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Deep Networks as Denoising Algorithms: Sample-Efficient Learning

of Diffusion Models in High-Dimensional Graphical Models

Song Mei∗ Yuchen Wu†

Abstract

We investigate the efficiency of deep neural networks for approximating scoring functions in diffusion-

based generative modeling. While existing approximation theories leverage the smoothness of score

functions, they suffer from the curse of dimensionality for intrinsically high-dimensional data. This

limitation is pronounced in graphical models such as Markov random fields, where the approximation

efficiency of score functions remains unestablished.

To address this, we note score functions can often be well-approximated in graphical models through

variational inference denoising algorithms. Furthermore, these algorithms can be efficiently represented

by neural networks. We demonstrate this through examples, including Ising models, conditional Ising

models, restricted Boltzmann machines, and sparse encoding models. Combined with off-the-shelf dis-

cretization error bounds for diffusion-based sampling, we provide an efficient sample complexity bound

for diffusion-based generative modeling when the score function is learned by deep neural networks.
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1 Introduction

In recent years, diffusion models [SDWMG15, HJA20, SE19, SSDK+20] have emerged as a leading approach
for generative modeling, achieving state-of-the-art results across diverse domains. These include break-
throughs in image generation, text generation, and speech synthesis [DN21, RDN+22, AJH+21, PVG+21].
Diffusion models now power many of the most advanced generative AI systems like DALL·E 2, Stable Diffu-
sion, and Imagen [dal22, RBL+22, SCS+22]. For overviews of the rapid progress in this exciting new field,
see the recent surveys [YZS+22, CHIS23].

Given a dataset of n independent and identically distributed samples {xi}ni=1 drawn from an unknown
d-dimensional data distribution µ ∈ P(Rd), diffusion models aim to learn a generative model that produces
new samples x̂ ∼ µ̂ that match this distribution. Popular diffusion models such as DDPM [HJA20] achieve
this through a two-step procedure:

• Step 1. Fit approximate score functions ŝt : Rd → Rd for t ∈ [0, T ] by minimizing the following
empirical risk over a neural network class F :

ŝt = arg min
NN∈F

1

n

n∑

i=1

∥∥σ−1
t gi+NN(λtxi+σtgi)

∥∥2
2
, gi ∼iid N (0, Id), (λt,σ

2
t ) = (e−t, 1−e−2t). (ERM)

• Step 2. Discretize the following stochastic differential equation (SDE) from Gaussian initialization,
whose drift term is given by the fitted approximate score functions:

dYt =
(
Yt + 2ŝT−t(Yt)

)
dt+

√
2dBt, t ∈ [0, T ], Y0 ∼ N (0, Id), (SDE)

and take the approximate sample x̂ = YT ∈ Rd.

Score functions st(z) are central to the diffusion model framework. Given infinite data and model capacity,
the minimizer of the empirical risk in Eq. (ERM) yields the score function,

st(z) = ∇z logµt(z), µt(z) : marginal density of z, when x ∼ µ and [z|x] ∼ N (λtx,σ
2
t Id). (Score)

Standard analysis shows that replacing the fitted score functions ŝt(z) with the true score functions st(z)
in Eq. (SDE), and sending T → ∞, recovers the original data distribution µ. Therefore, the sample quality
from diffusion models relies on two key factors: (1) how well the fitted score functions ŝt approximate the
true score functions st; and (2) how accurately the SDE discretization scheme approximates the continuous
process in Eq. (SDE).

Recent work has made substantial progress on controlling the SDE discretization error in diffusion
models, assuming access to a good score function estimator [CCL+22, CLL23, LLT23, LWCC23, BDBDD23].
However, understanding when neural networks can accurately estimate the score function itself remains less
explored. Some analyses rely on strong distributional assumptions for score function realizability [SCK23,
YHN+23], while others exploit the smoothness of score functions, incurring the curse of dimensionality
[OAS23, CHZW23]. These results do not cover many common high-dimensional graphical models for images
and text, such as Markov random fields or restricted Boltzmann machines [GG86, RKH10, CO01].
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A new perspective on score function approximation. We provide a new perspective on approxi-
mating diffusion model score functions with neural networks. First, we observe that by Tweedie’s formula,
score functions st : Rd → Rd are related to denoising functions mt : Rd → Rd, which give the posterior
expectation of data x given noisy observations z:

st(z) = (λt ·mt(z) − z)/σ2
t , mt(z) = E(x,g)∼µ⊗N (0,Id)[x|λtx+ σtg = z]. (Denoiser)

Our key insight is that if the data distribution µ arises from a graphical model, these denoisers mt(z) can
often be approximated by variational inference algorithms, which takes the form {fℓ : Uℓ−1 → Uℓ}ℓ∈[L]∪{fin :
Rd → U0,fout : UL → Rd},

mt(z) ≈ fout(u
(L)), u(ℓ) = fℓ(u

(ℓ−1)), ℓ ∈ {1, . . . , L}, u(0) = fin(z). (VI)

For instance, when µ is an Ising model, the denoising function mt can be approximated by an iterative
algorithm that minimizes a variational inference objective [JGJS99, WJ+08]. Each update step fℓ is com-
posed of simple operations, including matrix-vector multiplication and pointwise nonlinearity, which can be
captured by a two-layer neural network fℓ(u) ≈ u+W1 ·ReLU(W2u). This allows efficient approximation
of Ising model score functions using a residual network [HZRS16]: By comparing the variational inference
updates (VI) and residual network forms (ResNet), we can see how the iterative variational inference steps
directly translate to residual block approximations. This establishes a clear connection between variational
inference in graphical models and score approximation in diffusion models.

Our contributions. In this paper, we analyze several examples of high-dimensional graphical models,
including Ising models (Section 3), latent variable Ising models (Section 4.1), conditional Ising models
(Section 4.2), and sparse coding models (Section 4.3). Assuming the denoising function can be approximated
by the minimizer of a variational inference objective, verified in our examples, we derive an efficient score
estimation error bound. This modular score estimation result is a valuable step toward sampling guarantees
for diverse diffusion sampling schemes. For instance, combined with existing discretization error analyses
for the DDPM sampling scheme, we provide a sample complexity guarantee for diffusion-based generative
modeling and conditional generative modeling using neural network-based score learning.

2 Preliminaries: the DDPM sampling scheme

This section provides details on the two-step DDPM sampling scheme in Algorithm 1. The inputs of the
algorithm are n IID samples {xi}i∈[n] ⊆ Rd from a distribution µ. The algorithm also receives parameters
(d,D, L,M,B) for specifying the ResNet class, and (N,T, δ, {tk}0≤k≤N ) for specifying the time discretization
scheme. The first step of the algorithm performs empirical risk minimization to compute the approximate
score functions ŝt (lines 2-5). The second step generates a sample by discretizing the reverse-time SDE
using the fitted score functions (lines 7-9). We discuss the score learning and SDE discretization steps in
more detail below.

Empirical risk minimization and the ResNet class. The first step of Algorithm 1 solves an empir-
ical risk minimization problem (1) to fit the score functions. This regresses manually-generated standard
Gaussian noises {gi}i∈[n] on the noisy samples {λtxi + σtgi}i∈[n], for (λt,σ2

t ) = (e−t, 1 − e−2t), using a
standard residual network architecture ResNW : Rd → Rd. The ResNet is parameterized by a set of weight

matrices W = {W (ℓ)
1 ∈ RD×M ,W (ℓ)

2 ∈ RM×D}ℓ∈[L] ∪ {Win ∈ R(d+1)×D,Wout ∈ RD×d} with embedding
dimension D, number of layers L, and hidden-layer width M . It applies iterative residual blocks with ReLU
nonlinearities (ReLU(x) = x · 1{x > 0}) to map an input z to an output in Rd:

ResNW (z) = Woutu
(L), u(ℓ) = u(ℓ−1) +W

(ℓ)
1 ReLU(W (ℓ)

2 u(ℓ−1)), u(0) = Win[z; 1]. (ResNet)

The minimization in (1) is over the ResNets whose weights are contained in a B-bounded set, specified by
parameters (d,D, L,M,B)

Wd,D,L,M,B :=
{
W = {W (ℓ)

1 ,W (ℓ)
2 }ℓ∈[L] ∪ {Win,Wout} : |||W ||| ≤ B

}
. (3)
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Algorithm 1 The DDPM sampling scheme

Require: Samples {xi}i∈[n] ⊆ Rd. ResNet parameters (d,D, L,M,B). Discretization scheme parameters
(N,T, δ, {tk}0≤k≤N ) with 0 = t0 < · · · < tN = T − δ. Denote γk = tk+1 − tk.

1: // Computing the approximate score function
2: Sample {gi}i∈[n] ∼iid N (0, Id).
3: for t ∈ {T − tk}0≤k≤N−1 do
4: Solve the ERM problem below for t = T − tk:

Ŵt = arg min
W∈Wd,D,L,M,B

1

n

n∑

i=1

∥∥∥σ−1
t gi + Pt[ResNW ](λtxi + σtgi)

∥∥∥
2

2
, (λt,σ

2
t ) = (e−t, 1− e−2t). (1)

5: Take the approximate score function to be ŝt(z) = Pt[ResNŴt
](z).

6: // Sampling by discretizing the stochastic differential equation
7: Sample Ŷ0 ∼ N (0, Id).
8: for k = 0, · · · , N − 1 do
9: Sample Gk ∼ N (0, Id). Calculate Ŷk+1 using the exponential integrator scheme:

Ŷk+1 = eγk · Ŷk + 2(eγk − 1) · ŝT−tk(Ŷk) +
√
e2γk − 1 ·Gk. (2)

Return: x̂ = ŶN .

Here the norm of ResNet weights is defined as

|||W ||| := max
ℓ∈[L]

{
∥W (ℓ)

1 ∥op + ∥W (ℓ)
2 ∥op

}
∨max

{
∥Win∥op, ∥Wout∥op

}
. (4)

For technical reasons, we truncate the ResNet output using the operator Pt, which constrains the
norm of the approximated denoising function. Given a function f : Rd → Rd, we define Pt[f ](z) =
projλtσ

−2
t

√
d(f(z) + σ−2

t z) − σ−2
t z, where projR(z) = z · 1{∥z∥2 ≤ R}+ R · (z/∥z∥2) · 1{∥z∥2 > R} is the

projector of z ∈ Rd into the R-Euclidean ball. Note that when f(z) is a score function, f(z) + σ−2
t z is a

rescaled denoising function and should be bounded for data distribution with compact support. This oper-
ator is a technical detail that could be eliminated in practice — it is only used to control the generalization
error of the empirical risk minimization problem.

Choice of the discretization scheme. The second step of Algorithm 1 discretizes the backward SDE
using the exponential integrator scheme. While multiple options exist for the time discretization {tk}0≤k≤N ,
we choose a particular scheme that uses a uniform grid in the first phase and an exponential decaying grid
in the second phase. As shown in [BDBDD23], such a scheme provides a sharp sampling error control.

Definition 1 (Two-phase discretization scheme [BDBDD23]). The two-phase discretization scheme has
parameters (κ, N0, N, T, δ) ∈ (0, 1)×N×N×R× (0, 1), where (κ, N0, N) are free parameters and (T, δ) are
fully determined by (κ, N0, N). In the first uniform phase, the N0 time steps have equal length κ. In the
second exponential phase, the N −N0 steps decay with rate 1/(1 + κ) ∈ (0, 1). The last time step tN has a
gap δ = (1 + κ)N0−N ∈ (0, 1) to T .

Specifically, we take t0 = 0, tk = kκ for k ≤ N0, tN0
= N0κ = T − 1, tN0+k = T − (1 + κ)−k for

0 ≤ k ≤ N − N0, and tN = T − (1 + κ)N0−N = T − δ. Defining γk = tk+1 − tk, we have γk = κ for
k ≤ N0 − 1, and γN0+k = κ/(1 + κ)k+1 for 0 ≤ k ≤ N −N0 − 1. See [BDBDD23, Figure 1] for a pictorial
illustration of this scheme.

The conditional diffusion model. In conditional generative modeling tasks, we observe IID samples
{(xi, θi)}i∈[n] ∼iid µ, and our goal is to learn a model to generate new samples x̂ from the conditional
distribution µ(x|θ) for a given θ.
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The DDPM sampling scheme can be simply adapted to solve conditional generative modeling tasks,
as per Algorithm 2. Specifically, we modify the ResNet in empirical risk minimization to take the form
(ResNet-Conditional), admitting inputs (λtxi + σtgi, θi) ∈ Rd × Rm. The approximated score functions
ŝt(z) become conditional ŝt(z; θ) = Pt[ResNŴt

](z, θ), estimating the conditional score functions st(z; θ) =

∇z logµt(z, θ), where µt is the joint density of (z, θ) when (x, θ) ∼ µ and [z|x] ∼ N (λtx,σ2
t Id). Details of

the conditional algorithm are provided in Appendix A.1.

3 Diffusion models for Ising models

The Ising model µ ∈ P({±1}d) is a distribution over the discrete hypercube, with probability mass function
characterized by an energy function of spin configurations. Specifically,

µ(x) = Z−1 exp{⟨x,Ax⟩/2}, x ∈ {±1}d, Z =
∑

x∈{±1}d exp{⟨x,Ax⟩/2}. (Ising)

The Ising model stands as one of the most fundamental graphical models; it belongs to the exponential family,
yet its normalizing constant, Z, does not possess an analytic expression. Computational complexities in
parameter estimation and sampling from Ising models have remained a focal point of research for several
decades [EAMS22, MM09, JS93]. A notable variant of the Ising model is the Sherrington-Kirkpatrick (SK)
model [SK75], where A is a Gaussian random matrix. This model has attracted extensive research due to
its ties with statistical physics and high-dimensional statistics [MM09, WJ+08].

Consider the task of generative modeling where the input consists of IID samples {xi}i∈[n] ∼ µ derived
from the Ising model. To demonstrate that the DDPM sampling scheme (Algorithm 1) provides a sample
x̂ ∼ µ̂ with µ̂ ≈ µ, we need to control the score estimation error E[∥ŝt(z) − st(z)∥22] [BDBDD23]. Here,
ŝt is the trained ResNet and st(z) relates to the denoiser mt(z) = E(x,g)∼µ⊗N (0,Id)[x|λtx + σtg = z]
per (Denoiser). To calculate mt(z), a naive variational Bayes approximation [WJ+08] suggests using the
minimizer of the naive variational Bayes (VB) free energy Fnaive

t :

Fnaive
t (m; z) =

d∑

i=1

−hbin(mi)−
1

2
⟨m,Am⟩ − λt

σ2
t

⟨z,m⟩,

−hbin(m) =
[1 +m

2
log
(1 +m

2

)
+

1−m

2
log
(1−m

2

)]
.

However, in many cases, a correction to the VB free energy is needed for its minimizer to be consistent with
the denoiser mt(z) [TAP77, GJM19, FMM21, FLS22]. To establish our main result, we will assume the
consistency of a free energy minimizer with the denoiser.

Assumption 1 (Consistency of the free energy minimizer in Ising models). Let x ∼ µ(σ) ∝ exp{⟨σ,Aσ⟩/2}
and z ∼ N (λtx,σ2

t Id). Denote the marginal distribution of z by µt. For any fixed t, assume that there
exists ε2VI,t(A) < ∞ and K = K(A, t) with ∥K −A∥op ≤ A < 1, such that

Ez∼µt
[∥m̂t(z)−mt(z)∥22]/d ≤ ε2VI,t(A),

m̂t(z) = argminm∈[−1,1]d

{
FVI

t (m; z) =
d∑

i=1

−hbin(mi)−
1

2
⟨m,Am⟩ − λt

σ2
t
⟨z,m⟩+ 1

2
⟨m,Km⟩

}
.

In our assumption, the free energy FVI
t (m; z) = Fnaive

t (m; z) + ⟨m,Km⟩/2 includes a correction term
⟨m,Km⟩/2 added to the naive VB free energy. In the statistical physics and variational inference literature,
this correction term is often called the Onsager’s reaction term, and the resulting VI free energy is often
called the Thouless-Anderson-Palmer (TAP) free energy [TAP77]. In Section 3.1, we will discuss cases in
which the VI approximation error ε2VI,t(A) can be well-controlled.

