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Abstract—Advanced Air Mobility (AAM) seeks to establish
a next-generation air transportation system by leveraging au-
tonomous unmanned aerial vehicles (UAVs) to transport pas-
sengers and cargo between locations previously underserved or
unserved by traditional aviation. Achieving AAM at scale requires
overcoming significant challenges in airspace management, classi-
fication, and traffic control to safely accommodate the increasing
volume of UAV operations. This paper presents a comprehensive
design for air corridors to facilitate efficient aerial transport
and formulates a multi-UAV coordination problem within these
corridors. The objective is to enable each UAV to autonomously
make control decisions based on local observations gathered from
onboard sensors. This decentralized control approach is modeled
as a multi-agent partially observable Markov decision process
(POMDP), aiming at minimizing UAV travel time while ensuring
adherence to corridor boundaries and collision avoidance. To
address the complexities posed by varying state dimensions and
types, we propose a novel Hybrid Transformer-based Multi-agent
Reinforcement Learning (HTransRL) architecture. HTransRL
integrates a customized transformer model into an actor-critic
network, effectively processing both sequential and non-sequential
observed states of varying sizes while capturing their correlations.
This enables safe and efficient UAV navigation. Simulation results
show that in test environments similar to or simpler than training
scenarios, HTransRL achieves a successful arrival rate exceeding
90% in worst-case test scenarios. In test environments more
complex than training scenarios, HTransRL demonstrates superior
scalability compared to two baseline methods, achieving higher
arrival rates and comparable travel times. The code for HTransRL
is available at https://github.com/SECNetLabUNM/HTransRL.,

Index Terms—Reinforcement learning, transformer, PPO, au-
tonomous control, UAYV, air corridor

I. INTRODUCTION

As the utilization of Unmanned Aerial Vehicles (UAVs)
continues to rise across various sectors, NASA and the FAA
are collaborating to develop an advanced air transportation
system dedicated to UAVs, enhancing their capabilities for
efficient cargo delivery and passenger transportation. In densely
populated urban airspace, UAVs are expected to autonomously
adhere to specific flight regulations to ensure smooth and safe
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air traffic flow, while minimizing potential collisions. To meet
these requirements, meticulously designed three-dimensional
(3D) aerial highways, known as air corridors, are essential.
These corridors should facilitate efficient transportation while
upholding rigorous safety standards, serving as designated
routes for UAVs traveling between vertiports [1]. The current
state-of-the-art airspace management and air corridor design
is still in its infancy, lacking detailed configurations. Building
upon our previous work [2], we present our comprehensive
design for air corridor structures, aimed at facilitating efficient
movement of UAVs and air traffic management.

Given the air corridors, which essentially constrain the
trajectory of a UAV from its source to its destination vertiport,
one of the major challenges is controlling the UAVs in air
corridors to meet three objectives: 1) to navigate within the
predefined air corridors, 2) to avoid collisions in complex
airspace, where some non-cooperative flying objects (NCFOs),
such as birds and amateur drones, may exist, 3) to promptly
arrive at their destinations. These objectives may conflict with
each other, meaning that if a UAV aims to minimize its travel
time to the destination, it may increase the probability of
collisions or boundary breaches within air corridors. Hence, it
is critical but challenging to optimize this tradeoff.

Existing automated aviation navigation systems are primarily
implemented based on centralized control [3]-[5], where vari-
ous aircraft and external sensing systems, such as ground radar
or lidar systems, sense the airspace states. This information is
then transmitted to a centralized controller, which processes
the data received to generate actions (e.g., accelerations)
for various aircraft. These actions are then relayed back to
the corresponding aircraft to ensure efficient navigation and
collision avoidance. Although the centralized control solution
is capable of obtaining the global view of the whole airspace
to potentially derive optimal actions, it suffers from scalability
limitations and communications latency/failure challenges, and
is thus unable to control UAVs in air transportation systems
for Advanced Air Mobility (AAM), which attempts to manage
UAVs in crowded airspace. Therefore, ensuring high scalability
and tolerance to communication latency/failure is critical.

Decentralized control solutions are developed to enable
each UAV to autonomously determine its actions based on
some prior knowledge, such as the characteristics of its air
corridors, and local observations, such as the velocities and
locations of neighboring UAVs or NCFOs that are located
within the UAV’s sensing area, whose size is determined by its
onboard sensors. Although decentralized control resolves the
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scalability issue and unsafe actions caused by communications
latency/failure challenges, it requires UAV policies capable of
collaboratively navigating air corridors to avoid collisions and
boundary crossings based solely on local views. Intuitively, the
decentralized control problem for a UAV in air corridor navi-
gation can be formulated as a multi-agent partially observable
Markov decision process (MAPOMDP) [6], [7]]. Here, partially
observable means that a UAV only has a local view within its
sensing area, besides the prior static global knowledge, such as
the structures of its current and next air corridors. In general,
deep reinforcement learning (DRL) has been demonstrated as
an efficient way to solve a Markov decision process.

However, the partially observable nature of the problem

presents a challenge for utilizing DRL. Specifically, the
dimension of observations varies over time due to fluctuations in
the number of neighboring UAVs and NCFOs within the UAV’s
sensing area. This dynamic observation dimension results in
varying input sizes, which traditional DRL algorithms cannot
easily handle because multilayer perceptron (MLP) models,
adopted by these algorithms, cannot adapt to varying input
sizes. Normally, if the observation dimension is smaller than
the input dimension of an MLP, padding the remaining input
lines with zeros is an effective solution. Yet, if the observation
dimension is larger than the input dimension, a common but
ineffective solution is to drop some observations (e.g., the
states of neighboring UAVs/NFCOs that are far away from
the UAV) to accommodate the MLP’s input size [8]], [9]. This
approach could lead to bad actions that finally lead to, for
example, collisions. On the other hand, the transformer has
been widely used in natural language processing to handle a
sentence or a sequence of words with variable lengths.

Inspired by that, we propose the Hybrid Transformer based

Multi-agent Reinforcement Learning (HTransRL) framework,
which customizes the transformer framework based on the
unique features of the air corridor traffic management appli-
cation, and then integrates it into DRL. HTransRL is capable
of not only handling the dynamic dimension of observations
with sequential and non-sequential vectors but also efficiently
analyzing their relationships to benefit the actor-critic network
in DRL, deriving better policies to meet the three objectives.
The major contributions of the paper are summarized below.

1) We propose a detailed air corridor design by modeling
horizontal lanes as truncated cylinders and on-off ramps
as partial tori. A truncated cylinder is defined by four
parameters: anchor point, orientation, length, and radius,
while a partial torus is characterized by five parameters:
anchor point, orientation, tube radius, central point of the
end plane, and the angle between the start and end planes.
Unlike previous work, which often relies on simplified
shapes [10] or 2D paths [11], our 3D design models
realistic airspace, enabling effective air traffic management,
smooth transitions between corridors, and support for the
spatial complexity required in dense airspaces.

2) We formulate multiple UAV coordination in air cor-
ridors as an optimization problem, and propose the
HTransRL framework to solve the problem efficiently
and distributively. HTransRL customizes the transformer
framework to efficiently capture the relations among a

UAV’s observations, which vary in size over time and
include both sequential and non-sequential data. This
customized transformer is then integrated into a DRL
algorithm to ensure efficient and safe UAV navigation.

3) To improve the training efficiency, curriculum learning
is customized and applied in training HTransRL. Exten-
sive test simulations are conducted to demonstrate the
performance and scalability of HTransRL.

