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Abstract— We propose a distributed differentially private
receding horizon control (RHC) approach for multi-agent
systems (MAS) with metric temporal logic (MTL) specifications.
In the MAS considered in this paper, each agent privatizes
its sensitive information from other agents using a differential
privacy mechanism. In other words, each agent adds privacy
noise (e.g., Gaussian noise) to its output to maintain its
privacy. We define two types of MTL specifications for the
MAS: agent-level specifications and system-level specifications.
Agents should collaborate to satisfy the system-level MTL
specifications while each agent must satisfy its own agent-
level MTL specifications at the same time. In the proposed
distributed RHC approach, each agent communicates with its
neighboring agents to acquire their estimate of the system-
level trajectory and updates its estimate of the system-level
trajectory. Then, each agent synthesizes its own control inputs
such that the system-level specifications are satisfied with a
probabilistic guarantee while the agent-level specifications are
also satisfied with a deterministic guarantee. In the proposed
optimization formulation of RHC, we directly incorporate
Kalman filter equations to calculate the system-level trajectory
estimates. We use mixed-integer linear programming (MILP)
to encode the MTL specifications as optimization constraints.
Finally, we implement the proposed distributed RHC approach
in two scenarios.

I. INTRODUCTION

In multi-agent systems (MAS), agents often work to-
gether to accomplish various system-level tasks through
communication with their neighboring agents [1]. Distributed
control is typically used in MAS, as it offers benefits such
as scalability and fast computing compared to centralized
control [2], [3]. Centralized control can be computationally
expensive and if the central control unit fails, the entire
system may fail. In contrast, distributed control has better
potential for fault tolerance [4].

In a MAS, agents may collaborate to achieve system-
level objectives through communication, while simultane-
ously ensuring the protection of their sensitive information
(e.g., actual position state) from neighboring agents [5].
To address this issue, differential privacy can be employed
to safeguard agent privacy in a MAS. Differential privacy
allows for system-level decision making while preventing
an adversary from deducing an agent’s sensitive information
[6]. For dynamical systems, such as multi-agent systems,
differential privacy preserves the privacy of each agent by
adding differential privacy noise (e.g., Gaussian noise) to
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the trajectories that contain sensitive information, making
it challenging for an adversary to deduce the privatized
trajectories [5].

Metric temporal logic (MTL) is a powerful tool for
defining complex tasks in MAS due to its expressiveness
and interpretability [7]. MTL is a type of temporal logic that
operates over real-valued data in the discrete-time domain
[8]. Moreover, MTL is amenable to formal analysis, making
it an excellent choice for defining challenging tasks, such as
collision avoidance [9].

In this paper, we consider a MAS in which agents cooper-
ate to fulfill system-level tasks while protecting their privacy
and satisfying agent-level tasks. The tasks are defined using
MTL formulas, and each agent employs differential privacy
to privatize its trajectory that contains sensitive information.
To satisfy the system-level tasks, each agent computes an
estimate of the system-level trajectory. Specifically, each
agent communicates with its neighboring agents to acquire
their estimate of the system-level trajectory. Next, each agent
applies receding horizon control (RHC) to synthesize control
inputs for satisfying both the system-level tasks and agent-
level tasks while using Kalman filter.
Contributions: We summarize our contributions as follows.
(a) We propose a distributed differentially private receding
horizon control (RHC) formulation for multi-agent systems
(MAS) (unlike [5] which uses a centralized RHC), where
each agent collaborates with its neighbors to accomplish a
task with a probabilistic guarantee while preserving its pri-
vacy. (b) In the proposed approach, we incorporate Kalman
filter equations directly into the RHC optimization formula-
tion to account for uncertainties resulting from differential
privacy. In our optimization formulation, we use a one-step
ahead prediction of the noisy outputs to be used in the
Kalman filter equations. (c) By assigning individual tasks
in addition to system-level tasks, we exploit the capability
of each agent to accomplish different tasks with a deter-
ministic guarantee in our proposed distributed RHC. (d) We
demonstrate the flexibility of our proposed framework in two
different scenarios, where individual tasks can be adjusted
without affecting the system-level tasks.

II. PRELIMINARIES

In this section, we explain the notations, definitions, and
concepts that we use in this paper.

A. System Dynamics and Features of Multi-Agent Systems

In this paper, a MAS consisting of ∣Z∣ agents moves in
a bounded environment S ⊆ R∣D∣, where Z denotes the set
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of the agents in the MAS, ∣Z∣ denotes the cardinality of
Z, and D = {1,2, ..., ∣D∣} with ∣D∣ being the cardinality of
the set D. We represent the system dynamics of this MAS
in the finite discrete time domain T = {1,2, ..., τ} (where
τ ∈ N = {1,2, ...}) with Eq. (1).

