2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

Solving Two-Player General-Sum Game Between Swarms

Mukesh Ghimire', Lei Zhang', Wenlong Zhang?, Yi Ren!, and Zhe Xu'f

Abstract— Hamilton-Jacobi-Isaacs (HJI) PDEs are the gov-
erning equations for the two-player general-sum games. Un-
like Reinforcement Learning (RL) methods, which are data-
intensive methods for learning value function, learning HJ PDEs
provide a guaranteed convergence to the Nash Equilibrium
value of the game when it exists. However, a caveat is that
solving HJ PDEs becomes intractable when the state dimension
increases. To circumvent the curse of dimensionality (CoD),
physics-informed machine learning methods with supervision
can be used and have been shown to be effective in generating
equilibrial policies in two-player general-sum games. In this
work, we extend the existing work on agent-level two-player
games to a two-player swarm-level game, where two sub-
swarms play a general-sum game. We consider the Kolmogorov
forward equation as the dynamic model for the evolution of the
densities of the swarms. Results show that policies generated
from the physics-informed neural network (PINN) result in a
higher payoff than a Nash Deep Q-Network (Nash DQN) agent
and have comparable performance with numerical solvers.

I. INTRODUCTION

Swarms, or groups of robots have the ability to carry out
complex tasks that are difficult for a single agent. Swarms
have been deployed to perform diverse tasks, for example,
surveillance and reconnaissance in a military capacity, search
and rescue, and even entertainment in the form of light
shows [1]. Other applications include task allocations [2],
complex formation [3], and decision making [4]. As new
applications emerge every day, it is imminent that there
will be multiple groups of swarms that may be operating
in the same region with their own objective. One of the
most trivial examples would be a zero-sum game with two
swarm groups with competing objectives. Most of the work
in swarms focuses on studying swarm behaviors in a more
single-agent setting, where interactions are limited within
the swarm group. While some work have proposed game
theoretic frameworks to solve problems in communication
networks [5], [6], they do so in a distributed fashion. We are
interested in finding a high level control strategy for swarms
with arbitrarily large population.

Modeling of swarms can be broadly divided into macro-
scopic and microscopic models. Macroscopic models are in-
variant to the number of agents whereas individual-level mi-

This research is partially supported by the National Science Foundation
under grants CNS 2304863 and CNS 2339774, and the Office of Naval
Research under grant ONR N00014-23-1-2505.

M. Ghimire, L. Zhang, Y. Ren, and Z. Xu are with the School
of Engineering, Matter, Transport, and Energy, Arizona State Univer-
sity, Tempe, AZ 85287, USA. Email: {mghimire, 1zhan300,
yiren, xzhel}@asu.edu

2W. Zhang is with the School of Manufacturing Systems and
Networks, Arizona State University, Mesa, AZ 85212, USA. Email:
wenlong.zhang@asu.edu

T Address all correspondence to this author.

979-8-3503-8265-5/$31.00 ©2024 AACC

croscopic models change with the number of agents [7], and
become intractable as the number of agents gets large [8]. As
such macroscopic models can be thought of as robust models
that can be used to study large-scale swarms. A building
block for studying such swarms is the Kolmogorov forward
equation which describes the evolution of the density of
a stochastic process. We define density as the ratio of the
population of swarms in a region to its total population.
Under certain conditions, the Kolmogorov forward equation
can be applied to encode the macroscopic behavior of a
swarm.

Swarms exemplify multi-agent systems [9], with interac-
tions that can be modeled as either zero-sum or general-sum
differential games, based on the specific objectives [10]. The
Nash Equilibrial values of these games are viscosity solutions
to the Hamilton-Jacobi-Isaacs (HJI) equations [11]. However,
conventional methods for solving HJI PDEs typically involve
mesh-based approaches and encounter challenges like the
Curse of Dimensionality (CoD) as the state dimension ex-
pands [12]. The CoD is effectively bypassed by employing
a neural network, known for its exceptional capability as a
universal function approximator [13].