Given Assumption 1 holds, we are ready to provide a bound on the estimation error of the approximate
score function. We give a proof outline in Section 3.3 and the full proof in Appendix B.
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Theorem 1. Let Assumption 1 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given by
Algorithm 1 in which we take

D = 3d, M ≥ 4d, B ≥ 7 · (M/d) · log(M) + 1/min
k

{T − tk}+
√
d.

Then with probability at least 1− η, for any t ∈ {T − tk}0≤k≤N−1, we have

Ez∼µt
[∥ŝt(z) − st(z)∥22]/d ! λ2

tσ
−4
t ·

(
ε2VI,t(A) + ε2ResN + ε2gen

)
, (5)

where

ε2ResN =
d2

M2(1 −A)2
+A2L, ε2gen =

√
(MdL+ d2)[T + L log(BL)] + log(N/η)

n
. (6)

Theorem 1 shows the score estimation error can be bounded by three terms: ε2VI, ε
2
ResN, and ε2gen. The

first term ε2VI is the error from Assumption 1, independent of the ResNet architecture and sample size n, and
often small when dimension d is large. We will discuss this term in more detail in Section 3.1. The second
term ε2ResN is the ResNet approximation error that vanishes as depth L and width M increase. The third
term ε2gen is the generalization error controlled for sample size n polynomial in (d,M,L, T, logB, log(N/η)).
We remark that our generalization error bound ε2gen may not be tight; localization techniques could possibly
yield a 1/n convergence rate [BBM02, Wai19].

Combining Theorem 1 with off-the-shelf results on the DDPM discretization error [BDBDD23], we obtain
the following bound on the sampling error in terms of KL divergence:

Corollary 1. Let Assumption 1 hold. Consider the two-phase discretization scheme as in Definition 1.
Denote the distribution of the output of Algorithm 1 as µ̂. Then, with probability at least 1− η, we have

KL(µδ, µ̂)/d ! ε2score + ε2disc, (7)

where
ε2score ≤ δ−1 ·

(
sup

0≤k≤N−1
ε2VI,T−tk + ε2ResN + ε2gen

)
, ε2disc ≤ κ2N + κT + e−2T . (8)

Equation (7) provides control on the KL divergence between µδ and µ̂ normalized by dimension d. If the
right-hand side is small, this guarantees the two distributions are close in an average per-coordinate sense:
for two d-dimensional product distributions µ = N (0, 1)⊗d and ν = N (ε, 1)⊗d that are close per coordinate,
their KL divergence scales as KL(µ, ν) ≍ d ·ε2, growing linearly with d. Furthermore, it is possible to derive
bounds on the distance between the original distribution µ (instead of µδ) and the learned distribution µ̂
using other DDPM discretization analyses such as [CCL+22, CLL23, LWCC23].

3.1 Verifying the assumption in examples

This section provides examples that admit controlled VI approximation error ε2VI,t. The results in this
section are proved in Appendix B.3.

Ising model in the VB consistency regime. There is a line of work studying the consistency of the
naive mean-field variational Bayes (VB) free energy in Ising models under high-temperature conditions
[CD16, Eld18, JKM18, MS22]. We build on this by providing a quantitative bound on the variational
inference approximation error for a general coupling matrix A in this regime.

Lemma 1. Assume ∥A∥op < 1/2. Then for any t, Assumption 1 is satisfied for K = 0, and

ε2VI,t(A) ≤ 4

1− 2∥A∥op
∥A∥2F

d
. (9)

As an example, for the ferromagnetic Ising model we have A = β11T/d, giving ε2VI,t(A) ≤ [4β2/(1 −
2β)]/d. This shows the VI approximation error vanishes as β < 1/2 and d → ∞. However, this is
not a particularly interesting regime for Ising models, since they can be well-approximated by a product
distribution when β is small [CD16, Eld18].
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The Sherrington-Kirkpatrick model. The Sherrington-Kirkpatrick model assumes A = βJ , where
J ∼ GOE(d) is a symmetric Gaussian random matrix with off-diagonal entries that are IID Gaussian with
variance 1/d. Prior work has shown that the VB free energy does not provide consistent estimation in this
model [GJM19, FMM21]. Instead, the variational objective that yields a consistent estimator of the Gibbs
mean is the Thouless-Anderson-Palmer (TAP) free energy [TAP77, FMM21, EAMS22]. Using results on
the TAP free energy, the variational inference (VI) approximation error can be controlled for this model
when β < 1/4.

Lemma 2. [Corollary of Lemma 4.10 of [EAMS22]] Assume A = βJ where J ∼ GOE(d) and β < 1/4.
Then for any t, there exists matrices K = ctId for some ct, such that with high probability, ∥A− ctId∥op ≤
A < 1 and

εVI,t(βJ)
p−→ 0, as d → ∞.

Lemma 2 provides a qualitative result on the consistency of variational inference (VI) for the Sherrington-
Kirkpatrick model, but does not give a non-asymptotic error bound. To establish a non-asymptotic guar-
antee, one could potentially leverage tools like the smart path method [Tal03, Theorem 2.4.20] or Stein’s
method [Cha10]. We conjecture it is possible to prove a quantitative error bound of order C(β)/d using
these techniques, as illustrated in [Tal03, Theorem 2.4.20].

Other Ising models. We conjecture that Lemma 2 could extend to a variety of other models including
non-Gaussian Wigner matrices [CH06], heterogeneous variances [Wu23], orthogonally invariant spin glasses
[FLS22], and spiked matrix models with non-Rademacher priors [FMM21, LM19]:

• Non-Gaussian Wigner matrices. We have A = βJ where J is a symmetric random matrix whose
off-diagonal elements are independent with variance 1/d and satisfy some moment condition. This
generalizes GOE matrices to non-Gaussian distributions. Since these matrices have similar properties
to GOE matrices [CH06], we conjecture Lemma 2 should hold.

• Heterogeneous variance: multi-species Sherrington-Kirkpatrick models. We have A = βJ where J is
a random matrix with independent entries but heterogeneous variance. An example is the bipartite
Sherrington-Kirkpatrick model specified by a set S ⊆ [d], with Jij = Jji ∼ N (0, 1/d) for i ∈ S and
j ∈ Sc, and Jij = 0 for i, j ∈ S or i, j ∈ Sc. The TAP equations verifying Assumption 1 has been shown
to hold in similar models [Wu23] in the high-temperature regime β ≤ β0.

• Orthogonally invariant spin glass models. We have A = βJ , where J = OEOT ∈ Rd×d. Here,
O ∼ Haar(SO(d)) is a uniform random orthogonal matrix and E = diag(e1, . . . , ed) ∈ Rd×d is a diagonal
matrix. The TAP equations have been shown for related models [FLS22] in the high-temperature regime.

• Spiked matrix models. Suppose we observe Y = uuT + J where J ∼ GOE(d) and u ∈ Rd with
ui ∼iid π0 for some distribution π0 ∈ P(R). The posterior distribution of u given observation Y is given
by µ(x) ∝ exp{⟨x,Y x⟩/2− ∥x∥42/(4n)}πd

0(x). Taking this µ as the sample distribution, we conjecture
that Assumption 1 can be verified for this model [FMM21, LM19].

3.2 Discussions

More explicit sample complexity bounds. Corollary 1 provides a sampling error bound in terms of
the KL divergence of µδ and µ̂. To interpret this bound, assume µ̂ satisfies a dimension-free transportation-
information inequality, i.e., W 2

1 (µδ, µ̂) ! KL(µδ, µ̂). Further assume supt ε
2
VI,t(A) ! 1/d (conjectured to

hold for the SK model when β < 1). Since W 2
1 (µδ, µ)/d ! δ, this implies

W 2
1 (µ, µ̂)/d ! W 2

1 (µ, µδ)/d+KL(µδ, µ̂)/d ! δ + ε2score + ε2disc.

By the formulation of ε2score and ε2disc in Eq. (6) and (8) and by supt ε
2
VI,t(A) ! 1/d, to ensure W 2

1 (µ, µ̂)/d !

ε2, it suffices to take

δ ≍ ε2, T ≍ log(1/ε), κ ≍ ε2/ log(1/ε), N ≍ log2(1/ε)/ε2,

d ≍ 1/ε4, M ≍ 1/ε6, L ≍ log(1/ε), n ≍ log3(1/ε)/ε18.
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The role of dimensionality. In contrast to existing results [OAS23, CHZW23] in which the score es-
timation error bounds exhibit a curse of dimensionality, our result seems to demonstrate a “blessing of
dimensionality”. Specifically, the term ε2VI,t in Theorem 1 is independent of ResNet size, sample size, and
will typically vanish as dimension d goes to infinity. However, we cannot conclude that score estimation
actually becomes easier for higher-dimensional Ising models, since our result only provides an upper bound
on the estimation error. Whether score approximation truly simplifies with increasing dimensions is an open
question deserving further investigation.

Generalizing Assumption 1. While Assumption 1 provides a sufficient condition for efficient score
approximation, it is stronger than necessary. For example, in the Sherrington-Kirkpatrick model when
A = βJ where J ∼ GOE(d), an efficient sampling algorithm is known when β < 1 [Cel22]. However, we
can only verify Assumption 1 for β ≤ β0 for some 1/4 < β0 < 1/2. Nevertheless, we believe one can weaken
our assumption to show score estimation is efficient for any β < 1 by leveraging local convexity of the TAP
free energy of the SK model, proved in [EAMS22, Cel22].

The choice of sampling scheme and discretization scheme. Importantly, our score estimation error
bound in Theorem 1 can combine with sampling schemes beyond DDPM, as it does not rely on a specific
diffusion model. For instance, stochastic localization schemes [Eld13, EAMS22, MW23, Mon23] estimate
the denoiser rather than the score, and our analysis can be adapted to bound the denoiser estimation
error, enabling sampling guarantees for stochastic localization. Additionally, the discretization scheme and
sampling error bound in Corollary 1 may not be optimal. The analysis could likely be sharpened, or the
discretization improved, to provide tighter error guarantees.

3.3 Proof outline of Theorem 1

Here, we outline the proof of Theorem 1, with full details in Appendix B.
Recall that we have ŝt(z) = Pt[ResNŴ

](z), where Ŵ = argminW∈WÊ[∥PtResNW (z) + σ−1
t g∥22] for

W = Wd,D,L,M,B. Here, Ê denotes averaging over the empirical data distribution. By standard error
decomposition analysis in empirical risk minimization theory, we have:

E[∥Pt[ResNŴ
](z) + σ−1

t g∥22]/d ≤ inf
W∈W

E[∥Pt[ResNW ](z) + σ−1
t g∥22]/d

+ 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.

Furthermore, a standard identity in diffusion model theory shows:

E[∥ŝt(z)− st(z)∥22]/d = E[∥ŝt(z) + σ−1
t g∥22]/d+ C, C = E[∥st(z)∥22]/d− E[∥σ−1

t g∥22]/d.

Combining the above yields:
E[∥ŝt(z) − st(z)∥22]/d ≤ ε̄2app + ε̄2gen,

where ε̄2app is the approximation error and ε̄2gen is the generalization error,

ε̄2app = inf
W∈W

E[∥Pt[ResNW ](z) − st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.

The generalization error ε̄2gen can be controlled by a standard empirical process analysis. We simply use
a parameter counting argument to control this term, which can be found in Proposition 6. This gives rise
to the term ε2gen in (6).

To control the approximation error ε̄2app, we note that st(z) = (λt · mt(z) − z)/σ2
t , where mt(z) =

E(x,g)∼µ⊗N (0,Id)[x|λtx + σtg = z] is the denoiser. Thus, approximating the score function reduces to
approximating mt(z) using a ResNet. By Assumption 1, the denoiser mt can be approximated by the
minimizer of a variational free energy FVI

t . This minimizer can be found by a fixed point iteration, which
can further be approximated by a ResNet.
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More specifically, simple calculus shows that the minimizer m̂ = m̂t of the variational free energy FVI
t

satisfies the fixed point equation

m̂ = tanh(Um̂+ h), U = A−K, h = λtσ
−2
t z.

When ∥U∥op < 1, this can be efficiently solved by fixed point iteration

m̂ ≈ mL, mℓ+1 = tanh(Umℓ + h), m0 = 0.

This fixed point iteration can further be approximated by the ResNet structure (ResNet), where tanh is
approximated by a linear combination of ReLU activations. Lemma 5 and 6 analyze this approximation
error ε2ResN. Our analysis shows that the total approximation error ε̄2app is controlled by ε2VI+ε2ResN. Adding
the generalization error yields the overall score estimation error bound in Eq. (5).

4 Generalization to other high-dimensional graphical models

To demonstrate the flexibility of our proposed framework, we now generalize the results from Section 3 to
other high-dimensional graphical models. Specifically, we consider latent variable Ising models (Section 4.1),
the conditional Ising models for the conditional generative modeling task (Section 4.2), and the sparse coding
models (Section 4.3).

4.1 Diffusion models for latent variable Ising models

In the latent variable Ising model µ, we have a coupling matrix A = [A11,A12;AT
12,A22] ∈ R(d+m)×(d+m)

(where A11 ∈ Rd×d, A12 ∈ Rd×m, and A22 ∈ Rm×m), specifying a joint distribution over (x, θ) ∈ {±1}d+m,

µ(x, θ) ∝ exp{⟨x,A11x⟩/2 + ⟨x,A12θ⟩+ ⟨θ,A22θ⟩/2}, x ∈ {±1}d, θ ∈ {±1}m. (10)

Note that the joint distribution over (x, θ) is still an Ising model. However, here we will treat θ as a
latent variable and consider generative modeling for the marginal distribution µ(x) =

∑
θ µ(x, θ) when θ

is unobserved. When A11 = 0 and A22 = 0, this model reduces to a restricted Boltzmann machine, which
is often used to model natural image distributions [RKH10].

We still consider the generative modeling task where we observe {xi}i∈[n] ∼iid µ, and our goal is to
sample a new x̂ ∼ µ̂ with µ̂ ≈ µ. To show the DDPM scheme (Algorithm 1) provides a controlled error
bound, we need to bound the score estimation error [BDBDD23]. This estimation error can be controlled if
we assume the denoiser minimizes a VI objective.

Assumption 2 (Consistency of the free energy minimizer in marginal Ising models). Let σ = (x, θ) ∼
µ(x, θ) ∝ exp{⟨σ,Aσ⟩/2} and z ∼ N (λtx,σ2

t Id). For any fixed t, assume that there exists ε2VI,t(A) < ∞
and K = K(A, t) ∈ R(d+m)×(d+m) with ∥K −A∥op ≤ A < 1, such that

Ez∼µt
[∥m̂t(z)−mt(z)∥22]/d ≤ ε2VI,t(A), m̂t(z) = [ω̂t(z)]1:d,

ω̂t(z) = argminω∈[−1,1]d+m

{ d+m∑

i=1

−hbin(ωi)−
1

2
⟨ω,Aω⟩ − λt

σ2
t

⟨z,ω1:d⟩+
1

2
⟨ω,Kω⟩

}
.

Assumption 2 can be verified in concrete examples. Lemma 1 still applies in this model: when ∥A∥op <
1/2, taking K = 0 gives ε2VI,t(A) ≤ 4d−1(1 − 2∥A∥op)−1∥A∥2F . We conjecture that for A being spin glass
models like the Sherrington-Kirkpatrick model at high temperature, there exists K such that E[ε2VI,t(A)] →
0 as d,m → ∞. Given Assumption 2, the following theorem provides a score estimation error bound and a
sampling error bound in latent variable Ising models, proved in Appendix C.1.

