
Distributed Reinforcement Learning For Swarm Systems With Reward

Machines

Shayan Meshkat Alsadat, Nasim Baharisangari, Yash Paliwal, and Zhe Xu

Abstract— We introduce a decentralized reinforcement learn-

ing (RL) algorithm for swarm systems where reward machines

(a type of Mealy machine) are used to encode the non-

Markovian reward functions. We use the generalized moments

(GMs) to characterize swarm features. Each agent estimates

the GM of the swarm state and uses it to estimate the state

of the reward machine. The agent then uses the estimated

state of the reward machine to update its q-values. We use the

gossip algorithm for communication between the agents. Agents

exploit this communication to update their estimated GM of the

swarm state, which leads to an update of their estimated state

of the reward machine. We derive an upper bound for the

error between the estimate GM of the swarm state and the

ground truth GM of the swarm state, and using that upper

bound; we prove the convergence of our proposed algorithm,

swarm q-learning with reward machines (Swarm-QRM). To

demonstrate the efficiency of our approach, we present two

case studies wherein, for Case Study 1, a swarm of agents will

perform a pickup and delivery task, and in Case Study 2, the

swarm of agents will conduct a search and rescue task. We also

show that Swarm-QRM outperforms the baselines, q-learning

in augmented state space (QAS), and Double Deep Q-Network

(DDQN).

I. INTRODUCTION

A large number of autonomous agents or swarm can
collaborate and accomplish tasks that an individual agent is
not capable of performing [1]. Swarms find applications in
a diverse array of scenarios, ranging from complex shape
formation [2], [3] to missions involving exploration and
rescue [1], [4], [5]. In swarm systems, as the number of states
and agents increases, it generally leads to the complexity
of control. In such cases, decentralized algorithms offer
a more viable and efficient solution [1]. A variety of
decentralized algorithms have been developed to tackle
swarm control challenges, each offering unique advantages.
Some notable approaches include algorithms based on
geometrical patterns [6], integration with fuzzy control [7],
utilization of generalized moments (GMs) such as swarm
density [1], and strategies involving the minimization of the
second smallest Laplacian eigenvalue [8].

We propose a distributed reinforcement learning (RL)
approach for swarm systems that is fully decentralized and
exploits reward machines, i.e., a type of Mealy machine, to
encode non-Markovian reward functions on the swarm-level.
Most of the existing works exploit some centralized entity to
incorporate more information into the training. Centralized

The authors are with School of Matter, Transport
and Energy, Arizona State University, Tempe, AZ 85281
{shayan.meshkat,nbaharis,ypaliwa1,xzhe1}@asu.edu

training and decentralized execution [9], [10] transforms
the training phase into a fully observable environment
problem, allowing for centralized information gathering
and learning, while policy execution remains decentralized.
In many complex tasks with sparse rewards, there are
high-level structural relationships for the sub-tasks that can
be exploited using reward machines. A method known as
q-learning for reward machines (QRM) proposed by [11],
demonstrated the effectiveness of the q-learning with reward
machines and showed that QRM would converge to an
optimal policy in tabular case. However, in their method
agent knows the structure of the reward machine, which
reduces its practicality.

In our proposed method for swarm systems, swarm
q-learning with reward machines (Swarm-QRM), we use
reward machines to incorporate high-level knowledge
information into RL; however, instead of providing direct
access to the reward machine for agents, we utilize the
(GMs) [12] to represent swarm features. Each agent
estimates the GM of the swarm state, i.e., the combination
of the agents’ states, in order to estimate the state of
the reward machine. We present two case studies; one
is a pickup and delivery task, and the other is a search
and rescue task. We compare our proposed Swarm-QRM
algorithm with two baselines, i.e., q-learning in augmented
state space (QAS) and Double Deep Q-Network (DDQN).