In this work, we introduce a general-sum game framework
for swarm groups, characterized by a continuous evolution
of density over time. Our contribution lies in extending the
existing research on learning and controlling swarm systems
from agent-level zero/general-sum games to swarm-level
general-sum games. To evaluate the efficacy of our approach,
we compare its performance with that of a commonly used
reinforcement learning method for games and a numerical
solver.

II. RELATED WORK

Swarm Control. Control of swarms is of great interest to
the research community. An existing challenge in this line
of research is developing models and control mechanisms
for large-scale swarms [7]. [8] devised an optimal control
strategy for controlling a large-scale swarm to a target dis-
tribution. [14] used a leader-follower framework for herding
a robotic swarm to a desired distribution. Another work
that is in the spirit of our work is [15], which applied
Pontryagin’s Maximum Principle for control of a large-scale
robotic population in an optimal control setting. In addition,
[5] and [6] proposed a game-theoretic approach on a graph
to solve the Coverage game. Another common line of work
includes using a Markov chain that models the evolution
of the density distribution. [16] used the Markov chain and
provided a probabilistic control algorithm for swarms of
agents subject to some temporal logic specifications.

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore. Restrictions apply.

Solving HJI PDEs using Deep Learning. Recent works
have considered using autoregressive methods such as
physics-informed machine learning to learn values of zero-
sum [17], and general-sum [10] differential games. [10]
extended [17] from zero-sum game with continuous value
function to a general-sum game with discontinuous values
with respect to states and time. Nash Equilibrium values
of general-sum differential games satisfy HJI PDEs, which
makes the residual of HJI PDEs a good candidate for a
loss function used in physics-informed neural networks.
By minimizing the PDE residuals alongside the boundary
conditions, a neural network, often a deep one, is trained to
predict the Nash equilibrial values associated with the game.
Multi-Agent Reinforcement Learning (MARL). MARL,
unlike single-agent reinforcement learning, addresses the
problem of decision-making involving multiple agents that
operate in a common environment. Standard Rollout algo-
rithm is used where the problem is reformulated as a single-
agent by using a joint action space [18]. Standard Rollout
algorithm has been extended to Multi-agent Rollout algo-
rithm in order to reduce the complexity arising from the joint
action space [19]. While most algorithms are in the spirit
of optimal control, some works exist that have formulated
multi-agent decision-making problems as a game [20], [21].
[20] proposed a modified Q-learning method where Q-values
are defined on joint action space and are updated following
Nash Equilibrial strategies. [21] extended this idea from a
tabular method to a scalable one using the power of deep
neural networks. In contrast to the case studies that are
discussed in these two related works, our case studies have
significantly larger action sets.

This paper is organized as follows. In Section III, we
present the notations that appear in the paper frequently. In
Section IV, we discuss the fundamental concepts, assump-
tions, and challenges that are crucial to the development
of the paper. We also motivate the problem formulation in
this section. In Section V, we discuss the algorithms that
are central to the contributions highlighted in the paper. In
Section VI, we test our algorithm on different case studies.
Finally in Section VII, we conclude with some limitations
of the current work and the possible future directions.

ITII. NOTATIONS

Borrowing notations from graph theory, we denote a
directed graph by the tuple G = (V, &) containing a set of M
vertices, V = {1,..., M}, and a set of Ng edges, £ C VXV,
where e = (i,7) € £ if there is an edge from vertex i € V
to vertex 5 € V. A source map is defined as S : &€ — V
and a target map as T : £ — V for which S(e) = ¢ and
T(e) = j, whenever e = (i,j) € £. The graph G is said to
be bidirected if (v,w) € & implies that (w,v) € & for all
v,w E V.