Theorem 2. Let Assumption 2 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given by
Algorithm 1 in which we take

D = 3(d+m), M ≥ 4(d+m), B ≥ 7 · (M/(d+m)) · log(M) +
√
d+m+ 1/min

k
{T − tk}.
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Then with probability at least 1− η, for any t ∈ {T − tk}0≤k≤N−1, we have

Ez∼µt
[∥ŝt(z) − st(z)∥22]/d ! λ2

tσ
−4
t ·

(
ε2VI,t(A) + ε2ResN + ε2gen

)
, (11)

where ε2VI,t is given in Assumption 2, and

ε2ResN =
d+m

d

( (d+m)2

M2(1 −A)2
+A2L

)
, ε2gen =

√
(ML+ d)(d+m)[T + L log(BL)] + log(N/η)

n
. (12)

Furthermore, consider the two-phase discretization scheme as in Definition 1, we have with probability 1− η
that

KL(µδ, µ̂)/d ! δ−1 ·
(

sup
0≤k≤N−1

ε2VI,T−tk + ε2ResN + ε2gen

)
+ κ2N + κT + e−2T . (13)

4.2 Conditional diffusion models for Ising models

In the conditional Ising model, we also have a coupling matrix A = [A11,A12;AT
12,A22] ∈ R(d+m)×(d+m),

specifying a joint distribution over (x, θ) ∈ {±1}d+m as in Eq. (10). However, we now consider the
conditional generative modeling task where we observe {(xi, θi)}i∈[n] ∼iid µ. The goal is to sample
x̂ ∼ µ̂(·|θ) ≈ µ(·|θ) for a given θ. Such problems naturally arise in image imputation tasks, where (x, θ)
represents a full image, θ is the observed part, and x is the missing part to impute.

The conditional generative modeling task can be solved using the conditional DDPM scheme (Algorithm
2 as described in Appendix A.1). To bound the error, we need to control the estimation error of the
conditional score st(z; θ) = ∇z logµt(z, θ). By Tweedie’s formula, we have st(z; θ) = (λtmt(z; θ)−z)/σ2

t ,
wheremt(z; θ) := E(x,θ,g)∼µ⊗N (0,1)[x|θ, z = λtx+σtg] is the conditional denoiser. We assume the following
about mt(z; θ).

Assumption 3 (Consistency of the free energy minimizer in conditional Ising models). Let (x, θ) ∼
µ(x, θ) ∝ exp{⟨σ,Aσ⟩/2} and z ∼ N (λtx,σ2

t Id). For any fixed t, assume that there exists ε2VI,t(A) < ∞
and K = K(A, t) ∈ Rd×d with ∥K −A11∥op ≤ A < 1, such that

E(θ,z)[∥m̂t(z; θ)−mt(z; θ)∥22]/d ≤ ε2VI,t(A),

m̂t(z; θ) = argminm∈[−1,1]d

{ d∑

i=1

−hbin(mi)−
1

2
⟨m,A11m⟩ − ⟨m,A12θ⟩ −

λt

σ2
t

⟨z,m⟩+ 1

2
⟨m,Km⟩

}
.

Assumption 3 can be verified in concrete examples. Lemma 1 still applies in this model: when ∥A11∥op <
1/2, taking K = 0 gives ε2VI,t(A) ≤ 4d−1(1 − 2∥A11∥op)−1∥A11∥2F . We conjecture that E[ε2VI,t(A)] → 0 as
d,m → ∞ for A being spin glass models at high temperature. Given Assumption 3, the following theorem
provides a conditional score estimation error bound and a conditional sampling error bound in conditional
Ising models, proved in Appendix C.2.

Theorem 3. Let Assumption 3 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given by
Algorithm 2 in which we take

D = 4d, M ≥ 4d, B ≥ 7 · (M/d) · log(M) +
√
d+ 1/min

k
{T − tk}+ ∥A12∥op · (M/d+ 1).

Then with probability at least 1− η, for any t ∈ {T − tk}0≤k≤N−1, we have

E(θ,z)[∥ŝt(z; θ)− st(z; θ)∥22]/d ! λ2
tσ

−4
t ·

(
ε2VI,t(A) + ε2ResN + ε2gen

)
,

where ε2VI,t is given in Assumption 3, and

ε2ResN =
d2

M2(1−A)2
+A2L, ε2gen =

√
(MdL+ d(d +m))[T + L log(BLd−1(m+ d))] + log(N/η)

n
.

(14)
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Furthermore, consider the two-phase discretization scheme as in Definition 1, we have with probability 1− η
that

Eθ∼µ[KL(µδ(·|θ), µ̂(·|θ))/d] ! δ−1 ·
(

sup
0≤k≤N−1

ε2VI,T−tk + ε2ResN + ε2gen

)
+ κ2N + κT + e−2T .

We note the score estimation and sampling error bounds in Theorem 3 are averaged over θ ∼ µ(θ) =∑
x∈{±1}d µ(x, θ), the marginal of θ. These do not ensure error bounds for any fixed θ.

4.3 Diffusion models for sparse coding

In sparse coding, there is a fixed dictionary A ∈ Rd×m. Our observations are noisy, sparse linear combi-
nations of the columns of the dictionary: xi = Aθi + εi for i ∈ [n]. Here εi ∼iid N (0, τ2Id) are noise
vectors, and θi ∼iid π⊗m

0 are sparse coefficient vectors, with π0 ∈ P(R) having a Dirac delta mass at 0.
Given observations {xi}i∈[n], sparse coding typically aims to recover A and estimate {θi}i∈[n]. Instead, we
consider the generative modeling problem — learning a model to generate new samples x̂ resembling the
observations {xi}i∈[n].

The generative modeling task for sparse coding can be solved by the DDPM sampling scheme (Algo-
rithm 1). To control the score estimation error, we make the following assumption on the following denoising
function et, which requires a little modification in the sparse coding setting:

et(z∗) := E(z∗,θ) [θ | z∗] , z∗ = Aθ + ε̄, ε̄j ∼iid N (0, τ2 + σ2
t /λ

2
t ). (15)

Assumption 4 (Consistency of the free energy minimizer in sparse coding). Fix A ∈ Rd×m. Consider the
Bayesian linear model z∗ = Aθ + ε̄ ∈ Rd, ε̄j ∼iid N (0, τ̄2t ) where τ̄2t = τ2 + σ2

t /λ
2
t and θi ∼iid π0 where

π0 ∈ P([−Π,Π]). Assume that for any t > 0, there exist (νt,Kt, ε2VI,t) that depend on (π0,A, τ, t) with

∥ATA/τ̄2t −Kt∥op ≤ A < 1/Π2, such that

Ez∼µt
[∥êt(z∗)− et(z∗)∥22]/m ≤ ε2VI,t(A),

êt(z∗) = argmine∈[−Π,Π]m

{ m∑

i=1

max
λ

[
λmi − logEβ∼π0

[eλβ−β2νt/2]
]
+

1

2τ̄2t
∥z∗ −Ae∥22 −

1

2
⟨e,Kte⟩

}
.

We also use a different truncation operator in Algorithm 1, replacing Pt by P̄t:

P̄t[f ](z) = proj√m ∥A∥opΠλt(σ2
t+τ2λ2

t )
−1(f(z) + (σ2

t + τ2λ2
t )

−1z)− (σ2
t + τ2λ2

t )
−1z.

Given Assumption 4, the following theorem provides a score estimation error bound in sparse coding models,
proved in Appendix C.3.

Theorem 4. Let Assumption 4 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given by
Algorithm 1 in which we take

D = 3m+ d, M ≥ 4m,

B ≥ (M/m) ·
(
A+ 1 + 2Π2 + w⋆

)
+ 2Π+ 6 + (∥A∥op + 1)/min

k
{T − tk}+ τ−2∥A∥op +

√
m,

where w⋆ is defined in Eq. (65). Then with probability at least 1 − η, when n ≥ log(2/η), for any t ∈
{T − tk}0≤k≤N−1, we have the following score estimation error bound

E(θ,z)[∥ŝt(z; θ)− st(z; θ)∥22]/d

! λ2
t∥A∥2op(1 + τ−4) · m

d
·
(
ε2VI,t(A) + ε2ResN

)
+
(
λ2
t∥A∥2op(1 + τ−4)Π2 · m

d
+

λ2
t

σ2
t
(1 + τ2)

)
ε2gen,

for ε2VI,t as given in Assumption 4, and

ε2ResN = Π2 · (Π2A)2L +
m2Π2

(1−Π2A)2M2
, ε2gen =

√
(dD + LDM) · (T + L) · ι

n
. (16)

where ι = log(LBnmT (1 + τ)(1 + ∥A∥opΠ)τ−1Nη−1).

Theorem 4 can be further combined with an off-the-shelf discretization bound as in Theorem 5 to derive
a sampling error bound.
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Verifying the assumption. The VI approximation error ε2VI in Assumption 4 converges to 0 as d,m → ∞
when A is a rotationally invariant design matrix, by choosing the variational objective to be the TAP
free energy [TAP77]. Specifically, assume the SVD decomposition A = QDOT where Q ∈ Rd×d and
O ∈ Rm×m are orthonormal, and D ∈ Rd×m is diagonal. Assume that O ∼ Haar(SO(m)) is independent of
everything else, and the diagonal elements of D have certain empirical distribution converging to a bounded
distribution D. As an example, A with IID Gaussian entries of variance 1/m is rotationally invariant. Under
the assumption that A is rotationally invariant, a corollary of [LFSW23, Theorem 1.11] gives the following
lemma, with proof contained in Appendix C.4.

Lemma 3 (Corollary of [LFSW23] Theorem 1.11). Let A ∈ Rd×m be a rotationally invariant design matrix
and let Assumption 7 hold. Then for any π0, α = d/m, and limiting distribution D, there exists τ2 > 0,
such that for any t, there exists matrices K = ctId for some ct, such that

εVI,t(A)
a.s.→ 0, d,m → ∞, d/m → α.

Although Lemma 3 does not provide non-asymptotic control of the VI approximation error, we believe
this could be obtained through more refined analysis.

5 Other related work

Score function approximation in diffusion models. Neural network-based score function approxi-
mation has been recently studied in [OAS23, CHZW23, YHN+23, SCK23]. [OAS23] assumes that the data
distribution µ ∈ P(Rd) has a density with s-order bounded derivatives and shows that estimating the score
to precision ε requires network size and sample complexity at least ε−d/s. This suffers from the curse of
dimensionality unless the data distribution is very smooth (s ≍ d). [OAS23, CHZW23] avoid the curse of
dimensionality by assuming that the data distribution has a low-dimensional structure, but this assumption
does not apply to high-dimensional graphical models. [SCK23] considers Gaussian mixture models where
the score function has a closed form, enabling parameterized by a small shallow network.

In contrast, we assume the data distribution is a graphical model, common for images and text [BNJ03,
MH07, GG86]. Assuming the efficiency of variational inference approximation, we show that the score can
be well-approximated by a network polynomial in dimension, enabling efficient learning from polynomial
samples. Our graphical model assumption and algorithm unrolling of variational inference perspective
circumvent dimensionality issues faced by prior work.

Discretizing the diffusion process. Recent work has studied the convergence rates of the discretized
reverse SDEs/ODEs for diffusion models [LWYL22, LWCC23, LLT23, CCSW22, CDD23, CCL+22, CCL+23,
CLL23, BDBDD23]. In particular, [CLL23, BDBDD23] provide minimal assumptions to quantitatively
control the KL divergence between the perturbed and data distributions. These assumptions include the
second moment bound and the controlled score estimation error. Our work focuses on controlling the score
estimation error, a goal that is orthogonal to analyzing discretization schemes. Specifically, we directly
leverage the result of [BDBDD23] to provide an end-to-end error bound.

Stochastic localization. Stochastic localization, proposed by [Eld13, Eld22], is another sampling scheme
similar to diffusion models. Recent works have developed algorithmic sampling techniques based on stochas-
tic localization [EAMS22, MW23, Cel22]. [Mon23] shows the equivalence of stochastic localization to the
DDPM sampling scheme in the Gaussian setting and proposes various ways of generalizing stochastic lo-
calization schemes. While we present our results in the diffusion model framework, our methods can also
provide sampling error bound for stochastic localization schemes.

Neural network approximation theory. Classical neural network approximation theory typically relies
on assumptions that the target function is smooth or hierarchically smooth [Cyb89, HSW89, Hor93, Pin99,
DPW11, WMW19, Yar17, Bar93, Bac17, DHP21]. These enable overcoming the curse of dimensionality for
higher-order smooth or low-dimensional target functions [Bar93, WMW19, Bac17]. However, when applying
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them to score function approximation in diffusion models, it is unclear whether such assumptions hold for
the score function of high-dimensional graphical models.

A recent line of work investigated the expressiveness of neural networks through an algorithm approxima-
tion viewpoint [WCM22, BCW+23, GRS+23, LAG+22, MLR21, MLLR23]. [WCM22, BCW+23, GRS+23,
LAG+22] show that transformers can efficiently approximate several algorithm classes, such as gradient
descent and Turing machines. [MLR21, MLLR23] demonstrate that deep networks can efficiently approxi-
mate PDE solutions by approximating the gradient dynamics. We also adopt this algorithmic perspective
for neural network approximation but apply it to score function approximation for diffusion models.

Variational inference in graphical models. Variational inference is commonly used to approximate
the marginal statistics of graphical models [Pea82, JGJS99, Min13, MM09, WJ+08, BKM17]. In certain
regimes, such as graphical models in the high temperature, naive variational Bayes has been shown to yield
consistent posterior estimates [CD16, Eld18, JKM18, MS22]. For high dimensional statistical models in the
low signal-to-noise ratio regime, approximate message passing [DMM09, FVR+22] and equivalently TAP
variational inference [TAP77, GJM19, FMM21, CFM21, Cel22, CFLM23], can achieve consistent estimation
of the Bayes posterior. Our paper directly adopts results developed for variational inference methods in spin
glass models and Bayesian linear models [Tal03, Cha10, BKM+19, BDMK16, FMM21, FLS22, LFSW23,
CFM21, Cel22, CFLM23].

Algorithm unrolling. A line of work has focused on neural network denoising by unrolling iterative
denoising algorithms into deep networks [GL10, ZJRP+15, ZG18, PRE17, MLZ+21, CLWY18, BSR17,
MLE21, YBP+23, YCT+23]. These approaches include unrolling ISTA for LASSO into recurrent nets
[GL10, ZG18, PRE17, BSR17], unrolling belief propagation for Markov random fields into recurrent nets
[ZJRP+15], and unrolling graph denoising algorithms into graph neural nets [MLZ+21]. Our work also
adopts this algorithm unrolling viewpoint, but with a different goal: while the prior literature has mainly
focused on devising better denoising algorithms, our work uses this perspective to provide neural network
approximation theories for diffusion-based generative models.

6 Discussions

Algorithmic hard phase. The algorithm unrolling perspective can also shed light on the failure mode of
score approximation, namely when score functions cannot be efficiently represented by neural networks. For
example, we can conclude that the score function of the Sherrinton-Kirkpatrick model with β > 1 cannot be
efficiently represented by a neural network, as it was proven in [EAMS22] that there is no stable algorithm
to sample the SK Gibbs measure for β > 1. More generally, the relationship between hardness of sampling,
hardness of diffusion-based sampling, and hardness of score approximation deserves further investigation.
Recent work such as [GDKZ23] provides a valuable discussion on this important topic.

Future directions. Our work leaves open several interesting questions. One issue is that for fixed di-
mension d, our score approximation error does not decay as the network size and sample size increase,
and is lower bounded by the variational inference approximation error ε2VI. To resolve this, one approach
could consider a hierarchy of variational inference algorithms, such as Plefka’s expansion [Ple82, MFC+19],
which provide increasingly accurate approximations. Using these hierarchical approximations within our
framework could potentially reduce the score approximation error.

Another open question is understanding the algorithms that diffusion neural networks like U-nets and
transformers implement in diffusion models for image tasks. One hypothesis is that U-nets with convolution
layers are implementing some form of variational inference denoising on graphical models with certain
locality and invariance structures. It would be interesting to test this hypothesis on real image datasets.

