterized editing programs
that align with natural language edit requests. Notably, prior works
are not well-suited for this task. Neural approaches [Achlioptas
et al. 2023; Slim and Elhoseiny 2024], although powerful, do not
support high-resolution 3D assets, and prior edit-propagation ap-
proaches [Gal et al. 2009; Zheng et al. 2011] cannot be controlled via
natural language. Beyond this, neither of these paradigms is capable
of supporting parametric editing. Since no prior work adequately
addresses this problem, we introduce alternative realizations of our
system for comparison:

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

197:10 « Ganeshan et al.

Table 1. Our system is preferred: Results of a two-alternative forced-
choice perceptual study comparing our system against two alternate realiza-
tions. Our system (denoted Ours) is preferred in an overwhelming majority
of the judgements.

Preference Rate

Ours vs. One Shot LLM
Ours vs. Ours Seed Only

79.89%
76.53%

(1) One Shot LLM: As detailed in Section 4.3, this approach in-
volves providing the LLM with all necessary information to
infer the entire editing program in a single step.

(2) Ours Seed Only: This baseline uses an LLM to infer the seed-
edit and employs Analytical Edit Propagation (AEP) to gener-
ate the entire editing program.

(3) Ours: Our full system, which utilizes the LLM to specify the
seed-edit, relation-validity, and edit type-hints. These compo-
nents are then used during AEP to produce edits that closely
align with the user’s intent.

7.2.1 Analysis of Human Preference. Using the test-set, we con-
ducted a two-alternative forced-choice perceptual study to compare
these method variants. We recruited 56 participants for the task.
Each participant was shown a series of comparisons, resulting in
a total of 1642 judgements. Each comparison included a natural
language edit request and two videos showing a 3D shape being
edited with the inferred editing programs, with the control parame-
ter smoothly varying across its range (from 0 to an automatically
set upper bound, 7). Participants were tasked with selecting their
preferred method, based on the instruction to: “Select the method
which better satisfies the input editing prompt and results in a better
edited shape”. Note that we elide comparisons where the programs
inferred by the compared methods match (18% of the comparisons
in total).

Table 1 presents the results of our experiment. Our method is
preferred over One-shot LLM in 79.9% of the judgements. One-shot
LLM often fails to construct meaningful editing programs, demon-
strating the failure cases discussed in Section 4.3. In contrast, by
leveraging AEP, our method produces cohesive editing programs
that respect the inter-part relationships. Compared to Ours Seed
Only, our method is preferred in 76.5% of comparisons. Without the
ability to provide type hints or disable symmetry relations, Ours
Seed Only often infers programs that respect inter-part relations but
fail to align with the user’s edit intent. Note that Ours Seed Only
represents a purely analytical variant of the prior edit propagation
method [Zheng et al. 2011]. This indicates that while editing with
prior analyse-and-edit methods, users often need to manually adjust
multiple settings, such as enabling/disabling relations, to perform
their desired edits. In contrast, our system allows users to simply
state their edit intent in natural language, and the LLM with auto-
matically adjusts required settings. We additionally provide all the
videos from the perceptual study in our supplementary materials,
allowing for independent verification of our results.

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

Table 2. Our method is closer to GT: We compare the different system
realizations against ‘GT’ annotations. Our system (Ours) obtains the best
performance over metrics that measure the proximity to the ‘GT” annota-
tions across Programmatic, Geometric and Structural aspects.

J (Prog)(T) D(Geo)(l) %ReL(T)
One Shot LLM 0.31 8.30 61.71%
Ours Seed Only 0.53 8.62 83.47%
Ours 0.70 4.01 91.57%

7.2.2 Analysis of Inferred Programs. Next, we compare the pro-
grams generated by these methods against the manually annotated
ground-truth (GT) editing programs on the dev-set. We evaluate the
quality of the editing programs using three criteria: 1) Programmatic
(J (prog)): This metric assesses how closely the inferred programs
match the GT programs. 2) Geometric (D(geo)): This metric mea-
sures the geometric distance between the shape edited with the
inferred programs and the shape edited with the GT programs. 3)
Structural (%Rel): This metric quantifies the percentage of inter-part
relations whose state (broken vs. maintained) matches the relation’s
state under the ground truth (GT) program. Further details are pro-
vided in the supplementary material.