We follow [10]’s notation system and the implementa-
tion therein for HJI equations. Let &; and I/; denote the
state and action space respectively for Player ¢. The time-
invariant state dynamics of Player 4 is denoted by &;(t)
f(zi(t),u;(t)) for x;(t) € X; and u; € U;. Given a time

57

horizon T, the instantaneous and terminal losses of Player
i are denoted by [, and c¢(x;, x_;) respectively. Note that !
is a constant in this formulation, however, in general, it is
a function of state (I(x;,x_;)). For a complete-information
general-sum differential game between two players, the value
function for each player is v; (-, -,-) : X; x X_; x [0, T] = R.
We will adopt shorthands f;, l;, ¢;, and v; respectively to
denote player-wise dynamics, losses, and the value. We use
a; = (a;,a_;) to concatenate ego and the other player’s
variables. V, denotes partial derivative with respect to x.

IV. PRELIMINARIES

Swarm Modeling. We consider two homogeneous sub-
swarms, each containing N agents that occupy the regions or
vertices V. The swarms evolve in continuous time over this
region, which can be denoted by vertices on the graph. We
denote the graph by G = (V, &), with vertices V denoting the
regions where swarms reside, and £ representing the edges
along which the swarms can transition.

Let, X!(t) be the number of agents of sub-swarm i €
{1,2} in the region v € V. The fraction (or empirical
distribution) of the sub-swarms ¢ at location v € V) at time ¢
is calculated as X' (t). Let @ = {y e R" : 31" | y; = 1}
As N — oo, the empirical distribution converges to a
deterministic quantity x(¢) € 2, which can be used as a
state of the sub-swarm i. We denote the state of the sub-
swarm ¢ as a vector x;(t), whose each entry z; ,(¢) denotes
the fraction of agents in the region v € V' at time ¢. We use
the Kolmogorov forward equation, also known as the mean-
field model as in [14] to evolve the state of the sub-swarm:

©(t) =Y u(t)Bex(t), x(0)=z"cQ (1)
ec&

where B, are the control matrices with the following entries

-1 ifi=j5=.5(e)
BY =<1 ifi=T(e),j=Se)
0 otherwise

Hamilton-Jacobi-Isaacs Equations. The Nash equilibrial
values of a two-player general-sum differential game, when
they exist, solve the following HJI equations (H) and satisfy
the following boundary condition (B) [22]:

H(Vi,inVuXi,t) =V + v;l;fz —1;=0

, 2
B(vi, x;) = v(x,T) — for i =1, 2.

C; = O7
The player’s policies for ego agent (and other)
are derived by maximizing the equilibrial Hamiltonian
hi(xi, Vi, Vi t) = Vvl fi — lis w; = argmaxyeyy, {hi},
and u_; = argmaxqyecy_,{h—i}-
Pontryagin’s Maximum Principle: We can use the PMP
equation to generate open-loop policies, which is often more
tractable than solving HJI equations. These open-loop poli-
cies can be used as a basis for evaluating the learned closed-
loop policies. For a given initial state (z,z3) € X1 x Ab,
we obtain the open-loop policies by solving the following
boundary value problem (BVP) according to PMP:

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore. Restrictions apply.

fi’ $i“” ::$?7
}\i = _Vwihia Al[T] = _Vmici7

U; = argglé%j({hz}v i= 172

T, =

3)

A; is the time-dependent co-states for both players con-
catenated into one. The costates connect PMP and HIJI via
A; = V,v;. Note that the solutions to Eq. (3) are unique to
the initial states.

Learning Values of General-sum Differential Games.
Directly learning values of a zero-sum differential game in
a self-supervised fashion was first explored in [17]. In this
approach, we directly fit a neural network to satisfy the
governing HJI PDE. Let 7;(-,-,-) : X; x X_; x[0,7] — R be
a neural network parameterized by 6 that approximates v;.

With D = {(wg’% 2 (k)
k=1

samples in X; x X_; x [0,7T], the loss function that guides

the learning of the general-sum value is:

representing the uniform

K
Ly(v1,02;0) := Z ‘H (D,i(k)7 Vx; I?l-(k),xgk), t<k))’

k=1 1i=1
)
where, ﬁi(k) is the output of the neural network, ﬁfk)
(k)

U; (:cZ ,m(fi), t(k)). (' balances the HJI PDE loss (H) and
the boundary loss (B).