Finally, an exciting direction is leveraging the algorithmic unrolling perspective to design improved
neural network architectures for diffusion models. The resulting architectures could potentially be more in-
terpretable and achieve better emergent capabilities, as illustrated by recent works like [YBP+23, YCT+23].
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A Technical preliminaries

A.1 DDPM conditional sampling scheme

We provide the details of the DDPM conditional sampling scheme (Algorithm 2) as mentioned in Section 2.
The algorithm still has two steps, with minor modifications from unconditional DDPM (Algorithm 1).
In the first step, empirical risk minimization (Eq. (18)) fits manually-generated noises {gi}i∈[n] using the
noisy samples and conditioning variables {(λtxi + σtgi; θi)}i∈[n]. The ResNet ResNW : Rd × Rm → Rd is

parameterized by W = {W (ℓ)
1 ∈ RD×M ,W (ℓ)

2 ∈ RM×D}ℓ∈[L] ∪ {Win ∈ R(d+m+1)×D,Wout ∈ RD×d} and is
defined iteratively as

ResNW (z, θ) = Woutu
(L), u(ℓ) = u(ℓ−1) +W

(ℓ)
1 ReLU(W (ℓ)

2 u(ℓ−1)), u(0) = Win[z; θ; 1].
(ResNet-Conditional)

The only difference between (ResNet) and (ResNet-Conditional) is the input dimension. Minimization is
over the ResNets with weights in the set (for parameters d,m,D,L,M,B):

Wd,m,D,L,M,B :=
{
W = {W (ℓ)

1 ,W (ℓ)
2 }ℓ∈[L] ∪ {Win,Wout} : |||W ||| ≤ B

}
,

|||W ||| := max
ℓ∈[L]

{
∥W (ℓ)

1 ∥op + ∥W (ℓ)
2 ∥op

}
∨max

{
∥Win∥op, ∥Wout∥op

}
.

(17)

We still truncate the ResNet output using Pt: for f : Rd×Rm → Rd, we define Pt[f ](z, θ) = projλtσ
−2
t

√
d(f(z, θ)+

σ−2
t z)− σ−2

t z, where projR projects z ∈ Rd into the R-Euclidean ball.
The second step of Algorithm 2 still discretizes the backward SDE through the exponential integrator

scheme (19) and the two-phase discretization scheme (Definition 1). However, we replace the score function

ŝt(Ŷk) with the conditional score function ŝt(Ŷk; θ) = Pt[ResNŴt
](Ŷk, θ).

Algorithm 2 The DDPM conditional sampling scheme

Require: Samples {(xi, θi)}i∈[n] ⊆ Rd × Rm. Conditional latent variable θ. ResNet parameters
(d,m,D,L,M,B). Discretization scheme parameters (N,T, δ, {tk}0≤k≤N ) with 0 = t0 < · · · < tN =
T − δ. Denote γk = tk+1 − tk.

1: // Computing the approximate conditional score function
2: Sample {gi}i∈[n] ∼iid N (0, Id).
3: for t ∈ {T − tk}0≤k≤N do
4: Solve the ERM problem below for t = T − tk:

Ŵt = arg min
W∈Wd,m,D,L,M,B

1

n

n∑

i=1

∥∥∥σ−1
t gi + Pt[ResNW ](λtxi + σtgi, θi)

∥∥∥
2

2
, (λt,σ

2
t ) = (e−t, 1− e−2t).

(18)

5: Take the approximate score function to be ŝt(z; θ) = Pt[ResNŴt
](z, θ).

6: // Sampling by discretizing the stochastic differential equation
7: Sample Ŷ0 ∼ N (0, Id).
8: for k = 0, · · · , N − 1 do
9: Sample Gk ∼ N (0, Id). Calculate Ŷk+1 using the exponential integrator scheme: (here θ is provided

as an input)

Ŷk+1 = eγk · Ŷk + 2(eγk − 1) · ŝT−tk(Ŷk; θ) +
√
e2γk − 1 ·Gk. (19)

Return: x̂ = ŶN .

A.2 Sampling error bound of the DDPM scheme

In this section, we state a result from [BDBDD23], which establishes the convergence of the DDPM dis-
cretization scheme, when evaluated using Kullback-Leibler (KL) divergence, with only minimal assumptions
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required. A slight generalization of the result in [BDBDD23] is necessary, generalizing the identity covari-
ance assumption to a general covariance matrix. The proof requires little modification, but we present a
proof sketch here for completeness.

Suppose we are interested in drawing samples from µ in Rd. The forward process that evolves according
to the Ornstein-Uhlenbeck (OU) process is defined as the following SDE:

dXt = −Xtdt+
√
2dBt, X0 ∼ µ, 0 ≤ t ≤ T. (20)

In the above display, (Bt)0≤t≤T is a standard Brownian motion in Rd. We denote by µt the distribution of

Xt. One can check that Xt
d
= e−tX0 +

√
1− e−2tg for g ∼ N (, Id) that is independent of X0. The reverse

process that corresponds to process (20) is defined via the SDE

dYt = {Yt + 2∇µT−t(Yt)}dt+
√
2dB′

t, Y0 ∼ µT . (21)

An approximation to continuous-time process (21) is obtained via performing time discretization, which
directly leads to a sampling algorithm. More precisely, for 0 = t0 < t1 < · · · < tN = T − δ, we let

dŶt = {Ŷt + 2ŝT−tk(Ŷtk)}dt+ dB̂t for tk ≤ t ≤ tk+1, Ŷ0 ∼ N (0, Id), (22)

where ŝT−t(·) is an estimate of the true score function sT−t(·) = ∇ logµT−t(·). We denote by pt the
marginal distribution of Ŷt, and set γk = tk+1 − tk. In addition, we assume there exists κ > 0, such that
γk ≤ κ ·min{1, T − tk+1}.

Next, we state the assumptions required to establish the discretization error bound of the DDPM sam-
pling scheme.

Assumption 5 (Rescaled version of [BDBDD23] Assumption 1). The score function estimator ŝt satisfies

N−1∑

k=0

γkEx∼µT−tk

[
∥∇ logµT−tk(x)− ŝT−tk(x)∥22

]
≤ d · ε2score.

Assumption 6. The data distribution µ has finite second moment: Ex0∼µ[∥x0∥22] ≤ d ·B, where B ≥ 1 is
a fixed constant.

With Assumptions 5 and 6, we are ready to state the main theorem for this part.

Theorem 5. [Theorem 1 of [BDBDD23]] Let Assumptions 5 and 6 hold. Then there exists a numerical
constant C0 > 0, such that

KL(µδ, ptN ) ≤ C0 · d ·
(
ε2score + κ2NB + κTB + e−2TB

)
.

Proof sketch of Theorem 5.
Part 1. We first control the quantity

Es,t = E
[
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22

]
,

where 0 ≤ s ≤ t ≤ T . According to Lemma 2 of [BDBDD23], we have

d
(
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22

)

= − 2∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22dt− 2 {∇ logµT−t(Yt)−∇ logµT−s(Ys)} ·∇ log µT−s(Ys)dt

+ 2∥∇2 logµT−t(Yt)∥2Fdt+ 2
√
2 {∇ logµT−t(Yt)−∇ logµT−s(Ys)} ·∇2 logµT−t(Yt) · dB′

t. (23)

In the above display, s is fixed and t varies. Taking expectation and integrate over [s, t], we obtain

E
[
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥2

]
= E

∫ t

s
−2∥∇ logµT−r(Yr)−∇ logµT−s(Ys)∥22dr

− E

∫ t

s
2 {∇ logµT−r(Yr)−∇ logµT−s(Ys)} ·∇ logµT−s(Ys)dr + E

∫ t

s
2∥∇2 logµT−r(Yr)∥2Fdr.
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Observe that all terms above are integrable. Hence, we may apply Fubini’s theorem and interchange
integration and expectation, which gives

dEs,t

dt
= −2E

[
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22

]

+ 2E [{∇ logµT−s(Ys)−∇ logµT−t(Yt)} ·∇ log µT−s(Ys)] + 2E
[
∥∇2 logµT−t(Yt)∥2F

]
.

Invoking Cauchy-Schwartz inequality, we have

dEs,t

dt
≤ E

[
∥∇ logµT−s(Ys)∥22

]
+ 2E

[
∥∇2 logµT−t(Yt)∥2F

]
. (24)

Next, we upper bound E
[
∥∇ logµT−s(Ys)∥22

]
and E

[
∥∇2 logµT−t(Yt)∥2F

]
, respectively.

Lemma 3 of [BDBDD23] gives

∇ logµt(xt) = −σ−2
t xt + e−tσ−2

t mt(xt), ∇2 logµt(xt) = −σ−2
t I+ e−2tσ−4

t Σt(xt), (25)

where σ2
t = 1− e−2t, mt(xt) = Eµ0|µt(x0|xt)[x0], and Σt(xt) = Covµ0|µt(x0|xt)[x0]. By Eq. (25), we see that

Ext∼µt

[
∥∇ logµt(xt)∥22

]
= σ−4

t Ext∼µt

[
∥xt∥22

]
− 2e−tσ−4

t Ext∼µt
[xt ·mt(xt)] + e−2tσ−4

t Ext∼µt

[
∥mt(xt)∥22

]
.

Note that

Ext∼µt
[xt ·mt(xt)] = Ext∼µt

[xt · x0] = e−t
Ex0∼µ0

[
∥x0∥2

]
≤ dBe−t,

Tr(Σt(xt)) = E[∥x0∥2 | xt]− ∥mt(xt)∥22,

hence

Ext∼µt

[
∥∇ logµt(xt)∥2

]

= σ−4
t ·

(
e−2t

E[∥x0∥2] + σ2
t d
)
− 2e−2tσ−4

t E[∥x0∥2] + e−2tσ−4
t ·

(
E[∥x0∥2]− E[Tr(Σt(xt))]

)
(26)

= σ−2
t d− e−2tσ−4

t E[Tr(Σt(xt))] ≤ dσ−2
t .

That is to say, we have E[∥∇ logµT−s(Ys)∥22] ≤ dσ−2
T−s. We write Σt = Σt(xt) for short. The second part

of Eq. (25) implies that

Ext∼µt

[
∥∇2 logµt(xt)∥2F

]
= σ−4

t d− 2σ−6
t e−2t

E [Tr(Σt)] + e−4tσ−8
t E[Tr(Σ2

t )]. (27)

Lemma 1 of [BDBDD23] gives

e2tσ4
t

2

d

dt
E [Σt] = E[Σ2

t ]. (28)

Putting together Eq. (27) and (28), we obtain

Ext∼µt

[
∥∇2 logµt(xt)∥2F

]
= dσ−4

t − 2σ−6
t e−2t

E [Tr(Σt)] +
e−2tσ−4

t

2

d

dt
E[Tr[Σt]]

≤ dσ−4
t +

1

2

d

dt

(
σ−4
t E[Tr(Σt)]

)
.

(29)

Putting together Eq. (26) and (29), we get

E
[
∥∇ logµT−s(Ys)∥22

]
+ 2E

[
∥∇2 logµT−t(Yt)∥2F

]

≤ σ−2
T−sd+ 2dσ−4

T−t −
d

dr

(
σ−4
T−rE[Tr(ΣT−r)]

) ∣∣
r=t

.

We define

E(1)
s,t := dσ−2

T−s + 2dσ−4
T−t, E(2)

s,t := − d

dr

(
σ−4
T−rE[Tr(ΣT−r)]

) ∣∣
r=t

.
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According to Eq. (24) and notice that Etk,tk = 0, we have

Etk,t ≤
∫ t

tk

{
E
[
∥∇ logµT−tk(Ytk)∥22

]
+ 2E

[
∥∇2 logµT−s(Ys)∥2F

]}
ds ≤

∫ t

tk

(
E(1)

tk,s + E(2)
tk,s

)
ds.

Following exactly the same procedure as in [BDBDD23], we conclude that there exists a positive numerical
constant C0, such that

N−1∑

k=0

∫ tk+1

tk

E
[
∥∇ logµT−t(Yt)−∇ logµT−tk(Ytk)∥2

]
≤ C0(κ

2dNB + κdTB).

Part 2. We denote by Q the distribution of YtN derived from process (21), and PµT the distribution of
process (22) at time tN initialized at µT . By Proposition 3 of [BDBDD23], we obtain

KL(Q ||PµT ) ≤
N−1∑

k=0

∫ tk+1

tk

E
[
∥∇ logµT−t(Yt)− ŝT−tk(Ytk)∥22

]
dt,

which by triangle inequality is no smaller than

2
N−1∑

k=0

γkE
[
∥∇ logµT−tk(Ytk)− ŝT−tk(Ytk)∥22

]
dt+ 2

N−1∑

k=0

∫ tk+1

tk

E
[
∥∇ logµT−tk(Ytk)−∇ logµT−t(Yt)∥22

]

≤ 2 d · ε2score + 2C0(κ
2dNB + κdTB).

We denote by P the distribution of process (22) at time tN initialized atN (0, Id). By Eq. (19) of [BDBDD23],
we have

KL(Q ||P ) = KL(Q ||PµT ) + KL(µT || N (0, Id)).

Proposition 4 of [BDBDD23] gives KL(µT || N (0, Id)) ! dBe−2T . Putting together the above upper bounds,
we arrive at the following conclusion:

KL(µδ|| ptN ) ≤ C0 · d ·
(
Be−2T + κ2NB + κTB + ε2score

)
,

thus concluding the proof of Theorem 5.

A.3 Generalization error of empirical risk minimization over ResNets

A.3.1 Result for Ising models

Note that the conditional (and unconditional) DDPM methods estimate the score function ŝt = PtResNŴt

by solving the following ERM problem:

Ŵt = argminW∈Wd,m,D,L,M,B
R̂n(W ),

R̂n(W ) =
1

nd

n∑

i=1

∥∥σ−1
t gi + Pt(ResNW (λtxi + σtgi, θi))

∥∥2
2
.

(30)

Here, xi, gi ∈ Rd, and θi ∈ Rm follow {(xi, θi, zi)}i∈[n] ∼iid µ⊗N (0, Id). Recall that the truncation operator

gives Pt[f ](z, θ) = projλtσ
−2
t

√
d(f(z, θ) + σ−2

t z) − σ−2
t z. In cases where θi does not exist (unconditional

DDPM), we simply set m = 0. The population risk gives

R(W ) :=
1

d
E(x,θ,g)∼µ⊗N (0,Id)

[∥∥σ−1
t g0 + Pt(ResNW ([λtx+ σtg, θ]))

∥∥2
2

]
.

In the proposition below, we provide a uniform upper bound for |R̂(W )−R(W )| over Wd,m,D,L,M,B, where
the ResNet class is given by Eq. (17).
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Proposition 6. Assume that µ ∈ P([−1, 1]d+m). There exists a numerical constant C > 0, such that with
probability at least 1− η,

sup
W∈Wd,m,D,L,M,B

∣∣∣R̂(W )−R(W )
∣∣∣

≤ C · λ
2
t

σ4
t
·

√
[(d+m)D + LDM ] · [L · log(LB(m+ d)/d) + log(λ−1

t )] + log(1/η)

n
.

Proof of Proposition 6. The proof of this proposition uses the following lemma.

Lemma 4 (Proposition A.4 of [BCW+23]). Suppose that {Xw}w∈Θ is a zero-mean random process given
by

Xw ≡ 1

n

n∑

i=1

f(zi;w) − Ez[f(z;w)],

where z1, · · · , zn are i.i.d samples from a distribution Pz such that the following assumption holds:
(a) The index set Θ is equipped with a distance ρ and diameter B. Further, assume that for some con-

stant A, for any ball Θ′ of radius r in Θ, the covering number admits upper bound logN(∆;Θ′, ρ) ≤
d log(2Ar/∆) for all 0 < ∆ ≤ 2r.

(b) For any fixed w ∈ Θ and z sampled from Pz, the random variable f(z;w) − Ez[f(z;w)] is a σ-sub-

Gaussian random variable (E[eλ[f(z;w)−Ez′ [f(z
′;w)]]] ≤ eλ

2σ2/2 for any λ ∈ R).

(c) For any w,w′ ∈ Θ and z sampled from Pz, the random variable f(z;w)− f(z;w′) is a σ′ρ(w,w′)-sub-

Gaussian random variable (E[eλ[f(z;w)−f(z;w′)]] ≤ eλ
2(σ′)2ρ2(w,w′)/2 for any λ ∈ R).

Then with probability at least 1− η, it holds that

sup
w∈Θ

|Xw| ≤ Cσ

√
d · log(2A(1 +Bσ′/σ)) + log(1/η)

n
,

where C is a universal constant.