s[t] =As[t − 1] +Bu[t − 1], (1)

where s[t] = [(s1[t])T , (s2[t])T , ..., (s∣Z∣[t])T ]T is the
vector of the states of the agents in the MAS at time
step t and si[t] = [si,1[t], si,2[t], ..., si,∣D∣[t]]T (where
i ∈ Z) denotes the state of agent i at time step t;
u[t − 1] = [(u1[t − 1])T , (u2[t − 1])T , ..., (u∣Z∣[t − 1])T ]T
is the vector of the control inputs at time step t − 1 and
ui[t − 1] = [ui,1[t − 1], ui,2[t − 1], ..., ui,∣D∣[t − 1]]T is the
control input vector of agent i at time step t − 1, and A
and B are ∣D∣∣Z∣ × ∣D∣∣Z∣ diagonal time-invariant matrices.
The dynamics equation of agent i can be expressed as
si[t] = Ai∗si[t − 1] + Bi∗ui[t − 1], where si[t] ∈ S and
ui[t − 1] ∈ U = {u∣∥u∥∞ ≤ umax} for all i ∈ Z and for all
t ∈ T. For agent i, Ai∗ and Bi∗ refer to diagonal ∣D∣ × ∣D∣
matrices with the same diagonal elements with the row and
column indices ∣D∣i − ∣D∣ + 1, ∣D∣i − ∣D∣ + 2, ..., ∣D∣i as in A
and B, respectively.

Definition 1. We define the system-level trajectory η as a
function η ∶ T→ S to denote the evolution of the average of
the states of all the agents in the MAS within a finite time
horizon defined in the discrete time domain T and we define

η[t] ∶= 1
∣Z∣

∣Z∣

∑
i=1

si[t]. We also define the agent-level trajectory

si as a function si ∶ T → S to denote the evolution of the
state of each agent i within a finite time horizon defined in
the discrete time domain T.

In this paper, we represent the topology of the MAS with
an undirected graph G that is time-invariant.
Definition 2. We denote an undirected graph by G = (C,E),
where C = {c1, c2, ..., cnC

} is a finite set of nodes, E ⊆ E ′ =
{e1,2, e1,3, ..., e1,nE , e2,3, ..., enE−1,nE} is a finite set of edges
where ei,l ∈ E if nodes ci and cl are connected by an edge
in the graph G, and nC , nE ∈ N = {1,2, ...}.

Fig. 1: An undirected graph G =
(C,E) with C = {c1, c2, ..., c5} and
E = {e1,2, e1,4, ..., e4,5}.

Each node ci
of the undirected
graph G represents
an agent in the
MAS. Each edge
ei,l connecting
the nodes i and l
represents the fact
that agents i and l
are neighbors, i.e., agent i and l communicate with each
other. Hereafter, we denote the set of the neighboring agents
of agent i with Zi. Also, we denote the adjacency matrix of
the graph G with D.

Fig. 1 depicts an undirected graph G = (C,E) with
C = {c1, c2, ..., c5} and E = {e1,2, e1,4, e2,3, e2,5 , ..., e4,5}.
For example, c1 corresponds to agent 1, e1,2 represents
that agents 1 and 2 are neighbors (i.e., agents 1 and 2

can communicate with each other), and e1,4 represents that
agents 1 and 4 are neighbors (i.e., agents 1 and 4 can
communicate with each other).

B. Differential Privacy

We use differential privacy to protect the sensitive infor-
mation of each agent, e.g., it states [5], [10]. In the literature
of differential privacy, (ϵ, δ)-differential privacy is a privacy
framework used in data analysis to ensure that the inclusion
or exclusion of any individual’s data doesn’t significantly
affect the outcome of the analysis. Here, ϵ represents the pri-
vacy budget, controlling the level of privacy protection, while
δ is an additional parameter used to provide a very small,
but non-zero, probability that the privacy guarantee might
be breached. A mechanism adhering to (ϵ, δ)-differential
privacy adds noise to the data or modifies the results of
computations in a controlled manner, balancing the need for
accurate analysis with the protection of individual privacy.
In differential privacy for MAS, each agent adds noise to its
state and then shares its noisy output with its neighboring
agents. In [10], it is proven that the Gaussian mechanism
adds i.i.d Gaussian noise point-wise in time to the output
of agent i to keep its state private with the differential
parameters ϵ > 0 and δ ∈ (0, 1

2
). This paper assumes that

the Gaussian noise vi is time-invariant. Also, we denote the
vector of the noisy outputs of all the ∣Z∣ agents at time step t
with ỹ[t]. In addition in this paper, we apply the differential
privacy mechanism to the finite trajectory si for each agent
i. For further reading, refer to [5], [10].

C. Metric Temporal Logic

In this subsection, we briefly review the metric temporal
logic (MTL) [11]. We start with the Boolean semantics
of MTL. The domain B = {True,False} is the Boolean
domain. Moreover, we introduce a set Π which is a set of
atomic predicates each of which maps S to B. Each of these
predicates can hold values True or False. The syntax of MTL
is defined recursively as follows.