Note that at each training iteration, we compute the control
policies for each player by maximizing their equilibrial
Hamiltonian. We refer the readers to [10] for more details on
challenges and different methods of learning values using this
approach. For the purpose of this paper, we only consider the
self-supervised learning method to learn the value function.

V. METHODOLOGY

4
+ C1

B (f/}’“%

In this section, we present the algorithms for generating
open-loop trajectories via solving BVP and training the value
network using self-supervised learning method.

A. BVP Solver

In this subsection, we discuss about generating open-loop
trajectories. We use scipy’s solve_BVP function to solve
Eq. (3). To successfully solve the BVP, we first compute the
analytical expressions for the quantities in Eq. (3). These
are (1) the augmented dynamics which contains the state
dynamics (&) and the co-state dynamics (X), and (2) the
boundary conditions. Note we also need a sub-routine to
compute the control policies for each of the agents. Fur-
thermore, convergence requires good guesses of the solution
along the trajectory. To do so, given an initial state, we solve
the state and co-state trajectories by solving their respective
ODE:s obtained from PMP.

B. Multi-Agent RL using Nash Q-Learning

We also formulate the 2-regions case as a Reinforcement
Learning problem and train the sub-swarms using Nash Q-
Learning. The Nash Q-function for a learning agent ¢ is

58

defined on the state (s) of the system, and its action (a)
along with the actions of the other players, whereas in the
Q-learning algorithm, the Q-function is only a function of
the agent. Furthermore, in Q-learning, agents update their
Q-values by accounting for future values as a result of
maximizing their Q-values. In contrast, in Nash Q-learning,
agents update their Q-values by following a Nash equilibrium
strategy. More formally, the update is as follows:

Qi1 (s, at, ... ,a™) = (1 —n) Qi (s, at,..., a™)+
nlr; + BNashQy(s')]

where, r is the instantaneous reward, 7 is the learning rate,
and f is the discount rate. Nash is the operator of choice
that computes the Nash equilibrium of the stage game at
state s’. In this work, we use support enumeration as a nash
operator. The Nash-DQN algorithm follows the vanilla Nash
Q-Learning [20] with a Deep Q-network approximating the
Q-values instead of the tabular method. The algorithm is
identical to Deep Q-learning [23] with the policy replaced
by the nash equilibrium.

Unlike the vanilla Nash Q-learning, we use two neural
networks that approximate the Q-function of the sub-swarms
in the 2-regions case. Each sub-swarm has an action space of
4-(0,0), (0, 1), (1, 0), (1, 1). Note that each agent must also
know the Q-values of the other agent to compute the Nash
Equilibrium. However, this information is not available, so
each agent makes a conjecture about the other agent’s Q-
values. We achieve this by defining the Q-function on the
joint action space of both sub-swarms. The result is a 4 x 4
matrix of Q-values for each sub-swarm. At each learning
stage, each sub-swarm solves a bi-matrix game as follows:
where, a is the g-value for agent ¢, and b is the g-value for

(&)

TABLE I: Bi-matrix stage game for Nash Q-Learning.

Agent —1
0, 0) O, 1) (1, 0) (1, 1
Agent 0, 0) ay, by az, by as, b3 Qy4, by
7 (0, 1) as, b5 aeg, b6 ar, b7 as, bg
(1,0) | ag,bg | aio,bio | a11,b11 | a12,b12
(1, 1) | a13,b13 | a14,b14 | a1s,b15 | aie, bie

agent —¢ as conjectured by agent ¢. Methods such as Lemke-
Howson [24] or support enumeration can be used to compute
the Nash Equilibria for the bi-matrix game. Note that we
use NashPy’s implementation of support enumeration [25].
Note that table I gets significantly larger when we consider
higher dimensional case studies. Solving the bi-matrix game
becomes a challenge for these cases. As a result, we only
compare the performance of Nash DQN with PINN for the
case study with 2 regions.