Contributions. We make the following contributions: (a) We
propose a novel distributed RL algorithm for swarm systems
using reward machines. (b) We derive an upper bound for the
estimation error between the estimated and the actual GMs
and show the proposed RL algorithm convergence proper-
ties. (c) We evaluate the proposed algorithm on numerical
examples in two case studies, each involving 50 agents.

II. RELATED WORK

Swarm-level RL. In MARL, Mean Field Theory [13]
scales effectively for a large number of agents, consid-
ering each agent interacts with a finite set of others. It
offers mean field Q-learning and Actor-Critic algorithms.
Our method utilizes GMs for swarm feature extraction.
An alternative is Q-learning [14] in augmented state space
(QAS), incorporating label information in q-value updates.
Our approach incorporates estimated reward machine states,
providing more insight. DDQN [15] extends DQN using two
separate neural networks, but demands substantial training
data in swarm systems. Deep RL for Swarms [16] exploits

2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

979-8-3503-8265-5/$31.00 ©2024 AACC 33

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 23:10:55 UTC from IEEE Xplore. Restrictions apply.

swarm homogeneity, treating neighboring agents’ state info
as a random variable, and applies mean feature embeddings.
Our method uses estimated GM of swarm state for encoding,
offering permutation-invariant representation, and combines
centralized learning with decentralized execution.
Control of Swarm Systems with Reward Machine.

Reward machines used for cooperative MARL suggested by
[17] where reward machines allow agents to break down
cooperative tasks into sub-tasks, enabling decentralized
learning. The proposed algorithm trains individual agents
using sub-task reward machines, transforming the team’s task
into a set of single-agent reinforcement learning problems,
eliminating the need for agents to learn simultaneously. In
our proposed method, we maintain an estimated state of the
reward machine for each agent.

Estimating Swarm Features. Our proposed algorithm is a
decentralized training methodology based on an estimated
state of the reward machine. Agents lack access to the swarm
state, making this information hidden from them in order to
have a more realistic condition. Despite this limitation, our
proposed algorithm forces agents to harmonize their actions.
Agents must collectively influence the GM of the swarm
state and coordinate their actions to complete a task. Our
proposed method addresses communication by establishing
a mechanism for agents to exchange information through
the gossip algorithm. This implementation encourages
cooperative behavior at a high level, thereby facilitating
task completion. We demonstrate that our proposed method
possesses the guarantee of converging to an optimal policy.
This guarantee, coupled with our algorithm’s testing in two
case studies, underscores its robustness and utility. In our
approach, having information about the GM of the swarm
state is important since GMs represent swarm features [18],
and to estimate the GMs accurately, we adopt a strategy
where each agent maintains an estimation. This estimation
is about the GM of the swarm state made by other agents.
Furthermore, the agents update their estimated GMs of the
swarm state as they engage with their environment, which
includes other agents. This iterative process persists until
the agents achieve a consensus regarding the GMs, ensuring
that their estimates align and converge in the limit.

III. PRELIMINARIES

In this section, the basic knowledge of reinforcement
learning and reward machines is introduced, which is
necessary for developing a reinforcement learning algorithm
for swarm systems.

Markov Decision Processes. A labeled Markov
decision process (MDP) is defined as a tuple
M = (S, sI , A, p, �,P, L) where S is a finite set of
states, sI is the agent’s initial state, A is a finite set of
actions, p : S ⇥ A ⇥ S ! [0, 1] is the transition probability
function, � 2 [0, 1) is the discount factor, P is the set of
propositional symbols corresponding to high-level events

within the environment, and L : S ⇥ A ⇥ S ! 2P

is the labeling function that assigns truth values to the
propositional symbols in P .

Remark 1: In our definition of MDP, we do not have
a reward function defined since in our proposed method,
Swarm-QRM, we define the reward on swarm-level. We
explain our swarm definition in detail in Section IV.
Additionally, we denote the set cardinality by |·|, e.g., |S|
means the size of the set S.

