
Solving Two-Player General-Sum Game Between Swarms

Mukesh Ghimire1, Lei Zhang1, Wenlong Zhang2, Yi Ren1, and Zhe Xu1†

Abstract— Hamilton-Jacobi-Isaacs (HJI) PDEs are the gov-
erning equations for the two-player general-sum games. Un-
like Reinforcement Learning (RL) methods, which are data-
intensive methods for learning value function, learning HJ PDEs
provide a guaranteed convergence to the Nash Equilibrium
value of the game when it exists. However, a caveat is that
solving HJ PDEs becomes intractable when the state dimension
increases. To circumvent the curse of dimensionality (CoD),
physics-informed machine learning methods with supervision
can be used and have been shown to be effective in generating
equilibrial policies in two-player general-sum games. In this
work, we extend the existing work on agent-level two-player
games to a two-player swarm-level game, where two sub-
swarms play a general-sum game. We consider the Kolmogorov
forward equation as the dynamic model for the evolution of the
densities of the swarms. Results show that policies generated
from the physics-informed neural network (PINN) result in a
higher payoff than a Nash Deep Q-Network (Nash DQN) agent
and have comparable performance with numerical solvers.

I. INTRODUCTION

Swarms, or groups of robots have the ability to carry out

complex tasks that are difficult for a single agent. Swarms

have been deployed to perform diverse tasks, for example,

surveillance and reconnaissance in a military capacity, search

and rescue, and even entertainment in the form of light

shows [1]. Other applications include task allocations [2],

complex formation [3], and decision making [4]. As new

applications emerge every day, it is imminent that there

will be multiple groups of swarms that may be operating

in the same region with their own objective. One of the

most trivial examples would be a zero-sum game with two

swarm groups with competing objectives. Most of the work

in swarms focuses on studying swarm behaviors in a more

single-agent setting, where interactions are limited within

the swarm group. While some work have proposed game

theoretic frameworks to solve problems in communication

networks [5], [6], they do so in a distributed fashion. We are

interested in finding a high level control strategy for swarms

with arbitrarily large population.

Modeling of swarms can be broadly divided into macro-

scopic and microscopic models. Macroscopic models are in-

variant to the number of agents whereas individual-level mi-

This research is partially supported by the National Science Foundation
under grants CNS 2304863 and CNS 2339774, and the Office of Naval
Research under grant ONR N00014-23-1-2505.

1M. Ghimire, L. Zhang, Y. Ren, and Z. Xu are with the School
of Engineering, Matter, Transport, and Energy, Arizona State Univer-
sity, Tempe, AZ 85287, USA. Email: {mghimire, lzhan300,
yiren, xzhe1}@asu.edu

2W. Zhang is with the School of Manufacturing Systems and
Networks, Arizona State University, Mesa, AZ 85212, USA. Email:
wenlong.zhang@asu.edu

†Address all correspondence to this author.

croscopic models change with the number of agents [7], and

become intractable as the number of agents gets large [8]. As

such macroscopic models can be thought of as robust models

that can be used to study large-scale swarms. A building

block for studying such swarms is the Kolmogorov forward

equation which describes the evolution of the density of

a stochastic process. We define density as the ratio of the

population of swarms in a region to its total population.

Under certain conditions, the Kolmogorov forward equation

can be applied to encode the macroscopic behavior of a

swarm.

Swarms exemplify multi-agent systems [9], with interac-

tions that can be modeled as either zero-sum or general-sum

differential games, based on the specific objectives [10]. The

Nash Equilibrial values of these games are viscosity solutions

to the Hamilton-Jacobi-Isaacs (HJI) equations [11]. However,

conventional methods for solving HJI PDEs typically involve

mesh-based approaches and encounter challenges like the

Curse of Dimensionality (CoD) as the state dimension ex-

pands [12]. The CoD is effectively bypassed by employing

a neural network, known for its exceptional capability as a

universal function approximator [13].

In this work, we introduce a general-sum game framework

for swarm groups, characterized by a continuous evolution

of density over time. Our contribution lies in extending the

existing research on learning and controlling swarm systems

from agent-level zero/general-sum games to swarm-level

general-sum games. To evaluate the efficacy of our approach,

we compare its performance with that of a commonly used

reinforcement learning method for games and a numerical

solver.