ϕ ∶= ⊺ ∣ π ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ϕ1UI ϕ2

where ⊺ stands for the Boolean constant True, π is an atomic
predicate such that π ∈ Π . ¬ (negation), ∧ (conjunction), ∨
(disjunction) are standard Boolean connectives, and “U” is
the temporal operator “until”. We add syntactic sugar, and
introduce the temporal operators “F” and “G” representing
“eventually” and “always”, respectively. I is a time interval
of the form I = [a, b], where a < b, and they are non-negative
integers. We define the set of the states that satisfy π as
O(π) ⊂ S . We denote the distance from s to a set J ⊆ S
as distf(s,J ) ∶= inf{f(s, s′)∣s′ ∈ cl(J )}, where f is a
metric on S , and cl(J ) denotes the closure of the set J .
In this paper, we use the metric f(s, s′) = ∥s − s′∥2, where
∥.∥2 denotes the 2-norm. We denote the depth of s in J
by depthf(s,J ) ∶= distf(s,S ∖J ). We define the signed
distance from s to J as Distf(s,J ) ∶= −distf(s,J ), if
s /∈ J ; and Distf(s,J ) ∶= depthf(s,J ) if s ∈ J [5].
Definition 3. The minimum necessary length of an MTL
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formula ϕ, denoted by H(ϕ), is the minimum time steps
required to evaluate the truth value of ϕ. For the Boolean
connectives and temporal operators, we have the following.

H(π) =0,
H(¬ϕ) =H(ϕ),

H(ϕ1 ∧ ϕ2) =max{H(ϕ1),H(ϕ2)},
H(ϕ1 ∨ ϕ2) =min{H(ϕ1),H(ϕ2)},

H(ϕ1UI ϕ2) =H(ϕ1),
H(FI ϕ) =H(ϕ) + a,

H(GI ϕ) =H(ϕ) + b.

Definition 4. The Boolean semantics of an MTL formula ϕ
with the necessary length of H(ϕ), for a trajectory s at time
step t is defined recursively as follows.

(s, t) ⊧ π iff t ≤H(ϕ) and s[t] ∈ O(π)
(s, t) ⊧ ¬ϕ iff (s, t) /⊧ ϕ,

(s, t) ⊧ ϕ1 ∧ ϕ2 iff (s, t) ⊧ ϕ1 and

(s, t) ⊧ ϕ2,

(s, t) ⊧ ϕ1U[a,b] ϕ iff ∃t′ ∈ [t + a, t + b],
(s, t′) ⊧ ϕ2 and ∀t′′ ∈ [t + a, t′), (s, t′′] ⊧ ϕ1.

Robust semantics quantifies the degree at which a certain
trajectory satisfies or violates an MTL formula ϕ at time
step t. The robustness degree of an MTL formula ϕ with
respect to a trajectory s at time step t is given by r(s, ϕ, t),
where r(s, ϕ, t) can be calculated recursively via the robust
semantics as follows.

r(s, π, t) =Distf(s[t],O(π)), (2)
r(s,¬ϕ,t) = −r(s, ϕ, t), (3)

r(s, ϕ1 ∧ ϕ2, t) =min(r(s, ϕ1, t), r(s, ϕ2, t)), (4)
r(s, ϕ1U[a,b) ϕ2, t) = max

t+a≤t′<t+b
(min(r(s, ϕ2, t

′),

min
t+a≤t′′<t′

r(s, ϕ1, t
′′))). (5)

D. Estimation of the States Using Kalman Filter
In this subsection, we review the Kalman filter equations

that are used to calculate the optimal estimates of the states
using given noisy outputs. The Kalman filter equations are
as follow [12].

ŝ[t] =Aŝ[t − 1] +Bu[t − 1] (6)
+K [t](ỹ[t] −Aŝ[t − 1] −Bu[t − 1]), (7)

K [t] =Σ[t − 1](Σ[t − 1] +K )−1, (8)
Σ[t] = (I∣Z∣ −K [t])Σ[t − 1], (9)

where ŝ[t] = [(ŝ1[t])T , (ŝ2[t])T , ..., (ŝ∣Z∣[t])T ]T is the
vector of the estimated states of ∣Z∣ agents at time step t and
ŝi[t] = [ŝi,1[t], ŝi,2[t], ..., ŝi,∣D∣[t]]T (where i ∈ Z) denotes
the ∣D∣-dimensional estimated state of agent i at time step
t, K [t] is the Kalman gain matrix at time step t and is a
∣D∣∣Z∣× ∣D∣∣Z∣ matrix, Σ[t] is the covariance matrix of state
estimation error at time step t and is a ∣D∣∣Z∣× ∣D∣∣Z∣ matrix,
K = E(vvT ) is the covariance matrix of the noise vector v .
Also, we assume that each agent i knows that v conforms to

a Gaussian distribution with 0 mean and covariance matrix
K . Also, each agent i knows that E(∥v∥2) ≤ ∣Z∣vmax and
E(∥ŝi[0]−si[0]∥2) ≤ smax with vmax and smax being arbitrary
values [13].