We denoted policy by ⇡ and an agent under policy ⇡ in
state s takes action a with probability ⇡(s, a), reaching a
new state s0 with probability p(s, a, s0). In our algorithm,
we use a modified q-learning method since our setting is
decentralized, which will be explained in detail in Section
VII.

IV. SWARM SYSTEM MODELING WITH REWARD MACHINE

A. Swarm Model

In this subsection, we present the modeling of the swarm
in RL. We first model the communication structure of the
swarm using an undirected graph defined as follows.

Definition 1: We denote an undirected graph by G =
(C, E), where C = {c1, c2, ..., cnC} is a finite set of nodes,
E ✓ E 0 = {e1,2, e1,3, ..., e1,nE , e2,3, ..., enE�1,nE} is a finite
set of edges where ei,l 2 E if nodes ci and cj are connected
by an edge in the graph G, and nC , nE 2 N = {1, 2, ...}.

Each node ci of the undirected graph G represents an agent
in the swarm. Each edge ei,j connecting the nodes i and j
represents the fact that agents i and j are neighbors, i.e.,
agents i and j can communicate with each other. Hereafter,
we denote the set of agents in the MAS by N and we use
Ni to denote the set of the neighboring agents of agent i.
The communication is asynchronous, i.e., only two agents
can communicate at each time step t and the probability of
each agent i being active at time step t is 1

|N| (here active
means agent i can initiate communication with one of its
neighboring agents).

Also, we denote the adjacency matrix of the graph G with
D. For a swarm with |N| agents, we define a |N| ⇥ |N|
matrix W where Wij denotes the probability of agent i
communicating with agent j.

Assumption 1: The graph G is time-invariant and each
agent is aware of the graph structure of the swarm.

The swarm state s 2 S is defined as s = [s1, ..., sN]
where si denotes the state of agent i and N = |N| 2 N.
In our case, agent i-th state si 2 R2 since x and y location
of the agents represent their MDP state s = [x, y]. We use
the generalized moment ⌘ 2 E ✓ R to represent a swarm
feature. UD : S ! R is a map from the swarm state to
the generalized moment (GM), i.e., ⌘ = UD(s) [18] where
D(s) is a polynomial function of the agent i-th state s. The

34

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 23:10:55 UTC from IEEE Xplore. Restrictions apply.

common generalized moments are as follows:

mean: UD(s) = s! ⌘1 =
1

|N|

|N|X

i=1

D(si) (1)

variance: UD(s) = (s�⌘11T)2 ! ⌘2 =
1

|N|

|N|X

i=1

(D(si)�⌘1)2

(2)

skewness: UD(s) =

|N|X

i=1

[(D(si)� ⌘1)(⌘2)
� 1

2]3 !

⌘3 =
1

|N|

|N|X

i=1

[(D(si)� ⌘1)(⌘2)
� 1

2]3

(3)

kurtosis: UD(s) =

|N|X

i=1

[(D(si)� ⌘1)(⌘2)
� 1

2]4 � 3!

⌘4 =
1

|N|

|N|X

i=1

[(D(si)� ⌘1)(⌘2)
� 1

2]4 � 3

(4)

In the following, we use swarm GM to represent the GM
of the swarm state for brevity.
Definition 2 (Labeled swarm-MDP): We define the swarm-
MDP as a tuple M = (N,A, E, r, T, Ls) where N is the
number of agents in the swarm, A is the swarm agent
(defined in Subsection IV-C), E ✓ R is the set of the
generalized moment and ⌘ 2 E is the generalized moment
(GM) of the swarm state which represents the swarm
features, r 2 R is the swarm-level reward, T corresponds
to the transition function defined at the swarm-level
T : SN ⇥AN ⇥SN ! R, and swarm-level labeling function
is denoted by Ls : E ! 2P .

Remark 2: Our definition of the labeled swarm-MDP is
modified based on the definition of the swarMDP from [19].