C. Self-supervised learning

In this subsection, we discuss the method of self-
supervised learning algorithm using PINN to learn the value
function. We implement curriculum learning by first learning
the value at the final time and gradually increasing the time
horizon starting from the end time. We provide a simplified

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore. Restrictions apply.

algorithm for training the value network. In our experiment,
we use ADAM to optimize the neural network parameter (6)
with a decaying step-size (learning rate) v € [2e — 5, 1le — 6].
We use a neural network with 3 hidden layers containing 64
neurons each with tanh activation function, with the final
layer being linear. For the higher dimensional case study
we increase the hidden layer to 5 and the neurons to 128
at each layer. We use NVIDIA A100 with 2 GPUs for all
the training in this paper. The input dimension to the neural
network depends on the number of regions in the graph. We
further reduced the dimension of the system using the fact
that the densities of each sub-swarm sum to 1. Hence, for
the case with 2 regions, the value function is a 3-dimensional
function instead of 5, including time.

Algorithm 1: Self-supervised Learning

input : T, num_epoch, pretrain_iters, k, n

output: V)

initialize neural network Vjp;

add k samples of (1, x3,0) to D;

pre-train Vy at the boundary (¢t = 0) for
pretrain_iters iterations;

set itr = 0;

while itr < num_epoch do

add k samples of ¢ ~ U(0, T'(itr)/num_epoch)
to T,

add k samples of (x1,x3) to X;

D« (X, 7T),

append n samples at the boundary (¢ = 0) to D;

10 compute total loss (L) using PDE loss (H), and
boundary loss (B);

11 update 0 < 0 + yVol,

12 end

VI. CASE STUDIES

We test our method in three graphs representing low- and
high-dimensional systems. We consider two sub-swarms with
the same control capabilities interacting in an environment
containing M regions (|V| = M). We first consider M =
2 (as a toy case) and M 4 regions with the former
represented by a bidirected graph and the latter represented
by a directed graph as shown in Fig. 1. We then consider
a high dimensional case (21 D), with M = 10 regions, to
show that the proposed method is easily scalable. The state
of each sub-swarm is denoted by z; € RM, with M being
the number of regions. The goal of each sub-swarm is to
achieve a higher proportion in any of the regions (vertices in
the graph). The terminal payoff to sub-swarm ¢ is g(ax;, x_;)
is a Boltzmann operator (S,) defined on the element-wise
difference between the states of the two sub-swarms. We use
the Boltzmann operator instead of the max operator to make
the function differentiable and continuous. The following
represents the terminal payoff to the sub-swarm group 7 = 1.
To compute the terminal payoff for sub-swarm group ¢ = 2,

59

ToT 7
(4) (3)
(a) (b)

OXO
0,0,0,0
(c)

Fig. 1: (a) Directed graphs with 2, (b) 4, and (c) 10 regions.
The maximum transition rate (control bounds) for all the
edges is 1, and the minimum rate is 0.

simply reverse the order of difference.

M
2j=1

(1 — xp); @1 722)s
S
Jj=
(©6)

where « is the temperature parameter and as o — 00,
it behaves like the max operator. We set « = 1 for the
experiments in this paper (unless mentioned otherwise). The
gradient of S, (y), y € RM resembles that of a softmax:

g(T1,®2) = So(T1 — T2) =
1 ea(ml—mg)j

o
€Y

]\{ eY;

2 =1

a(ys — Sa(y1, .-, yJVI))]

VySa(yis- - ym) = [1+

(7

A. Sub-swarms in 2 regions

We first solve a simple case with only 2 regions and
identical homogeneous sub-swarms. We compare the open-
loop policy obtained by solving the BVP using Eq. (3) with
the policy obtained from the neural network.

Training. For 2-dimensional case, we sample 65k data
and pretrain at the boundary for 10k iterations. We then
implement curriculum learning by slowly increasing the time
horizon and train for another 110k iterations. We also ensure
that there are at least 10k data points at the boundary after
the pretrain stage.