II. RELATED WORK

Swarm Control. Control of swarms is of great interest to

the research community. An existing challenge in this line

of research is developing models and control mechanisms

for large-scale swarms [7]. [8] devised an optimal control

strategy for controlling a large-scale swarm to a target dis-

tribution. [14] used a leader-follower framework for herding

a robotic swarm to a desired distribution. Another work

that is in the spirit of our work is [15], which applied

Pontryagin’s Maximum Principle for control of a large-scale

robotic population in an optimal control setting. In addition,

[5] and [6] proposed a game-theoretic approach on a graph

to solve the Coverage game. Another common line of work

includes using a Markov chain that models the evolution

of the density distribution. [16] used the Markov chain and

provided a probabilistic control algorithm for swarms of

agents subject to some temporal logic specifications.

2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

979-8-3503-8265-5/$31.00 ©2024 AACC 56

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore.  Restrictions apply. 



Solving HJI PDEs using Deep Learning. Recent works

have considered using autoregressive methods such as

physics-informed machine learning to learn values of zero-

sum [17], and general-sum [10] differential games. [10]

extended [17] from zero-sum game with continuous value

function to a general-sum game with discontinuous values

with respect to states and time. Nash Equilibrium values

of general-sum differential games satisfy HJI PDEs, which

makes the residual of HJI PDEs a good candidate for a

loss function used in physics-informed neural networks.

By minimizing the PDE residuals alongside the boundary

conditions, a neural network, often a deep one, is trained to

predict the Nash equilibrial values associated with the game.

Multi-Agent Reinforcement Learning (MARL). MARL,

unlike single-agent reinforcement learning, addresses the

problem of decision-making involving multiple agents that

operate in a common environment. Standard Rollout algo-

rithm is used where the problem is reformulated as a single-

agent by using a joint action space [18]. Standard Rollout

algorithm has been extended to Multi-agent Rollout algo-

rithm in order to reduce the complexity arising from the joint

action space [19]. While most algorithms are in the spirit

of optimal control, some works exist that have formulated

multi-agent decision-making problems as a game [20], [21].

[20] proposed a modified Q-learning method where Q-values

are defined on joint action space and are updated following

Nash Equilibrial strategies. [21] extended this idea from a

tabular method to a scalable one using the power of deep

neural networks. In contrast to the case studies that are

discussed in these two related works, our case studies have

significantly larger action sets.

This paper is organized as follows. In Section III, we

present the notations that appear in the paper frequently. In

Section IV, we discuss the fundamental concepts, assump-

tions, and challenges that are crucial to the development

of the paper. We also motivate the problem formulation in

this section. In Section V, we discuss the algorithms that

are central to the contributions highlighted in the paper. In

Section VI, we test our algorithm on different case studies.

Finally in Section VII, we conclude with some limitations

of the current work and the possible future directions.

III. NOTATIONS

Borrowing notations from graph theory, we denote a

directed graph by the tuple G = (V, E) containing a set of M
vertices, V = {1, . . . ,M}, and a set of NE edges, E ⊂ V×V ,

where e = (i, j) ∈ E if there is an edge from vertex i ∈ V
to vertex j ∈ V . A source map is defined as S : E → V
and a target map as T : E → V for which S(e) = i and

T (e) = j, whenever e = (i, j) ∈ E . The graph G is said to

be bidirected if (v, w) ∈ E implies that (w, v) ∈ E for all

v, w ∈ V .

We follow [10]’s notation system and the implementa-

tion therein for HJI equations. Let Xi and Ui denote the

state and action space respectively for Player i. The time-

invariant state dynamics of Player i is denoted by ẋi(t) =
f(xi(t),ui(t)) for xi(t) ∈ Xi and ui ∈ Ui. Given a time

horizon T , the instantaneous and terminal losses of Player

i are denoted by l, and c(xi,x−i) respectively. Note that l
is a constant in this formulation, however, in general, it is

a function of state (l(xi,x−i)). For a complete-information

general-sum differential game between two players, the value

function for each player is νi(·, ·, ·) : Xi×X−i× [0, T ] → R.

We will adopt shorthands f i, li, ci, and νi respectively to

denote player-wise dynamics, losses, and the value. We use

ai = (ai, a−i) to concatenate ego and the other player’s

variables. ∇x denotes partial derivative with respect to x.