III. PROBLEM FORMULATION

In this section, we formalize the problem of synthesizing
controller inputs for a MAS consisting of ∣Z∣ agents in a
differentially private manner, where agents are required to
collaborate to satisfy a system-level task specified using an
MTL specification ϕs with a probabilistic guarantee, and at
the same time, each agent i should satisfy an agent-level
MTL specification ϕi. Intuitively, in order to collaborate
in satisfying a system-level task ϕs, each agent i needs to
have access to the system-level trajectory η. However, in the
situation where each agent i can only communicate with its
neighboring agent while preserving its privacy regarding its
state, each agent i needs to have an estimate of η while taking
into consideration that the probability of the satisfaction of
the MTL specification ϕs is higher than a given minimum
value γmin.

In this MAS, each agent i must keep its actual state
si[t] private from its neighboring agents while agent i is
aware of its own actual state si[t]. Here, the communication
is asynchronous i.e., only two agents can communicate at
each time step t and the probability of each agent i being
active at time step t is 1

∣Z∣
(here active means agent i can

initiate communication with another agent). In other words,
if agent i is not active at time step t, then it can not initiate
communication with its neighboring agent.

We want to synthesize the controller inputs in a distributed
manner, i.e., each agent i synthesizes its own controller input
ui[t] at time step t while taking into consideration that the
probability of the satisfaction of the MTL specification ϕs
by the actual system-level trajectory η[t] has a probabilistic
guarantee.

Now, we formalize the problem of synthesizing control
inputs for the control horizon of 2H for a MAS with ∣Z∣
agents in a distributed and differentially private manner.
Problem 1. Given a MAS consisting of ∣Z∣ agents, the
privacy parameters ϵi ∈ [ϵmin, ϵmax] (where 0 < ϵmin < ϵmax)
and δi ∈ [δmin, δmax] (where 0 < δmin < δmax < 1

2
), and the

objective function J =
2H

∑
k=1
∥ui[k]∥2, synthesize the controller

inputs ui[t] in the control horizon 2H in a distributed and
differentially private manner such that the satisfaction of the
system-level MTL specification ϕs with the probability higher
than γmin, i.e., P((η[0 ∶ H − 1],0) ⊧ ϕs) > γmin and the
satisfaction of the agent-level MTL specification ϕi by agent
i is guaranteed at time step t while the objective function J
is minimized.

IV. ESTIMATION OF SYSTEM-LEVEL TRAJECTORY IN A
MAS WITH MTL SPECIFICATIONS

In this section, we review a method to estimate the system-
level trajectory η. In this MAS, each agent i has asyn-
chronous communication with only its neighboring agents. In
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what follows, we review a method by which each agent can
estimate the system-level trajectory η in a distributed manner
[13]. The main idea of this method is that each agent is able
to compute an estimate of the actual system-level trajectory
η such that the estimation error converges to zero when the
time t goes to infinity. We explain this framework for one
dimension and the same framework can be applied to other
dimensions as well. Hence, we assume that ∣D∣ = 1. We
assume that at time step t− 1, agents i and l have computed
the estimated system-level trajectory ζi[t − 1] and ζl[t − 1].
At time step t, agents i and l communicate with each other
and update their estimates of the system-level trajectory
(η[t])d using Eqs. (10) and (11), respectively. Let W be
a ∣Z∣× ∣Z∣ matrix associated with the MAS where each entry
W il represents the probability that agent i communicates
with agent l according to the adjacency matrix D.

ζi[t] =
1

2
(ζi[t − 1] + ζl[t − 1]) + ŝi[t]) − ŝi[t − 1], (10)

ζl[t] =
1

2
(ζi[t − 1]) + ζl[t − 1]) + ŝl[t] − ŝl[t − 1], (11)

and other agents update their estimates of the system-level
trajectory using Eq. (12)

ζk[t] = ζk[t − 1]+ ŝk[t]− ŝk[t−1], k ∈ Z and k ≠ i, l. (12)

We can reformulate the equations of the update of the
estimated system-level trajectory by the agents in the vector
form using Eq. (13)

ζ[t] = V [t − 1]ζ[t − 1] + ŝ[t] − ŝ[t − 1], (13)

where ζ[t] = [(ζ1[t])T , (ζ2[t])T , ..., (ζ∣Z∣[t])T ]T is the
vector containing the estimates of the actual system-level
trajectory η[t] made by the ∣Z∣ agents at time step t, and
ζi[t] = [ζi,1[t], ..., ζi,∣D∣[t]]T . As we mentioned earlier, the
probability of agent i to be active is 1

∣Z∣
; thus matrix V [t]

has a probability of 1
∣Z∣

W il to be equal to (Ṽ )il = I∣Z∣ −
(ei−el)(ei−el)

T

2
, where I∣Z∣ is a ∣Z∣ × ∣Z∣ identity matrix and

ei = [0, ..., 1, ..., 0]T is a ∣Z∣× 1 vector with the i-th entry to
be 1 and zero in all other entries [14] [13].

