2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

Counterfactually-Guided Causal Reinforcement Learning with Reward
Machines

Nasim Baharisangari, Yash Paliwal, and Zhe Xu

Abstract— In causal reinforcement learning (RL), counter-
factual reasoning deals with “what if”’ situations and allows for
investigating the potential consequences of actions or events that
did not actually happen. In this paper, we combine counterfac-
tual reasoning and reinforcement learning (RL) and propose
Counterfactually-Guided Causal Reinforcement Learning with
Reward Machines (CGC-RL). In CGC-RL, using observational
data, we first compute the optimal counterfactual sequence with
the highest probability of completing a given task. Then, we
construct an RM compatible with the counterfactual sequence.
We use the constructed RM to apply dynamic potential-
based reward shaping to encourage the agent to follow the
counterfactual sequence. We prove the policy-invariance under
dynamic reward shaping with RMs. Finally, we implement
CGC-RL in one case study and compare the results with three
baselines. Our results show that CGC-RL outperforms the
baselines.

I. INTRODUCTION

In causal learning/inference, counterfactual reasoning is
a cognitive process that involves mentally exploring and
evaluating alternative scenarios or outcomes that differ from
reality. It allows individuals to imagine “what if” situations,
enabling them to understand the potential consequences of
different actions or events that did not actually happen. In
reinforcement learning (RL), we utilize Partially Observable
Markov Decision Processes (POMDPs) to model scenarios
with partially observable environments. In such cases, states
must be inferred from limited observations. Counterfactual
reasoning, when incorporated, can help us learn the optimal
policy from historical observational data. This is especially
useful for completing complex tasks.

In the realm of RL, the integration of causal infer-
ence/learning involves the utilization of three distinct cat-
egories of data: observational data, experimental data, and
counterfactual data, coupled with the causal diagram delin-
eating the RL framework, if accessible. The agent’s access
to observational data can stem from diverse sources such as
observing fellow agents, scrutinizing the environment, offline
learning, and acquiring a foundational understanding of the
underlying structure. Counterfactual data can be generated
through a specified model, or estimated via active empirical
learning methods [1], [2].

In the intersection of CI and RL, these aforementioned
data types have been employed both individually and in
various combinations. As an illustration, in [3], an agent

The authors are with the School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, AZ 85287. {nbaharis,
ypaliwal, xzhel}@asu.edu

This work is partially supported by NSF CNS 2304863 and CNS 2339774
and ONR N00014-23-1-2505.

979-8-3503-8265-5/$31.00 ©2024 AACC

enhances policy optimization through the acquisition of
observational data within novel environments, enabling the
agent to enact minimal yet pivotal adjustments based on the
structural relationships among the RL framework’s variables,
as depicted in associated diagrams. In [4], a synthesis of
observational and experimental data is harnessed to appre-
hend “causal states,” which represent the coarsest partition
of concatenated historical actions and observations, offering
maximal predictiveness for future outcomes within partially
observable Markov decision processes (POMDPs). In [5], a
counterfactually-guided policy improvement search is pro-
posed that uses observational data to find the best policy in
POMDPs.

Moreover incorporating reward machines (RM) in RL has
shown noticeable advantages [6]. For example, in [7], a
framework for learning RMs for POMDPs is proposed which
outperforms some of the common RL algorithms used in
POMDPs such as DDQN, DQN and AC3.

In this paper, we propose a counterfactually-guided causal
RL with RMs (CGC-RL) in POMDPs. In CGC-RL, we
exploit observational data to infer abstract counterfactual
guidance for the agent in RL such that the agent can learn
a suboptimal policy that is closest to the optimal policy.
In CGC-RL, we use counterfactual guidance to build a
reward machine that encourages the agent to follow the
counterfactual guidance to complete a given task. Our results
show that CGC-RL outperformed the baselines including
LRM+DQRM which is proposed in [8] as an RL method
with reward machines in POMDPs.