The remainder of this paper is organized as follows: Section
IT reviews existing works on handling states with dynamic
dimensions in DRL. Section III presents system models and
problem formulation for multiple UAV coordination in air
corridors. Section IV details the design of HTransRL. Section
V demonstrates and analyzes HTransRL'’s performance through
simulations. Finally, Section VI concludes the paper.

II. RELATED WORK

Deep reinforcement learning (DRL) has recently gained
prominence as a powerful method for UAV control, particularly
in complex and dynamic environments [12]—[14]. In multi-
agent systems, advanced machine learning techniques have
been employed to process high-dimensional, dynamic state
information critical for achieving objectives such as collision
avoidance. However, DRL models, typically implemented as
multi-layer perceptrons, struggle to efficiently process inputs
of varying sizes, as they are designed to handle fixed-size
inputs. To address this challenge, Qin et al. [8] proposed a
method where each agent selects a fixed number of the nearest
neighboring agents’ states as inputs, discarding the rest. This
approach assumes that shorter distances are more likely to
lead to collisions, but it overlooks other crucial factors such as
velocity and acceleration. As shown in the simulation results
in Section this method results in a high collision rate.
Effectively addressing the challenge of varying input sizes
is crucial for improving model performance, robustness, and
scalability in real-world applications. In the following, we
summarize and categorize existing solutions to this challenge
into three key approaches.

A. Long Short-Term Memory networks (LSTMs) for varying
input sizes

Long Short-Term Memory (LSTM) networks, a type of
recurrent neural network (RNN), are designed to model
sequential data by maintaining memory cells that capture
long-term dependencies [15]. LSTMs handle varying input
sizes by processing input sequences one step at a time, while
maintaining internal states that adapt to different sequence
lengths. This capability enables the network to effectively
capture temporal dependencies in dynamic inputs. LSTMs
have proven useful in dynamic UAV environments, where
input dimensionality fluctuates over time. For instance, Li and
Wau [16] proposed integrating LSTMs to enhance environmental
state approximation with varying sizes, leveraging historical
observations to adapt to varying sequence lengths. This allows
UAVs to accommodate dynamically changing observations, par-
ticularly in partially observable settings where input dimensions
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Fig. 1: Ilustration of air corridor design: 1) The central subfigure shows UAV i’s trajectory (dashed-dotted line) traversing
four air corridors in a global 3D Cartesian coordinate system. Air corridor-1 and Air corridor-4 are modeled as truncated
cylinders, while Air corridor-2 and Air corridor-3 are modeled as partial tori. 2) The left subfigure illustrates the conversion of
Air corridor-2 from a partial torus in the global Cartesian coordinate system to a standard partial torus in a local Cartesian
coordinate system. 3) The right subfigure illustrates the conversion of Air corridor-4 from a truncated cylinder in the global
Cartesian coordinate system to a standard truncated cylinder in a local Cartesian coordinate system.

vary due to moving targets and environmental changes. Deniz
et al. [17] applied LSTMs to process the states of neighboring
UAVs modeled as a sequential vector, encoding the sequence
into a fixed-length vector [17], which is then used as input to
a conventional DRL model.

However, two significant limitations affect the applicability
of LSTMs in this context. First, LSTMs are susceptible to
the vanishing gradient problem, as discussed in [18], where
longer sequences lead to a loss of gradient information,
making it difficult to effectively learn from earlier elements
in the sequence. Second, treating neighboring UAV states
as a sequential vector can lead to order-dependent results,
which is problematic for our application. For instance, if a
UAV observes two neighboring UAVs, UAV-1 and UAV-2, it
should generate the same action to avoid a collision regardless
of their order in the input sequence. LSTM’s sensitivity to
sequence order can cause inconsistencies in action selection,
ie., fESTM(UAV,, UAVy) # fESTM(UAV,, UAV,), where
FESTM () s the function achieved by an LSTM.

B. Deep Sets (DSs) for varying input sizes

The DS model [19] was proposed to preprocess inputs
of varying size while ensuring permutation invariance, i.e.,
fPS(UAV,, UAV,y) = fPS(UAV,, UAV,), where fP9(.) is
the function achieved by a DS model. This approach uses
fully connected neural networks to extract features from
the environment’s states, which are then passed through a
permutation-invariant function, such as row-wise max pooling,
to produce a fixed-length vector representation [20], [21]. In
multi-UAV tasks, where the focus is on UAV interactions rather
than their observation order, DS can summarize spatial features
into a fixed-size vector, regardless of the number of UAVs.
This fixed-size representation can then be used by the DRL
model to generate effective actions for various applications
[22], [23].

However, a key limitation of the DS model is its depen-
dence on a specific permutation-invariant function, which may
overlook critical information required for effective collision
avoidance. This rigid approach limits the model’s flexibility
and may fail to capture essential interactions, thereby reducing
its effectiveness in dynamic UAV control scenarios.

C. Transformers for varying input sizes

Rather than relying on a simple permutation-invariant func-
tion, the transformer (or attention model) calculates attention
scores to capture correlations among different states. The
attention scores are then fed into a DRL model to generate
actions for UAVs, enabling efficient and safe navigation. Lee et
al. [24] proposed the Set Transformer, a permutation-invariant
deep learning model designed to process dynamically sized
inputs and outputs important correlations among the inputs.
Hsu et al. [25] incorporated the transformer model into the
Double Deep Q-Learning Network (DDQN) for counter-UAV
applications, where a group of pursuer UAVs tracks and
captures a group of evader UAVs. In this setup, the transformer
preprocesses the observed or estimated states of the pursuer
UAVs, and DDQN uses this information to derive the optimal
action that maximizes the Q-value. In general, as compared
to LSTMs and DSs, transformers excel in processing variable-
sized inputs by efficiently capturing both local and global
dependencies, overcoming the sequential processing limitations
of LSTMs and the fixed aggregation constraints of DSs.

In summary, leveraging a transformer model to preprocess
the observed states of an agent with dynamic size has shown
outstanding performance. However, integrating the transformer
into DRL for autonomous and distributive traffic management
in air corridors remains unexplored and challenging due to
the unique features of this application. First, each UAV must
ensure its position within the air corridors, necessitating the
inclusion of air corridor characteristics should be included in the
input states to determine the UAV’s actions. Unlike other state
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types that are permutation invariant or non-sequential (such as
neighboring UAV states), the sequence of air corridor states is
crucial for ensuring UAVs stay within the corridors, especially
during transitions between contiguous corridors. Consequently,
the observed states of a UAV comprise a mix of sequential
and non-sequential vectors, and designing a transformer model
to handle these hybrid states is an unresolved issue.

To address this, we propose a straightforward yet effective
solution described in Section which employs one-hot
encoding for the sequential states related to UAV 4’s air corridor
characteristics. Second, the airspace is complex, with many
NCFOs often present but ignored in previous works. These
NCFOs are not controlled by the developed DRL models and
may behave unpredictably, thus increasing the complexity of
the state space. PPO, the DRL model we used, requires effective
exploration of the state and action spaces. However, misaligned
transformer outputs can impede this process, resulting in
extended training durations or even divergence. To address
this challenge, we implement curriculum learning, as detailed
in Section by incorporating intermediate rewards to
facilitate efficient model training. Although our previous work
[26] developed a transformer-based DRL model for traffic
management in air corridors, it did not incorporate these
unique features into the model design and simulations. Here,
our proposed HTransRL customizes and incorporates the
transformer framework based on the two features into the
DRL model.