We present the results of this experiment in Table 2. First, we note
that the One-shot LLM approach fails drastically across the three
criterion, which aligns with the preference rates observed in the
human study. Secondly, we observe that omitting the type-hints and
relation-validity steps adversely affects the Our Seed Only approach.
Specifically, Our Seed Only results in a very high D (geo) measure,
indicating that although AEP restores the inter-part relations, the
edits inferred without type-hints cause the edited shape to geomet-
rically deviate from the intended shape. Finally, we highlight that
our system outperforms the others across all three metrics.

We also present qualitative examples of editing programs inferred
from different baselines in Figure 6. The improvement in the quanti-
tative metrics is evident in these qualitative examples. The baselines
produce visible artifacts, such as intersections between parts, and
often violate the intent of the requested edits.

7.3 Analysing the System Design

In this section, we present an ablative analysis of the LLM prompting
workflow and the AEP solver to elucidate the impact of various
design decisions.

7.3.1 Analysis of the Prompting Workflow. Our system employs
separate prompts to infer the seed edit, relation validity, and edit type
hints. We measure the LLM’s accuracy at inferring these three terms
by comparing its output to that of a human annotator. Additionally,
we perform a subtractive ablation by individually removing majority
voting [Wang et al. 2023a], Chain-of-Thought (CoT) [Wei et al. 2023],
and in-context examples [Brown et al. 2020] to measure their impact
on the LLM’s accuracy. We report four metrics: 1) Acc(SE), for seed
edit accuracy; 2) Acc(R), for relation validity accuracy; 3) J(T), for
type hint accuracy; and 4) Match, for the fraction of input pairs
where all LLM-inferred quantities match human annotations.

ParSEL: Parameterized Shape Editing with Language « 197:11

"Extend the middle shelf to the left while
— keeping the top and side panels fixed"

- "expand the desk top while

|
keeping the parts above fixed" @

"Shift the top panel downwards"

111

"Contract the top side panels from the top" |

"Make the bottom vertical panels
thicker in the left-right direction”

"Extend the bottom panel towards
the front while keeping the rest fixed"

"make the legs radially thicker
— while keeping the rest fixed"

L "extend the horizontal
panel towards to front”

"Shorten the top doors from the top"

"Stretch the drawer handles in the left-right
direction”

"widen the cabinet by expanding
the horizontal panel”

"lengthen the legs from the top while
keeping the top panel fixed"

L]
L]
e

-
| C @
Ll

Fig. 7. Proxydural Modeling: Leveraging the open-world knowledge of LLMs, we synthesize edit requests for a given shape to enable automatic procedural
models, termed Proxydural due to the use of bounding proxy deformations. Our system allows multiple proxydural models for the same shape, a capability not

possible with prior approaches [Bokeloh et al. 2012].

Table 3. Accuracy of the LLM in inferring the seed-edit (Acc(SE)), relation-
validity (Acc(R)), and edit type-hints (J(T)), along with the fraction of
inputs where the LLM infers everything correctly (Match). Voting and in-
context examples significantly enhance accuracy, while the naive approach
shows a marked decrease.

Acc(SE)(T) Acc(R)(T) J(T)(T) Match(T)

Ours 76.47 88.91 73.92 35.29
- Voting 68.62 88.91 68.02 25.49
- CoT 72.54 88.17 71.69 27.45
- InContext 66.66 87.68 65.75 23.52
Naive 68.62 86.99 65.36 19.60

The results are presented in Table 3. As demonstrated, there is a
significant gap in accuracy between our prompting workflow and
the Naive approach, which does not include voting, chain-of-thought
(CoT) reasoning, or in-context examples. Among these techniques,
voting and in-context examples have a more pronounced effect on
performance, whereas the absence of CoT results in a relatively
smaller decline in accuracy. Although not directly comparable, we
find that all models struggle most with correctly setting the seed
edit and the type hints. This difficulty likely arises from the need
to construct the seed edit using a complex API and the necessity
of inferring type hints for many parts of the shape. Finally, this
experiment underscores the task and dataset complexity, as even
our best approach fully matches the human annotation for only
approximately 35% of the input pairs. Note that due to redundancies
in the shape structure and the presence of multiple ways to satisfy an
edit request, effective editing programs can be inferred even when
not all inferred quantities match the ground truth. Consequently,
annotator evaluations indicate that programs produced with our
method (Ours) matched the intended edits in 72.5% of the inputs.