II. PRELIMINARIES

Partially Observable Markov Decision Process
(POMDP): In partially observable problems, the underlying
environment model is usually considered to be POMDP.
A POMDP is a tuple Po = (5,0, A,r p,w,v) where
S is a finite set of states, A is a finite set of actions,
r: S x A — R is the reward function, p(s,a,s’) is
the transition probability distribution, ~y is the discount
factor, O is a finite set of observations, and w(s,0) is the
observation probability distribution. At each time step ¢, the
agent is at state s; € S, executes an action a; € A, receives
reward r; = r(s¢, ay), and moves to state s,y according to
p(st, at, s¢11). In POMDP, the agent does not observe s;;
but only receives an observation o;11 € O. This observation
provides the agent with a clue about s;;; through w. RL
methods can not be immediately applied to POMDPs due to
the fact that the transition probabilities and reward function
are generally non-Markovian w.r.t observations. Hence, for

522

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:48:03 UTC from IEEE Xplore. Restrictions apply.

converging to optimal policies, one may need to consider
the complete history og, ag, ..., a;—1,0; of observations and
actions. Many RL methods for POMDPs, incorporate the
history of observations and actions through recurrent neural
network (RNN), and then use a policy gradient method to
train the RNN [8].

Definition 1. For an environment Env and a set of labels
‘P that correspond to a set of features of Env, we define a
labeling function L : Oy x Ay x O — 2% that assigns truth
values to the symbols in P given an environment experiment
ex = (0,a,0"). For an arbitrary set X, Xo = X U [8].

Definition 2. A deterministic finite automaton (DFA) is
a finite state machine described using a tuple VW =
(V,2P 84, vr, F) where V is a finite set of states, 2F is
the alphabet, vy is the initial state, ' C 'V is the set of final
states, and Sy : V x 2P — V is the deterministic transition
function. A run of DFA W on an arbitrary label sequence
2021, .21 € (2F)* is a sequence of states and labels T =
VOZQU1 21, ... 2k Vi1, SUch that vg = vy and for each 0 < i <
k, vit1 = dw (v4, 2;). An accepted run is a run that ends in
a final state vy, € F. Finally, we define the language of
W as La(W) = {7 € (2P)*|7 is accepted by W}.

Definition 3. Given a set of labels P, a Reward Machine
(RM) is a tuple Rp = (U, ug, 8y, 6,) where U is a finite set
of states, ug € U is an initial state, §,, is the state-transition
function, 8, : U x 2P — U, and 5, is the reward-transition
function, 8, : U x 2P — R.

III. POLICY-INVARIANCE UNDER DYNAMIC REWARD
SHAPING WITH REWARD MACHINES

The idea of potential-based reward shaping has been used
in RL algorithms to take into consideration of prior knowl-
edge/understanding of the environment that can improve
the performance of RL algorithm. Potential-based reward
shaping refers to shaping the reward function r as r+F'(s, s')
where F(s,s') = v®(s') — ®(s) with ®(s) being some
potential function. In [9], it is proven that the optimal policy
remains unchanged under potential-based reward shaping.
Furthermore, dynamic potential-based reward shaping using
the reward shaping function F'(s, s',t) = v®(s',t) — ®(s, 1)
is proven to preserve the optimal policy [10] where ®(s,t)
is some potential function which is a function of the state of
the environment and time.

In this paper, we write the augmented potential-
based reward shaping function as F(s,u,t,s’,u/,t') =
yO(s',u',t')—®(s,u,t) where t', s’, and v’ are respectively
the current time-step, the current state in which the agent is,
and the current state of Rp, and ¢, s, and u are respectively
the previous time-step, the previous state in which the agent
was, and the previous state of Rp. We can prove that the
optimal policy 7* does not change under this reward shaping.
In other words, the difference between the shaped Q-values
and the true Q-values does not depend on the action a in an
arbitrary augmented state (s,u). We formalize this using the
following theorem.

Theorem 1. Given a reward machine Rp, discount fac-
tor v, a state s € S, and an action a € A, for the
optimal Q-value Q*(s,a), using reward shaping function
F(s,u,t, s v t") = ~vO(s',u/,t') — ®(s,u,t), the shaped
optimal Q-value for (s,a) is Q% = Q*(s,a) — ®(s,u,t)
where ®(s,u,t) is some potential function.