III. SYSTEM MODELS AND PROBLEM FORMULATION

Denote Z as the set of UAVs in the airspace, where 7 is the
index of these UAVs. Each UAV possesses prior knowledge
of its source and destination planes, as well as the trajectory
specifying which air corridors it should traverse from the source
to destination planes. Table |I| summarizes the key notations
used in the system models and problem formulation.

A. Aerodynamic and Collision Model of a UAV

Assume that a 3D Cartesian coordinate system is applied
and each UAV is represented as a sphere. UAV 4’s position at
time slot ¢ is the center of the sphere, denoted as p;(t) € R3,
ie., pi(t) = [pF(t),p!(t), pi(t)]. Also, let v;(t) and a;(t) be
the velocity and acceleration of UAV +¢ at time slot ¢, where
vi(t), a;(t) € R3. The aerodynamics of UAV i follow v;(t +
1) = v;(t) + a;(t) At and p;(t + 1) = p;(t) + 2LFPLEL o
At, where At is the duration of a time slot. We use these
simple aerodynamic models of a UAV in our simulations.
However, our proposed HTransRL model can accommodate
more sophisticated aerodynamic models, though it may require
retraining or fine-tuning.

Each NCFO is also represented as a sphere, where the
position of NCFO k£ at time slot ¢, denoted as pg, is the
sphere’s center. Assume that there are two types of NCFOs:
1) static NCFOs, which are statically deployed within the air
corridors, and 2) mobile NCFOs, each flying from its source to
destination waypoints with constant velocity v;. Upon reaching
the destination waypoint, NCFO k randomly selects a new
destination waypoint within the vicinity of the air corridors.

TABLE I: List of key notations

Notation Description

A Set of UAVs in the airspace

% Index of the UAVs in Z

t Index of time slots

ICi(t) Set of objects observed by UAV ¢ at time slot ¢

k Index of the objects in 1C;(t)

pi(t)/pr(t)  Position of UAV i/Object k at time slot ¢

v;(t)/vi(t)  Velocity of UAV i/Object k at time slot ¢

a;(t) Acceleration of UAV 1 at time slot ¢

0i Radius of UAV 1

Ok Radius of Object k

cfyl(t) Anchor point of UAV 4’s residing cylinder at time slot ¢
dfyl (t) Orientation of UAV i’s residing cylinder at time slot ¢
lfyl(t) Length of UAV 4’s residing cylinder at time slot ¢
rfyl(t) Radius of UAV 4’s residing cylinder at time slot #
Micyl(t) Transformation matrix w.r.t UAV 4’s residing cylinder
ctor(t) Anchor point of UAV 4¢’s residing torus at time slot ¢
dtor(t) Orientation of UAV ¢’s residing torus at time slot ¢
rtor(t) Tube radius of UAV 4’s residing torus at time slot ¢
etor(t) Center of the end plane of UAV 4’s residing torus
ttor(t) Angle between the two planes of UAV ¢’s residing torus
MLom(t) Transformation matrix w.r.t UAV 4’s residing torus
tﬁmvez Overall travel time of UAV 3 to its destination

ymar Maximum speed of a UAV

a™ae® Maximum acceleration of a UAV

pi(t) Magnitude of UAV 4’s acceleration at time slot ¢

0:(t) Polar angle of UAV 4’s acceleration at time slot ¢
i(t) Azimuthal angle of UAV 4’s acceleration at time slot ¢

With respect to the collision between two UAVs represented
as two spheres, a collision occurs if the distance between the
centers of two spheres is less than or equal to the sum of
the radii of the two spheres, i.e., |p; (t) — pr (t)] < 0; + 0>
where g; and g; are the radii of UAVs 7 and 7. Similarly,
the collision between UAV ¢ and NFCO k£ is modeled as
llpi (t) — pr (V)| < 0i + ok, where pg (t) is the position of
NFCO k at time slot ¢ and gy, is the radius of NFCO k. Without
loss of generality, we assume that the radii of UAVs and NCFOs
are the same, i.e., 0 = 0; = ox. Hence, to avoid collisions for
UAV ¢ at time slot ¢, the following inequality should be met.

VE € Ii(t), [lp: (1) — i (1) < 20, M

where IC;(t) is the set of objects, including other UAVs and
NCFOs, observed by UAV 1 at time slot ¢.

B. Structural Models of Air Corridors

Air corridor design is critical to efficiently and safely manage
traffic in crowded airspace. Followed by our previous works
[2], the whole airspace is divided into several horizontal layers
with different altitudes. An air corridor is considered a one-way
highway in the airspace, dictating where UAVs are permitted
to fly. There are two types of air corridors: 1) horizontal lanes,
which are organized in horizontal layers without intersection,
and 2) on-off ramps, which connect these horizontal lanes to
allow UAVs to change directions/altitudes. Fig. |1| provides an
example of two horizontal lanes in different layers connected by
an on-off ramp. In the following, we will provide mathematical
models to characterize the horizontal lanes and on-off ramps.

Horizontal lanes. A horizontal lane is modeled as a truncated
cylinder, which can be characterized by the following four
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parameters: 1) anchor point ¢!, which is the center of the
truncated cylinder, 2) orientation de¥!, which is the direction
of the truncated cylinder, 3) length 1°¥! which is the distance
between the anchor point and the center point of start/end
plane, and 4) radius revl,

To facilitate the calculations and reduce the state space, if
UAV 1 is currently in a horizontal lane, we transform this
horizontal lane into a standard truncated cylinder with anchor
point &' = [0, 0, 0] and orientation d*¥' = [0,0, 1], i

M (6) (0.4 (0)] = [écy%d“”f @
where ¢¥'(t) and d¥'(t) are the anchor point and orientation
of UAV 4’s current residing horizontal lane in the Cartesian
coordinate system at current time slot ¢, and MY (t) € R3*3
is the transformation matrix to convert this horizontal lane
into the standard truncated cylinder. As long as ccyl( t) and
dSV'(t) are known, MY (t) can be calculated based on
Eq. (2). Accordingly, the positions and velocities of all the
UAVs and NCFOs as well as UAV ¢’s previous and next
air corridors should also be transformed based on Mfyl(t).
For example, UAV i’s position and velocity are updated via
pl(t) = M" (t)p] () and oI (t) := M;*(t)o] (t). The
right side of Fig. [1] illustrates the conceptual process of
transforming Air corridor-4 into the standard truncated cylinder.
Note that if UAV i is in a truncated cylinder, unless otherwise
specified, the positions, velocities, and accelerations of the
UAVs and NCFOs, as well as the rest of the air corridors for
UAV i, are referenced in the standard truncated cylinder for
the remainder of the paper.

On-off ramps. An on-off ramp is modeled as a partial torus
or two connected partial tori. For example, an on-off ramp in
Fig.|l| comprises two partial tori, each being characterized by
the following four parameters: 1) anchor point ¢!°", which is
the center of the partial tori, 2) orientation d*°", which is the
direction staring from the center of the torus around which it
rotates (right-hand thumb rule), 3) tube radius r°", which is
the perpendicular distance between the central path and the
edge of the partial torus, 4) central point of the end plane e°",
and 5) angle pu!°" between the line from the central point of
the end plane to the anchor point and the line from the central
point of the beginning plane to the anchor point.