IV. PRELIMINARIES

Swarm Modeling. We consider two homogeneous sub-

swarms, each containing N agents that occupy the regions or

vertices V . The swarms evolve in continuous time over this

region, which can be denoted by vertices on the graph. We

denote the graph by G = (V, E), with vertices V denoting the

regions where swarms reside, and E representing the edges

along which the swarms can transition.

Let, Xi
v(t) be the number of agents of sub-swarm i ∈

{1, 2} in the region v ∈ V . The fraction (or empirical

distribution) of the sub-swarms i at location v ∈ V at time t
is calculated as 1

N
Xi

v(t). Let Ω = {y ∈ R
n :

∑n

i=1 yi = 1}.

As N → ∞, the empirical distribution converges to a

deterministic quantity x(t) ∈ Ω, which can be used as a

state of the sub-swarm i. We denote the state of the sub-

swarm i as a vector xi(t), whose each entry xi,v(t) denotes

the fraction of agents in the region v ∈ V at time t. We use

the Kolmogorov forward equation, also known as the mean-

field model as in [14] to evolve the state of the sub-swarm:

ẋ(t) =
∑

e∈E

ue(t)Bex(t), x(0) = x0 ∈ Ω (1)

where Be are the control matrices with the following entries

Bij
e =











−1 if i = j = S(e)

1 if i = T (e), j = S(e)

0 otherwise

Hamilton-Jacobi-Isaacs Equations. The Nash equilibrial

values of a two-player general-sum differential game, when

they exist, solve the following HJI equations (H) and satisfy

the following boundary condition (B) [22]:

H(νi,∇xi
νi,xi, t) := ∇tνi +∇⊤

xi
fi − li = 0

B(νi,xi) := νi(xi, T )− ci = 0, for i = 1, 2.
(2)

The player’s policies for ego agent (and other)

are derived by maximizing the equilibrial Hamiltonian

hi(xi,∇xi
νi, t) = ∇xi

ν⊤i f i − li; ui = argmaxu∈Ui
{hi},

and u−i = argmaxu∈U
−i
{h−i}.

Pontryagin’s Maximum Principle: We can use the PMP

equation to generate open-loop policies, which is often more

tractable than solving HJI equations. These open-loop poli-

cies can be used as a basis for evaluating the learned closed-

loop policies. For a given initial state (x0
1,x

0
2) ∈ X1 × X2,

we obtain the open-loop policies by solving the following

boundary value problem (BVP) according to PMP:

57

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore.  Restrictions apply. 



ẋi = f i, xi[0] = x0
i ,

λ̇i = −∇xi
hi, λi[T ] = −∇xi

ci,

ui = arg max
u∈Ui

{hi}, i = 1, 2

(3)

λi is the time-dependent co-states for both players con-

catenated into one. The costates connect PMP and HJI via

λi = ∇xi
νi. Note that the solutions to Eq. (3) are unique to

the initial states.

Learning Values of General-sum Differential Games.

Directly learning values of a zero-sum differential game in

a self-supervised fashion was first explored in [17]. In this

approach, we directly fit a neural network to satisfy the

governing HJI PDE. Let ν̂i(·, ·, ·) : Xi×X−i× [0, T ] → R be

a neural network parameterized by θ that approximates νi.

With D =
{(

x
(k)
1 ,x

(k)
2 , t(k)

)}K

k=1
representing the uniform

samples in Xi × X−i × [0, T ], the loss function that guides

the learning of the general-sum value is:

L1(ν̂1, ν̂2; θ) :=

K
∑

k=1

2
∑

i=1

∣

∣

∣
H

(

ν̂
(k)
i

,∇xi
ν̂
(k)
i

,x
(k)
i

, t
(k)

)
∣

∣

∣

+ C1

∣

∣

∣
B
(

ν̂
(k)
i

,x
(k)
i

)
∣

∣

∣

(4)

where, ν̂
(k)
i is the output of the neural network, ν̂

(k)
i =

ν̂i

(

x
(k)
i ,x

(k)
−i , t

(k)
)

. C1 balances the HJI PDE loss (H) and

the boundary loss (B).

Note that at each training iteration, we compute the control

policies for each player by maximizing their equilibrial

Hamiltonian. We refer the readers to [10] for more details on

challenges and different methods of learning values using this

approach. For the purpose of this paper, we only consider the

self-supervised learning method to learn the value function.

V. METHODOLOGY

In this section, we present the algorithms for generating

open-loop trajectories via solving BVP and training the value

network using self-supervised learning method.