In Lemma 4, we can take z = (g,x, θ), w = W , Θ = Wd,m,D,L,M,B, ρ(w,w′) = |||W −W ′|||, and
f(zi;w) = d−1∥σ−1

t gi + Pt(ResNW (λtxi + σtgi, θi))∥22. Therefore, to show Proposition 6, we just need to
apply Lemma 4 by checking (a), (b), (c).
Check (a). We note that the index set Θ = Wd,m,D,L,M,B equipped with ρ(w,w′) = |||W −W ′||| has
diameter 2B. Further note that Wd,m,D,L,M,B has dimension bounded by 4(d+m)D+ 2LDM . According
to Example 5.8 of [Wai19], it holds that logN(∆;Wd,m,D,L,M,r, |||·|||) ≤ [4(d+m)D+2LDM ] · log(1+2r/∆)
for any 0 < ∆ ≤ 2r. This verifies (a).
Check (b). By the definition of the projection operator that Pt[f ](z) = projλtσ

−2
t

√
d(f(z) + σ−2

t z)− σ−2
t z

and that z = λtx+ σtg, we have

0 ≤ f(z;w) = d−1∥σ−1
t g + Pt(ResNW (λtx+ σtg, θ))∥22

= d−1∥ − λtσ
−2
t x+ projλtσ

−2
t

√
d(ResNW1

(λtx+ σtg, θ) + σ−2
t z)∥22

≤ 4λ2
tσ

−4
t .

As a consequence, f(z, w)− Ez [f(z, w)] is a σ = 4λ2
tσ

−4
t sub-Gaussian random variable.
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Check (c). Direct calculation yields

|f(z;w1)− f(z;w2)|

=
1

d

∣∣∣∥σ−1
t g + Pt(ResNW1

(λtx+ σtg, θ))∥22 − ∥σ−1
t g + Pt(ResNW2

(λtx+ σtg, θ))∥22
∣∣∣

=
1

d

∣∣∣∥ − λtσ
−2
t x+ projλtσ

−2
t

√
d(ResNW1

(λtx+ σtg, θ) + σ−2
t z)∥22

− ∥ − λtσ
−2
t x+ projλtσ

−2
t

√
d(ResNW2

(λtx+ σtg, θ) + σ−2
t z)∥22

∣∣∣

≤ 8λt

σ2
t

√
d
·
∥∥projλtσ

−2
t

√
d(ResNW1

(λtx+ σtg, θ) + σ−2
t z)

− projλtσ
−2
t

√
d(ResNW2

(λtx+ σtg, θ) + σ−2
t z)

∥∥
2

!
2λtL(B2 + 1)L

σ2
t

· 1√
d

(
λt∥x∥2 + σt∥g∥2 + ∥θ∥2

)
· |||W1 −W2|||.

Notice that (x, θ, g) ∼ µ ⊗ N (0, Id) and note that µ ∈ P([−1, 1]d+m), we have that ∥θ∥2/
√
d is

√
m/d-

bounded and is thus O(
√
m/d)-sub-Gaussian, ∥x∥2/

√
d is 1-bounded and is thus O(1)-sub-Gaussian, and

∥g∥2/
√
d is O(1)-sub-Gaussian. As a consequence, f(z;w1) − f(z;w2) is σ′ρ(w1, w2) = C · λtσ

−2
t L(B2 +

1)L
√

(m+ d)/d · |||W1 −W2||| sub-Gaussian.
Therefore, we apply Lemma 4, and use the fact that

log(2(1 +Bσ′/σ)) = log(2(1 + (C/2)Bλ−1
t σ2

tL(B
2 + 1)L

√
(m+ d)/d)) ! L log(LB(m+ d)/d) + log(λ−1

t ).

This concludes the proof of Proposition 6.

A.3.2 Result for Sparse coding

In the setting of sparse coding, we assume a fixed dictionary A ∈ Rd×m. The model x ∼ µ is given by
x = Aθ + ε, where ε ∼ N (0, τ2Id) is independent of anything else and θi ∼iid πθ ∈ P([−Π,Π]) for i ∈ [m].
Assume that we have {(xi, gi)}i∈[n] ∼iid µ ⊗ N (0, Id). We are interested in estimating the score function
ŝt = P̄tResNŴt

by solving the following ERM problem:

Ŵt = argminW∈Wd,D,L,M,B
R̂n(W ),

R̂n(W ) =
1

nd

n∑

i=1

∥∥σ−1
t gi + P̄t(ResNW (λtxi + σtgi))

∥∥2
2
.

(31)

Here, the truncation operator gives P̄t[f ](z) = proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(f(z) + (σ2

t + τ2λ2
t )

−1z)− (σ2
t +

τ2λ2
t )

−1z. The corresponding population risk gives

R(W ) :=
1

d
E(x,g)∼µ⊗N (0,Id)

[∥∥σ−1
t g + P̄t(ResNW (λtx+ σtg))

∥∥2
2

]
.

In the proposition below, we provide a uniform upper bound for |R̂(W ) − R(W )| over Wd,D,L,M,B in the
sparse coding setup, where the ResNet class is given by Eq. (3).

Proposition 7. Under the setting of sparse coding stated above, there exists a numerical constant C > 0,
such that with probability at least 1− η, for n ≥ log(2/η), we have

sup
W∈Wd,D,L,M,B

∣∣∣R̂(W )−R(W )
∣∣∣ !

(
λ2
t ∥A∥2opΠ2(τ−4 + 1)

m

d
+

λ2
t

σ2
t
(1 + τ2)

)

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2/η)

n
.
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Proof of Proposition 7. Note that {(xi, gi)}i∈[n] ∼iid µ×N (0, Id) where µ is the sparse coding model. Then
we must have xi = Aθi + εi for some (θi, εi) ∼iid πm

0 ×N (0, τ2Id). Denote z = (g,x, ε), w = W , and

f(z;w) = d−1∥σ−1
t g + P̄t(ResNW (λtx+ σtg))∥22 − d−1∥(σ−1

t − σt(σ
2
t + τ2λ2

t )
−1)g − λt(σ

2
t + τ2λ2

t )
−1ε∥22.

We further denote z = λtx+ σtg. Note that we have

|f(z;w1)− f(z;w2)|

=
1

d

∣∣∣∥σ−1
t g + P̄t(ResNW1

(λtx+ σtg))∥22 − ∥σ−1
t g + P̄t(ResNW2

(λtx+ σtg))∥22
∣∣∣

≤ 1

d

∣∣∣∥proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW1

(z) + (σ2
t + τ2λ2

t )
−1z)− (σ2

t + τ2λ2
t )

−1z + σ−1
t g∥22

− ∥proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW2

(z) + (σ2
t + τ2λ2

t )
−1z)− (σ2

t + τ2λ2
t )

−1z + σ−1
t g∥22

∣∣∣

!

(√
mλtΠ∥A∥op

d(σ2
t + τ2λ2

t )
+

λt

d(σ2
t + τ2λ2

t )
∥ε∥2 +

τ2λ2
t

dσt(σ2
t + τ2λ2

t )
∥g∥2

)

×
∥∥proj√m∥A∥opΠ·λt(σ2

t+τ2λ2
t )

−1(ResNW1
(z) + (σ2

t + τ2λ2
t )

−1z)

− proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW2

(z) + (σ2
t + τ2λ2

t )
−1z)

∥∥
2

!
L(B2 + 1)Lλt

(σ2
t + τ2λ2

t )
·
(√

mΠ∥A∥op√
d

+
∥ε∥2√

d
+

τ2λt ∥g∥2√
dσt

)
· 1√

d

(
λt∥Aθ∥2 + λt∥ε∥2 + σt∥g∥2

)
· |||W1 −W2|||.

Therefore, we denote by N (∆;Wd,D,L,M,B, ρ) a ∆-covering of Wd,D,L,M,B under metric ρ(W1,W2) =
|||W1 −W2||| for some ∆ > 0. Then

sup
w∈Wd,D,L,M,B

∣∣∣∣∣
1

n

n∑

i=1

f(zi;w)− E[f(z;w)]

∣∣∣∣∣

≤ sup
w∈N (∆;Wd,D,L,M,B,ρ)

∣∣∣∣∣
1

n

n∑

i=1

f(zi;w)− E[f(z;w)]

∣∣∣∣∣ +
L(B2 + 1)Lλt

(σ2
t + τ2λ2

t )
·∆ · (Ln + E[Ln]),

where

Ln =
1

nd

n∑

i=1

(√
mΠ∥A∥op + ∥εi∥2 + σ−1

t τ2λt ∥gi∥2
)
·
(
λt∥Aθi∥2 + λt∥εi∥2 + σt∥gi∥2

)
.

Since (θi, εi, gi) ∼ πm
0 ⊗ N (0, τ2Id) ⊗ N (0, Id), σ2

t ≤ 1 and λ2
t ≤ 1, we have E[Ln] ≤ L and Ln − E[Ln]

is SE(L/
√
n, L), for L = (m/d)Π2∥A∥2op + σ−2

t (τ4 + 1). By Bernstein’s inequality, we conclude that with
probability at least 1− η/2, we have

Ln + E[Ln] ≤ C · L(1 +
√
log(2/η)/n+ log(2/η)/n) ≤ C · L(1 + log(2/η))

= C ·
(
(m/d)Π2∥A∥2op + σ−2

t (τ4 + 1)
)
· (1 + log(2/η)).

for some numerical constant C.
Furthermore, note that we have

f(z;w)

= d−1∥σ−1
t g + P̄t(ResNW (λtx+ σtg))∥22 − d−1∥(σ−1

t − σt(σ
2
t + τ2λ2

t )
−1)g − λt(σ

2
t + τ2λ2

t )
−1ε∥22

= d−1∥σ−1
t g + proj√m∥A∥opΠ·λt(σ2

t+τ2λ2
t )

−1(ResNW (z) + (σ2
t + τ2λ2

t )
−1z)− (σ2

t + τ2λ2
t )

−1z∥22
− d−1∥(σ−1

t − σt(σ
2
t + τ2λ2

t )
−1)g − λt(σ

2
t + τ2λ2

t )
−1ε∥22

= d−1∥proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW (z) + (σ2

t + τ2λ2
t )

−1z)− λt(σ
2
t + τ2λ2

t )
−1Aθ∥22

+ 2d−1
〈
(σ−1

t − σt(σ
2
t + τ2λ2

t )
−1)g − λt(σ

2
t + τ2λ2

t )
−1ε,

proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW (z) + (σ2

t + τ2λ2
t )

−1z)− λt(σ
2
t + τ2λ2

t )
−1Aθ

〉
.
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As a consequence, f(z;w)− Ez [f(z, w)] is sub-Gaussian with variance proxy

C2 ·
(
m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ2)

)2

for some other numerical constant C. Therefore, with probability at least 1 − η/2, by sub-Gaussian tail
bound and by the bound log |N (∆;Wd,D,L,M,B, ρ)| ≤ [4dD + 2LDM ] · log(1 + 2B/∆), we have

sup
W∈N (∆;Wd,D,L,M,B,ρ)

∣∣∣∣∣
1

n

n∑

i=1

f(zi;wi)− E[f(z;w)]

∣∣∣∣∣

!
(m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

)
·
√

[4dD + 2LDM ] · log(1 + 2B/∆) + log(2/η)

n
.

Setting

∆ =
(m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ2)

)
· (σ2

t + τ2λ2
t )

nL(B2 + 1)Lλt ·
(
md−1Π2∥A∥2op + σ−2

t (τ4 + 1)
) ,

we conclude that with probability at least 1− η, when n ≥ log(2/η), we have

sup
W∈N (Wd,D,L,M,B ,ρ,∆)

∣∣∣∣∣
1

n

n∑

i=1

f(zi;wi)− E[f(z;w)]

∣∣∣∣∣

! n−1 ·
(m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

)
· (log(2/η) + 1) +

{
m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

}

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2/η)

n

!
(
λ2
t∥A∥2opΠ2(τ−4 + 1)

m

d
+

λ2
t

σ2
t
(1 + τ2)

)

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2/η)

n
,

where the inequalities above uses the definition that λt = e−t, σ2
t = 1− e−2t and t ≤ T . This concludes the

proof of Proposition 7.

A.4 Uniform approximation of the denoiser

The lemma below tells us that denoiser functions can be uniformly approximated with a linear combination
of ReLU(·) with changing intercepts. Furthermore, such approximation can achieve arbitrary precision.

Lemma 5. Assume π0 is a probability distribution over R that has bounded support, and γ > 0 is a fixed
constant. Define F (λ) := E(β,z)∼π0⊗N (0,1)[β | β + γ−1/2z = λγ−1]. Let Πmin := infλ F (λ), Πmax :=
supλ F (λ), Π := max{ |Πmax|, |Πmin| }, and ∆ := Πmax − Πmin. One can verify that F (·) is Π2-Lipschitz
continuous and non-decreasing. For any ζ > 0, we define

wζ := inf
{
w : for all λ1 > λ2 ≥ w or λ1 < λ2 ≤ −w we have |F (λ1)− F (λ2)| < ∆/⌈∆ζ−1⌉

}
. (32)

Then there exists {aj}j∈{0}∪[⌈∆ζ−1⌉−1] and {wj}j∈[⌈∆ζ−1⌉−1], such that

sup
λ∈R

|F (λ)− f(λ)| ≤ ζ, where f(λ) =

⌈∆ζ−1⌉−1∑

j=1

ajReLU(λ− wj) + a0. (33)

Furthermore, we have supj∈[⌈∆ζ−1⌉−1] |wj | ≤ wζ , |a0| ≤ Π, and |aj| ≤ 2Π2 for all j ∈ [⌈∆ζ−1⌉ − 1].
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Proof of Lemma 5. When π0 is a Dirac measure, we simply take a0 = E[β]. In other cases, one can verify
that F (·) is strictly increasing, hence Πmax > Πmin. Then for any α ∈ (Πmin,Πmax), there exists a unique
µα ∈ R, such that F (µα) = α.

Let a0 = Πmin +∆⌈∆ζ−1⌉−1. For j ∈ [[∆ζ−1]− 1], we let

wj = µ−Πmin+j∆/⌈∆ζ−1⌉, aj =
∆

⌈∆ζ−1⌉(wj+1 − wj)
− ∆

⌈∆ζ−1⌉(wj − wj−1)
.

In the above equations, we make the convention that w0 = w⌈∆ζ−1⌉ = ∞. With {aj}j∈{0}∪[⌈∆ζ−1⌉−1] and
{wj}j∈[⌈∆ζ−1⌉−1] defined as above, one can verify that Eq. (33) is true. Furthermore, since ∥F ′∥∞ ≤ Π2,
we have |∆/⌈∆ζ−1⌉(wj+1 − wj)| ≤ Π2 for all possible j. This gives |aj | ≤ 2Π2 for every j.

Remark 1. When π0 = Unif({±1}), one can check that for any γ > 0, we have F (x) = tanh(x). In this
case, one can verify that |wζ | ≤ log⌈ζ−1⌉. In addition, we can further guarantee that

∑
j∈[⌈∆ζ−1⌉−1] |aj | ≤ 2.

A.5 Approximation error of fixed point iteration

Lemma 6. Assume that h ∈ Rd, U ∈ Rd×d with ∥U∥op ≤ A < Π−2 for some Π > 0. Further assume that
f∗ : R 8→ R is Π2-Lipschitz continuous and f : R 8→ R is a function satisfying

sup
u∈R

|f(u)− f∗(u)| ≤ ζ. (34)

Let m̂ ∈ Rd satisfying ∥m̂∥2 ≤ Π
√
d be the unique fixed point of

m̂ = f∗(Um̂+ h). (35)

Let m̃0 = 0 and

m̃k = f(Um̃k−1 + h). (36)

Then we have

1√
d
∥m̃k − m̂∥2 ≤ Π · (Π2A)k +

ζ

1−Π2A
. (37)

Proof of Lemma 6. By Eq. (34) and (36), we have

m̃k = f∗(Um̃k−1 + h) + ζk,

where ∥ζk∥2 ≤
√
dζ. Comparing with Eq. (35), we get

∥m̃k − m̂∥2 ≤ Π2∥U∥op∥m̃k−1 − m̂∥2 + ∥ζk∥2 ≤ Π2A · ∥m̃k−1 − m̂∥2 +
√
dζ.