Results. Using the learned value network, we generate the
closed-loop trajectories for a given initial condition repre-
senting the density of swarm groups in region 1. The results
show that each swarm group will occupy one separate region
at the end of the game.

We also observe that for some initial states, the value
network and the BVP solver result in different equilibria.
Since the problem is symmetric, it is possible that the swarms
can occupy any one of two regions to guarantee a maximum

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore. Restrictions apply.

payoff as long as they pick separate regions. We show one
example of such a case in Fig. 2.

Number of Swarms in Each Region

Number of Swarms in Each Region

== Sub-Swarm-1 $ 200
Region 1 (b) Region 2
Number of Swarms in Each Region
Y 1000
%

Region 2

Region 1 Region 2

(©
Fig. 2: A case demonstrating possible equilibria for the 2
regions case. (a) is the initial condition of the sub-swarms.
(b) and (c) are the final distributions of the sub-swarms in
the environment obtained from the value network and the
BVP solver respectively. Multiple equilibria exist due to the
symmetric nature of the game.

B. Sub-swarms in 4 regions

Next, we consider an environment with 4 regions as shown
in Fig. 1(c). Number of swarm groups is 2 with same
transition rates across all edges.

Training. For the 4 regions case, we increase the training
iterations to 200k with 20k pretrain steps. In addition to cur-
riculum learning, we also increase the data points gradually
starting from 30k in the beginning and adding 10k data points
after every 10k iterations after the pretrain stage.

Results. As in the previous case study, the sub-swarms
eventually find one region each where they dominate. Fig. 3
shows the density at the final time for four different initial
conditions. All cases lead to the scenario where sub-swarms
maintain dominance in one region.

Number of Swarms in Each Region

m Sub-Swarm-1
s Sub-Swarm-2

Number of Swarms in Each Region 1000

1000
w Sub-Swarm-1
800 B Sub-Swarm-2 800
600
400
200

N R-1 R-2 R-3 R-4 °
(€]

Number of Swarms in Each Region

(b)

1000 Number of Swarms in Each Region

s Sub-Swarm-1
I Sub-Swarm-2

s Sub-Swarm-1
s Sub-Swarm-2

800
600
400

200

R-2
© (@

Fig. 3: (a-d) Represents the density distribution for two sub-

swarms at the final time for four different initial conditions.

R-3

60

We observe that for some initial states, the final distri-
butions are not optimal (see Fig. 3(a) and (c)). Sub-swarm-
2 in Fig. 3(a) could get a higher payoff by aggregating in
region 3 instead of two regions (3 and 4). This behavior
can be attributed to the temperature parameter in the payoff
function. Since hardening the temperature parameter led to
difficulty in the convergence of BVP, we tested the effect of
the temperature parameter using the value network. When
o 20, results show that the sub-swarms proceed to
aggregate in one region resulting in the desired behavior.
Fig. 4 shows the final distributions of the sub-swarms for
the same four initial conditions as in Fig. 3.

We compare the final payoffs across the learning algo-
rithms for both 2 and 4 regions case studies. The results are
reported in table II. A negative number means that the BVP
solution resulted in a higher final payoff than the respective
learning method. Final payoffs using PINN were close to
the that obtained from the BVP solution whereas Nash DQN
resulted in a significantly lower payoff on average.

Number of Swarms in Each Region

W Sub-Swarm-1
m Sub-Swarm-2

Number of Swarms in Each Region 1000

W Sub-Swarm-1
B Sub-Swarm-2

LT R2 R3 R4 o
(@)

Number of Swarms in Each Region

R-1 R-2 R-3
(b)

Number of Swarms in Each Region

s Sub-Swarm-1

B Sub-Swarm-2

R-4

1000

1000
s Sub-Swarm-1
s Sub-Swarm-2

800 800

600 600

400

R-4 0

R-1

R-2 R-3 R-2 R3

(©) (d)
Fig. 4: Final distributions of the sub-swarms when the
temperature parameter o = 20. The sub-swarms attempt to
aggregate in one region, which is desirable.