It can be shown that the expected value of the matrix V [t],
denoted by E(V [t]) = V , is constant at different time steps
t [14] and can be calculated using optimization (33) in [13]
and the second largest eigenvalue of V denoted by λ governs
the convergence rate estimation of η.

In order to use ζ[t] for synthesizing controller inputs for
the MAS, we need to address two important matters: (1) it is
crucial to guarantee that the estimation error of the vector of
the estimated system-level trajectories ζ[t] (in comparison
with the actual system-level trajectory η[t]) converges to
zero when t → ∞, and (2) we need to guarantee that the
actual system-level trajectory η satisfies ϕs with a probability
higher than a minimum value γmin given that agents do not
have access to the actual system-level trajectory. Therefore,
we need to provide the guarantee of η[t] satisfying ϕs using
the vector of the estimated system-level trajectories ζ[t]. In
what follows, we provide Theorem 1 and Lemma 1, which
address the two mentioned issues, respectively [13].

Theorem 1. The estimation error E(∥ζ[t] − η[t]1∥∞) con-
verges to zero when t → ∞ for a MAS consisting of ∣Z∣
agents, where ζ[t] is the vector of estimates of the actual
system-level trajectory η[t] at time step t calculated by ∣Z∣
agents.

We can provide an upper bound for the estimation error
E(∥ζ[t] − η[t]1∥∞) using Corollary 1. Here we assume that
each agent knows E(∥ζ[0] − ζ[0]1∥∞) ≤ ζmax, where ζ[0] =
1
∣Z∣

∣Z∣

∑
i=1

ζi[0] and ζmax is an arbitrary value.

Corollary 1. For the estimation error E(∥ζ[t] − η[t]1∥∞)
at time step t, we have the upper bound defined as

ρ[t] = λt
√
∣Z∣ζmax +L1

t

∑
k=1

λt−k

√
δmax(k) + δmax(k − 1) + 2∣Z∣(umax)2 +L1

√
δmax(t),

(14)

where λ is the second largest eigenvalue of matrix V , L1

and L2 are two Lipschitz constants and δmax(t) = ∣Z∣
2smaxvmax

vmax+tsmax
.

For further details regarding the derivation of the upper
bound ρ[t], we kindly refer the reader to Lemma 4 in [13].

We use the upper bound ρ[t] to provide the guarantee
that the probability of η[t] satisfying the system-level MTL
specification ϕs, referred to as confidence level, is higher
than a minimum value γmin; therefore, we provide a set of
constraints that each agent i must satisfy recursively [13].

Lemma 1. Let rmin ≥ 0 denote the minimum required
robustness degree of ζ satisfying a given system-level MTL
specification ϕ at time step t, the confidence level of agent i
of η[t] satisfying ϕ at time step t, denoted by Pi((η, t) ⊧ ϕ),
must satisfy the following constraints.

Pi((η, t) ⊧ π) ≥
⎧⎪⎪⎨⎪⎪⎩

1 − ρ[t]
rmin

, if ρ[t] < rmin

0, otherwise

Pi((η, t) ⊧ ϕ1 ∧ ϕ2) ≥ Pi((η, t) ⊧ ϕ1)
+ Pi((η, t) ⊧ ϕ2) − 1,

Pi((η, t) ⊧ ϕ1 ∨ ϕ2) ≥ 1 −min{1 − Pi((η, t) ⊧ ϕ1),
1 − Pi((η, t) ⊧ ϕ2)},

Pi((η, t) ⊧ ϕ1U[a,b] ϕ2) ≥ 1 − min
t′∈[t+a,t+b]

{1 − Pi((η, t′) ⊧ ϕ2)

+ (
t′

∑
t′′=t+a

1 − Pi((η, t′′) ⊧ ϕ1)}.

V. DISTRIBUTED DIFFERENTIALLY PRIVATE RECEDING
HORIZON CONTROL FOR MULTI-AGENT SYSTEMS

WITH MTL SPECIFICATIONS

In this section, we introduce an approach for synthesizing
control inputs for a MAS with MTL specifications in a
distributed and differentially private manner. Based on the
settings of Problem 1, at each time step t, each agent i
should synthesize its own control inputs in the time horizon
[t, t +H − 1] for satisfying the system-level and agent-level
specifications ϕs and ϕi. For solving Problem 1, we adopt
a receding horizon control (RHC) for synthesizing control
inputs for satisfying MTL specifications ϕs and ϕi while
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minimizing a given objective function J .
In RHC for satisfying MTL specifications, we incorporate

mixed-integer linear programming (MILP) to encode given
MTL specifications as constraints in the optimization prob-
lem that is solved at each time step t. In [15], Raman et.
al. introduce a framework for encoding MTL specifications
as MILP constraints, and we incorporate this framework in
this paper. Implementing MTL formulas using the technique
in [15] guarantees the satisfaction of a given MTL formula
with a minimum robustness degree.