7.3.2 Analysis of the AEP Solver. Next, we perform an ablative
analysis of our AEP solver, focusing on the features introduced
in Section 5.3.1: (i) nhbd-edits, which creates edit candidates with
parameters specified with features of other edited parts, and (ii)
breaking-edits, which use the minimally constraint-breaking edit
when no edit satisfies all constraints. We compare the inferred
programs to the ground truth (GT) programs using the metrics
from Section 7.2, and provide results in Table 4. Removing nhbd-
edits increases geometric distance, while removing breaking-edits
increases structural distance. This aligns with our intuition: nhbd-
edits improve parameterization, affecting geometric distance, while
breaking-edits prevent more broken relations, affecting structural
distance when elided.

8 Applications

Our editing system acts as a translator, converting natural language
prompts into editing programs. With this system in hand, we can
further explore how to employ the creative capabilities of LLMs
to enable tantalizing new applications. We demonstrate two such
applications: Automatic Proxydural Modeling and Generating Shape
Variation Families. Note that we utilize the OpenAI’s (Vision) GPT-
4 [OpenAl 2024] as the LLM for these applications, and provide the
prompts utilized for all applications in the supplementary matarials.

8.1 Automatic Proxydural Modeling

Our editing programs incorporate analytical edits, representing
modified parts as parameterized functions of control parameters
exposed to the user. By leveraging function composition, these
programs can be automatically stacked, allowing a part edited by one
program to serve as the input for another. This capability enables the
creation of (approximately) procedural models of any given shape
through the following steps: (i) gather multiple independent editing
requests, (ii) infer an editing program for each request, each with
a single independent control parameter, and (iii) stack these edits
using function composition. This approach allows users to explore

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

197:12 « Ganeshan et al.

Table 4. Quality of programs inferred by the Solver: Removing nhbd-edits
results in higher geometric distance (9 (Geo)), while removing breaking-
edits leads to more structural distance (%REL). The naive approach that
removes both of these options is the least effective.

J (Prog)(1) D(Geo)(]) %Rer(T)
Ours 0.70 4.01 91.57%
- nhbd 0.70 421 91.35%
- breaking 0.68 3.46 86.41%
Naive 0.67 431 85.4%

"[., while tilting the legs"” }—|_'

"... without changing the back." }—r

Fig. 8. Shape Variation Family: Given a 3D asset and an under-specified
edit request, we leverage LLMs to synthesize potential extensions of the
request. By inferring programs for both the extended and original requests,
we create a set of related but distinct parametric models, each adhering to
the initial edit request while supporting different shape variations.

— |

shape variations through a set of sliders, akin to interacting with
procedural models. Since the shapes are edited using their bounding
proxies, we term this approach Proxydural Modeling.

In cases where users wish to automatically explore variations of
a given shape, our system can still be effectively utilized. The key is
to identify interesting modes of variation and automatically craft
corresponding editing requests. Once these editing requests are
defined, our system can use them to generate the Proxydural Model.
To achieve this, we leverage the impressive world knowledge and
natural language capabilities of LLMs. Given a segmented shape,
we prompt the LLM to generate edit requests that capture interest-
ing variations. By providing in-context examples and task-specific
instructions, we ensure that the LLM produces requests compatible
with our system. These requests are then used to automatically
create the PRoxyDURAL MoODEL. In Figure 7, we present multiple
PROXYDURAL MODELs automatically crafted by the LLM. Unlike
prior inverse procedural modeling approaches [Bokeloh et al. 2012],
our system enables the creation of multiple Proxydural Models for a
single input geometry, each facilitating the exploration of different
shape variations.

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

8.2 Creating a Shape Variation Family

Natural language edit requests can often be under-specific, partic-
ularly when it comes to detailing secondary edits. Consequently,
edit requests typically support multiple possible realizations. The
minimal-deformation, maximally-relation-preserving edits produced
by edit propagation approaches represent only a single interpreta-
tion of the request. However, different users may prefer different
secondary edits. Therefore, producing editing programs that each
model a different interpretation of the request is desirable. We re-
fer to these sets of related but distinct editing programs as Shape
Variation Families.