R-1 R-4

TABLE II: Comparison of final payoffs from solving the
interaction using physics-informed neural network and Nash-
DQN with BVP solver. 1 denotes mean final payoff to sub-
swarm 1.

Environment V4 Vo Algorithm \71 -V Vg — Vs
Case-1 0697 0697 PINN -0.011 -0.012
(2 regions) Nash
asl
DON 0.162 -0.281
Case-2 0.150 0.147 PINN 0.0001 -0.002

(4 regions)

C. High Dimensional Case - 10 regions

Finally, we present a higher dimensional case study for
the environment shown in Fig. 1(c). There are 10 regions
connected by a directed graph with 10 edges. Each sub-
swarm group has to pick a 10-dimensional action at each
time step. The action space of each sub-swarm is 2'°, which

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore. Restrictions apply.

makes the problem intractable to solve in the case of Nash
Q-learning and BVP.

Training. We slightly increase the neural network size to 5
hidden layers containing 128 neurons each. We keep other
hyper-parameters the same as those in the 4 regions case.

Number of Swarms in Each Region Number of Swarms in Each Region

500

500
Sub-Swarm-1
s Sub-Swarm-2

Sub-Swarm-1

400 s Sub-Swarm-2 | 400

300/
200
100

01234567891001234567

(@) (b)

Number of Swarms in Each Region Number of Swarms in Each Region

8 9 10

500

Sub-Swarm-1
B Sub-Swarm-2

Sub-Swarm-1
s Sub-Swarm-2

3 4 5 6 7

©
Fig. 5: Density distribution of two sub-swarms at the final
time in the environment with 10 regions. Similar to the 4
regions case, the sub-swarms are able to find a region where
they dominate. The regions where the sub-swarms dominate
are bounded with a box.

8 9 10 1 2 3 4 5

Results. The final distributions of the sub-swarms across
the 10 regions for 4 different initial conditions are shown
in Fig. 5. From the plot, we see that there exists at least
one region for both sub-swarms where their proportions are
higher compared to the other sub-swarm. We do not observe
a pronounced difference in densities of the sub-swarms as in
the case of 4 and 2 regions. A possible explanation for not
achieving this behavior could be an insufficient time horizon.
It is possible that the time horizon of 2.5 seconds is not
enough for sub-swarms to be able to aggregate in one region.

VII. CONCLUSIONS

In this work, we demonstrated the efficacy of physics-
informed neural networks in solving general sum games
between swarms. Unlike conventional solvers that suffer
from the CoD as the state dimension increases, PINNs can
easily scale with the state dimension. However, an open
question still exists regarding the validation of the policies
due to the inherent black-box nature of the neural network,
particularly for the higher dimensional cases where we lack
an analytical solution. Future works will explore applications
to real-life inspired problems such as network communi-
cations. Another possible direction is the introduction of
information asymmetry. In the examples discussed in the
paper, an implied assumption is made about the information
availability. Strategies can get complicated with asymmetric
information in the system. A natural extension of the present
work is solving incomplete information games on swarms.

REFERENCES

[1] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm
robotic behaviors and current applications,” Frontiers in Robotics and

61

[2]

[3

=

[4]

[5]

[6

=

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Al p. 36, 2020.

S. Berman, A. Haldsz, M. A. Hsieh, and V. Kumar, “Optimized
stochastic policies for task allocation in swarms of robots,” IEEE
transactions on robotics, vol. 25, no. 4, pp. 927-937, 2009.

A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a
swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4,
pp. 287-300, 2013.

W. Liu, A. F. Winfield, J. Sa, J. Chen, and L. Dou, “Towards energy
optimization: Emergent task allocation in a swarm of foraging robots,”
Adaptive behavior, vol. 15, no. 3, pp. 289-305, 2007.

X. Ai, V. Srinivasan, and C.-K. Tham, “Optimality and complexity of
pure nash equilibria in the coverage game,” IEEE Journal on Selected
Areas in Communications, vol. 26, no. 7, pp. 1170-1182, 2008.