Similarly, if UAV ¢ is currently in an on-off ramp, we
transform this ramp into the standard partial torus with anchor
point &°" = [0,0,0], orientation d'*" = [0,0,1], and the
central point of the end plane &'°" located on the y-axis, i.c.,

Mgﬁor(t) [ tor( ) dtor( ) tor(t)] T:

Z

[étor7 &tor’ étor]T , (3)

where cf°"(t), dt°"(t), and el°"(t) are the anchor point, orien-
tation, and central point of the end plane for UAV ¢’s current
residing on-off ramp, respectively, " = [0, |[el°"(¢)]|,0],
and M!°"(t) € R3*3 is the transformation matrix to convert
this ramp into the standard partial torus. As long as ¢!°" (),
dlo"(t), and el°"(t) are known, M/°"(t) can be calculated
based on Eq. (3). Accordingly, the positions and velocities of
all the UAVs and NCFOs as well as UAV 7’s previous and next
air corridors should also be transformed based on M/"(t).

The left side of Fig. |1]illustrates the conceptual process of
transforming Air corridor-2 into the standard partial torus.
Note that if UAV i is in a partial torus, unless otherwise
specified, the positions, velocities, and accelerations of the
UAVs and NCFOs, as well as the rest of the air corridors for
UAV i, are referenced in the standard partial torus for the
remainder of the paper. We apply two transition matrices,
M (t) and M[°"(t), to map the truncated cylinder and
partial torus, where UAV ¢ is currently residing, from a global
coordinate system to a local standard coordinate system. The
motivation to implement this transition is to reduce the state
space required to represent the truncated cylinder and partial
torus. For example, two truncated cylinders with identical
shapes (same orientation, length, and radius) but different
anchor points would be treated as separate entities in the global
coordinate system, but are equivalent when transformed into the
local standard coordinate system. Importantly, this transition
preserves all critical information needed for controlling UAVs,
as they only need to consider their relative positions with
respect to the boundaries of their respective air corridors.

C. UAV Crossing Air Corridor Boundary

One objective of UAV control is to ensure they navigate
within their predefined air corridors. Therefore, it is crucial
to evaluate whether UAV ¢ crosses its air corridor boundary,
which can be divided into two scenarios.

UAV ¢ in a horizontal lane: If the horizontal lane and
UAV 7’s position are transformed into the standard truncated
cylinder, determining whether UAV ¢ crosses the air corridor
boundary becomes straightforward. This is done by checking
two inequalities: if both are satisfied, UAV ¢ is in the air
corridor at time slot ¢; otherwise, it has crossed the boundary.

“

where 1Y'(t) and ¥ (t) are the length and radius of the
truncated cylinder that UAV i is located at time slot ¢, and
§er(t) and 61" (t), as shown in Fig. |1} are the vertical and
horizontal distance between UAV 1¢’s position at time slot ¢ and
the anchor point of the standard truncated cylinder, respectively,
which can be calculated based on

{5?”@) | & pi(t) |,
stor () =/ Ipa ()11 — (63 (1))°,

where d°¥! = [0,0,1], p;(t) is the position of UAV i at time
slot ¢, and - is the dot product.

UAV 7 in an on-off ramp: If the ramp and UAV :’s position are
both transformed into the standard partial torus, the following
two inequalities can be used to determine whether UAV 4
crosses the air corridor boundary. If both inequalities are
satisfied, UAV ¢ remains within the air corridor at time slot ¢;
otherwise, it has crossed the boundary.

&)

1657 (t) — pa(t) < Tcyl( )
{7‘(‘/2— pkor(t) < arctan (p ©

(®)/pi (1)) < 7/2,
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where bl°"(t) is the perpendicular point at the axis of the
standard partial torus for UAV #’s current position p;(t) as
shown in Fig. |1, ' (t) and p!°"(t) are the tube radius and
angle of the pamal torus that UAV ¢ is located at time slot ¢,
and p¥(t) and p! (t) are the UAV ¢’s current position along the
x and y axes, respectively. Here, || bi°"(t) — p;(t) || calculates
the shortest distance between UAV ¢’s current position and the
axis of the partial torus, where bi°"(t) = ||€l°" (t)]| x sz(i;”

Also, arctan (p?(t)/p¥(t)) calculates the angle between the x-
axis and the line that connects the standard anchor point [0, 0, 0]
and the point [p¥(t), pY(t), 0], which represents the projection
of UAV ¢’s current location p;(t) onto the x-y plane.

D. Problem Formulation

In crowded airspace, different UAVs fly from their source
locations to destinations via predefined air corridors. The goal
of the system is to minimize the overall travel time for all
the UAVs to their destinations while avoiding collisions and
crossing air corridor boundaries. Hence, we formulate the
multiple UAV coordination problem as follows.

PO : arg min Z t?‘“’ez, N
¢ Viez

s.t, VE Vi€ Z,0 < ||v;(t)]] < o™, (®)

Vt, Vi € Z,0 < |la;(t)]| < a™*", )

Vt, Vi € I,VE € Ii(t), [|pi () — pi (V)| < 20, (10)

Vt,Vi € Z, Eq. (4) or (6), (11)

where t{av¢l s the overall travel time of UAV i to its
destination. In PO, the objective function is to minimize the
travel time of all the UAVs; Constraints (8) and (9) define
the feasible velocity and acceleration of a UAYV, respectively,
where v"*** and a™** are the maximum speed and acceleration
of a UAYV, respectively; Constraint avoids the collisions
between UAVs and their observed flying objects; Constraint
prevents each UAV from crossing its current air corridor’s
boundary. Here, the choice between Eq. and Eq. (6) in
Constraint depends on whether UAV 4’s current air corridor
is a truncated cylinder or a partial torus.

IV. HYBRID TRANSFORMER MARL FOR MULTIPLE UAV
COORDINATION

Solving PO is difficult since there is no close-form expres-
sion to calculate tﬁ”‘“’el. Deep reinforcement learning (DRL)
has gained significant popularity in controlling robots, which
are formulated as Markov decision processes, due to its ability
to learn complex tasks and adapt to dynamic environments
through trial and error. Inspired by that, we first convert PO
into a multi-agent partially observable Markov decision process
(MAPOMDP), which models the decision-making problem of
a single UAV based on its limited observations. MAPOMDP
comprises three major aspects, the observation, action, and
reward of the agent in terms of UAV i. Specifically,

Observations of UAV ¢ at time slot ¢, denoted as s;(t),
represent the states of the environment that can be observed by
UAV 1 at time slot ¢. Here, s;(t) is further divided into three

parts, i.e., s;(t) = {sfezf(t), 85T (1), sfth”(t)}. Specifically,

s3% (1) is UAV ’s self-state, which includes UAV #’s current
position p;(t) and velocity wv;(t). s5°"(t) is the structure
features of UAV ¢’s air corridors; it is known a priori if
the source and destination of UAV i are determined. Having
the air corridor information is critical to prevent UAV i
from crossing the boundary. Yet, feeding features of all the
air corridors in UAV ¢’s trajectory to the control model is
not necessary and may increase the size and complexity of
the control model. Here, we only include the features of 4

consecutive air corridors for UAV i in s§°7(t), i.e., s§°"(t) =

{stT‘ pT@(t)7 stT‘ ClL’l“(t)7 stT’ nezt(t)’ EO’I" ne:rtZ(t) s Where
stTﬁpT@(t), SEO’I"_CUT(t)’ fO’I"_TLeCEt (t), and sgor_ne:vt2 (t)

represent the feature vector of UAV ¢’s previous, current, next
one, and the one following the next air corridors, respectively,
at time slot ¢. The feature vector of each air corridor has 4
elements if it is a truncated cylinder, or 5 elements if it is a
partial torus, as detailed in Section s2ther (¢) is states
of other UAVs and NCFOs within UAV ¢’s sensing area,
which includes the positions and velocities of all these UAVs
and NCFOs, i.e., 7" (t) = {k € KC;(t) |sg!"*" (t) }, where
sother (£) = {py(t), vi(t)} is the state of object k.