By the fact that ∥m̃0 − m̂∥2 = ∥m̂∥2 ≤ Π
√
d, this gives Eq. (37), which concludes the proof of the

lemma.

A.6 Properties of two-phase time discretization scheme

The lemma below provides a bound related to the two-phase time discretization scheme that appears to be
useful when deriving the sampling error bound.

Lemma 7. Consider the two-phase discretization scheme (κ, N0, N, T, δ, {tk}0≤k≤N ) and recall that γk =
tk+1 − tk (Definition 1). Recall the definition λt = e−t and σ2

t = 1− e−2t. Then we have

∑

0≤k≤N−1

γk · λ2
T−tkσ

−4
T−tk

! 1 + δ−1. (38)
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Proof of Lemma 7. Simple algebra yields

σ−2
t = 1/[1− e−2t] ≤ 10 · [1 ∨ (1/t)].

Note that T − tk ≤ 1 for all k ≥ N0 and T − tk ≥ 1 for all k ≤ N0 − 1 (c.f. Definition 1 for N0). Then the
summation in the first phase has bound (we use the fact that κ < 1)

∑

0≤k≤N0−1

γk · λ2
T−tkσ

−4
T−tk

≤ 100κ
∑

0≤k≤M−1

e−2(T−tk) ≤ 100κe−2
∑

k≥0

e−2kκ ≤ 100κe−2 1

1− e−2κ
≤ 100.

Furthermore, the summation in the second phase yields (recall from Definition 1 that for k ≥ N0, we have
T − tN0+k = (1 + κ)−k, γN0+k = κ/(1 + κ)k+1, and δ = (1 + κ)N0−N )

∑

N0≤k≤N−1

γkλ
2
T−tkσ

−4
T−tk

≤ 100
∑

N0≤k≤N−1

γk/(T − tk)
2

= 100
∑

0≤k≤N−N0−1

[κ/(1 + κ)k+1] · (1 + κ)2k = 100
κ

δ

∑

0≤k≤N−N0−1

(1 + κ)−2−k

≤ 100
κ

δ

∞∑

k=1

(1 + κ)−k = 100/δ.

Combining the two inequalities above proves Eq. (38) and concludes the proof.

B Proofs for Section 3: Ising models

B.1 Proof of Theorem 1

Approximate the minimizer of the free energy via an iterative algorithm

We first show that we can approximate the minimizer of FVI
t using a simple iterative algorithm. Calculating

the Hessian of FVI
t , we obtain

∇2
mFVI

t (m; z) = diag{(1−m2
i )i∈[d]}−A+K ≽ (1 −A) · Id ≻ 0, ∀m ∈ [−1, 1]d,

where the inequalities are due to the fact that diag{(1−m2
i )i∈[d]} ≽ Id and the assumption that ∥K−A∥op ≤

A < 1. Therefore, FVI
t (·, z) is strongly convex in its first coordinate for all z ∈ Rd, hence the critical equation

∇mFVI
t (m; z) = tanh−1(m)−Am− λtσ

−2
t z +Km = 0,

can have at most one solution on [−1, 1]d. Furthermore, ∇mFVI
t (m; z) = 0 is equivalent to the fixed point

equation
m = tanh((A−K)m+ λtσ

−2
t z),

and T (m) = tanh((A −K)m+ λtσ
−2
t z) is a continuous mapping from [−1, 1]d to itself. Therefore, there

exists a solution of m = T (m) by Brouwer’s fixed-point theorem. This implies that the above fixed point
equation has a unique solution m̂t(z) ∈ [−1, 1]d.

Take f : R → R to be the function as derived by Lemma 5 achieving ζ-uniform approximation to tanh(·).
We write f(x) =

∑⌈2ζ−1⌉−1
j=1 ajReLU(x− wj) + a0. Define iterative algorithm {m̃ℓ}ℓ≥0 by

m̃0 = 0, m̃ℓ(z) = m̃ℓ = f((A−K)m̃ℓ−1 + λtσ
−2
t z). (39)

Then by Lemma 6 with Π = 1, we obtain that

∥m̃ℓ(z) − m̂t(z)∥2/
√
d ≤ Aℓ + ζ · (1−A)−1. (40)
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Represent the iterative algorithm as a ResNet

Next, we show that m̃ℓ(z) defined as above takes the form of a ResNet.

Lemma 8. For all ℓ ∈ N+ and δ ≤ t ≤ T , there exists W ∈ Wd,D,ℓ,M,B with

D = 3d, M = (⌈2ζ−1⌉+ 3)d,

B = (⌈2ζ−1⌉ − 1)(4 + log⌈ζ−1⌉) + 8 + (1 − e−2δ)−1 +
√
d,

such that (λtm̃
ℓ(z) − z)/σ2

t = ResNW (z), where m̃ℓ is as defined in Eq. (39).

Proof of Lemma 8. Recall the definition of f as an approximation of tanh as in Lemma 5. Recall that
a ResNet takes the form (ResNet). We shall choose the weight matrices appropriately such that u(ℓ) =
[m̃ℓ;σ−2

t z;1d]T ∈ R3d. In particular, for ℓ = 0, we set

Win =

[
0d×d σ−2

t Id 0d×d

01×d 01×d 11×d

]T
∈ R

3d×(d+1).

For ℓ ≥ 1, we set

W
(ℓ)
1 =

⎡

⎣
aiId · · · a⌈2ζ−1⌉−1Id −Id Id a0Id −a0Id
0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

⎤

⎦ ∈ R
3d×(⌈2ζ−1⌉+3)d,

W
(ℓ)
2 =

⎡

⎣
A−K · · · A−K Id −Id 0d×d 0d×d

λtId · · · λtId 0d×d 0d×d 0d×d 0d×d

−w1Id · · · −w⌈2ζ−1⌉−1Id 0d×d 0d×d Id −Id

⎤

⎦
T

∈ R
(⌈2ζ−1⌉+3)d×3d.

Finally, we take Wout = [λtσ
−2
t Id,−Id,0d×d] ∈ Rd×3d.

By Lemma 5 and Remark 1, we have
∑⌈2ζ−1⌉−1

j=1 |aj | ≤ 2, |a0| ≤ 1, and |wj | ≤ log⌈ζ−1⌉. Therefore,

∥Win∥op ≤
√
d + σ−2

t , ∥Wout∥op ≤ 1 + λtσ
−2
t , ∥W (ℓ)

1 ∥op ≤ 2⌈2ζ−1⌉ + 2 and ∥W (ℓ)
2 ∥op ≤ (⌈2ζ−1⌉ − 1)(2 +

log⌈ζ−1⌉) + 4. Hence, |||W ||| ≤ (⌈2ζ−1⌉− 1)(4+ log⌈ζ−1⌉) + 8+ σ−2
t +

√
d. Note that for δ ≤ t ≤ T , it holds

that σ−2
t ≤ (1− e−2δ)−1. Therefore, we have

|||W ||| ≤ B = (⌈2ζ−1⌉ − 1)(3 + log⌈ζ−1⌉) + 8 + (1 − e−2δ)−1 +
√
d.

This completes the proof of Lemma 8.

Proof of Theorem 1

Recall that we have ŝt(z) = Pt[ResNŴ
](z), where Ŵ = argminW∈W Ê[∥Pt[ResNW ](z) + σ−1

t g∥22] for

W = Wd,D,L,M,B. Here, Ê denotes averaging over the empirical data distribution. By standard error
decomposition analysis in empirical risk minimization theory, we have:

E[∥Pt[ResNŴ
](z) + σ−1

t g∥22]/d ≤ inf
W∈W

E[∥Pt[ResNW ](z) + σ−1
t g∥22]/d

+ 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.

Furthermore, a standard identity in diffusion model theory shows:

E[∥ŝt(z)− st(z)∥22]/d = E[∥ŝt(z) + σ−1
t g∥22]/d+ C, C = E[∥st(z)∥22]/d− E[∥σ−1

t g∥22]/d.

Combining the above yields:
E[∥ŝt(z) − st(z)∥22]/d ≤ ε̄2app + ε̄2gen, (41)
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where ε̄2app is the approximation error and ε̄2gen is the generalization error,

ε̄2app = inf
W∈W

E[∥Pt[ResNW ](z) − st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.

By Proposition 6 and take D = 3d and m = 0, with probability at least 1 − η, simultaneously for any
t ∈ {T − tk}0≤k≤N−1, we have

ε̄2gen !
λ2
t

σ4
t

·

√
[d2 + LdM ] · [L · log(LB) + log(λ−1

t )] + log(N/η)

n
. (42)

To bound ε̄2app, by the identity that st(z) = (λtmt(z)−z)/σ2
t and PtResNW (z) = projλtσ

−2
t

√
d(ResNW (z)+

σ−2
t z)− σ−2

t z, recalling m̃L(z) as defined in Eq. (39), and by Lemma 8, we have

ε̄2app = inf
W∈W

E[∥Pt[ResNW ](z) − st(z)∥22]/d

= inf
W∈W

E[∥projλtσ
−2
t

√
d(ResNW (z) + σ−2

t z)− λtσ
−2
t mt(z)∥22]/d

≤ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z)) − λtσ

−2
t mt(z)∥22]/d

! E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z)) − projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

+ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z)) − λtσ

−2
t mt(z)∥22]/d

(43)

where the last inequality uses the triangle inequality. By Eq. (40) and the 1-Lipschitzness of projλtσ
−2
t

√
d,

the first quantity in the right-hand side is controlled by

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z)) − projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

!
λ2
t

σ4
t
· (A2L + ζ2(1 −A)−2) !

λ2
t

σ4
t
·
(
A2L +

d2

(1−A)2M2

)
,

(44)

where the last inequality is by the fact that we can choose ζ such that M = d · (⌈2ζ−1⌉ + 3), which gives
ζ ≤ 6d/M . Furthermore, by Assumption 1 and by ∥m̂(z)∥2 ≤

√
d, the second quantity in the right-hand

side is controlled by

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z)) − λtσ

−2
t mt(z)∥22]/d !

λ2
t

σ4
t

· ε2VI,t(A). (45)

Combining Eq. (41), (42), (43), (44), (45) completes the proof of Theorem 1.

B.2 Proof of Corollary 1

Corollary 1 is a direct consequence of Theorem 1, Theorem 5, and Lemma 7.

B.3 Proofs for Section 3.1

B.3.1 Proof of Lemma 1

Lemma 1 is a direct consequence of Lemma 9 below. Given Lemma 9, Lemma 1 holds by observing that
when ∥A∥op < 1/2, we have (1− ∥A∥op)−2 ≤ 4.

Lemma 9. Let h ∈ Rd, A ∈ Rd×d be symmetric with ∥A∥op < 1/2. Consider the Ising model µ(σ) ∝
exp{⟨σ,Aσ⟩/2 + ⟨σ,h⟩} and denote m = Eσ∼µ[σ]. Let m̂ be the unique minimizer of the naive VB free
energy

m̂ = argminm∈[−1,1]d

{ d∑

i=1

−hbin(mi)− ⟨m,Am⟩/2− ⟨m,h⟩
}
.
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Then we have
1

d
∥m− m̂∥22 ≤ 1

(1− 2∥A∥op)(1− ∥A∥op)2
∥A∥2F
d

.

Proof of Lemma 9. Denote ℓi(σ) =
∑

j ̸=i Aijσj+hi. Simple calculations yields Eµ[σi|{σj}j ̸=i] = tanh(ℓi(σ)),
which implies that

Eµ[σi] = Eµ[tanh(ℓi(σ))].

By the fact that supx∈R |(d2/dx2) tanh(x)| ≤ 1 and by Taylor’s expansion, we have

|Eµ[tanh(ℓi(σ))] − tanh(Eµ[ℓi(σ)])|2 ≤ Varµ(ℓi(σ)).

By Theorem 1 of [EKZ22], the Ising model satisfies a Poincare’s Inequality with Poincare’s coefficient to
be 1/(1 − 2∥A∥op) (we need to translate the Ising model to their setting, which leads to an additional 2
coefficient in front of ∥A∥op). Therefore, the Poincare’s inequality implies that

Varµ(ℓi(σ)) ≤
1

1− 2∥A∥op

∑

j ̸=i

A2
ij .

Combining the equations above, we get

1

d

∥∥∥m− tanh(Am+ h)
∥∥∥
2

2
=

1

d

d∑

i=1

(
Eµ[σi]− tanh(Eµ[ℓi(σ)])

)2 ≤ 1

1− 2∥A∥op
∥A∥2F

d
≡ ε2.

Furthermore, notice that m̂ is the unique minimizer of the naive VB free energy implies that m̂ =
tanh(Am̂+ h). Therefore, by the equation above, we get

ε ≥ 1√
d

∥∥(m− m̂)− (tanh(Am+ h)− tanh(Am̂+ h))
∥∥
2

≥ 1√
d

(
∥m− m̂∥2 − ∥ tanh(Am+ h)− tanh(Am̂+ h)∥2

)

≥ (1− ∥A∥op) ·
1√
d
∥m− m̂∥2.

Combining the equations above concludes the proof of Lemma 9.

B.3.2 Proof of Lemma 2

Lemma 2 is a direct consequence of the lemma below.

Lemma 10 (Lemma 4.10 and Proposition 4.2 of [EAMS22]). Let J ∼ GOE(d) and β < 1/2. Let x ∼
µ(x) ∝ exp{β⟨x,Jx⟩/2} on {±1}d and g ∼ N (0, Id) independently. Let z = λx + σg. Consider the
posterior measure

µ(x|z) ∝ exp{β⟨x,Jx⟩/2 + (λ/σ2)⟨x, z⟩},

and define m(z) =
∑

x∈{±1}d xµ(x|z). Furthermore, consider the TAP free energy

FTAP(m; z, q) =
d∑

i=1

−hbin(mi)−
β

2
⟨m,Jm⟩ − λ

σ2
⟨z,m⟩ + β2(1− q)

2
∥m∥22,

take q⋆ = q⋆(β,λ,σ) to be the unique solution of

q⋆ = EG∼N (0,1)

[
tanh2(β2q⋆ + (λ2/σ2) +

√
β2q⋆ + (λ2/σ2)G)

]
,

and define m̂(z) = argminm∈[−1,1]dFTAP(m; z, q) to be the unique minimizer. Then we have

∥m(z)− m̂(z)∥22/d
p−→ 0.
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Remark 2. We discuss the several seeming differences between Lemma 10 and [EAMS22, Lemma 4.10].

• The parameter λ2/σ2 in Lemma 10 maps to the parameter t in [EAMS22, Lemma 4.10]. The variable

(λ/σ2)z = (λ2/σ2)x+ (λ/σ)g in Lemma 10 maps to the variable y
d
= tx+

√
t · g in [EAMS22, Lemma

4.10].
• Lemma 10 takes m̂(z) to be the unique global minimizer of FTAP(m; z, q⋆), whereas [EAMS22, Lemma

4.10] takes m̂(z) to be a particular local minimizer of FTAP(m; z, q⋆). However, when β < 1/2, it can
be shown that FTAP is strongly convex with high probability, and hence the local minimizer is the global
minimizer with high probability.

• [EAMS22, Lemma 4.10] is proven under a different joint distribution of (J , z). However, [EAMS22,
Proposition 4.2] shows that the distribution for [EAMS22, Lemma 4.10] is contiguous to the distribution
for Lemma 10, and hence the high probability event under the sampling distribution of [EAMS22, Lemma
4.10] can be translated to the corresponding high probability event under the sampling distribution of
Lemma 10.

To prove Lemma 2, we take ct = β2(1− qt) where qt is the unique solution of

qt = EG∼N (0,1)

[
tanh2(β2qt + (λ2

t /σ
2
t ) +

√
β2qt + (λ2

t /σ
2
t )G)

]
.

Hence by Lemma 10, for any β < 1/2, we have

Ez∼µt
[∥m̂t(z)−mt(z)∥22]/d

p−→ 0, d → ∞.