To enable this exploration, we create multiple variations of the
initial editing request, retaining the user-specified primary edit
while exploring different secondary effects. These varied requests
are then used to generate distinct editing programs, each resulting
in a unique shape variation. We leverage the general world knowl-
edge about object categories contained in LLMs to accomplish this
task. Given the user’s primary edit request, we prompt the LLM to
generate variations of the request, specifically targeting different
secondary effects. As with the previous application, we provide
in-context examples and task-specific instructions to ensure that
the LLM produces requests compatible with our system. Once the
editing programs are generated for all the varied prompts, they are
presented to the user. The user can then explore different interpreta-
tions of the edit request, and select the one most aligned with their
intent. In Figure 8 we show an example of a Shape Variation Family
generated with this approach.

9 Conclusions

We have introduced PARSEL: PARAMETERIZED SHAPE EDITING WITH
LANGUAGE, a novel shape editing system that combines the intuitive-
ness of natural language with the precision of parametric control to
perform geometric edits on 3D assets. Given semantically labeled
3D meshes and a natural language edit request, our system provides
adjustable parameters to control how the shape is edited. This capa-
bility is achieved through parameterized editing programs, inferred
by a neuro-symbolic module that combines LLM prompting with
CAS solvers. Central to this module is ANALYTICAL EDIT PROPAGA-
TION (AEP), a novel technique that extends editing programs by
considering inter-part geometric relationships. Our experiments
demonstrated that our system infers editing programs that are more
closely aligned with user intent compared to other baselines. We
also showcased exciting applications made possible by our system,
such as automatic conversion of a high-quality 3D asset into an
approximate procedural model.

9.1 Limitations and future work

While PARSEL is the first system capable of supporting controllable
shape edits from natural language, it does have a few limitations:
(i) Search Efficiency: A downside of our approach is the computa-
tional expense of the analytical edit search. While the median time it
takes to search for editing programs is approximately 30 seconds, in
certain conditions it can take beyond 500 seconds for very complex
shapes. This is due to our simple and generous edit sampling pro-
cess, where the solver may evaluate an extensive array of potential

edit candidates under certain conditions. This could likely be miti-
gated to a large extent with the addition of a ‘smarter’ edit sampling
strategy. For instance, analyzing the parametric form of attachment
points can help identify suitable editing operations and prune the
search space. Alternatively, employing an early exit model, where
search stops once a satisfying edit is found, may also improve the
run-time of the system (though integration with parallelization may
be non-trivial).

(ii) Limited Edits: Our system currently supports a limited range of
part deformations - only those expressible as affine transforms of the
bounding proxy or its features. We contrast this with the prior neural
approaches [Achlioptas et al. 2023] in Figure 2, which despite other
drawbacks, support a wider range of shape edits. To accommodate a
wider range of edit requests, our system needs to support additional
deformation functions, such as making parts spherical or cylindrical.
A key challenge in supporting novel deformations is the ability
to analytically specify the state of parts under these deformation
functions. This makes iterative non-analytic deformations functions,
such as ARAP energy based deformation [Sorkine and Alexa 2007],
incompatible with our system.

(iii) Limited Shape Structures: While our shape representation
is effective for many man-made 3D objects, it has its limitations.
Bounding boxes may not be the best control cage for all parts, and
other control cages may be required. Although our system can sup-
port arbitrary control cages, as we use harmonic coordinates to
parameterize the attachment relations, their effect on the solver’s
success is unclear. Additionally, we currently model a limited set
of symmetry relations. Two common forms observed in 3D assets
that we identify are (i) parts formed by joining points on two differ-
ent curves, often seen in the design of back supports in chairs and
beds, and (ii) wallpaper symmetry groups, which involve transla-
tion symmetry along two axes, commonly seen in building facades.
Extending our system to support these additional structures would
greatly enhance its applicability.

We believe that our system makes 3D asset editing more control-
lable and intuitive for artists. With the rise of text-to-3D approaches,
creating new models has become easier, yet editing them remains a
challenge. By integrating our system with auto-segmentation tech-
niques tools [Zhou et al. 2023], we can enable intuitive and precise
editing of models generated from text-to-3D approaches. Finally
we emphasize that our system was most effective with careful and
directed LLM integration; we ask the LLM to perform only high-
level translation tasks, and rely on symbolic solvers to perform the
necessary geometric analysis. Looking ahead, we hope this work
provides a potent framework for a reliable integration of LLMs with
symbolic reasoning to support shape analysis.