Action of UAV i at time slot ¢, denoted as a;(t), represents
the acceleration of UAV 1. For ease of calculation, a;(t) is ex-
pressed in spherical coordinates as a;(t) = [p;(t), 0;(¢), i (¢)],
representing the magnitude, polar angle, and azimuthal an-
gle of UAV i’s acceleration, respectively. Yet, a;(t) will
finally be converted into Cartesian coordinates, i.e., a;(t) =
[a%(t),a?(t),a?(t)] based on the following equation.

i \V)r g\ Py

a; () pi(t) sin (05(t)) cos(4(t))
a;(t)=|al(t)| =a™*"x| pi(t)sin(6;(t)) sin(¢;(t)) | . (12)
a; (t) pi(t) cos(0;(t))

As compared to directly generating a;(t) by the DRL model,
calculating @;(t) first and converting it into a;(¢) simplifies
constraining p; (t), 0;(t), and ¢;(t) in &;(t) within their feasible
domain: p;(t) € [0,1], 0;(¢t) € [-m, 7], and ¢;(t) € [0, 7], V¢,
ensuring compliance with Constraint (9).

Rewards of UAV ¢ at time slot ¢, denoted as r;(¢), is the
feedback for its action taken in a given observation at time
slot ¢. r;(t) is pivotal in guiding a UAV/agent to learn and
optimize its actions over time to maximize the return. Here,
we define r;(t) based on the following rules:

o Arrival: UAV i is rewarded +160 upon reaching its
intended destination, emphasizing the primary objective
of ensuring successful arrival.

« Intermediate Arrival: UAV i receives a +40 reward
upon reaching the end of its current air corridor. This
intermediate reward enhances guidance for successfully
navigating toward the destination, significantly improving
training efficiency, especially when the path involves
multiple air corridors.

« Air Corridor Boundary Crossing: UAV : flying beyond
its designated air corridors incurs a -140 penalty. This
penalty aims to avoid violations of Constraint (I1).

« Collision: textcolorblackUAV ¢ colliding with another
UAV or NFCO results in a -80 penalty per incident. This
penalty aims to avoid Constraint violations.
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« Time Penalty: A -0.2 penalty is imposed at each time
slot until UAV ¢ reaches its destination, incentivizing
faster travel as highlighted in Moore’s study on efficient
memory-based learning [27]. This time penalty aligns with
the objective function in PO, which aims to minimize the
travel time of all UAVs.

o Liability: A -10 penalty is applied if UAV ¢ observes
a collision involving another UAV. Assuming equivalent
visibility for all UAVs, each UAV’s actions are based
on the surrounding environment. This liability penalty
encourages UAV ¢ to consider the safety of neighbor-
ing UAVs, discouraging self-centered actions that could
increase collision risks for others, as discussed in [28].

It is important to note that, based on our observations
from numerous simulations, the exact reward values have
minimal impact on reinforcement learning using Proximal
Policy Optimization with Generalized Advantage Estimation
(PPO-GAE), as all raw rewards are standardized before being
used in the learning process.

Many DRL solutions have been developed to efficiently train
policies, such as advantage actor critic [29], deep deterministic
policy gradient [30]], and proximal policy optimization [31].
These methods typically employ a dual neural network structure:
an actor and a critic. Based on the input state values, the actor
network outputs an action for UAV ¢ to maximize the return,
expressed as »_, v'r; (), where + represents the discount factor.
The critic network, also utilizing state values as inputs, is
focused on generating a state value V' (s;(t)), which evaluates
the effectiveness of the action suggested by the actor network.

Two primary obstacles prevent traditional DRL methodolo-
gies from solving the proposed MAPOMDP problem. First, a
variable dimension issue arises with the observation s?*"¢" (¢) in
s;(t), as this dimension fluctuates based on the quantity of other
UAVs and NCFOs within UAV ¢’s observational range. This
presents a significant challenge because the input dimensions
for both actor and critic networks are fixed and cannot adapt to
these fluctuations. Finding a method to consistently integrate the
dynamic dimension of s;(¢) into the fixed dimension of these
networks remains a complex problem. Second, low learning
efficiency results from reward sparsity. The defined reward
function r;(t) is predominantly sparse, which diminishes the
efficiency of the learning process. Hence, it is critical to explore
and integrate the strategies that can provide additional guidance
or incentives to the agent, helping it learn more efficiently in
sparse reward settings and enabling it to discover and exploit
rewarding behaviors effectively.

To efficiently solve the proposed MAPOMDP problem, we
design the Hybrid Transformer based multi-agent Reinforce-
ment Learning (HTransRL) framework, which incorporates the
hybrid transformer model and curriculum learning into the
existing DRL model, i.e., Proximal Policy Optimization with
Generalized Advantage Estimation (PPO-GAE) [31], [32]. Here,
the hybrid transformer addresses the variable dimension issue,
and curriculum learning resolves the sparse reward challenge.
Fig. |2| shows the structure of the HTransRL framework, which
comprises two models, i.e., hybrid transformer and actor-critic
network, both being trained via curriculum learning.

A. Hybrid Transformer

Transformers are widely employed in addressing sequence-
to-sequence tasks, such as natural language processes (NLP)
[33], leveraging the encoder-decoder structure to accommodate
input sentences with different word lengths. Inspired by that,
we apply the transformer structure to handle the variable
dimension of UAV i’s observation s;(t). By analogy, s;(t) is
considered as a sentence, while s:°'/ (£), s%°7(¢), and sot"e7 (t)
within s;(t) represent words in a sentence. Different values of
s3 (1), scor(t), and s9the" (t) correspond to different words.
We expect that the transformer structure is capable of analyzing
the correlation between UAV i’s self-state s>/ (¢) and other
observations, i.e., UAV ¢’s air corridor states sfdf (t) and other
observed UAVs and NCFOs’ states s?*"¢"(¢). This correlation
information, which implies the chance of having collisions
and air corridor crossing, will be used by the actor and critic
network to derive optimal actions of UAV i.

In NLP applications, positional encoding is commonly
applied to the words in a sentence since sequences of these
words are critical when analyzing their relationships using
transformers. Conversely, in the multiple UAV coordination
problem, the sequence of some observations is not important,
such as the states of other UAVs and NCFOs observed by UAV
i. We refer to these types of observations as non-sequential
observations. Yet, the sequence of elements in air corridor
observation s{°"(t) is critical as they represent the features of
four different air corridors, i.e., UAV 4’s previous, current, next
one, and the one following the next air corridors at time slot
t. The position information of these air corridors is required
to be embedded into their feature vectors. We refer to the air
corridor observation s$°"(t) as sequential observations.