Furthermore, note that ct ≤ β2 and ∥βJ∥op ≤ 2β + ε with high probability for arbitrarily small ε. This
ensures that ∥βJ − ctId∥op ≤ ∥βJ∥op + β2 < 1 when β ≤ 1/4. This proves Lemma 2.

C Proofs for Section 4: Generalization to other models

C.1 Proof of Theorem 2

Approximate the minimizer of the free energy via iterative algorithms

Once again, we first prove that we can approximately minimize the free energy by implementing a simple
iterative algorithm. Recall that

ω̂t(z) = argminω∈[−1,1]d+mFmarginal
t (ω; z),

Fmarginal
t (ω; z) :=

{ d+m∑

i=1

−hbin(ωi)−
1

2
⟨ω,Aω⟩ − λt

σ2
t
⟨z,ω1:d⟩+

1

2
⟨ω,Kω⟩

}
.

Taking the gradient and the Hessian of Fmarginal
t (ω; z), we obtain

∇ωFmarginal
t (ω; z) = tanh−1(ω) + (K −A)ω − λt

σ2
t
[z;0m]T,

∇2
ωF

marginal
t (ω; z) = diag{(1− ω2

i )
−1}i∈[d+m] +K −A.

Since ∥K − A∥op ≤ A < 1, we can then conclude that ∇2
wFmarginal

t (w; z) ≽ (1 − A)Id+m for all z ∈ Rd,

hence Fmarginal
t (·; z) is strongly-convex for all z ∈ Rd. This further implies that the fixed-point equation

below

ω = tanh

(
(A−K)ω +

λt

σ2
t

[z;0m]T
)

has a unique solution. By Lemma 6, we obtain that if we run the iteration

ω̃0(z) = 0, ω̃k(z) = f((A−K)ω̃k−1(z) + λtσ
−2
t [z;0m]T), (46)
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where ∥f(·)− tanh(·)∥∞ ≤ ζ, then

1√
d+m

∥ω̃k(z) − ω̂t(z)∥2 ≤ Ak + ζ(1 −A)−1. (47)

In particular, we require that f(·) is the function that we construct in Lemma 5.

Represent the iterative algorithm as a ResNet

Recall that m̂t(z) = [ω̂t(z)]1:d. We define m̃ℓ(z) := [ω̃(ℓ)(z)]1:d. In what follows, we show that (λtm̃
ℓ(z)−

z)/σ2
t can be expressed as a ResNet that takes input z.

Lemma 11. For all ℓ ∈ N+ and δ ≤ t ≤ T , there exists W ∈ Wd,D,ℓ,M,B with

D = 3(d+m), M = (⌈2ζ−1⌉+ 1)(d+m),

B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4) + 8 +
√
d+m+ (1 − e−2δ)−1,

such that (λtm̃
ℓ(z) − z)/σ2

t = ResNW (z), where m̃ℓ is as defined in Eq. (46).

Proof of Lemma 11. Recall the definition of f as an approximation of tanh as in Lemma 5. The proof of this

lemma is similar to that of Lemma 8. To be specific, we will select the weight matrices {W (ℓ)
1 ,W (ℓ)

2 ,Win,Wout}
appropriately such that u(ℓ) = [ω̃ℓ(z);σ−2

t [z;0m]T;1d+m]T ∈ R3(d+m). When ℓ = 0, this can be achieved
by setting

Win =

[
0d×(d+m) σ−2

t [Id,0d×m] 0d×(d+m)

01×(d+m) 01×(d+m) 11×(d+m)

]
∈ R

(d+1)×3(d+m).

Also, recall that f(x) =
∑⌈2ζ−1⌉−1

j=1 ReLU(x− wj) + a0. Therefore, for ℓ ∈ N+, we simply set

W
(ℓ)
1 =

⎡

⎣
aiId · · · a⌈2ζ−1⌉−1Id+m −Id+m Id+m a0Id+m −a0Id+m

0(d+m)×(d+m) · · · 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m)

0(d+m)×(d+m) · · · 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m)

⎤

⎦

∈ R
3(d+m)×(⌈2ζ−1⌉+3)(d+m),

W
(ℓ)
2 =

⎡

⎣
A−K · · · A−K Id+m −Id+m 0(d+m)×(d+m) 0(d+m)×(d+m)

λtId+m · · · λtId+m 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m)

−w1Id+m · · · −w⌈2ζ−1⌉−1Id+m 0(d+m)×(d+m) 0(d+m)×(d+m) Id+m −Id+m

⎤

⎦
T

∈ R
(⌈2ζ−1⌉+3)(d+m)×3(d+m).

Finally, we take Wout = [λtσ
−2
t Id,0d×m,−Id,0d×(d+2m)] ∈ Rd×3(d+m).

Next, we upper bound the norm of the residual network. By Lemma 5 and Remark 1, we have
∑⌈2ζ−1⌉−1

j=1 |aj | ≤ 2, |a0| ≤ 1, |wj | ≤ log⌈ζ−1⌉. Therefore,

∥Win∥op ≤
√
d+m+ σ−2

t , ∥Wout∥op ≤ 1 + λtσ
−2
t ,

∥W (ℓ)
1 ∥op ≤ 2⌈2ζ−1⌉+ 2, ∥W (ℓ)

2 ∥op ≤ (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 2) + 4.

This implies that

|||W ||| ≤ B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4) + 8 +
√
d+m+ (1 − e−2δ)−1.

This completes the proof of Lemma 11.
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Proof of Theorem 2

Similar to the proof of Theorem 1, we obtain

E[∥ŝt(z) − st(z)∥22]/d ≤ ε̄2app + ε̄2gen, (48)

where ε̄2app is the approximation error and ε̄2gen is the generalization error,

ε̄2app = inf
W∈W

E[∥PtResNW (z) − st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥PtResNW (z) + σ−1
t g∥22]/d− E[∥PtResNW (z) + σ−1

t g∥22]/d
∣∣∣.

By Proposition 6 and take D = 3(d + m), with probability at least 1 − η, simultaneously for any t ∈
{T − tk}0≤k≤N−1, we have

ε̄2gen !
λ2
t

σ4
t
·

√
[ML+ d](d+m) · [L · log(LB) + log(λ−1

t )] + log(N/η)

n
. (49)

To bound ε̄2app, by the identity that st(z) = (λtmt(z)−z)/σ2
t and PtResNW (z) = projλtσ

−2
t

√
d(ResNW (z)+

σ−2
t z)− σ−2

t z, recalling m̃L(z) = ω̃L
1:d(z) as defined in Eq. (46), and by Lemma 11, we have

ε̄2app = inf
W∈W

E[∥PtResNW (z) − st(z)∥22]/d

! E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z)) − projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

+ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z)) − λtσ

−2
t mt(z)∥22]/d.

(50)

By Eq. (47), the 1-Lipschitzness of projλtσ
−2
t

√
d, and the definition that m̂t(z) = [ω̂t(z)]1:d and m̃ℓ(z) =

[ω̃(ℓ)(z)]1:d, the first quantity on the right-hand side is controlled by

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z)) − projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

!
d+m

d
· λ

2
t

σ4
t
· (A2L + ζ2(1−A)−2) !

d+m

d
· λ

2
t

σ4
t
·
(
A2L +

(d+m)2

(1−A)2M2

)
,

(51)

where the last inequality is by the fact that we can choose ζ such that ζ ≤ 6(d+m)/M . Furthermore, by
Assumption 2 and by ∥m̂(z)∥2 ≤

√
d, the second quantity in the right-hand side is controlled by

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z)) − λtσ

−2
t mt(z)∥22]/d !

λ2
t

σ4
t
· ε2VI,t(A). (52)

Combining Eq. (48), (49), (50), (51), (52) completes the proof of the score estimation result in Theorem 2.
The KL divergence bound is a direct consequence of score estimation error, Theorem 5, and Lemma 7. This
concludes the proof.

C.2 Proof of Theorem 3

Approximate the minimizer of the free energy via iterative algorithm

We define

Fcond
t (m; z, θ) :=

d∑

i=1

−hbin(mi)−
1

2
⟨m,A11m⟩ − ⟨m,A12θ⟩ −

λt

σ2
t
⟨z,m⟩+ 1

2
⟨m,Km⟩.

Taking the gradient and the Hessian of Fcond
t , we obtain

∇mFcond
t (m; z, θ) = tanh−1(m) + (K −A11)m−A12θ − λt

σ2
t
z,

∇2
mFcond

t (m; z, θ) = diag{((1−m2
i )

−1)i∈[d]}+K −A11.
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When ∥K−A11∥op ≤ A < 1, we always have∇2
mFcond

t (m; z, θ) ≽ (1−A)I ≻ 0. That is to say, Fcond
t (·; z, θ)

is strongly convex, hence

m = tanh

(
(A11 −K)m+A12θ +

λt

σ2
t
z

)

has a unique solution. We then can apply Lemma 6, and conclude that if we run iteration

m̃0(z; θ) = 0, m̃ℓ(z; θ) = f((A11 −K)m̃ℓ−1(z; θ) +A12θ + λtσ
−2
t z) (53)

for some ∥f − tanh ∥∞ ≤ ζ, it then holds that

1√
d
∥m̃ℓ(z; θ)− m̂t(z; θ)∥2 ≤ Aℓ + ζ(1−A)−1. (54)

As usual, we require f(·) satisfies all other conditions from Lemma 5.

Represent the iterative algorithm as a ResNet

Next, we show that (λtm̃
ℓ(z; θ)− z)/σ2

t can be expressed as a ResNet as in (ResNet-Conditional) that has
input (z, θ).

Lemma 12. For all ℓ ∈ N+ and δ ≤ t ≤ T , there exists W ∈ Wd,m,D,ℓ,M,B with

D = 4d, M = (⌈2ζ−1⌉+ 3)d,

B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4 + ∥A12∥op) + 8 + (1 − e−2δ)−1 + ∥A12∥op +
√
d,

such that (λtm̃
ℓ(z; θ)− z)/σ2

t = ResNW (z, θ), where m̃ℓ is as defined in Eq. (53).

Proof of Lemma 12. Recall the definition of f as an approximation of tanh as in Lemma 5. We shall choose
the weight matrices such that u(ℓ) = [m̃ℓ(z; θ);σ−2

t z;A12θ;1d] ∈ R4d. For ℓ = 0, we simply set

Win =

⎡

⎢⎢⎣

0d×d 0d×m 0d×1

σ−2
t Id 0d×m 0d×1

0d×d A12 0d×1

0d×d 0d×m 1d×1

⎤

⎥⎥⎦ ∈ R
4d×(d+m+1).

For ℓ ≥ 1, we let

W
(ℓ)
1 =

⎡

⎢⎢⎣

aiId · · · a⌈2ζ−1⌉−1Id −Id Id a0Id −a0Id
0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

⎤

⎥⎥⎦ ∈ R
4d×(⌈2ζ−1⌉+3)d,

W
(ℓ)
2 =

⎡

⎢⎢⎣

A11 −K · · · A11 −K Id −Id 0d×d 0d×d

λtId · · · λtId 0d×d 0d×d 0d×d 0d×d

A12 · · · A12 0d×d 0d×d 0d×d 0d×d

−w1Id · · · −w⌈2ζ−1⌉−1Id 0d×d 0d×d Id −Id

⎤

⎥⎥⎦

T

∈ R
(⌈2ζ−1⌉+3)d×4d.

Finally, we letWout = [λtσ
−2
t Id,−Id,0d×d,0d×d] ∈ Rd×4d. By Lemma 5 and Remark 1, we have

∑⌈2ζ−1⌉−1
j=1 |aj | ≤

2, |a0| ≤ 1, |wj | ≤ log⌈ζ−1⌉. Therefore,

∥Wout∥op ≤ λtσ
−2
t + 1, ∥Win∥op ≤

√
d+ σ−2

t + ∥A12∥op,

∥W (ℓ)
1 ∥op ≤ 2⌈2ζ−1⌉+ 2, ∥W (ℓ)

2 ∥op ≤ (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 2 + ∥A12∥op) + 4.

As a result, we conclude that

|||W ||| ≤ B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4 + ∥A12∥op) + 8 + (1 − e−2δ)−1 + ∥A12∥op +
√
d.

We have completed the proof of Lemma 12.
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Proof of Theorem 3

Similar to the proof of Theorem 1, we obtain

Eθ,z[∥ŝt(z; θ)− st(z; θ)∥22]/d ≤ ε̄2app + ε̄2gen, (55)

where ε̄2app is the approximation error and ε̄2gen is the generalization error,

ε̄2app = inf
W∈W

Eθ,z[∥Pt[ResNW ](z, θ)− st(z; θ)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z, θ) + σ−1
t g∥22]/d− Eθ,z[∥Pt[ResNW ](z, θ) + σ−1

t g∥22]/d
∣∣∣.

By Proposition 6 and take D = 4d, with probability at least 1 − η, simultaneously for any t ∈ {T −
tk}0≤k≤N−1, we have

ε̄2gen !
λ2
t

σ4
t
·

√
(MdL+ d(d+m)) · [L · log(LBd−1(m+ d)) + log(λ−1

t )] + log(N/η)

n
. (56)

To bound ε̄2app, by the identity that st(z; θ) = (λtmt(z; θ)−z)/σ2
t and PtResNW (z, θ) = projλtσ

−2
t

√
d(ResNW (z, θ)+

σ−2
t z)− σ−2

t z, recalling m̃L(z) as defined in Eq. (53), and by Lemma 12, we have

ε̄2app = inf
W∈W

Eθ,z[∥Pt[ResNW ](z, θ)− st(z; θ)∥22]/d

! Eθ,z[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z; θ))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z; θ))∥22]/d

+ Eθ,z[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z; θ))− λtσ

−2
t mt(z; θ)∥22]/d.

(57)

By Eq. (54) and the 1-Lipschitzness of projλtσ
−2
t

√
d, the first quantity on the right-hand side is controlled

by
Eθ,z[∥projλtσ

−2
t

√
d(λtσ

−2
t m̃L(z; θ))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z; θ))∥22]/d

!
λ2
t

σ4
t

· (A2L + ζ2(1−A)−2) !
λ2
t

σ4
t

·
(
A2L +

d2

(1−A)2M2

)
,

(58)

where the last inequality is by the fact that we can choose ζ such that ζ ≤ 6d/M . Furthermore, by
Assumption 3 and by ∥m̂(z; θ)∥2 ≤

√
d, the second quantity in the right-hand side is controlled by

Eθ,z[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z; θ))− λtσ

−2
t mt(z; θ)∥22]/d !

λ2
t

σ4
t
· ε2VI,t(A). (59)

Combining Eq. (55), (56), (57), (58), (59) completes the proof of the score estimation result in Theorem 3.
The KL divergence bound is a direct consequence of score estimation error, Theorem 5, and Lemma 7. This
concludes the proof.

To prove the second result of the bound of the expected KL divergence, we simply notice that by Theorem
5, conditioning on every θ we have

1

d
KL(µδ(·|θ), µ̂(·|θ)) ! ε2 + κ2N + κT + e−2T ,

where

ε2 =
1

d

N−1∑

k=0

γkE
[
∥ŝT−tk(z; θ)− sT−tk(z; θ)∥22 | θ

]
.

The proof is complete of Theorem 3 by simply integrating over θ.

37



C.3 Proof of Theorem 4

Relationship of the score function st to the denoiser et

We first compute the score function st(z) = ∇z logµt(z), for x = Aθ + ε and z = λtx + σtg, where
g ∼ N (0d, Id) is independent of (θ, ε) ∼ πm

0 ⊗N (0, τ2Id). Note that

E[x | z] = E[Aθ + ε | λtAθ + λtε+ σtg] = AE[θ | z] + E[ε | λtAθ + λtε+ σtg]

= AE[θ | z] + λtτ2

λ2
t τ2 + σ2

t
E[λtε+ σtg | λtAθ + λtε+ σtg]

= AE[θ | z] + λtτ2

λ2
t τ2 + σ2

t
· (z − λtAE[θ | z]) = σ2

t

λ2
t τ2 + σ2

t
AE[θ | z] + λtτ2

λ2
t τ2 + σ2

t
z.