We want to synthesize the controller inputs in a distributed
manner, i.e., each agent i synthesizes its own controller input
ui[t] at time step t. Hence, agent i must calculate ζi[t]
for computing the controller input ui[t] while taking into
consideration that the probability of the satisfaction of the
MTL specification ϕs by the actual system-level trajectory
η[t] is higher than a minimum value.

Remark 1. In the MAS with ∣Z∣ agents, each agent i (1)
has access to the time-invariant graph-structure of the MAS
given by the undirected graph G, (2) knows the fact that
the asynchronous communication of agent i is only with its
neighboring agents l ∈ Zi where Zi is deduced from the
undirected graph G, and (3) calculates the error upper bound
(14) independently.

The optimization formulation proposed for synthesizing
control inputs in a differentially private manner at time step
t for a MAS referred to as Diff-MILP is presented in the
following.

arg min
ui[t∶t+H−1]

t+H−1

∑
k=t

∥ui[k]∥2 (15)

subject to: si[k + 1] =Ai∗si[k] +Bi∗ui[k],
∀k ∈ {t, t + 1, ..., t +H − 1},

(16)
ŝi[k + 1] =Ai∗ŝi[k] +Bi∗ui[k] +Ki∗[k]

(ỹi[k + 1] −Ai∗ŝi[k] +Bi∗ui[k]),
∀k ∈ {t, t + 1, ..., t +H − 1},

(17)
ζi[k + 1] =ζi[k] + ŝi[k + 1] − ŝi[k],

∀k ∈ {t, t + 1, ..., t +H − 1},
(18)

ỹi[k + 1] =(ŝi[k] + ui[k])

+ Ci∗Bi∗Ai∗

2
(ui[k] − ui[k − 1]),

∀k ∈ {t, t + 1, ..., t +H − 1},
(19)

ri(si[0 ∶H − 1], ϕi, j) >P[j], ∀j ∈ {0,1, ...,H − 1},
(20)

Pi((η[0 ∶H − 1], j) ⊧ ϕs) >Co[j], ∀j ∈ {0,1, ...,H − 1},
(21)

umin ≤ ui[k] ≤ umax ∀k ∈ {0,1, ...,H − 1}. (22)

A challenge in incorporating Eq. (6), in the optimization

formulation in Diff-MILP, is to calculate the vector of the
noisy output ỹi[t] in the time horizon [t, t+H]. To overcome
this challenge, we exploit the technique of one-step ahead
prediction of the vector of the noisy output introduced in
[16]. Based on the idea introduced in [16], at time step t,
we can calculate the one-step ahead prediction of vector of
the noisy output ỹ[t + 1] using Eq. (23).

ỹ[t + 1] = (ŝ[t]+u[t])+Ci∗Bi∗Ai∗

2
(u[t]−u[t−1]) (23)

where C is the output matrix with the dimension ∣D∣∣Z ∣ ×
∣D∣∣Z ∣. In what follows, we explain the details of the
proposed approach. As was mentioned earlier, we want to
synthesize the controller inputs in a distributed manner, i.e.,
each agent i solves Diff-MILP in the control horizon of H ,
at each time step t, to synthesize its own control inputs.

Alg. 1 illustrates the proposed receding horizon control
procedure that each agent i uses to synthesize its own control
inputs in the time length τ . In Alg. 1, at each time step t,
each agent i computes (1) a finite agent-level trajectory si
with a length of H that satisfies ϕi at time-step t and (2)
computes finite estimated system-level trajectories ζi with
a length of H that satisfies ϕs at time-step t while taking
into consideration that the actual system-level trajectory η
satisfies ϕs with a minimum probability γmin.

Algorithm 1: Distributed Differentially Private Re-
ceding Horizon Control for MTL Specifications

Input: A positive large number M
max
i∈Z
{H(ϕs),H(ϕi)} and the time length τ

The minimum confidence level γmin
The minimum robustness degree rmin
The adjacency matrix D
The number of the agents ∣Z∣
The initial state covariance matrix Σ[0] and the
noise covariance matrix K
Lipschitz constants L1 and L2, smax, ζmax, and vmax

1 Agent i calculates λ(V )
2 while t < τ and Diff-MILP is feasible do
3 Agent i calculates the Kalman gain matrices Ki∗[k]

for all k ∈ {t, t + 1, ..., t +H − 1} using Eq. (8)
4 if agent i is active then
5 Agent i communicates with agent l ∈ Zi to acquire

ζl[t]
6 ζi[t]←

ζi[t]+ζl[t]
2

7 end if
8 rmin ← P[j], ∀j ∈ {0, ...,H − 1}
9 γmin ← Co[j], ∀j ∈ {0, ...,H − 1}

10 Compute Ui[t] = [u
0
i [t],u

1
i [t], ...,u

H−1
i [t]] by

solving Diff-MILP
11 end while

Remark 2. Because each agent i has access to its own
actual trajectory si at each time step t, we enforce the MILP
constraints related to each ri(si[0 ∶ H − 1], ϕi, j) > rmin
directly using si for each agent i, where j ∈ [0,H − 1].