References

Panos Achlioptas, Ian Huang, Minhyuk Sung, Sergey Tulyakov, and Leonidas Guibas.
2023. ShapeTalk: A Language Dataset and Framework for 3D Shape Edits and
Deformations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 12685-12694.

Daniel G Aliaga, Paul A Rosen, and Daniel R Bekins. 2007. Style grammars for interactive
visualization of architecture. IEEE transactions on visualization and computer graphics
13, 4 (2007), 786-797. https://doi.org/10.1109/TVCG.2007.1024

Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon: using transient widgets to create
scale variations of icons. ACM Trans. Graph. 34, 4, Article 144 (jul 2015), 11 pages.
https://doi.org/10.1145/2766980

ParSEL: Parameterized Shape Editing with Language « 197:13

Martin Bokeloh, Michael Wand, Vladlen Koltun, and Hans-Peter Seidel. 2011. Pattern-
aware shape deformation using sliding dockers. ACM Trans. Graph. 30, 6 (dec 2011),
1-10. https://doi.org/10.1145/2070781.2024157

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun. 2012. An
algebraic model for parameterized shape editing. 31, 4, Article 78 (jul 2012), 10 pages.
https://doi.org/10.1145/2185520.2185574

Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2022. InstructPix2Pix: Learning
to Follow Image Editing Instructions. arXiv preprint arXiv:2211.09800 (2022).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners. In Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(Eds.), Vol. 33. Curran Associates, Inc., 1877-1901. https://proceedings.neurips.cc/
paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Marcio Cabral, Sylvain Lefebvre, Carsten Dachsbacher, and George Drettakis. 2009.
Structure Preserving Reshape for Textured Architectural Scenes. Computer Graphics
Forum (Proceedings of the Eurographics conference) (2009). http://www-sop.inria.fr/
reves/Basilic/2009/CLDD09

D. Cascaval, M. Shalah, P. Quinn, R. Bodik, M. Agrawala, and A. Schulz.
2022. Differentiable 3D CAD Programs for Bidirectional Editing. Com-
puter Graphics Forum 41, 2 (2022), 309-323. https://doi.org/10.1111/cgf.14476
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14476

Ta-Ying Cheng, Matheus Gadelha, Thibault Groueix, Matthew Fisher, Radomir Mech,
Andrew Markham, and Niki Trigoni. 2024. Learning Continuous 3D Words for
Text-to-Image Generation. arXiv preprint arXiv:2402.08654 (2024).

Sabine Coquillart. 1990. Extended free-form deformation: a sculpturing tool for 3D
geometric modeling. SIGGRAPH Comput. Graph. 24, 4 (sep 1990), 187-196. https:
//doi.org/10.1145/97880.97900

Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Xuehai He,
S Basu, Xin Eric Wang, and William Yang Wang. 2023. LayoutGPT: Compositional
Visual Planning and Generation with Large Language Models. In Thirty-seventh
Conference on Neural Information Processing Systems. https://openreview.net/forum?
id=Xu8aG5Q8M3

Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. iWIRES: an
analyze-and-edit approach to shape manipulation (SSIGGRAPH °09). Association
for Computing Machinery, New York, NY, USA, Article 33, 10 pages. https:
//doi.org/10.1145/1576246.1531339

William Gao, Noam Aigerman, Groueix Thibault, Vladimir Kim, and Rana Hanocka.
2023. TextDeformer: Geometry Manipulation using Text Guidance. In ACM Trans-
actions on Graphics (SSIGGRAPH).

OpenAl GPT-4. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Paul Guerrero, Gilbert Bernstein, Wilmot Li, and Niloy J. Mitra. 2016. PATEX: Exploring
Pattern Variations. ACM Trans. Graph. 35, 4 (2016), 48:1-48:13. https://doi.org/10.
1145/2897824.2925950

Julia Guerrero-Viu, Milos Hasan, Arthur Roullier, Midhun Harikumar, Yiwei Hu, Paul
Guerrero, Diego Gutierrez, Belen Masia, and Valentin Deschaintre. 2024. TexSliders:
Diffusion-Based Texture Editing in CLIP Space. arXiv preprint arXiv:2405.00672
(2024).

Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual Programming: Compositional
Visual Reasoning Without Training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 14953-14962.