This shows that the difference between the true Q-values
and the shaped Q-values does not depend on the action taken
in an arbitrary augmented state (s,u).

IV. COUNTERFACTUALLY-GUIDED CAUSAL RL WITH
REWARD MACHINES

In this section, we introduce counterfactually-guided
causal RL with RMs (CGC-RL). Before explaining the
framework in detail, we define the necessary concepts and
notations. To clarify the concepts and definitions, we use Ex.
1 as a running example. Here, we represent a given task T
with a DFA W.

Example 1. In a grid world with 9 cells, there are three
airports Airport 1, Airport 2, and Airport 3. The task
T of a taxi agent is to first pick up traveler number 1
from an airport and then pick up traveler number 2 from
an airport. Fig. 1 illustrates the task DFA of this exam-
ple. Due to a lack of communication, the agent does not
know from which airport it should pick up each traveler.
In this environment, P = {’i\,'i',xl,xz,?(g} and A =
{go right, go left, go up, go down}. ® is True if the agent
picked up Traveler 1 with its last action (by going to the
airport where Traveler 1 was) and ® is True if the agent
picked up Traveler 2 with its last action (by going to the
airport where Traveler 2 was). X', %>, or ¥° is True if the
agent is at the airport with the corresponding number.

Definition 4. Given the set of states S, for an observation
o, we define F° as the set of all the states s € S such that
w(o]s) > 0.

In CGC-RL, we divide the observations o € O into
two types of observations: random observations and fixed
observations. We formally define these two types as follows.

Definition 5. We define a fixed observation of as an obser-
vation such that w(oF|s) = 1,V¥s € F¥. We denote the set
of fixed observations by O°F.

Definition 6. We define a random observation o as an

observation that w(o|s) € (0,1),Vs € FR. We denote the
R
set of random observations by O° .

For brevity, we write O°F as OF and O°F as OR. Based on
this categorization, we can divide the labels in P into fixed
and random labels. A fixed label denoted by e is a label that
becomes True when the agent observes a fixed observation.

True

) i
G S SNG W)

Fig. 1: Task DFA W in Example 1.

523

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:48:03 UTC from IEEE Xplore. Restrictions apply.

A random label denoted by ef is a label that becomes
True when the agent observes a random observation. We
denote the set of fixed labels and random labels by P¥ and
PR res ectively. In Ex. 1, the set of fixed labels is PrF =
{¥" %% %%} and the set of random labels is PR = {4f}.

For an arbitrary label e € P, we can define a set of states
JF¢ similar to the sets of states F° as in Def. 4. For an
observation o € O that causes a label e € P to become
True, we have F° = F€. Hereafter, we use the notation of
F for the labels.

Assumption 1. In this paper, we assume that only random
labels appear on task DFA VW related to a given task Y
because the environment is partially observable.

In developing CGC-RL, we further prune the set of labels
and use one subset of fixed labels and one subset of random
labels to increase the efficiency of the proposed algorithm.

Remark 1. The subset of random labels PRauv C PR gt
we use in CGC-RL include the random labels that appear in
the task DFA W related to a given task L. We use N‘»pRsubl
to denote the number of random labels in PR,

Remark 2. The subset of fixed labels P¥=w> C P that we
use in CGC-RL are those fixed labels that meet the following
conditions. We use N|73F5ub‘ to denote the number of fixed
labels in P¥suv,

1) 3i € {1, .., Niprow|}, such that Pr(Fes 0 Fo& #

0) >0,vg € {1,..., Nypr.,, }, and

D) N5 HFT) =0

Re. 2 states that we are interested in properties of the
environment that give us deterministic clues about the states s
in which the subtasks in a given task DFA)V have a nonzero
probability of being satisfied (Item 1). The states associated
with each fixed label are different from each other so each
clue guides the agent to a distinct part of the environment
(Item 2). In Ex. 1, the set of fixed labels eF is PFeur =
{Xl,XQ,XS}. Here, there is a nonzero probability that the
el labels in PRsuw> = {4} get True at the states related to
Airport 1 (denoted by .7-""1), i.e., we have Pr(]-"‘1 nF# #*
0) > 0 and Pr(F¥ nF* +£(0) > 0, and we have the same
pair of probabilities for the other airports (Item 1 in Def. 2).
Also, we have F¥' 0 F¥ 1 F* = () which means there
is no state s such that any two of the labels X', %*, %° are
True at s simultaneously (Item 2).