A. BVP Solver

In this subsection, we discuss about generating open-loop

trajectories. We use scipy’s solve BVP function to solve

Eq. (3). To successfully solve the BVP, we first compute the

analytical expressions for the quantities in Eq. (3). These

are (1) the augmented dynamics which contains the state

dynamics (ẋ) and the co-state dynamics (λ̇), and (2) the

boundary conditions. Note we also need a sub-routine to

compute the control policies for each of the agents. Fur-

thermore, convergence requires good guesses of the solution

along the trajectory. To do so, given an initial state, we solve

the state and co-state trajectories by solving their respective

ODEs obtained from PMP.

B. Multi-Agent RL using Nash Q-Learning

We also formulate the 2-regions case as a Reinforcement

Learning problem and train the sub-swarms using Nash Q-

Learning. The Nash Q-function for a learning agent i is

defined on the state (s) of the system, and its action (a)

along with the actions of the other players, whereas in the

Q-learning algorithm, the Q-function is only a function of

the agent. Furthermore, in Q-learning, agents update their

Q-values by accounting for future values as a result of

maximizing their Q-values. In contrast, in Nash Q-learning,

agents update their Q-values by following a Nash equilibrium

strategy. More formally, the update is as follows:

Qi
t+1(s, a

1, . . . , an) = (1− ηt)Q
i
t(s, a

1, . . . , an)+

η[rit + βNashQi
t(s

′)]
(5)

where, r is the instantaneous reward, η is the learning rate,

and β is the discount rate. Nash is the operator of choice

that computes the Nash equilibrium of the stage game at

state s′. In this work, we use support enumeration as a nash

operator. The Nash-DQN algorithm follows the vanilla Nash

Q-Learning [20] with a Deep Q-network approximating the

Q-values instead of the tabular method. The algorithm is

identical to Deep Q-learning [23] with the policy replaced

by the nash equilibrium.

Unlike the vanilla Nash Q-learning, we use two neural

networks that approximate the Q-function of the sub-swarms

in the 2-regions case. Each sub-swarm has an action space of

4 – (0, 0), (0, 1), (1, 0), (1, 1). Note that each agent must also

know the Q-values of the other agent to compute the Nash

Equilibrium. However, this information is not available, so

each agent makes a conjecture about the other agent’s Q-

values. We achieve this by defining the Q-function on the

joint action space of both sub-swarms. The result is a 4× 4
matrix of Q-values for each sub-swarm. At each learning

stage, each sub-swarm solves a bi-matrix game as follows:

where, a is the q-value for agent i, and b is the q-value for

TABLE I: Bi-matrix stage game for Nash Q-Learning.

Agent −i
(0, 0) (0, 1) (1, 0) (1, 1)

Agent

i
(0, 0) a1, b1 a2, b2 a3, b3 a4, b4
(0, 1) a5, b5 a6, b6 a7, b7 a8, b8
(1, 0) a9, b9 a10, b10 a11, b11 a12, b12
(1, 1) a13, b13 a14, b14 a15, b15 a16, b16

agent −i as conjectured by agent i. Methods such as Lemke-

Howson [24] or support enumeration can be used to compute

the Nash Equilibria for the bi-matrix game. Note that we

use NashPy’s implementation of support enumeration [25].

Note that table I gets significantly larger when we consider

higher dimensional case studies. Solving the bi-matrix game

becomes a challenge for these cases. As a result, we only

compare the performance of Nash DQN with PINN for the

case study with 2 regions.

C. Self-supervised learning

In this subsection, we discuss the method of self-

supervised learning algorithm using PINN to learn the value

function. We implement curriculum learning by first learning

the value at the final time and gradually increasing the time

horizon starting from the end time. We provide a simplified

58

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore.  Restrictions apply. 



algorithm for training the value network. In our experiment,

we use ADAM to optimize the neural network parameter (θ)
with a decaying step-size (learning rate) γ ∈ [2e−5, 1e−6].
We use a neural network with 3 hidden layers containing 64

neurons each with tanh activation function, with the final

layer being linear. For the higher dimensional case study

we increase the hidden layer to 5 and the neurons to 128

at each layer. We use NVIDIA A100 with 2 GPUs for all

the training in this paper. The input dimension to the neural

network depends on the number of regions in the graph. We

further reduced the dimension of the system using the fact

that the densities of each sub-swarm sum to 1. Hence, for

the case with 2 regions, the value function is a 3-dimensional

function instead of 5, including time.