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A. Ross, Cordelia
Schmid, and Alireza Fathi. 2024. SceneCraft: An LLM Agent for Synthesizing 3D
Scene as Blender Code. arXiv:2403.01248 [cs.CV]

Tan Huang, Vrishab Krishna, Omoruyi Atekha, and Leonidas Guibas. 2023. Aladdin:
Zero-Shot Hallucination of Stylized 3D Assets from Abstract Scene Descriptions.
arXiv preprint arXiv:2306.06212 (2023).

Ian Huang, Guandao Yang, and Leonidas Guibas. 2024. BlenderAlchemy: Editing 3D
Graphics with Vision-Language Models. arXiv:2404.17672 [cs.CV]

R. Kenny Jones, David Charatan, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2021.
ShapeMOD: Macro Operation Discovery for 3D Shape Programs. ACM Transactions
on Graphics (TOG), Siggraph 2021 (2021).

R. Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2023. ShapeCoder:
Discovering Abstractions for Visual Programs from Unstructured Primitives. ACM
Transactions on Graphics (TOG), Siggraph 2023 42, 4, Article 49 (2023).

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-
monic coordinates for character articulation. ACM Trans. Graph. 26, 3 (jul 2007),
71-es. https://doi.org/10.1145/1276377.1276466

Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. 2022. DiffusionCLIP: Text-Guided
Diffusion Models for Robust Image Manipulation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2426-2435.

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

https://doi.org/10.1109/TVCG.2007.1024
https://doi.org/10.1145/2766980
https://doi.org/10.1145/2070781.2024157
https://doi.org/10.1145/2185520.2185574
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://www-sop.inria.fr/reves/Basilic/2009/CLDD09
http://www-sop.inria.fr/reves/Basilic/2009/CLDD09
https://doi.org/10.1111/cgf.14476
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14476
https://doi.org/10.1145/97880.97900
https://doi.org/10.1145/97880.97900
https://openreview.net/forum?id=Xu8aG5Q8M3
https://openreview.net/forum?id=Xu8aG5Q8M3
https://doi.org/10.1145/1576246.1531339
https://doi.org/10.1145/1576246.1531339
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/2897824.2925950
https://doi.org/10.1145/2897824.2925950
https://arxiv.org/abs/2403.01248
https://arxiv.org/abs/2404.17672
https://doi.org/10.1145/1276377.1276466

197:14 « Ganeshan et al.

Milin Kodnongbua, Benjamin Jones, Maaz Bin Safeer Ahmad, Vladimir Kim, and
Adriana Schulz. 2023. ReparamCAD: Zero-shot CAD Re-Parameterization for In-
teractive Manipulation. In SIGGRAPH Asia 2023 Conference Papers (<conf-loc>,
<city>Sydney</city>, <state>NSW</state>, <country>Australia</country>, </conf-
loc>) (SA "23). Association for Computing Machinery, New York, NY, USA, Article
69, 12 pages. hitps://doi.org/10.1145/3610548.3618219

Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and Daniel Cohen-Or. 2008. Non-
homogeneous resizing of complex models. ACM Trans. Graph. 27, 5, Article 111
(dec 2008), 9 pages. https://doi.org/10.1145/1409060.1409064

Peter Kulits, Haiwen Feng, Weiyang Liu, Victoria Abrevaya, and Michael J.
Black. 2024. Re-Thinking Inverse Graphics With Large Language Models.
arXiv:2404.xxxxx [cs.CL]

Jinjie Lin, Daniel Cohen-Or, Hao Zhang, Cheng Liang, Andrei Sharf, Oliver Deussen, and
Baoquan Chen. 2011. Structure-preserving retargeting of irregular 3D architecture.
ACM Trans. Graph. 30, 6 (dec 2011), 1-10. https://doi.org/10.1145/2070781.2024217

Yuanze Lin, Yi-Wen Chen, Yi-Hsuan Tsai, Lu Jiang, and Ming-Hsuan Yang. 2023. Text-
Driven Image Editing via Learnable Regions. arXiv preprint arXiv:2311.16432 (2023).

Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su. 2021. DeepMetaHandles:
Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates.
arXiv preprint arXiv:2102.09105 (2021).