In Diff-MILP, we implement the constraint ri(si[0 ∶
H − 1], ϕi, j) > rmin (Eq. (20)) using the MILP technique
introduced in [15]. We use the positive large number M
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in this MILP problem where we use big-M formulation to
encode the MTL formulas. Pi((η[0 ∶H − 1], j) ⊧ ϕs) > γmin
(Eq. (21)) enforces that the actual system-level trajectory
η[j] satisfies ϕs with the minimum probability γmin for all
j ∈ [0,H−1]. For implementing the constraint Pi((η[0 ∶H−
1], j) ⊧ ϕs) > γmin, we enforce ri(ζi[0 ∶H − 1], ϕs, j) > rmin
and we calculate the estimated error bound ρi[j] using Eq.
(14) for all j ∈ [0,H − 1]. Then, we encode the constraint
Pi((η, t) ⊧ π) ≥ 1−

ρ[j]
rmin

, and after that we recursively encode
the constraints listed in Lemma 1 according to ϕs for all
j ∈ [0,H − 1].

In Alg. 1, each agent i sets ζi[0] equal to ŝi[0]. At
t = 0, each agent i calculates λ(V ) by solving optimization
problem (33) in [13] (Line 1 in Alg. 1) to calculate the error
upper bound ρ[j] for all j ∈ [0,H − 1] at each time step t.
At each time step t, each agent i calculates the Kalman gain
matrices Ki∗[t] in the time horizon [t, t+H − 1] using Eq.
(8) and (9) (Line 3 in Alg. 1). If at time step t, agent i is
active, then agent i communicates with one of its neighboring
agents l ∈ Zi with a uniform random probability 1

∣Zi∣
to

acquire ζl[t] and update ζi[t] (Lines 4-7 in Alg. 1). At
Line 8 in Alg. 1, P is a 1 × H vector of variables that
represent the minimum required robustness degree at each
time step in the time horizon [0,H − 1]. Here, we choose a
robustness degree of value rmin for all j ∈ [0,H − 1] (Line
8 in ALg. 1). At Line 9 in Alg. 1, Co is a 1 ×H vector of
variables that represents the minimum required confidence
level of each agent i in satisfying ϕs at each time step in
the time horizon [0,H − 1]. Here, we choose a confidence
level of value γmin for all j ∈ [0,H − 1]. At Line 10 of Alg.
1, at each time step t, each agent i calculates a sequence
of control inputs Ui[t] = [u0

i [t],u1
i [t], ...,uH−1

i [t]] in the
control horizon H by solving Diff-MILP. Here, uH−1

i [t]
represents the predicted vector of control inputs calculated
at the future time step t +H − 1 by agent i, and the current
time step is t.

VI. CASE STUDY

In this section, we implement the proposed approach for a
MAS consisting of 8 agents in two different scenarios. In the
MAS, the set of nodes is C = {c1, c2, c3, c4, c5, c6, c7, c8} and
the set of edges is E = {e1,2, e1,5, e2,3, e2,6, e3,4, e3,7, e4,8}.
We consider a 2-dimensional planar environment S ⊆ R2

in which we have the following areas: (1) R1 and R2 are
square areas both centered at (0,0) with the edge length
equal to 16 and 10, respectively. 2) R3, R4, R5, and R6

are rectangular areas all with the length and width of 6
and 2 which are centered at (−2.5, 5), (−2.5,−1), (2.5,−5),
and (2.5,1), respectively. We also denote the four quadrants
of the 2D plane (starting from the positive quadrant going
clockwise) by Q̃1, Q̃2, Q̃3, and Q̃4, respectively. We define
the two scenarios as follows. In both scenarios, we specify
the system-level specification as ϕs ∶= G[0,100](η ∈ R2)
which reads as “the centroid of the MAS should always be
in the area R2 in the next 100 time steps”.
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Fig. 2: The trajectories of the eight agents in Scenario I (Left)
and Scenario II (Right).

Scenario I: In this scenario, we define the agent-level
specifications as ϕ1,I ∶= (F[0,80](s1 ∈ R1)) ∧ (G[0,100](s1 ∈
Q̃3)) ∧ (G[0,100] ¬(s1 ∈ R4)), ϕ2,I ∶= (F[0,80](s2 ∈
R1)) ∧ (G[0,100](s2 ∈ Q̃1)) ∧ (G[0,100] ¬(s2 ∈ R6)),
ϕ3,I ∶= (F[0,80](s3 ∈ R1)) ∧ (G[0,100](s3 ∈ Q̃4)) ∧
(G[0,100] ¬(s3 ∈ R3)), ϕ4,I ∶= (F[0,80](s4 ∈ R1)) ∧
(G[0,100](s4 ∈ Q̃2)) ∧ (G[0,100] ¬(s4 ∈ R5)), ϕ5,I ∶=
(G[0,100](s5 ∈ R3)), ϕ6,I ∶= (G[0,100](s6 ∈ R6)), ϕ7,I ∶=
(G[0,100](s7 ∈ R4)), and ϕ8,I ∶= (G[0,100](s8 ∈ R5)).