Algorithm 1: Self-supervised Learning

input : T , num epoch, pretrain iters, k, n
output: Vθ

1 initialize neural network Vθ;

2 add k samples of (x1,x2, 0) to D;

3 pre-train Vθ at the boundary (t = 0) for

pretrain iters iterations;

4 set itr = 0;

5 while itr ≤ num epoch do

6 add k samples of t ∼ U(0, T (itr)/num epoch)
to T ;

7 add k samples of (x1,x2) to X ;

8 D ← (X , T );
9 append n samples at the boundary (t = 0) to D;

10 compute total loss (L1) using PDE loss (H), and

boundary loss (B);
11 update θ ← θ + γ∇θL1

12 end

VI. CASE STUDIES

We test our method in three graphs representing low- and

high-dimensional systems. We consider two sub-swarms with

the same control capabilities interacting in an environment

containing M regions (|V| = M). We first consider M =
2 (as a toy case) and M = 4 regions with the former

represented by a bidirected graph and the latter represented

by a directed graph as shown in Fig. 1. We then consider

a high dimensional case (21 D), with M = 10 regions, to

show that the proposed method is easily scalable. The state

of each sub-swarm is denoted by xi ∈ R
M , with M being

the number of regions. The goal of each sub-swarm is to

achieve a higher proportion in any of the regions (vertices in

the graph). The terminal payoff to sub-swarm i is g(xi,x−i)
is a Boltzmann operator (Sα) defined on the element-wise

difference between the states of the two sub-swarms. We use

the Boltzmann operator instead of the max operator to make

the function differentiable and continuous. The following

represents the terminal payoff to the sub-swarm group i = 1.

To compute the terminal payoff for sub-swarm group i = 2,

Fig. 1: (a) Directed graphs with 2, (b) 4, and (c) 10 regions.

The maximum transition rate (control bounds) for all the

edges is 1, and the minimum rate is 0.

simply reverse the order of difference.

g(x1,x2) = Sα(x1 − x2) =

∑M

j=1 (x1 − x2)j e
α(x1−x2)j

∑M

j=1 e
α(x1−x2)j

(6)

where α is the temperature parameter and as α → ∞,

it behaves like the max operator. We set α = 1 for the

experiments in this paper (unless mentioned otherwise). The

gradient of Sα(y), y ∈ R
M resembles that of a softmax:

∇ySα(y1, . . . , yM ) =
eαyi

∑M

j=1 e
αyj

[

1+

α(yi − Sα(y1, . . . , yM ))
]

(7)

A. Sub-swarms in 2 regions

We first solve a simple case with only 2 regions and

identical homogeneous sub-swarms. We compare the open-

loop policy obtained by solving the BVP using Eq. (3) with

the policy obtained from the neural network.

Training. For 2-dimensional case, we sample 65k data

and pretrain at the boundary for 10k iterations. We then

implement curriculum learning by slowly increasing the time

horizon and train for another 110k iterations. We also ensure

that there are at least 10k data points at the boundary after

the pretrain stage.

Results. Using the learned value network, we generate the

closed-loop trajectories for a given initial condition repre-

senting the density of swarm groups in region 1. The results

show that each swarm group will occupy one separate region

at the end of the game.

We also observe that for some initial states, the value

network and the BVP solver result in different equilibria.

Since the problem is symmetric, it is possible that the swarms

can occupy any one of two regions to guarantee a maximum

59

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore.  Restrictions apply. 



payoff as long as they pick separate regions. We show one

example of such a case in Fig. 2.

Fig. 2: A case demonstrating possible equilibria for the 2

regions case. (a) is the initial condition of the sub-swarms.

(b) and (c) are the final distributions of the sub-swarms in

the environment obtained from the value network and the

BVP solver respectively. Multiple equilibria exist due to the

symmetric nature of the game.

B. Sub-swarms in 4 regions

Next, we consider an environment with 4 regions as shown

in Fig. 1(c). Number of swarm groups is 2 with same

transition rates across all edges.

Training. For the 4 regions case, we increase the training

iterations to 200k with 20k pretrain steps. In addition to cur-

riculum learning, we also increase the data points gradually

starting from 30k in the beginning and adding 10k data points

after every 10k iterations after the pretrain stage.