Liane Makatura, Michael Foshey, Bohan Wang, Felix HahnLein, Pingchuan Ma, Bolei
Deng, Megan Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen
Chen, Allan Zhao, Amy Zhu, Wil J Norton, Edward Gu, Joshua Jacob, Yifei Li,
Adriana Schulz, and Wojciech Matusik. 2023. How Can Large Language Models
Help Humans in Design and Manufacturing? arXiv:2307.14377 [cs.CL]

Eloi Mehr, Ariane Jourdan, Nicolas Thome, Matthieu Cord, and Vincent Guitteny. 2019.
DiscoNet: Shapes Learning on Disconnected Manifolds for 3D Editing. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV). 3473-3482. https:
//doi.org/10.1109/ICCV.2019.00357

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondiej Certik, Sergey B. Kir-
pichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh,
Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi,
Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry,
Andy R. Terrel, Stépén Roucka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. 2017. SymPy: symbolic computing in
Python. Peer] Computer Science 3 (Jan. 2017), e103. https://doi.org/10.7717/peerj-
cs.103

Elie Michel and Tamy Boubekeur. 2021. DAG amendment for inverse control of
parametric shapes. ACM Trans. Graph. 40, 4, Article 173 (jul 2021), 14 pages.
https://doi.org/10.1145/3450626.3459823

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka.
2021. Text2Mesh: Text-Driven Neural Stylization for Meshes. arXiv preprint
arXiv:2112.03221 (2021).

Niloy Mitra, Michael Wand, Hao (Richard) Zhang, Daniel Cohen-Or, Vladimir Kim, and
Qi-Xing Huang. 2013. Structure-aware shape processing. In SIGGRAPH Asia 2013
Courses (Hong Kong, Hong Kong) (SA ’13). Association for Computing Machinery,
New York, NY, USA, Article 1, 20 pages. https://doi.org/10.1145/2542266.2542267

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas J
Guibas. 2019a. StructEdit: Learning Structural Shape Variations. Arxiv1911.11098
(2019).

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and
Hao Su. 2019b. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3D Object Understanding. In CVPR.

OpenAl 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Thomas W. Sederberg and Scott R. Parry. 1986. Free-form deformation of solid geometric
models. In Proceedings of the 13th Annual Conference on Computer Graphics and
Interactive Techniques (SSGGRAPH ’86). Association for Computing Machinery, New
York, NY, USA, 151-160. https://doi.org/10.1145/15922.15903

Alex Shtof, Alexander Agathos, Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or.
2013. Geosemantic Snapping for Sketch-Based Modeling. Computer Graphics Forum
32,2(2013), 245-253. https://doi.org/10.1111/cgf.12044 Proceedings of Eurographics
2013.

Karan Singh and Eugene Fiume. 1998. Wires: a geometric deformation technique. In
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’98). Association for Computing Machinery, New York, NY,
USA, 405-414. https://doi.org/10.1145/280814.280946

Habib Slim and Mohamed Elhoseiny. 2024. ShapeWalk: Compositional Shape Editing
through Language-Guided Chains. In Conference on Computer Vision and Pattern
Recognition (CVPR).

Habib Slim, Xiang Li, Yuchen Li, Mahmoud Ahmed, Mohamed Ayman, Ujjwal Upadhyay,
Ahmed Abdelreheem, Arpit Prajapati, Suhail Pothigara, Peter Wonka, and Mohamed
Elhoseiny. 2023. 3DCoMPaT++: An improved Large-scale 3D Vision Dataset for
Compositional Recognition. (2023).

Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Pro-
ceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing.
109-116.

ACM Trans. Graph., Vol. 43, No. 6, Article 197. Publication date: December 2024.

Robert W. Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded deformation
for shape manipulation. ACM Trans. Graph. 26, 3 (jul 2007), 80—es. https://doi.org/
10.1145/1276377.1276478

Didac Suris, Sachit Menon, and Carl Vondrick. 2023. ViperGPT: Visual Inference via
Python Execution for Reasoning. Proceedings of IEEE International Conference on
Computer Vision (ICCV) (2023).

Qian Wang, Biao Zhang, Michael Birsak, and Peter Wonka. 2023b. MDP: A Generalized
Framework for Text-Guided Image Editing by Manipulating the Diffusion Path.
arXiv:2303.16765 [cs.CV]

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023a. Self-Consistency Improves Chain
of Thought Reasoning in Language Models. In The Eleventh International Conference
on Learning Representations. https://openreview.net/forum?id=1PLINIMMrw

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng,
and Yueshan Xiong. 2011. Symmetry Hierarchy of Man-Made Objects. Comput.
Graph. Forum (2011).