B. Reward Machine

Definition 3 (Swarm-level Reward Machine): Reward
machine defined on the swarm-level J =
(V, vI , E, 2P ,R,#, �,�, Ls) consists of a finite set of
states V , an initial state vI , input alphabet 2P , # 2 ⌦ ✓ R
transition error which allows transition to the next state if
agents are within this error limit, the transition function
� : V ⇥ 2P ⇥ ⌦ ! V , and the output function denoted by
� : V ⇥ 2P ! R.

We established the reward machine at the swarm-level
where transitions within the reward machine depend on the
swarm GM.

C. Agent Model

Our agent model is based on modifications of the agent
model presented in [19].

Definition 4 (Agent): We define the agent as tuple
A = (S,A, v̂,⇡) where A is a set of actions, v̂ 2 V

is the agent’s estimated state of the reward machine, and
⇡(s, v̂, a) is the policy of the agent.

V. CONVERGENCE OF THE GM
A. Generalized Moment Consensus

In this subsection, we introduce an approach for reach-
ing consensus among the swarm based on the gossip al-
gorithm discussed in [20], [12] for one dimension where
we apply the same framework to higher dimensions. In
what follows, we use ✓(t) to denote the vector ✓(t) =
[D(s1(t)), D(s2(t)), ..., D(s|N|(t))], ✓i(t) = D(si(t)), and
�✓(t) = ✓(t) � ✓(t � 1) at discrete time step t. For the
swarm, we assume that at time step t � 1, agents i and j
have computed the estimated GM ⇣i(t� 1) and ⇣j(t� 1),
respectively. At time step t, agents i and j communicate with
each other and update their estimates of the actual GM ⌘(t)
using Equations (5) and (6), respectively.

⇣i(t) =
1

2
(⇣i(t� 1) + ⇣j(t� 1)) + ✓i(t)� ✓i(t� 1), (5)

⇣j(t) =
1

2
(⇣i(t� 1) + ⇣j(t� 1)) + ✓j(t)� ✓j(t� 1), (6)

and other agents update their estimates of swarm GM using
Equation (7)

⇣k(t) = ⇣k(t� 1) + ✓k(t)� ✓k(t� 1), k 2 N and k 6= i, j.
(7)

We can reformulate the equations of the update of the
estimated of the swarm GM by the agents in the vector form
using Equation (8)

⇣(t) = V (t)⇣(t� 1) + ✓(t)� ✓(t� 1), (8)

where ⇣(t) = [⇣1(t), ⇣2(t), ..., ⇣ |N|(t)]T is the vector con-
taining the estimated GMs made by |N| agents at time step
t, and matrix V (t) has a probability of 1

|N|Wij to be equal

to V ij = I|N| � (ei�ej)(ei�ej)
T

2 , where I|N | is a |N| ⇥ |N|
identity matrix and ei = [0, ..., 1, ..., 0]T is a |N|⇥ 1 vector
with the i-th entry to be 1 and zero in all other entries [20],
[12]. In [20], it is proved that E(V (t)) = V is constant at
each time step t. In [20], it is shown that the convergence rate
of the estimation using Equations (5), (6) and (7) is governed
by 0  �(V) < 1 where � is the second largest eigenvalue of
V . We calculate V such that �(V) is minimized by solving
the following optimization problem.

argmin
V

g,

subject to Wij � 0, Wij = 0, if ei,j 62 E ,

V =
1

|N|

|N|X

i=1

|N|X

j=1

WijV ij ,

V � 1

|N|11
T � gI|N|,

|N|X

j=1

Wij = 1, 8i. (9)

In the optimization problem (9), V � 1
|N|11

T � gI|N|
means that (gI|N| � V + 1

|N|11
T) is semi-definite.

35

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 23:10:55 UTC from IEEE Xplore. Restrictions apply.