By (Denoiser), we obtain

st(z) =
λt

σ2
t
E[x | z]− 1

σ2
t
z = − 1

τ2λ2
t + σ2

t
z +

λt

τ2λ2
t + σ2

t
A · E[θ | z].

We notice the equality in distribution z/λt
d
= z∗ = Aθ + ε̄ where (θ, ε̄) ∼ πm

0 ⊗ N (0, τ̄2t Id) (this z∗ is as
defined in Assumption 4). This implies

st(z) = − 1

τ2λ2
t + σ2

t
z +

λt

τ2λ2
t + σ2

t
A · et(z/λt), (60)

where et is as defined in Eq. (15).

Existence of a unique minimizer of the VI free energy

We analyze the VI free energy. We define

F sparse
t (e; z∗) :=

m∑

i=1

max
λ

[
λei − logEβ∼π0

[eλβ−β2νt/2]
]
+

1

2τ̄2t
∥z∗ −Ae∥22 −

1

2
⟨e,Kte⟩.

Let Gt(λ) = logEβ∼π0
[eλβ−β2νt/2], and λi = argmaxλ[λei −Gt(λ)], then ei = G′

t(λi). Therefore,

d

dei
[λiei −Gt(λi)] = λi +

ei
G′′

t (λi)
− G′

t(λi)

G′′
t (λi)

= λi,

d2

d2ei
[λiei −Gt(λi)] =

1

G′′
t (λi)

.

Hence, we have

∇eF sparse
t (e; z∗) = (G′

t)
−1(e)− 1

τ̄2t
ATz∗ +

1

τ̄2t
ATAe−Kte,

∇2
eF

sparse
t (e; z∗) = diag{(G′′

t (λi)
−1)i∈[m]}+

1

τ̄2t
ATA−Kt.

Note that G′′
t (λi) = Var(β,z)∼π0⊗N (0,1)[β | β+ν−1/2

t z = λν−1
t ] ≤ Π2. In addition, note that |G′

t(λ)| = |E[β |
β + ν−1/2

t z = λν−1
t ]| ≤ Π for all λ. By assumption, ∥τ̄−2

t ATA −Kt∥op < Π−2, hence ∇2
eF

sparse
t (e; z∗) is

positive-definite and F sparse
t (·; z∗) as a function of e is strongly convex. That is to say, the equation

e = G′
t

(
(−τ̄−2

t ATA+Kt)e+ τ̄−2
t ATz∗

)

has a unique fixed point êt(z∗).
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Approximate the minimizer of the free energy via iterative algorithm

We denote by ft(·) the function obtained from Lemma 5 that achieves ζ-uniform approximation to G′
t(·).

By Lemma 6, we conclude that if we implement the following iteration

ẽ0(z∗) = 0, ẽℓ+1(z∗) = ft
(
(−τ̄−2

t ATA+Kt)ẽ
ℓ(z∗) + τ̄−2

t ATz∗
)
, (61)

then for all ℓ ∈ N+, we have

1√
m
∥ẽℓ(z∗)− êt(z∗)∥2 ≤ Π · (Π2A)ℓ +

ζ

1−Π2A
. (62)

Represent the iterative algorithm as a ResNet

We then show that st(z) = (λtAet(z/λt) − z)/(τ2λ2
t + σ2

t ) (c.f. Eq. (60)) can be expressed as a ResNet
that takes input z.

Lemma 13. For all t ∈ {T − tk}0≤k≤N−1 and ℓ ∈ N+, there exists W ∈ Wd,D,ℓ,M,B, with

D = 3m+ d, M = (⌈2Πζ−1⌉+ 3)m,

B =
(
⌈2Πζ−1⌉ − 1

)
·
(
A+ 1 + 2Π2 + wζ

)
+ 2Π+ 6 + (∥A∥op + 1)/(1− e−2δ) + τ̄−2

t λ−1
t ∥A∥op +

√
m,

such that (λtAẽℓ(z/λt)− z)/(τ2λ2
t + σ2

t ) = ResNW (z). Here, ẽℓ is as defined in Eq. (61), and wζ is given
by

wζ = sup
t∈{T−tk}0≤k≤N−1

inf
{
w : for all λ1 > λ2 ≥ w or λ1 < λ2 ≤ −w we have |G′

t(λ1)−G′
t(λ2)| < ζ

}
.

Proof of Lemma 13. Recall that the ResNet is defined as (ResNet). Recall the definition of ft as an
approximation of G′

t as in Lemma 5. We shall choose the weight matrices appropriately, such that
u(ℓ) = [ẽℓ(z/λt); τ̄

−2
t ATz/λt;1m; z] ∈ R3m+d. For ℓ = 0, we set

Win =

[
0d×m τ̄−2

t λ−1
t A 0d×m Id

01×m 01×m 11×m 01×d

]T
∈ R

(3m+d)×(d+1).

For ℓ ≥ 1, we set

W
(ℓ)
1 =

⎡

⎢⎢⎣

aiIm · · · a⌈2Πζ−1⌉−1Im −Im Im a0Im −a0Im
0m×m · · · 0m×m 0m×m 0m×m 0m×m 0m×m

0m×m · · · 0m×m 0m×m 0m×m 0m×m 0m×m

0d×m · · · 0d×m 0d×m 0d×m 0d×m 0d×m

⎤

⎥⎥⎦ ∈ R
(3m+d)×(⌈2Πζ−1⌉+3)m,

W
(ℓ)
2 =

⎡

⎢⎢⎣

−τ̄−2
t ATA+Kt · · · −τ̄−2

t ATA+Kt Im −Im 0m×m 0m×m

Im · · · Im 0m×m 0m×m 0m×m 0m×m

−w1Im · · · −w⌈2Πζ−1⌉−1Im 0m×m 0m×m Im −Im
0d×m · · · 0d×m 0d×m 0d×m 0d×m 0d×m

⎤

⎥⎥⎦

T

∈ R
(⌈2Πζ−1⌉+3)m×(3m+d).

For the output layer, we let Wout = [λtA/(σ2
t + τ2λ2

t ),0d×m,0d×m,−(τ2λ2
t + σ2

t )
−1Id] ∈ Rd×(3m+d).

The following upper bounds are straightforward:

∥Win∥op ≤ τ̄−2
t λ−1

t ∥A∥op +
√
m+ 1, ∥Wout∥op ≤ (∥A∥op + 1)/(1− e−2δ),

∥W (ℓ)
1 ∥op ≤ 2Π2(⌈2Πζ−1⌉ − 1) + 2Π+ 2, ∥W (ℓ)

2 ∥op ≤
(
⌈2Πζ−1⌉ − 1

)
· (A+ 1 + wζ) + 4.

In summary, we have

|||W ||| ≤
(
⌈2Πζ−1⌉ − 1

)
·
(
A+ 1 + 2Π2 + wζ

)
+ 2Π+ 6 + (∥A∥op + 1)/(1− e−2δ) + τ̄−2

t λ−1
t ∥A∥op +

√
m.

This concludes the proof of Lemma 13.
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Proof of Theorem 4

Similar to the proof of Theorem 1, we obtain

E[∥ŝt(z) − st(z)∥22]/d ≤ ε̄2app + ε̄2gen, (63)

where ε̄2app is the approximation error and ε̄2gen is the generalization error:

ε̄2app = inf
W∈W

E[∥P̄t[ResNW ](z) − st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥P̄t[ResNW ](z) + σ−1
t g∥22]/d− E[∥PtResNW (z) + σ−1

t g∥22]/d
∣∣∣.

Applying Proposition 7 and taking D = 3m + d, we conclude that with probability at least 1 − η,
simultaneously for any t ∈ {T − tk}0≤k≤N−1, when n ≥ log(2/η), we have

ε̄2gen !
(
λ2
t ∥A∥2opΠ2(τ−4 + 1)

m

d
+

λ2
t

σ2
t
(1 + τ2)

)

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2N/η)

n
.

(64)

where we choose

B = M/m ·
(
A+ 1 + 2Π2 + w⋆

)
+ 2Π+ 6 + (∥A∥op + 1)/(1− e−2δ) + τ−2∥A∥op +

√
m,

w⋆ = sup
t∈{T−tk}0≤k≤N−1

inf
{
w : for all λ1 > λ2 ≥ w or λ1 < λ2 ≤ −w we have |G′

t(λ1)−G′
t(λ2)| < M/(6mΠ)

}
.

(65)
We next upper bound ε̄2app. Recall Eq. (60) and τ̄2t = τ2 + σ2

t /λ
2
t , we have st(z) = −λ−2

t τ̄−2
t z +

λt
−1τ̄−2

t Aēt(z∗) (recall that z∗ = z/λt) and recall P̄t[ResNW ](z) = proj√m∥A∥opΠλ−1
t τ̄−2

t
(ResNW (z) +

λ−2
t τ̄−2

t z) − λ−2
t τ̄−2

t z. According to Lemma 13, recalling ẽL as defined in Eq. (61), we have

ε̄2app = inf
W∈W

E[∥P̄t[ResNW ](z) − st(z)∥22]/d

= inf
W∈W

E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(ResNW (z) + λ−2

t τ̄−2
t z) − λt

−1τ̄−2
t Aēt(z∗)∥22]/d

≤ E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t AẽL(z∗))− λt

−1τ̄−2
t Aēt(z∗)∥22]/d

! E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t AẽL(z∗))− proj√m∥A∥opΠλ−1

t τ̄−2
t

(λ−1
t τ̄−2

t Aê(z∗))∥22]/d

+ E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t Aê(z∗))− λ−1

t τ̄−2
t Aēt(z∗)∥22]/d

(66)

where the last inequality is by the triangle inequality. By Eq. (62) and the 1-Lipschitzness of proj(·), we
obtain that the first term in the right-hand side above is upper bounded by

E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t AẽL(z∗))− proj√m∥A∥opΠλ−1

t τ̄−2
t

(λ−1
t τ̄−2

t Aê(z∗))∥22]/d

!
m∥A∥2op
dλ2

t τ̄
4
t

· (Π2 · (Π2A)2L + ζ2(1−Π2A)−2) !
m∥A∥2op
dλ2

t τ̄
4
t

·
(
Π2 · (Π2A)2L +

m2Π2

(1−Π2A)2M2

)
.

(67)

In the above display, the last inequality is by the fact that we can choose ζ such that M = m ·(⌈2Πζ−1⌉+3),
which implies that 2mΠ/M ≤ ζ ≤ 6mΠ/M . Furthermore, by Assumption 4 and by the fact that ∥ê(z∗)∥2 ≤√
mΠ, we obtain that the second quantity in the right-hand side of Eq. (66) is controlled by

E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t Aê(z∗))− λ−1

t τ̄−2
t Aēt(z∗)∥22]/d !

m∥A∥2op
dλ2

t τ̄
4
t

· ε2VI,t(A). (68)

Finally, we combine Eq. (63), (64), (66), (67), (68). This completes the proof of Theorem 4.
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C.4 Proof of Lemma 3

Consider the sparse coding problem z∗ = Aθ + ε̄ ∈ Rd with dictionary A ∈ Rd×m, sparse representation
θ ∈ Rm, and noise ε̄ ∈ Rd. Assume that the model satisfies the following assumption.

Assumption 7 (Simplified version of Assumption 1 - 4 of [LFSW23]). Assume that A = QDOT is the
singular value decomposition of A, where Q ∈ Rd×d and O ∈ Rm×m are orthogonal and D ∈ Rd×m is
diagonal with diagonal elements {di}i∈[min{d,m}]. Assume that Q, D are deterministic, O, θ, ε are mutually
independent, and O ∼ Haar(SO(m)) is uniformly distributed on the special orthogonal group. As d,m → ∞,

we assume µD
W→ D where µD is the empirical distribution of coordinates of D, D is a random variable

with supp{D2} ⊆ [d−, d+] and 0 < d− < d+ < ∞, and
W→ denotes Wasserstein-p convergence. Furthermore,

mini{d2i } → d− and maxi{d2i } → d+. We further assume θi ∼iid π0 with Eπ0
[θ] = 0, Eπ0

[θ2] > 0, and π0 is
compactly supported. Finally, we have ε̄i ∼iid N (0, τ̄2).

Denote the posterior mean of θ given (A, z∗) by e(z∗) = E[θ|z∗]. Theorem 1.11 of [LFSW23] proves the
following.

Lemma 14 (Theorem 1.11 of [LFSW23]). Let Assumption 7 hold. There exists τ̄20 that depends on
(α,π0,D), such that the following happens. For any τ̄2 ≥ τ̄20 , there exists ν⋆ = (α,π0,D, τ̄2) that depends

on (α,π0,D, τ̄2) such that, taking G(λ) = logEβ∼π0
[eλβ−β2ν⋆/2] we have almost surely

lim
d,m→∞

Ez∗

[∥∥∥e(z∗)−G′(− τ̄−2
(
(ATA− ν⋆Im)e(z∗)−ATz∗

))∥∥∥
2

2

∣∣∣A
]
= 0.

Furthermore, for any fixed (π0,α,D), we have supτ̄2≥τ̄2
0
ν⋆(τ̄2) < ∞.

We remark that Theorem 1.11 of [LFSW23] assumes the fixed noise level τ̄2 = 1. However, a simple
rescaling argument could extend the result to general τ̄2.

Given Lemma 14, we are now ready to prove Lemma 3. Taking τ̄2 = τ̄2t = τ2 + σ2
t /λ

2
t , νt = ν⋆(τ̄2t ),

Gt = G, and Kt = τ̄−2
t ν⋆(τ̄2t ), we note that the minimizer of the VI free energy êt(z∗) ∈ [−Π,Π]m should

satisfy
êt(z∗) = G′

t

(
−τ̄−2

t

(
(ATA− νtIm)êt(z∗)−ATz∗

))
.

For the posterior mean et(z∗) ∈ [−Π,Π]m, we have

∥∥∥et(z∗)−G′
t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))∥∥∥
2

≥
∥∥∥et(z∗)− êt(z∗)

∥∥∥
2
−
∥∥∥G′

t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))
−G′

t

(
− τ̄−2

t

(
(ATA− νtrIm)êt(z∗)−ATz∗

)∥∥∥
2

≥
(
1−Π2τ̄−2

t ∥ATA− νtIm∥op
)
∥et(z∗)− êt(z∗)∥2,

where the last inequality used the fact that G′
t is Π

2-Lipschitz. Notice that by Lemma 14, supτ̄2≥τ̄2
0
ν⋆(τ̄2) =

ν < ∞, and ∥ATA∥op = maxi d2i bounded almost surely by some D < ∞ per Assumption 7. Therefore,
when τ20 ≥ 2Π2(D + ν), we have 1−Π2τ̄−2

t ∥ATA− ν⋆Im∥op ≥ 1/2 for any τ2 ≥ τ20 and any t. This gives

∥∥∥et(z∗)−G′
t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))∥∥∥
2
≥ ∥et(z∗)− êt(z∗)∥2/2.

Furthermore, by Lemma 14, the posterior mean et(z∗) satisfies

lim
d,m→∞

Ez∗

[∥∥∥et(z∗)−G′
t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))∥∥∥
2

2

∣∣∣A
]
= 0.

This implies that
lim

d,m→∞
Ez∗ [∥et(z∗)− êt(z∗)∥22|A] = 0,

which concludes the proof of Lemma 3.

41


	Introduction
	Preliminaries: the DDPM sampling scheme
	Diffusion models for Ising models
	Verifying the assumption in examples
	Discussions
	Proof outline of Theorem 1

	Generalization to other high-dimensional graphical models
	Diffusion models for latent variable Ising models
	Conditional diffusion models for Ising models
	Diffusion models for sparse coding

	Other related work
	Discussions
	Technical preliminaries
	DDPM conditional sampling scheme
	Sampling error bound of the DDPM scheme
	Generalization error of empirical risk minimization over ResNets
	Result for Ising models
	Result for Sparse coding

	Uniform approximation of the denoiser
	Approximation error of fixed point iteration
	Properties of two-phase time discretization scheme

	Proofs for Section 3: Ising models
	Proof of Theorem 1
	Proof of Corollary 1
	Proofs for Section 3.1
	Proof of Lemma 1
	Proof of Lemma 2


	Proofs for Section 4: Generalization to other models
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Lemma 3