To efficiently handle the mixture of sequential and non-
sequential observations, we propose the hybrid transformer
model to customize the traditional transformer for NLP.
Specifically, as shown in Fig. 2| for the sequential observations
s5°7(t), one-hot positional encoding is used to concatenate the
feature vectors of UAV 4’s four air corridors, i.e., 87" "°(t),
SEOTEUT (1) gOTETt (1) and sSOT-"C"'2 (1) by their respective

K2 7

one-hot vectors. Denote 5;"-P"°(t), 857747 (t), 55oT-""t(¢),

and 5¢-"°"'2(t) as the feature vectors of UAV #’s four

air corridors after one-hot positional encoding. The hybrid
transformer comprises three major modules, a set of embedding
networks, an encoder network, and a decoder network.

1) The sequential and non-sequential observations are fed
into their respective embedding networks, which are
used to normalize the values and sizes of different ob-
servations. Each embedding network is implemented as a
fully connected neural network with batch normalization.
Denote H*'f(), H"(), and H°"*"() as the functions
implemented by three types of embedding networks for self-
state, air corridor, and other flying object observations. Let
Hoel (55 (1)) be the outputs of the embedding network
for self-state observation. Note that UAV ¢ may observe
multiple flying objects. The states of these objects are
parallelly fed into the same embedding network H°!"*" ()
to generate a set of outputs, denoted as

{,Hother(sti)lther (t)), e ’]-[Other(sg‘t’]éfr(t))} R 13)

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

© 2025 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3532204

8
1. Embedding Networks Encoder Structure Decoder Structure
4 4
G e Add & Norm Add & Norm
s (t) Heter(gger(t)) E L3 %‘— ( Ly
~other( 1) @ 7P other (g other Feed Forward Network Feed Forward Network
Other observed ) 85" (t) @9 M (85™7(1)) 1 . ¢ T )
objects' states i « o E
: s ()" e J ¢ Ll Yo || Add & Norm )
C Multi-Head Attention ) ( Multi-Head Attention )
i Fuery seto Value Set FQuerySet @ FKeySetk  $ValueSet v
: 44 - . 4 4 4
i = = : imi Y NYami
| Linear Linear Linear e Lo oo
K ° d layer: layers layers d layers d layers d layers
. : 7@ T
UAV s air ) ! X dec (g self . _
corridor featured) & . Embedding networks’ outputs H"(8i"(%)) Encoder networks’ outputs V(t)
; Sampling
i —pi(t)
UAV i's self states8; (¢ )
Sampling
2, (t)
Sampling
— #i(t)
4. Actor-critic network Beta distribution

Fig. 2: The HTransRL architecture, which comprises embedding networks, a hybrid transformed with two encoders and two

decoders, and an actor-critic network.

where s%her(t) = {px(t), v (t)}, Vk € IC;, is the state of
object k£ observed by UAV :. Similarly, four air corridors’
feature vectors are parallelly fed into the same embedding
network H"() to generate corresponding results, i.e.,

} . (14

The outputs of these embedding networks will be stacked
together to form the inputs of the encoder network.
In addition, self-state observation s/ (¢) is fed into
another embedding network, whose output, denoted as

Heee(s3° (1)), will be one of the inputs to generate the

query for the decoder network to inquire the correlation

between 55/ (¢) and other observations.

2) The encoder network is used to generate a high-
dimensional vector based on the outputs from the embed-
ding networks. This vector integrates interrelationships
among different observations at time slot ¢. In the proposed
encoder network, there are two encoders, each following
the traditional encoder structure, i.e., i) three types of linear
neural networks to generate query (Q), key (K), and value
(V) for each output element from the embedding networks,
e.g., HM (851 (1)), Hother (sother (1)), etc; ii) a multi-
head attention model followed by add & norm to capture
various relationships and patterns among different Q, K,
and V sets; iii) a feed-forward neural network followed by
add & norm to process the multi-head attention outputs.

3) The decoder network is used to generate a vector represent-
ing the relationships between UAV 4s self-state 57/ (¢) and
other observations. This relationship includes, for example,
the evaluation of having collisions and air corridor boundary
crossing. Two decoder models are designed in the decoder
network. Each decoder follows the traditional decoder
structure, i.e., i) three types of linear neural networks to
generate query (@), key (K), and value (V'), where K and
V are generated based on the output of the encoder network,
and Q is generated based on the output H (s (t)); ii)
a multi-head attention model followed by add & norm; iii)
a feed-forward neural network followed by add & norm.

2

Hcor (ggor_nextl (t)), Hcor (geor_neth (t))

7

[ s o e )

3

B. Actor-critic Network

The actor-critic network takes the outputs from the decoder
network to generate 1) the estimated state value V (¢) that is
used to evaluate the current policy, and 2) three distributions cor-
responding to UAV i’s action a;(t) = [p;(t), 0:(t), ¢:(t)], i.e.,
B(et(t), B7(t)), B(X(t), B (1)), and B(e?(t), B7(1)). These
three distributions are used to sample the actions p;(t), 6;(t),
and ¢;(t), respectively. Here, instead of using a Gaussian
distribution, we apply a Beta distribution to allow the agent
to explore different actions, where € and (3 in B(e, 8) are the
two parameters to control the shape of the distribution. The
major reason for using a beta distribution instead of a Gaussian
distribution for exploration is that a beta distribution naturally
generates values between 0 and 1. This feature is particularly
useful as it ensures the generated acceleration a;(t) remains
below the maximum acceleration a"* when applied through
Eq. (12). As such, defining a penalty for Constraint (9) is
unnecessary. For Constraint , which defines feasible values
for UAV i’s velocity v;(t), v;(t) is calculated based on a;(t)
generated by HTransRL. If ||v;(¢)|| < v™%®, the velocity is
clipped as wv;(t) := v™* . m to ensure compliance with
Constraint (8). For the actor-critic network implementation,
the loss functions of actor and critic as well as the estimation
of advantage follow the same design in PPO-GAE [31], [32].
However, instead of creating two independent neural networks,
we combine the actor and critic networks into a single neural
network, which can potentially lead to more efficient training.

C. Curriculum Learning

Curriculum learning is a training strategy that begins with
simpler tasks and progressively increases task complexity,
facilitating more effective learning and convergence to better
solutions [28], [34]. In the early stage of training HTranRL,
UAVs often face difficulty in reaching their destinations
and consequently struggle to earn intermediate arrival and
final arrival rewards. This absence of arrival-based incentives
poses challenges in policy development. On the other hand,
simplifying the task leads to dense triggering of positive
rewards, effectively motivating agents to reach their destinations.
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Algorithm 1: Training HTransRL with Curriculum
Learning

1 Task complexity level £ = 0.1;
2 while £ <1 do

3 while the milestone for the current task complexity
level has not been reached do
4 while the reply buffer has not been fully
occupied do

5 Randomly generate several air corridors
based on the current task complexity level;

6 Place NCFOs via random waypoint models;

7 while all UAVs have reached their
destinations or t > T™%" do

8 Control the UAVs in air corridors based

on the current HTransRL model and
save the transitions in the reply buffer;

9 =t+1;

10 end

11 end

12 Divide the transitions in the replay buffer into
several mini-batches;

13 Train HTransRL using PPO-GAE with the
mini-batches;

14 Evaluate if the milestone has been reached;

15 Empty the reply buffer;

16 end

17 E=¢+0.1

18 end

A pivotal aspect of curriculum learning involves defining a
metric for task complexity, denoted as &, which ranges from
0.1 (least complex) to 1 (most complex). The training begins
in the least complex environment and continues until the model
reaches a defined milestone, such as an average successful
arrival rate above a predefined threshold. Once this milestone
is achieved, task complexity increases incrementally, allowing

the model to adapt to progressively more challenging scenarios.