We show that the estimated swarm GM converges to the
actual swarm GM. Proof can be shown by first, calculating
an upper bound for the estimation error at time step t defined
as k⇣(t) � ⌘(t)1k1, and then, showing that the estimation
error converges to 0 when t!1.

Theorem 1: The Upper bound on the actual GM estima-
tion error equals Equation (10) and converges to 0 as t! 0.

⇢(t) = �t(V)
p
N⇣max +

tX

t0=1

�t�t0(V)✓max (10)

where it is assumed that each agents knows

E(k⇣[0]� ⇣[0]1k1)  ⇣max with ⇣[0] = 1
|N|

|N|P
i=1

⇣i[0]

also
p
E(k✓(t)� ✓(t� 1)k2)  ✓max where ⇣max is a

user-defined scalar value and ✓max is based on the MDP
environment.
For instance, ✓max in discrete MDP is 1 since each agent
can change its state s maximum by 1 unit at each time step.

VI. FRAMEWORK

In this section, we present a framework for distributed
reinforcement learning for swarm systems using reward
machines. Each agent uses its estimated swarm GM, ⇣i,
to estimate the state of the reward machine v̂i and then
uses it to update its q-values. With this strategy, the
q-functions are in the augmented state-space q(s, v, a).
Note that our approach only provides the agents with an
estimated state of the reward machine, not the ground
truth state of the reward machine. The reason is that the
agents in our proposed method only have access to the
estimated swarm GM, ⇣, rather than the actual swarm GM, ⌘.

The swarm is modeled as a labeled swarm-MDP M
as defined in Definition 2. Agents use asynchronous
communication in order to collect information from their
neighbors to improve their estimated swarm GMs. During
the asynchronous communication, agents update their
estimations using Equations (5)-(7). Before proceeding,
there are two points to clarify (1) In Swarm-QRM, we
require the swarm GM to reach the target states to complete
the task, meaning that we do not require the individual
states of the agents to reach the target states (where the
reward is given to the swarm for completing the task). (2)
Each agent only communicates with its neighboring agents
according to the graph structure of the swarm G.

We present our algorithm, Swarm-QRM, in Algorithm
1. First, we initialize the states for each agent and choose
an action based on the initial q-values (Lines 1-4). Then
Swarm-QRM chooses a random agent from the graph G and
randomly chooses one of its neighbors for communication
(Lines 5-7). Other agents will also update their estimated
GMs (Line9). Each agent, based on its estimated GM, will
update its estimated state of the reward machine (Line 11),
then the swarm receives a reward based on the actual swarm
GM, and agents will use this reward to update their q-values

Algorithm 1: Swarm q-learning with reward machine
(Swarm-QRM)

1 Hyperparameter: episode length episode-length, learning
rate ↵, discount factor �

2 Input: reward machine as (V, vI , E, 2P ,R, �, L) and
q-function Q(S, a)
1: si InitializeState(), ⇣i si, v̂i v̂i0
2: for 0  t  episode-length do

3: a GetEpsilonGreedyAction(qi, si)
4: s0, done EnvExecuteAction(s, a)
5: if AgentIsActive(i) then

6: Communicate with neighbor l 2 |N|i
7: ⇣0i (⇣i+⇣l)

2 + ✓0i � ✓i

8: else

9: ⇣0i ⇣i + ✓0i � ✓i

10: end if

11: v̂0
i
 �(v̂,#, L(⇣i, a, ⇣0i))

12: Agent i recieves reward r from the ground truth reward
machine

13: q(si, v̂i, a)
(1� ↵)q(si, v̂i, a) + ↵(r + �maxa02A q(s0i, v̂0

i
, a0))

14: if done then

15: StartNextEpisode()
16: end if

17: si s0, vi v0, ⇣i ⇣0i

18: end for

(Lines 11-13). Then, the Boolean variable done is set to True

if a terminal condition is met by the actual swarm GM (Line
14-16). Then the Swarm-QRM update the agent’s state (si),
initial state of the reward machine (v̂i), and estimated GM
(⇣i) (Line 17).