We use fixed labels to construct counterfactual guidance
for the agent such that a given task is satisfied with the
highest probability following the guidance. In doing so, we
incorporate counterfactual composite actions. Hereafter, we
refer to counterfactual guidance as counterfactual sequence.

Definition 7. In an environment Env, for each fixed label
ef € PY, we define a counterfactual composite action which
is a function of e¥ denoted by x(e¥) € X as a sequence of
actions a € A that may take some time steps to be completed
such that executing x(e¥) ends up in e¥ to be True.

Counterfactual composite actions provide a compact

representation of the actions needed to be taken ac-
cording to the counterfactual sequence. In Ex. 1, the
set of counterfactual composite actions x(ef) is X =
{Navigate(X'), Navigate(X°), Navigate(¥")}. If at
time-step ¢, the agent is at an arbitrary state s and the
counterfactual composite action X(X') = Navigate(X"),
then the agent needs to navigate to a state s’ where x s
True and completing this may take some time steps.

In the next step, we construct the ordered sequence of
random labels that appear in a given accepting run of a
task DFA 7 = voeg”vlelfh..e%f_l as 07 = eg',...,eﬁ,_l
where N7 is the number of random labels in 7. In Ex. 1,
for the accepting run 7 := vofv, B2, we have 07 := 4, §.
In what follows, we define the counterfactual sequence that
satisfies the sequence of random labels e®* corresponding to
an accepting run 7.

Definition 8. For a given 07 := e& .. eR. | where
T € La(W), we define an ordered sequence of coun-
terfactual composite actions x(e¥) € X as £ =
w0(ed), ., xanr—1(elr 1) such that &€ |= 07, i.e., executing
x(€) leads the agent to the states where e} is True which
then leads to eX to be True, Vi € {0, ..., N, — 1}.

In Ex. 1, if the ground truth reality in an episode is
that Traveler 1 is at Airport 1 and Traveler 2 is at
Airport 2, then 67 := 4,% can be satisfied by ¢ :=
Navigate(¥'), Navigate(¥®). This means that if the
agent first go to Airport 1 where A' is True, then it
observes 4 which causes 4 to be True. The same
description holds for .

We use counterfactual sequences to provide the best
guidance through RMs that lead the agent to complete a
given task. Doing so, we counterfactually reason how the
agent achieves the best suboptimal policy. We expand on
this matter later in this section.

Definition 9. In the environment Env, given a task DFA
W, the set of all the counterfactual composite actions X,
the set E containing all the possible sequences of the
composite actions x(e¥') € X, and the set of fixed labels
PFsuv we define the optimal counterfactual sequence &*
as & = xleh), ..., xn —1(ely-_|) such that & % =
argmaXee g reraw) Lr(§ F 07). We denote the run cor-
responding to & by T where Pr({ | 07) denotes the
probability of € satisfying 07.

In this paper, the optimal counterfactual sequence £* is
the intervention that we make to figure out what would
happen if the agent follows this sequence hypothetically. We
expect that this intervention causes the agent to learn the
best suboptimal policy. To learn this sequence, we need to
know the prior probability distribution of the occurrence of
the labels in PR=w> which is unknown. We define this prior
distribution in Def. 10. Later in this section, we explain
that we calculate the posterior probability distribution of
occurrence of the labels in PRe=urfrom observational data.
We use this probability distribution to find the optimal
counterfactual sequence &¥, i.e., the sequence of composite

524

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:48:03 UTC from IEEE Xplore. Restrictions apply.

actions that aid the agent in completing a given task with the
highest probability of success.