The definition of task complexity may vary among different
applications. In air corridor traffic management, it is reasonable
to define the task complexity based on the length of a truncated
cylinder and partial torus. Specifically,

Task complexity for a cylinder: In each episode, the length
[¢¥! of the cylinder is chosen randomly for every cylinder. It
follows a uniform distribution [¢¥! = U (I™™ ™ + Al x (),
where [™™ and Al are preset values. Therefore, a larger ¢
indicates the creation of a longer truncated cylinder, signifying
increased task complexity.

Task complexity for a partial torus: In each episode, the angle
1t of a partial torus is randomly selected for every torus,
following a uniform distribution z'" = I x U(max(0.1,{ —
0.1),¢ + 0.1). Therefore, a larger ¢ value results in a more

broadly spanning torus, indicating higher task complexity.

Algorithm 1| summarizes the curriculum learning process for
training HTransRL.

V. SIMULATION RESULTS
A. Simulation and Training Setups

During each training episode, we randomly selected the
number of UAVs in the system between 4 and 12, all being
released at the same starting plane and following the same path,
which comprises 5 air corridors. The radii of the air corridors
are the same, i.e., 7% = " = 2 meters. The lengths of
these air corridors are randomly generated in each episode and
gradually increase over episodes based on the task complexity
defined in Section [IV-C] Meanwhile, we guarantee that these 5
randomly generated air corridors are interconnected, with the
type of interconnection randomly chosen from “cttct”, “tcttc”,
or “ttctt”, where “t” denotes a partial torus and “c” denotes
a cylinder. Moreover, there are 7 NCFOs, where 4 of them
are static and randomly placed in the air corridors and 3 of
them maneuver in the airspace. Each NCFO follows a random
waypoint model, whose destination is randomly selected in
the airspace, and the velocity is randomly chosen between 0.5
and 2 m/s. Hence, there are a total of 11-19 flying objects in
the airspace. Each UAV has an observation area defined by a
sphere with a radius of 6 meters, allowing it to monitor the
states of other UAVs and NCFOs located within this sphere.
To verify HTransRL’s collision avoidance capability, we train
and test the model in the worst-case scenario: all the UAVs are
simultaneously released from the same starting plane, traverse
the same air corridor path, and arrive at the same end plane.
To ensure collision-free initial states, the UAVs’ positions
are randomly selected from the 37 red spots arranged in a
hexagonal grid on the starting plane, as shown in Fig. [3(a),
with a radius of 2.0 meters. Adjacent spots are spaced 0.6
meters apart, slightly above the 0.4-meter safety threshold,
ensuring a collision-free configuration. If fewer than 37 UAVs
are used, each UAV selects an unoccupied position uniforml
from the red spots. Thus, the initial positions of the UAVs
vary across different Monte Carlo simulations. Note that the
parameters for the air corridors and UAVs are carefully selected
to ensure that navigating multiple UAVs within the corridors is
both feasible and challenging in optimizing travel time while
avoiding collisions and boundary crossings.

The detailed architecture of HTransRL, which comprises
three primary components, is outlined below:

+« Embedding Networks: These consist of four fully con-
nected neural networks, each with the same two-hidden-
layer structure. The input layer, with 32 neurons, processes
raw observed states such as corridor descriptions and UAV
states. Each hidden layer contains 64 neurons with ReLU
activation, and the output layer includes 128 neurons with
a SoftMax activation function for normalization.

o Transformer: The transformer component includes two
encoders and two decoders, arranged in an encoder-
encoder-decoder-decoder sequence. Each encoder and
decoder share the same architecture, comprising a multi-
head self-attention mechanism with 4 heads and a single-

I'We also evaluated other distributions, such as Gaussian and Poisson, for
UAV position selection. The model’s performance remained consistent across
these distributions. Therefore, the HTransRL model, referred to later, is trained
using a uniform distribution for better generalization.
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layer position-wise fully connected network with 128
neurons. Each module in the sequence receives input
from its predecessor.

o Actor-Critic Network: This network features three hidden
layers, each containing 128 neurons. The output layer
consists of 6 neurons representing the parameters of three
Beta distributions, which are used to sample UAV i’s
actions p;(t), 0;(t), and ¢;(t), respectively. A softplus
activation function is applied to the output layer to ensure
that all parameter values are strictly positive.

The HTransRL model contains a total of 1,226,822 parameters
in float32. Leveraging the NVIDIA 3090 GPU’s capability
of up to 35.5 TFLOPs, the model’s inference time can
theoretically be under 1 ms. To enable HTransRL to run
on edge computing devices, its model size and inference
time can be significantly reduced through quantization, which
converts float32 parameters to lower precision formats such
as floatl6 or int8, thereby reducing computational demands
without compromising performance. Future work will focus on
exploring quantization methods for optimizing the HTransRL
model.

With respect to the training settings for the actor-critic
in HTransRL, there are 16,192 transitions collected in each
iteration. These transitions are then divided into a number of
mini-batches, each containing 1,024 transitions. The training
process alternates between updates to the actor and critic, with
each module undergoing 4 training epochs. Distinct learning
rates are assigned to each: the actor is trained with a learning
rate of 1.5 x 1073, while the critic is trained with a smaller
learning rate of 1.5 x 10~*. The critic plays a crucial role
in stabilizing training by effectively distinguishing beneficial
actions from detrimental ones, thus supporting the goal of
achieving a collision-free action policy. Regarding curriculum
learning settings in HTransRL, the initial task complexity is
set to ¢ = 0.1. The complexity level increments by 0.1 each
time HTransRL achieves the milestone, defined as an average
arrival rate exceeding 80% over 50 episodes, and progresses
until reaching the maximum complexity level of ¢ = 1.0. The
discount factor + is set to 0.99, as recommended in [23], which
has proven effective in multi-agent UAV control environments.
Other simulation settings and hyperparameters are listed in Ta-
ble[] The source code for HTransRL and corridor visualization
are available at https://github.com/SECNetLabUNM/HTransRL.

TABLE II: Simulation and training setups

Parameter Value
Minimum length of a truncated cylinder (I"**") 5 meters
Maximum length of a truncated cylinder ("% +Al) 20 meters
Radius of a truncated cylinder (revhy 2 meters
Maximum velocity of a UAV (v"™%%) 1.5 m/s
Maximum acceleration of a UAV (a%%) 0.3 m/s?
Radius of a UAV/NCFO (p) 0.2 m

Maximum duration of an episode (177%%) 500 time steps
Duration of a time step (At) ls

B. Comparison Algorithms

Besides the proposed HTransRL method described in Fig.
we present two other baseline solutions for comparison.

Hybrid decoder-only multi-agent reinforcement learning
(HD) utilizes the decoder-network-only architecture without
having the encoder network. The decoder network in HD
comprises three decoders, each following the same structure as
the decoder shown in Fig. [2| HD applies the same embedding
networks and actor-critic network in HTransRL.

Hybrid Deep Set based multi-agent reinforcement learning
(DS) utilizes the Deep Set model [19] to replace the transformer
in HTransRL to analyze the correlations among a UAV’s
observations with various dimensions. DS applies the same
embedding networks and actor-critic network in HTransRL.

In addition, to investigate the effectiveness of one-hot
positional encoding, we test each method’s performance both
with and without it. A method using one-hot positional encoding
is indicated by the suffix “-T”, while those without it is
indicated by the suffix “-F”.