E. Paraskevas, D. Maity, and J. S. Baras, “Distributed energy-aware
mobile sensor coverage: A game theoretic approach,” in 2016 Ameri-
can Control Conference (ACC), pp. 6259-6264, IEEE, 2016.

K. Elamvazhuthi and S. Berman, “Mean-field models in swarm
robotics: A survey,” Bioinspiration & Biomimetics, vol. 15, no. 1,
p. 015001, 2019.

C. Sinigaglia, A. Manzoni, and F. Braghin, “Density control of large-
scale particles swarm through pde-constrained optimization,” IEEE
Transactions on Robotics, vol. 38, no. 6, pp. 3530-3549, 2022.

K. Tuyls, K. Tumer, and G. Weiss, “Multiagent learning,” Multiagent
Systems, pp. 423-475, 2013.

L. Zhang, M. Ghimire, W. Zhang, Z. Xu, and Y. Ren, “Approximating
discontinuous nash equilibrial values of two-player general-sum dif-
ferential games,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3022-3028, 2023.

M. G. Crandall and P-L. Lions, “Viscosity solutions of hamilton-
jacobi equations,” Transactions of the American mathematical society,
vol. 277, no. 1, pp. 1-42, 1983.

I. M. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by
hamilton-jacobi projections,” journal of Scientific Computing, vol. 19,
pp- 323-346, 2003.

Z. Lu, H. Pu, E Wang, Z. Hu, and L. Wang, “The expressive power
of neural networks: A view from the width,” Advances in neural
information processing systems, vol. 30, 2017.

K. Elamvazhuthi, Z. Kakish, A. Shirsat, and S. Berman, “Controlla-
bility and stabilization for herding a robotic swarm using a leader: A
mean-field approach,” IEEE Transactions on Robotics, vol. 37, no. 2,
pp. 418432, 2021.

D. Milutinovi¢ and P. Lima, “Modeling and optimal centralized control
of a large-size robotic population,” IEEE Transactions on Robotics,
vol. 22, no. 6, pp. 1280-1285, 2006.

F. Djeumou, Z. Xu, M. Cubuktepe, and U. Topcu, “Probabilistic
control of heterogeneous swarms subject to graph temporal logic spec-
ifications: A decentralized and scalable approach,” IEEE Transactions
on Automatic Control, vol. 68, no. 4, pp. 2245-2260, 2022.

S. Bansal and C. Tomlin, “DeepReach: A deep learning approach to
high-dimensional reachability,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021.

D. P. Bertsekas, “Rollout algorithms for discrete optimization: A
survey,”

D. Bertsekas, “Multiagent reinforcement learning: Rollout and policy
iteration,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2,
pp. 249-272, 2021.

J. Hu and M. P. Wellman, “Nash g-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, no. Nov,
pp- 1039-1069, 2003.

P. Casgrain, B. Ning, and S. Jaimungal, “Deep g-learning for nash
equilibria: Nash-dqn,” Applied Mathematical Finance, vol. 29, no. 1,
pp. 62-78, 2022.

A. W. Starr and Y.-C. Ho, “Nonzero-sum differential games,” Journal
of optimization theory and applications, vol. 3, pp. 184-206, 1969.
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013.

C. E. Lemke and J. T. Howson, Jr, “Equilibrium points of bimatrix
games,” Journal of the Society for industrial and Applied Mathematics,
vol. 12, no. 2, pp. 413-423, 1964.

V. Knight, katiemcgoldrick, M. Panayides, Y. Wang, A. S. Gaba,
tokheim, I. F. Jr., O. Konovalov, J. Campbell, N. Glynatsi, P. Riviere,
R. Baldevia, R. Szeto, arwheel, newaijj, and volume-on max,
“drvinceknight/nashpy: v0.0.40,” Aug. 2023.

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:43:52 UTC from IEEE Xplore. Restrictions apply.