N
Definition 10. Given the sets {F % q:”;Fsub', for each rad-
nom label e® € PR=wv we define the categorical probability
distribution {Pr(e® = True|]:€g) q:”iFsub'
categories.

In Ex. 1, for 4 € {4\,’#}, we can have the following
categorical distribution Pr(4 = True|]-'x1) =0.5, Pr(4 =
True|}'x2) = 0.35, and Pr(4 = True\}"xs) = 0.15.

Now, we explain the algorithms we use in CGC-RL
in detail. In CGC-RL, we first compute a counterfactual
sequence £* from the observational data D and then compute
its corresponding 67" using the subroutine FindSE() (Alg.
1). In the next step, we construct Rp compatible with £*
and 07" as illusatred in Fig. 2. Then, we use the subroutine
FindPolicy() (Alg. 2) to compute the policy 7 using Rp.
Below, we explain Alg. 1 and Alg. 2 in detail, respectively.

In Alg. 1, for a task DFA W, we first compute the posterior

probability distribution {Pr(el* = True|F, D)} 17 "
for each el* € PR=uv (Line 3 in Alg. 1). Then, we compute
La(W) where |La(W)| denotes the number of runs in
La(W) and initialize [La(W)| empty sets {E,-}/=2O)
each corresponding to each 7 € La(W) (Lines 5-6 in
Alg. 1). Then, for each 7 € La(W), we first compute the
corresponding 6™ (Line 10 in Alg. 1). After that, Alg. 1
generates N, generations of random sequences of x(e') € X
(i.e., &) with the population size of NN, stored in the set S
(Lines 11-12). In the next step, Alg. 1 randomly generates a
truth assignment for each ef* € PR according to {Pr(elt =

True|]-'e§ , D)};V:'?Fs“b‘ (Line 13 in Alg. 1). In the next step,
for each £ € S, we check whether £ = 67. If yes, we assign
a point of 1 to £ and store it in the set F,- corresponding
to the run used in iteration n”. In all of the generations,
a sequence ¢ that satisfies 7 might appear more than one
time. Hence, for each ¢ that satisfies 87, FindSE() keeps
track of the cumulative points vale ,- (Lines 14-20 in Alg.
1). Then, FindSE() returns £* with the highest vale - and
its corresponding 67 .

with N"PFsub [

Theorem 2. If for all i € {1,...,Nipr.., |}, in {Pr(el

N
True|]:€qF7D) q:'?FS“b‘, there exists a category that has
a higher probability than other categories then, Alg. 1

converges to the sequence §* when Ny — 00.

In the next step, we construct the RM Rp, where P =
PReub | JPFsub (JY and Y is the set of other labels in P and
we have PRswo 0 PFsw 1) = (). Rp is deterministic and
its main job is to guide the agent to follow £* and 67 . The
structure of Rp is a linear chain (Fig. 2), of all of the states
of RM ending in the final state ur and encourages the agent
to follow &* to complete the task corresponding to 67 . We
denote the number of the states of RM except for uy and
up by N, € {1,2,...}. Rp gives potential-based rewards to
the agent during the navigation transitions where navigation
transitions are those transitions in Rp that encourage the

525

agent to go to states s where labels e’ in £* become True.
Rp starts from the initial state ug and transitions to u; once
yo € Y is set to True and this is not a navigation transition
and no potential-based reward will be given. yo is a label
related to Enwv that triggers starting 7 . Rp transitions
to ug from w; once eg = True and this is a navigation
transition. The agent receives the potential-based reward of
rof = v®(s',ug,t) — ®(s,u1,t) upon transitioning to wus.
Finally, Rp transitions from uy, to urp upon completing
the task in 67", and the agent receives a reward of Ry.