ϕ1,I reads as “agent 1 should eventually reach area R1

in the period of [0,80], always stay in the third quadrant
in the period of [0,100], and never enter the area R4 in
the time span of [0,100]”. Similarly, the other agent-level
specifications can be also translated into natural language.
Scenario II: This scenario is similar to Scenario I except
that agents 1 and 2 must avoid collision with the obstacles
O1 and O2 for safety purposes. Obstacles O1 and O2

are rectangular areas with a length of 3 and width of 1
centered at (2.5,4.5) and (−2.5,−4.5), respectively. Here,
we have ϕ1,II ∶= ϕ1,I∧(G[0,100] ¬(s1 ∈ O1)) and ϕ2,II ∶=
ϕ2,I∧(G[0,100] ¬(s2 ∈ O2)).

For choosing the control horizon, we calculate the mini-
mum necessary lengths of the given STL specifications and
choose the largest one which is H(ϕ1) = 100 and we choose
τ = 600s. Also, we set M = 1000, γmin = 0.9, and rmin = 0.1.
In addition, we add the Gaussian noise to the outputs yi with
the differential privacy parameters ϵ ∈ [log(6), log(10)] and
δ ∈ [0.1, 0.4].

The left plot in Fig. 2 represents the trajectories of the
eight agents in Scenario I. Fig. 3a represents the obtained
results for the estimated system-level trajectories in compar-
ison with η (Left) and the actual agent-level trajectories of the
eight agents (Right) in the first dimension of S in Scenario
I. Both the estimated system-level trajectories and the actual
agent-level trajectories in the second dimension follow the
same trend as the first dimension for agents 1, 2, 3, and 4. For
agents 5, 6, 7, and 8, the estimated system-level trajectories
follow the same trend as the first dimension, and the actual
agent-level trajectories are horizontal lines with the values
within the coordinates of the designated regions R3, R4, R5,
and R6, respectively. As can be seen in the top plot in Fig. 3a,
ϕs is satisfied with the probability of 1 by the actual system-
level trajectory η which is higher than γmin = 0.9. According
to top plot in Fig. 3a, (η[t])1 ∈ R2 for all t ∈ [0,600]. Fig. 3a
also shows that when the time goes to infinity, the estimated
system-level trajectories converge to the actual system-level
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Fig. 3: (a) Obtained values for the estimated system-level
trajectory ζi (Left) and the actual agent level trajectories si
(Right) with i ∈ {1, ..., 6} for the first dimension of S in
Scenario I. The results for agents 7 and 8 are not shown
due to overlapping with the results of agents 5 and 6. (b)
Obtained values for the estimated system-level trajectory ζi
(Left) and the actual agent level trajectories si (Right) with
i ∈ {1, ..., 6} for the first dimension of S in Scenario II. The
results for agents 7 and 8 are not shown due to overlapping
with the results of agents 5 and 6.

trajectory. The bottom plot in Fig. 3a shows that the agent-
level specifications are also satisfied. For example, s2[t] ∈ Q̃1

for all t ∈ [0,600], and the time window of [219,284] is
the longest time window that s2[t] /∈ R1 which means that
ϕ2,I is satisfied at all t ∈ [0,600]. Similarly, s1[t] ∈ Q̃3 for
all t ∈ [0,600], and the time window of [222,284] is the
longest time window that s1[t] /∈ R1 which means that ϕ1,I

is satisfied at all t ∈ [0,600]. The results for agents 7 and
8 are not shown in Fig. 3a since the obtained results for
agents 7 and 8 are exactly the same as the obtained results
for agents 5 and 6.

The right plot in Fig. 2 shows the paths of the eight agents
in Scenario II. Fig. 3b illustrates the obtained results for
the estimated system-level trajectories in comparison with
η (Left) and the actual agent-level trajectories of the eight
agents (Right) in the first dimension of S in Scenario II. The
top and the bottom plots in Fig. 3b show that ϕs is satisfied
by η with the probability of 1 and all of the agent-level
specifications are satisfied by the agents, respectively.

A comparison between the left and the right plot in
Fig. 2 shows that changing the agent-level specifications
of agents 1 and 2 do not interfere with satisfying ϕs.
This shows that the proposed framework provides flexibility
for the agents to satisfy different agent-level specifications
without affecting the system-level specification. Moreover,
the comparison between Scenario I and II shows that the
proposed framework can be used for safety purposes such as
avoiding collision between the agents and avoiding obstacles
while collaborating to satisfy a task.

VII. CONCLUSION

We introduced a distributed receding horizon control for
multi-agent systems with metric temporal logic specifica-
tions. Future research directions include investigating control
synthesis when agents share partial outputs instead of noisy
ones, and integrating learning-based techniques [17] to han-
dle unknown system dynamics for improved adaptability and
robustness.
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