Results. As in the previous case study, the sub-swarms

eventually find one region each where they dominate. Fig. 3

shows the density at the final time for four different initial

conditions. All cases lead to the scenario where sub-swarms

maintain dominance in one region.

Fig. 3: (a-d) Represents the density distribution for two sub-

swarms at the final time for four different initial conditions.

We observe that for some initial states, the final distri-

butions are not optimal (see Fig. 3(a) and (c)). Sub-swarm-

2 in Fig. 3(a) could get a higher payoff by aggregating in

region 3 instead of two regions (3 and 4). This behavior

can be attributed to the temperature parameter in the payoff

function. Since hardening the temperature parameter led to

difficulty in the convergence of BVP, we tested the effect of

the temperature parameter using the value network. When

α = 20, results show that the sub-swarms proceed to

aggregate in one region resulting in the desired behavior.

Fig. 4 shows the final distributions of the sub-swarms for

the same four initial conditions as in Fig. 3.

We compare the final payoffs across the learning algo-

rithms for both 2 and 4 regions case studies. The results are

reported in table II. A negative number means that the BVP

solution resulted in a higher final payoff than the respective

learning method. Final payoffs using PINN were close to

the that obtained from the BVP solution whereas Nash DQN

resulted in a significantly lower payoff on average.

Fig. 4: Final distributions of the sub-swarms when the

temperature parameter α = 20. The sub-swarms attempt to

aggregate in one region, which is desirable.

TABLE II: Comparison of final payoffs from solving the

interaction using physics-informed neural network and Nash-

DQN with BVP solver. V1 denotes mean final payoff to sub-

swarm 1.

Environment V1 V2 Algorithm V̂1 − V1 V̂2 − V2

Case-1

(2 regions)
0.697 0.697

PINN -0.011 -0.012

Nash

DQN
-0.162 -0.281

Case-2

(4 regions)
0.150 0.147 PINN 0.0001 -0.002

C. High Dimensional Case - 10 regions

Finally, we present a higher dimensional case study for

the environment shown in Fig. 1(c). There are 10 regions

connected by a directed graph with 10 edges. Each sub-

swarm group has to pick a 10-dimensional action at each

time step. The action space of each sub-swarm is 210, which

60

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore.  Restrictions apply. 



makes the problem intractable to solve in the case of Nash

Q-learning and BVP.

Training. We slightly increase the neural network size to 5

hidden layers containing 128 neurons each. We keep other

hyper-parameters the same as those in the 4 regions case.

Fig. 5: Density distribution of two sub-swarms at the final

time in the environment with 10 regions. Similar to the 4

regions case, the sub-swarms are able to find a region where

they dominate. The regions where the sub-swarms dominate

are bounded with a box.

Results. The final distributions of the sub-swarms across

the 10 regions for 4 different initial conditions are shown

in Fig. 5. From the plot, we see that there exists at least

one region for both sub-swarms where their proportions are

higher compared to the other sub-swarm. We do not observe

a pronounced difference in densities of the sub-swarms as in

the case of 4 and 2 regions. A possible explanation for not

achieving this behavior could be an insufficient time horizon.

It is possible that the time horizon of 2.5 seconds is not

enough for sub-swarms to be able to aggregate in one region.

VII. CONCLUSIONS

In this work, we demonstrated the efficacy of physics-

informed neural networks in solving general sum games

between swarms. Unlike conventional solvers that suffer

from the CoD as the state dimension increases, PINNs can

easily scale with the state dimension. However, an open

question still exists regarding the validation of the policies

due to the inherent black-box nature of the neural network,

particularly for the higher dimensional cases where we lack

an analytical solution. Future works will explore applications

to real-life inspired problems such as network communi-

cations. Another possible direction is the introduction of

information asymmetry. In the examples discussed in the

paper, an implied assumption is made about the information

availability. Strategies can get complicated with asymmetric

information in the system. A natural extension of the present

work is solving incomplete information games on swarms.

REFERENCES

[1] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm
robotic behaviors and current applications,” Frontiers in Robotics and

AI, p. 36, 2020.
[2] S. Berman, A. Halász, M. A. Hsieh, and V. Kumar, “Optimized

stochastic policies for task allocation in swarms of robots,” IEEE

transactions on robotics, vol. 25, no. 4, pp. 927–937, 2009.
[3] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a

swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4,
pp. 287–300, 2013.