Finally, we use FindPolicy() (Alg. 2), to compute the
policy m with Rp. Alg. 2 first initializes the environment
state, RM, and the policy 7 which is a random policy (Lines
3-6). In Line 3, o denotes the truth value of any possible label
in P upon observing o. Then Alg. 2 starts the training of the
agent in eplength episodes. Then, in Alg. 2, the agent selects
an action based on the current 7, 0, and u, and receives the
reward r and observation o from the environment, and then,
Rp transition from u to u' (Lines 8-10). In line 9, the
Boolean variable done sets to true if a terminal condition
is met upon executing a. At Line 11, the agent gets the
predefined potential values ®(s,u,t) and ®(s',u’,t) based
on the type of the transition between u and u'. If the
transition between u and v’ is a navigation transition, then
®(s,u,t) = 0 and ®(s',u',t) = m where m € R is an
arbitrary positive value. Else, ®(s,u,t) = ®(s',u/,t) = 0.
At Line 12, the agent receives the potential-based reward r’
from Rp on top of the reward r. Finally, if at any point
during an episode, a terminal condition is met, then, the
current episode terminates and the next episode starts (Lines
14-15).

Remark 3. Fig. 2 illustrates the core linear structure of the
reward machine we use in CGC-RL. Other labels in) can
appear in non-navigation transitions in Rp as needed.

Remark 4. The proposed algorithm can be applied to
the task DFAs that have fixed labels that are not used in
the set PY=wo. In this case, we modify the counterfactual
sequence & according to the location of those fixed labels
deterministically.

V. SIMULATIONS

In this section, we implement CGC-RL in the Locked-
Doors Domain. Locked-Doors domain and the task defined
in this domain are the more complicated versions of the 2-
Keys domain and its corresponding task in [8], [11]. Here
we use CGC-RL with DQRM (CGC-DQRM). DQRM is a
deep Q-learning method for reward machines proposed in

<907 0> <€g$ r(§> <€[)Rv 0>
start = Uo @ @ @—» :
(eN, -1, Ry) (e) !
g T\ v
(5 un,
_/
Fig. 2: The linear structure of Rp.

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:48:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Computation of the Optimal Counter-
factual Sequence from Observational data.

Algorithm 2: RL with Dynamic Potential-Based
Reward Shaping using RMs

Input: Observational Data D, the set of
counterfactual composite actions X, the set of
all the random labels PRsur | the set of fixed
labels P¥su> and task DFA W

Parameter: Number of generations Ny and the size

of the population N,
1 function FindSE (D, X', PReur PFaun)y))
2 | fori=1,.. |PRur| do
N,

3 Compute {Pr(e} = True|Fe, D)}q:”iFs"b‘
using D

4 end for

5 La(W) < compute-language(W)

6 @<_Ela"';E|La(W)|

7 0<+n"

8 for 7 € La(W) do

9 n"<—n"+1

10 6"" < compute-run-seq(7)

1 fori'=1,..,N; do

12 Generate the set S consists of IV, random
sequences of counterfactual actions in X’

13 Randomly generate the truth assignment

of each eff € PR=uv according to
N

{Pr(el} = True|.7:e§7D) q:”iFsuM
14 for k=1,..,N, do
15 if &, = 6" then
16 if &, € E,,- then
17 | wvale, nr < valg, nr +1
18 else
19 valg, nr 1
20 Add & to E,-
21 end for
2 0« S
23 end for
24 end for
25 5* < arg maXEGULLfa:(YV)‘ joa valE}nT

26 return £*, 07

[7]. DQRM uses DDQN to learn a subpolicy for each state
of a given RM. A DQN or Deep Q-Network, approximates a
state-value function in a Q-learning framework with a neural
network [12]. DDQN refers to Double Deep Q-Network
which is a variant of the deep Q-network (DQN) [13].

The baselines we use are as follows.

1) DDQN-RM: This method uses DDQN for learning
the optimal policy where we incorporate the extra
information about the state of the reward machine
with an extra binary vector. We concatenate this binary
vector to the state of the agent.

2) LRM-DQRM: This method which is proposed in
[8], [11] simultaneously learns a reward machine and
exploits that reward machine to learn a policy. In this
approach, if the learned reward machine is not the best
one then it attempts to find a new reward machine.
If the reward machine is updated, a new policy will
be learned from scratch. LRM-DQRM outperforms
several baselines that were used in [8], [11].