VII. CONVERGENCE OF SWARM-QRM
In this section, we prove that using Swarm-QRM, the

policy of each agent i converges to its optimal policy
⇡i,⇤. Bellman equation in the augmented state space fol-
lows the form q(si, v̂i, a) (1 � ↵)q(si, v̂i, a) + ↵(r +
�maxa02A q(s0i, v̂0

i

, a0)). At time step t = 0, each agent i
initializes its q-value while being at the initial state of the
reward machine v0, the initial state of agent i is si0, and the
initial estimated GM of the agent i, is ⇣i(0). Each agent then
updates its estimation using the gossip algorithm. At each
time step t, each agent i uses its estimation ⇣i to update its
state of the reward machine using

v̂it+1 = �(v̂it, L
s(⇣i(t), a, ⇣i(t+ 1))) (11)

which shows that the transition of v̂it to v̂it+1 is a function
of ⇣i(t) and ⇣i(t+ 1). Now, in order to show that Swarm-
QRM converges to the optimal policy, we need to show that
vt = v̂it, 8i 2 N when t!1.

First, we define the constraint in the ground truth reward
machine in Definition 3. We denote the label associated with
a target state  by ⇤, and define the following constraint.

vt+1 6= vt iff |⌘(t)� |d < µ (12)

where |·|d denotes the absolute value of the difference
between the actual swarm GM ⌘ and the target state,  in the

36

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 23:10:55 UTC from IEEE Xplore. Restrictions apply.

d-th dimension. Constraint (12) enforces that the transition
from vt to the next state occurs only when the distance
between ⌘(t) and  is less than µ 2 R (user defined upper
bound on the absolute value of the difference between the
actual swarm GM and the target state) in dimension d, i.e.,
the label associated with ⇤ is True only when the distance
between ⌘(t) and  is less than µ in dimension d (reward
machine state transitioned to the next state; thus, it is not
equal to its previous time step, vt+1 6= vt).

In order to prove that vt = v̂it, 8i 2 N when t ! 1,
we need to guarantee that the transitions of the estimated
states of the reward machine follow the same sequence of
transitions as the actual states of the reward machine.

Using triangle inequality, we define the following con-
straint for the transition of v̂it to v̂it+1.

v̂it+1 6= v̂it iff |⇣i(t)� |d < µ� ✏ (13)

where ✏ is a user defined upper bound on the ⇢(t) in
Equation (10) which is an upper bound on the estimation
error k⇣(t)�⌘1k1, and µ�✏ > 0 (transition error mentioned
in Definition 3). Constraints (13) states that the transition
of the estimated states of the reward machine to the next
state occurs only when the absolute value of the difference
between the estimated swarm GM ⇣i(t) and the target state
 in the d-th dimension is less than µ � ✏. In other words,
the label is ⇤ is True only when the absolute difference
of the estimated swarm GM, ⇣i(t) and the target state  in
the d-th dimension is less than µ � ✏. Hence, the estimated
state of the reward machine v̂it follows the same sequence of
transitions as the actual state of the reward machine vt.

VIII. CASE STUDIES

In our case studies, swarm agents must complete a se-
quence of tasks in a specific order. They synchronize their
actions to ensure each task is finished before moving to
the next. Our focus is on using first-order and second-order
swarm GMs to describe swarm behavior. We use the QAS
and DDQN baselines as mentioned in the introduction since
these two methods are proven to converge to optimal policy
for swarm systems using reward machines.

⇣̄1(t) =
1

|N|

|N|X

i=1

⇣i(t) (14)

⇣̄2(t) =
1

|N|

|N|X

i=1

(⇣i(t)� ⇣̄1(t))
2 (15)

In Equation (14) and Equation (15) the ⇣̄1(t) and ⇣̄2(t) are
the first-order and second-order swarm GMs respectively.