Fangyin Wei, Elena Sizikova, Avneesh Sud, Szymon Rusinkiewicz, and Thomas A.
Funkhouser. 2020. Learning to Infer Semantic Parameters for 3D Shape Editing.. In
3DV, Vitomir Struc and Francisco Gémez Fernandez (Eds.). IEEE, 434-442. http:
//dblp.uni-trier.de/db/conf/3dim/3dim2020.html#WeiSSRF20

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. In NeurIPS.

Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel van de Panne, Falai Chen, and
Baining Guo. 2009. Joint-aware manipulation of deformable models. ACM Trans.
Graph. 28, 3, Article 35 (jul 2009), 9 pages. https://doi.org/10.1145/1531326.1531341

Yutaro Yamada, Khyathi Chandu, Yuchen Lin, Jack Hessel, Ilker Yildirim, and Yejin
Choi. 2024. L3GO: Language Agents with Chain-of-3D-Thoughts for Generating
Unconventional Objects. arXiv:2402.09052 [cs.AlI]

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun
Wu, Nick Haber, Ranjay Krishna, Lingjie Liu, Chris Callison-Burch, Mark Yatskar,
Aniruddha Kembhavi, and Christopher Clark. 2023. Holodeck: Language Guided
Generation of 3D Embodied AI Environments. arXiv preprint arXiv:2312.09067
(2023).

Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K. Hodgins, and Levent Burak
Kara. 2015. Semantic shape editing using deformation handles. ACM Trans. Graph.
34, 4, Article 86 (jul 2015), 12 pages. https://doi.org/10.1145/2766908

Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au, and Chiew-Lan Tai.
2011. Component-wise Controllers for Structure-Preserving Shape Manipulation.
Computer Graphics Forum 30, 2 (2011), 563-572. https://doi.org/10.1111/j.1467-
8659.2011.01880.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/].1467-
8659.2011.01880.x

Yuchen Zhou, Jiayuan Gu, Xuanlin Li, Minghua Liu, Yunhao Fang, and Hao Su. 2023.
PartSLIP++: Enhancing Low-Shot 3D Part Segmentation via Multi-View Instance
Segmentation and Maximum Likelihood Estimation. arXiv:2312.03015 [cs.CV]

https://doi.org/10.1145/3610548.3618219
https://doi.org/10.1145/1409060.1409064
https://arxiv.org/abs/2404.xxxxx
https://doi.org/10.1145/2070781.2024217
https://arxiv.org/abs/2307.14377
https://doi.org/10.1109/ICCV.2019.00357
https://doi.org/10.1109/ICCV.2019.00357
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1145/3450626.3459823
https://doi.org/10.1145/2542266.2542267
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/15922.15903
https://doi.org/10.1111/cgf.12044
https://doi.org/10.1145/280814.280946
https://doi.org/10.1145/1276377.1276478
https://doi.org/10.1145/1276377.1276478
https://arxiv.org/abs/2303.16765
https://openreview.net/forum?id=1PL1NIMMrw
http://dblp.uni-trier.de/db/conf/3dim/3dim2020.html#WeiSSRF20
http://dblp.uni-trier.de/db/conf/3dim/3dim2020.html#WeiSSRF20
https://doi.org/10.1145/1531326.1531341
https://arxiv.org/abs/2402.09052
https://doi.org/10.1145/2766908
https://doi.org/10.1111/j.1467-8659.2011.01880.x
https://doi.org/10.1111/j.1467-8659.2011.01880.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01880.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01880.x
https://arxiv.org/abs/2312.03015

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Parameterized Shape Editing
	4.1 Structured Shape Abstraction
	4.2 A Language for parameterized shape editing
	4.3 Limitations of Direct LLM Inference

	5 Analytical Edit Propagation
	5.1 Edit Propagation
	5.2 Expressing the Shape Algebraically
	5.3 Analytical Edit Solver

	6 LLM Augmented Inference
	6.1 A Limitation of Naive Edit Propagation
	6.2 Dynamic Structure Modification Using LLMs

	7 Experiments
	7.1 Datasets
	7.2 Language-based Parameterized Editing of 3D Assets
	7.3 Analysing the System Design

	8 Applications
	8.1 Automatic Proxydural Modeling
	8.2 Creating a Shape Variation Family

	9 Conclusions
	9.1 Limitations and future work

	References