Input: Reward Machine Rp
Parameter: Episode length eplength, Discount
factor v, Number of episodes N,

1 function FindPolicy (Rp)

2 fori=1,...,N; do

3 0 < env-get-initial-state(),

4 o+ L(0,0,0)

5 u < 6y (up, o)

6 7 < initialize-policy()

7 for 0 <t < eplength do

8 a < select-action(mw, 0, u)

9 o',r,done + env-execute-action(a)
10 u' 0y (u, L(0,a,0")),0" + L(o,a,0")
1 O(s,u,t), D(s",u',t)

get-potential-value(u, u')
12 e+ y®(s U t) — P(s,u,t)
13 T+
improve(m,o,u,0,a,r’,0 ,u', o', done)

14 if done then

15 | start-next-episode()

16 oo, u+u,0< 0o

17 end for
18 end for

19 return m

3) CGC-DQRM-No: This method is CGC-DQRM with-
out potential-based reward shaping.
We use DDQN to synthesize observational data D

to calculate the categorical distribution {Pr(el =
N,
True|]:‘)‘5,D)}q:”iFS"b‘. Also, we use 1500 episodes with

a maximum length of 1000 time steps.
A. Locked-Doors Domain

The map of the Locked-Doors Domain is shown in Fig. 5.
In this domain PRewr = (@O @ 2!, 2%}, and PFewr =
{vamm},y={er s a"c% ema' 8%}, and A=
{go up, go down, go right, go left}. #' is T'rue if the agent
is currently in the same room as the first key, @ is True if
the agent is currently in the same room as apple, &' and &2
are T'rue if the agent is in the same room where the doors
are locked. @ is T'rue if the agent ate the apple with its last
action, @' is True if the agent opened the first door with
its last action, (" is True if the agent grabbed the first key
with its last action. In the Locked-Doors Domain, there is
a button @ yellow room. Once the agent presses the button,
an apple randomly appears in either of the green, blue, or
red rooms and two distinct keys that respectively unlock the
first door and the second door appear in either of the two
other rooms in which the apple has not appeared. Both the
first and the second doors get locked in the room where the
apple appeared.

Using observational data, we compute {Pr(@ =

True|feg7D)}|q7iFbe| as Pr(@ = TruelF",D) =
0.053, Pr(@ = Truc/F®™ D) = 0.674, and Pr(d =
TruelF",D) = 0272. We compute {Pr(Q' =

oF |PFsub | 1
True|F, D)}y as Pr(Q) = TruelF,D)

526

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:48:03 UTC from IEEE Xplore. Restrictions apply.

0.177, Pr(Q' = True|F®,D) = 0.312, and Pr(Q'
True|F*,D) = 0.511. We compute {Pr(Q’
True|]-"€§,D)}lIzFfuh| as Pr(@2 = True|lF",D) =
0.793, Pr(Q® = True|}'.,D) = 0.118, and Pr(Q* =
True|F~,D) = 0.089. The posterior probability distribu-
tions of 2! and 22 are the same as &.

The given task DFA W for this case study is
shown in Fig. 3. Using Alg. 1, we compute &* :=
Navigate(l), Navigate(ll), Navigate(l), Navigate(H)
and 07 := Q' 21 ?, 2%,@. In this case study, we build
the reward machine RM as in Fig. 4. Fig. 6 illustrates the
results for the Locked-Doors Domain. As can be seen,
CGC-DQRM is the only algorithm that converges to 0.6 of
the cumulative reward. For LRM-DQRM, we set . = 15
in this case study. As can be seen, LRM-DQRM did not
successfully learn a reward machine for the Locked-Doors
Domain; hence, LRM-DQRM could not learn a policy for
this case study.

VI. CONCLUSION

We proposed counterfactually-guided causal RL with RMs
(CGC-RL) in partially observable environments. In CGC-RL,
we use observational data to infer the best counterfactual
sequence for an agent to complete a given task. We then,
build a reward machine that incorporates the counterfactual
sequence to guide the agent to complete a given task. As a
future direction, we plan to apply CGC-RL to multi-agent
RL.