A. Case Study 1

In our environment, a swarm of agents coordinate their
actions and collaboratively achieve a predefined sequence
of sub-tasks while avoiding obstacles and maintaining a
certain formation. The agents in the swarm must first reach
the pickup location before proceeding to reach the delivery

destination. Thus, the order of task execution, determined
by the truth value of the labels based on the swarm GM, is
important. Figure 1 demonstrates the task.

Agent
Pickup
Delivery destination

Fig. 1. Swarm must first reach the pickup location before proceeding to
reach the delivery location.

The reward machine associated with Case Study 1 is
shown in Figure 2.

V0Start

V1 V2V3

(pk, 0)

(¬pk ^ ¬d, 0)

(d, 0)

(d, 1)
(¬d, 0)

(>, 0)

(>, 0)

Fig. 2. Reward machine for Case Study 1. Swarm must first reach the
pickup point pk, then move to the delivery destination d, meaning the
transition from v0 state to v1 state while the associated reward is 0.

0 20000 40000 60000 80000 100000
Step

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Swarm-QRM

QAS

DDQN

Fig. 3. Cumulative reward of 5 independent runs averaged for each 2000
steps for Case Study 1.

Figure 3 shows that the Swarm-QRM reaches the optimal
policy within 20000 steps while the QAS reached 50% of the
optimal policy, and DDQN is stuck at 0 cumulative rewards.

B. Case Study 2

In Case Study 2, the swarm must conduct a search and
rescue task. The swarm must first find the survivors and then
carry them to a safe location; however, there are regions that
are forbidden for agents in the swarm (fire locations). Figure
4 demonstrates the task.

Fire

Survivor's location

Safe location

Agent

Fig. 4. Agents must first find the survivors’ location and then carry the
survivors to either of the two safe places while avoiding fires.

37

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 23:10:55 UTC from IEEE Xplore. Restrictions apply.

The associated reward machine for Case Study 2 is demon-
strated in Figure 5.

V0Start V1

V2

V3

V4

(sr, 0)

(¬sr ^ ¬di, 0)
(fr _ di, 0)

(¬&, 0)

(& ^ (d1 _ d2), 1)

(fr, 0)

(¬&, 0)

(>, 0)

(>, 0)

(>, 0)

Fig. 5. Reward machine for Case Study 2. sr means finding the survivors;
d1 means safe location 1; d2 means safe location 2; di means either d1
or d2; fr means fire (forbidden region); & means second-order GM. Edge
between v0 and v1 labeled as (sr, 0) means transition from state of the
reward machine v0 to v1 if sr is True, returning reward of 0.

In Case Study 2, agents in the swarm must first reach the
survivor’s location before going to any of the safe locations.
We use & or the second-order moment GM to control the
spread of the agents in the swarm.

0 50000 100000 150000 200000 250000 300000 350000 400000
Step

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Swarm-QRM

QAS

DDQN

Fig. 6. cumulative reward of 5 independent runs averaged for each 2000
steps for Case Study 2.

Figure 6 shows that the Swarm-QRM reaches the optimal
policy within 250000 steps while the QAS and DDQN are
stuck at zero cumulative rewards for up to 500000 steps (with
400000 steps shown in Figure 6).

IX. CONCLUSIONS
We have proposed a decentralized reinforcement learning

algorithm for swarm systems using reward machines. We
have shown that incorporating the estimated state of the
reward machine to each agent’s q-values improves the rein-
forcement learning, meaning our proposed algorithm reaches
the optimal policy sooner compared to the baselines. Further-
more, we have demonstrated that our algorithm will almost
surely converge to the optimal policy. In the future, we
will extend our method to deal with dynamic surroundings,
e.g., dynamic graph structures or environments with partial
observability.

ACKNOWLEDGMENT
This research is partially supported by the National Sci-

ence Foundation under grants CNS 2304863 and CNS
2339774, and the Office of Naval Research under grant ONR
N00014-23-1-2505.