[4] W. Liu, A. F. Winfield, J. Sa, J. Chen, and L. Dou, “Towards energy
optimization: Emergent task allocation in a swarm of foraging robots,”
Adaptive behavior, vol. 15, no. 3, pp. 289–305, 2007.

[5] X. Ai, V. Srinivasan, and C.-K. Tham, “Optimality and complexity of
pure nash equilibria in the coverage game,” IEEE Journal on Selected

Areas in Communications, vol. 26, no. 7, pp. 1170–1182, 2008.
[6] E. Paraskevas, D. Maity, and J. S. Baras, “Distributed energy-aware

mobile sensor coverage: A game theoretic approach,” in 2016 Ameri-

can Control Conference (ACC), pp. 6259–6264, IEEE, 2016.
[7] K. Elamvazhuthi and S. Berman, “Mean-field models in swarm

robotics: A survey,” Bioinspiration & Biomimetics, vol. 15, no. 1,
p. 015001, 2019.

[8] C. Sinigaglia, A. Manzoni, and F. Braghin, “Density control of large-
scale particles swarm through pde-constrained optimization,” IEEE

Transactions on Robotics, vol. 38, no. 6, pp. 3530–3549, 2022.
[9] K. Tuyls, K. Tumer, and G. Weiss, “Multiagent learning,” Multiagent

Systems, pp. 423–475, 2013.
[10] L. Zhang, M. Ghimire, W. Zhang, Z. Xu, and Y. Ren, “Approximating

discontinuous nash equilibrial values of two-player general-sum dif-
ferential games,” in 2023 IEEE International Conference on Robotics

and Automation (ICRA), pp. 3022–3028, 2023.
[11] M. G. Crandall and P.-L. Lions, “Viscosity solutions of hamilton-

jacobi equations,” Transactions of the American mathematical society,
vol. 277, no. 1, pp. 1–42, 1983.

[12] I. M. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by
hamilton-jacobi projections,” journal of Scientific Computing, vol. 19,
pp. 323–346, 2003.

[13] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power
of neural networks: A view from the width,” Advances in neural

information processing systems, vol. 30, 2017.
[14] K. Elamvazhuthi, Z. Kakish, A. Shirsat, and S. Berman, “Controlla-

bility and stabilization for herding a robotic swarm using a leader: A
mean-field approach,” IEEE Transactions on Robotics, vol. 37, no. 2,
pp. 418–432, 2021.

[15] D. Milutinović and P. Lima, “Modeling and optimal centralized control
of a large-size robotic population,” IEEE Transactions on Robotics,
vol. 22, no. 6, pp. 1280–1285, 2006.

[16] F. Djeumou, Z. Xu, M. Cubuktepe, and U. Topcu, “Probabilistic
control of heterogeneous swarms subject to graph temporal logic spec-
ifications: A decentralized and scalable approach,” IEEE Transactions

on Automatic Control, vol. 68, no. 4, pp. 2245–2260, 2022.
[17] S. Bansal and C. Tomlin, “DeepReach: A deep learning approach to

high-dimensional reachability,” in IEEE International Conference on

Robotics and Automation (ICRA), 2021.
[18] D. P. Bertsekas, “Rollout algorithms for discrete optimization: A

survey,”
[19] D. Bertsekas, “Multiagent reinforcement learning: Rollout and policy

iteration,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2,
pp. 249–272, 2021.

[20] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, no. Nov,
pp. 1039–1069, 2003.

[21] P. Casgrain, B. Ning, and S. Jaimungal, “Deep q-learning for nash
equilibria: Nash-dqn,” Applied Mathematical Finance, vol. 29, no. 1,
pp. 62–78, 2022.

[22] A. W. Starr and Y.-C. Ho, “Nonzero-sum differential games,” Journal

of optimization theory and applications, vol. 3, pp. 184–206, 1969.
[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013.

[24] C. E. Lemke and J. T. Howson, Jr, “Equilibrium points of bimatrix
games,” Journal of the Society for industrial and Applied Mathematics,
vol. 12, no. 2, pp. 413–423, 1964.

[25] V. Knight, katiemcgoldrick, M. Panayides, Y. Wang, A. S. Gaba,
tokheim, I. F. Jr., O. Konovalov, J. Campbell, N. Glynatsi, P. Rivière,
R. Baldevia, R. Szeto, arwheel, newaijj, and volume-on max,
“drvinceknight/nashpy: v0.0.40,” Aug. 2023.

61

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore.  Restrictions apply. 