REFERENCES

[1] A. Forney, J. Pearl, and E. Bareinboim, “Counterfactual data-fusion
for online reinforcement learners,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
PMLR, 06-11 Aug 2017, pp. 1156-1164. [Online]. Available:
https://proceedings.mlr.press/v70/forney17a.html

[2] S. Pitis, E. Creager, and A. Garg, “Counterfactual data augmentation
using locally factored dynamics,” in Proceedings of the 34th Inter-
national Conference on Neural Information Processing Systems, Ser.
NIPS’20, Red Hook, NY, USA, 2020.

-Q —al -7 —a? - True

Fig. 3: Task DFA W in the Locked-Doors Domain.
(e,0) (m,1.8) (#' AO',0)
start —=(%o @ @
(P2ACP0) (m,1.8) (a1 A 210)
{) &)
®©
u
ZA220) (eA@,10)
Fig. 4: The linear structure of Rp in Locked-Doors Domain.

527

[s]

Fig. 5: The map of the rooms in Locked-Doors Domain.

— CGC-DQRM —— DDQN-RM
— CGC-DQRM-No —— LRM-DQRM

Locked-Doors Domain

0.0 0.5 1.0 1.5
Number of Steps (in millions)

Fig. 6: The obtained results for the Locked-Doors Domain
averaged over three independent runs.

[3] B. Huang, F. Feng, C. Lu, S. Magliacane, and K. Zhang, “AdaRL:
What, where, and how to adapt in transfer reinforcement learning,”
ArXiv, vol. abs/2107.02729, 2021.

[4] A. Zhang, Z. C. Lipton, L. Pineda, K. Azizzadenesheli, A. Anand-
kumar, L. Itti, J. Pineau, and T. Furlanello, “Learning causal state
representations of partially observable environments,” ArXiv, vol.
abs/1906.10437, 2019.

[5] L. Buesing, T. Weber, Y. Zwols, S. Racaniere, A. Guez, J.-B. Lespiau,
and N. Heess, “Woulda, coulda, shoulda: Counterfactually-guided
policy search,” 2018.

[6] Z. Xu, I. Gavran, Y. Ahmad, R. Majumdar, D. Neider, U. Topcu,
and B. Wu, “Joint inference of reward machines and policies for
reinforcement learning,” in Proceedings of the 30th International
Conference on Automated Planning and Scheduling (ICAPS). AAAI
Press, 2020, pp. 590-598.

[7]1 R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. Mcllraith,

“Using reward machines for high-level task specification and decom-

position in reinforcement learning,” in ICML, ser. Proceedings of

Machine Learning Research, vol. 80. PMLR, 2018, pp. 2112-2121.

R. Toro Icarte, T. Q. Klassen, R. Valenzano, M. P. Castro,

E. Waldie, and S. A. Mcllraith, “Learning reward machines:

A study in partially observable reinforcement learning,” Artificial

Intelligence, vol. 323, p. 103989, 2023. [Online]. Available: https:

/Iwww.sciencedirect.com/science/article/pii/S0004370223001352

[91 A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under

reward transformations: Theory and application to reward shaping,”

in Proceedings of the Sixteenth International Conference on Machine

Learning, ser. ICML ’99. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1999, p. 278-287.

S. Devlin and D. Kudenko, “Dynamic potential-based reward shaping,”

in Proceedings of the 11th International Conference on Autonomous

Agents and Multiagent Systems - Volume 1, ser. AAMAS ’12.

Richland, SC: International Foundation for Autonomous Agents and

Multiagent Systems, 2012, p. 433-440.

R. Toro Icarte, E. Waldie, T. Klassen, R. Valenzano, M. Castro,

and S. Mcllraith, “Learning reward machines for partially observable

reinforcement learning,” Advances in neural information processing

systems, vol. 32, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,

D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement

learning,” 2013.

H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double g-learning,” 2015.

[8

[t}

[10]

(1]

[12]

[13]

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 22:48:03 UTC from IEEE Xplore. Restrictions apply.