REFERENCES

[1] Franck Djeumou, Zhe Xu, Murat Cubuktepe, and Ufuk Topcu. Prob-
abilistic control of heterogeneous swarms subject to graph temporal
logic specifications: A decentralized and scalable approach. IEEE

Transactions on Automatic Control, 68(4):2245–2260, 2022.
[2] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar.

Towards a swarm of agile micro quadrotors. Autonomous Robots,
35(4):287–300, 2013.

[3] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014.

[4] James Kennedy. Swarm intelligence. In Handbook of nature-inspired

and innovative computing: integrating classical models with emerging

technologies, pages 187–219. Springer, 2006.
[5] Ruixuan Yan and Agung Julius. A decentralized b&b algorithm for

motion planning of robot swarms with temporal logic specifications.
IEEE Robotics and Automation Letters, 6(4):7389–7396, 2021.

[6] Teddy M Cheng and Andrey V Savkin. Decentralized control of multi-
agent systems for swarming with a given geometric pattern. Computers

& Mathematics with Applications, 61(4):731–744, 2011.
[7] Bijan Ranjbar-Sahraei, Faridoon Shabaninia, Alireza Nemati, and

Sergiu-Dan Stan. A novel robust decentralized adaptive fuzzy control
for swarm formation of multiagent systems. IEEE Transactions on

Industrial Electronics, 59(8):3124–3134, 2012.
[8] Maria Carmela De Gennaro and Ali Jadbabaie. Decentralized control

of connectivity for multi-agent systems. In Proceedings of the 45th

IEEE Conference on Decision and Control, pages 3628–3633. IEEE,
2006.

[9] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,
and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-
competitive environments. Advances in neural information processing

systems, 30, 2017.
[10] Yihe Zhou, Shunyu Liu, Yunpeng Qing, Kaixuan Chen, Tongya Zheng,

Yanhao Huang, Jie Song, and Mingli Song. Is centralized training with
decentralized execution framework centralized enough for marl? arXiv

preprint arXiv:2305.17352, 2023.
[11] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila

McIlraith. Using reward machines for high-level task specification and
decomposition in reinforcement learning. In International Conference

on Machine Learning, pages 2107–2116. PMLR, 2018.
[12] Ruixuan Yan and Agung Julius. Distributed consensus-based online

monitoring of robot swarms with temporal logic specifications. IEEE

Robotics and Automation Letters, 7(4):9413–9420, 2022.
[13] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang,

and Jun Wang. Mean field multi-agent reinforcement learning. In
International conference on machine learning, pages 5571–5580.
PMLR, 2018.

[14] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine

learning, 8:279–292, 1992.
[15] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforce-

ment learning with double q-learning. In Proceedings of the AAAI

conference on artificial intelligence, volume 30, 2016.
[16] Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann, et al.

Deep reinforcement learning for swarm systems. Journal of Machine

Learning Research, 20(54):1–31, 2019.
[17] Cyrus Neary, Zhe Xu, Bo Wu, and Ufuk Topcu. Reward machines

for cooperative multi-agent reinforcement learning. arXiv preprint

arXiv:2007.01962, 2020.
[18] Ruixuan Yan, Zhe Xu, and Agung Julius. Swarm signal temporal logic

inference for swarm behavior analysis. IEEE Robotics and Automation

Letters, 4(3):3021–3028, 2019.
[19] Adrian Šošić, Wasiur R KhudaBukhsh, Abdelhak M Zoubir, and Heinz

Koeppl. Inverse reinforcement learning in swarm systems. arXiv

preprint arXiv:1602.05450, 2016.
[20] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah.

Randomized gossip algorithms. IEEE transactions on information

theory, 52(6):2508–2530, 2006.

38

Authorized licensed use limited to: Arizona State University. Downloaded on April 03,2025 at 23:10:55 UTC from IEEE Xplore. Restrictions apply.