Note that we also try to train nearest neighbor observation
(NNO) [8], which aims to fix the observation size by selecting
the states of the three observed UAVs/NCFOs closest to UAV 3.
Any additional UAVs/NCFOs observed by UAV i are discarded.
If fewer than three are observed, zeros are padded. These
observations, along with s:°'/(t) and s (t), are fed into
the actor-critic network without being preprocessed by the
transformer. NNO applies the same embedding networks and
actor-critic network in HTransRL. Yet, NNO cannot achieve
an average arrival rate higher than 80% when task complexity
¢ = 0.4. Consequently, NNO’s performance is expected to be
worse than others that can successfully raise ¢ to 1.0 during
curriculum learning. Hence, NNO will not be included in
performance comparisons with others during testing.

C. Test Results

After the models have been trained via curriculum learning,
we test their performance in a different environment, where
multiple UAVs simultaneously transverse over the same air
corridor path with 4 static and 3 mobile NCFOs. Two types
of paths are used, i.e., “cttcttc” and “cttcttcttc”, where “t”
represents a partial torus and “c” represents a cylinder. The
parameters of the air corridors in each path are randomly
generated in each test episode. Figs. [3(b) and [3(c) show the
average arrival rate of a UAV after 300 Monte Carlo simulation
episodes for the two types of air corridor paths, respectively.

1) The Effect of One-hot Positional Encoding: As we
mentioned before, we argue that the sequence of the air
corridor observation is critical, and so one-hot positional
encoding is used to concatenate the feature vectors of UAV i’s
four air corridors with their respective one-hot vector. Here,
we investigate how one-hot positional encoding affects the
performance of different methods. From Figs. [3(b) and [3(c),
we can observe that 1) HTransRL with one-hot positional
encoding, i.e., HTransRL-T, achieves the highest arrival rate
in most cases; 2) HTransRL-T consistently achieves a higher
arrival rate than HTransRL without having one-hot positional
encoding, i.e., HTransRL-F. Yet, it is surprising to observe that
having one-hot positional encoding achieves a lower arrival rate
than without having one-hot positional encoding in HD and
DS. This phenomenon can be explained as follows. HTransRL

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

© 2025 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


https://github.com/SECNetLabUNM/HTransRL

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3532204

is the only method to explicitly analyze correlations among
different air corridors by calculating their respective attention
scores, and these correlations are critical to controlling a UAV,
preventing it from boundary crossing, especially when the UAV
transits between two air corridors. Providing the sequence of
these four air corridors is critical in correctly analyzing their
correlations, and thus HTransRL-T outperforms HTransRL-F.
On the other hand, HD and DS do not analyze the correlations
among different air corridors. For example, HD only calculates
the attention scores between the states of UAV ¢ sfelf (t) and
the rest of the observations. Hence, using one-hot positional
encoding is equivalent to adding noise to UAV ¢ air corridor
feature vectors to jeopardize the correlation analysis. As a
result, the arrival rates of HD-T and DS-T are higher than
those of HD-F and DS-F. In the following, unless otherwise
specified, we will use the best configuration, i.e., HTransRL-T,
HD-F, and DS-F, to compare their performance.

2) Scalability Analysis: The models are trained based on
the scenario with 4-12 UAVs passing the path with 5 air
corridors. To evaluate the scalability of different models, we
test their performance by increasing 1) the number of UAVs
and 2) the number of air corridors in the path. In Fig. [3(b),
HTransRL-T and HD-F exhibit similar performance with an
arrival rate above 90%, but both outperform DS-F when the
number of UAVs is fewer than 12. Yet, as the number of
UAVs increases, the gap between HTransRL-T and HD-F/DS-
F increases. Fig. [3(c) shows a similar trend, except that HD-F
outperforms HTransRL-T when the number of UAVs is 12. One
possible reason to explain this exception is that HTransRL-T
has higher model complexity than HD-F. While HD-F is well-
trained, HTransRL-T may require more episodes to achieve
comparable performance. Overall, HTransRL-T demonstrates
greater scalability compared to HD-F and DS-F.

Fig. [4(a) details the incidents causing UAVs to fail to reach
their destinations in four different scenarios, respectively. In
each bar graph, the x-axis represents the number of incidents,
the y-axis represents three methods, and four bar colors
represent four types of incidents leading to failure. From
the figure, we observe that the primary reason for HTransRL
achieving higher scalability is its slower increment in collision
incidents as the number of UAVs/air corridors increases.

To further analyze the results in Fig. [4(a), we calculate the
average speed among the UAVs that have successfully arrived
at the destinations through the “cttcttcttc”” path for 300 episodes.
As shown in Fig. b), HD consistently maneuvers the UAVs’
speed close to the maximum speed of 1.5 m/s and does not
reduce the UAVs’ speeds as the number of UAVs increases.
Note that the UAVs will inevitably cross the boundary of a
torus when they are at the maximum speed since even the
maximum deceleration cannot provide a sufficient centripetal
force to maintain the UAVs within the torus. As a result, UAVs
having a higher speed leads to a higher probability of collisions
and boundary crossings when they transverse a torus and the
number of UAVs is large. This can be observed by comparing
the second and fourth bar graphs in Fig.[4{a), where the number
of incidents incurred by HD is the lowest for 12 UAVs but
the highest for 36 UAVs, indicating that HD shows the largest
increase in incidents as the number of UAVs increases. On

the other hand, DS does not change the average speed of the
UAVs, implying that DS is not adaptive to the number of
UAVs. HTransRL can adaptively reduce the average speed of
the UAVs, thus leading to the smallest increase in incidents as
the number of UAVs increases.

3) Relationship Among Average Arrival Rate, Travel Speed,
and Travel Time: One of the objectives of the multiple UAV
coordination problem is to minimize the overall travel time.
Hence, we calculate the average travel time of the UAVs
that successfully reach their destinations via the “cttcttcttc”
path over 300 episodes. As illustrated in Fig. [4(c), all three
algorithms achieve very similar average travel time, with HD
generally having the smallest value, except when the number
of UAVs is six. Also, the average travel time does not change
significantly as the number of UAVs increases for all three
algorithms. In addition, a high average speed generally results
in a low average travel time, as shown by comparing the results
in Figs. [4(b) and [4]c), except when the number of UAVs is six.
However, there is no clear relationship between average arrival
rate and travel speed/time. For instance, HD has the fewest
incidents, highest average travel speed, and lowest average
travel time with 12 UAVs. In contrast, with 36 UAVs, HD has
the most incidents, despite maintaining the highest average
travel speed and lowest average travel time.

Based on the simulation results, we conclude that when the
training environment matches or exceeds the test environment
in complexity, HD performs similarly to but slightly better
than HTransRL, with both outperforming DS. However, when
the test environment is more complex than the training
environment, HTransRL significantly outperforms both HD
and DS, achieving fewer incidents and similar travel times,
demonstrating its scalability.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have formulated a multiple UAV coordina-
tion problem in a 3D air corridor environment. To solve this
problem, we have designed HTransRL, which incorporates 1)
a transformer to handle dynamic observation dimensions, and
2) curriculum learning to improve the training efficiency. The
test results show that when the test environment is simpler
or similar to training, HTransRL enables UAVs to promptly
reach their destinations while maintaining a successful arrival
rate of over 90%. When the test environment is more complex
than the training environment, HTransRL shows much better
scalability than the other two baseline methods with a much
higher arrival rate and similar travel time.

While HTransRL outperforms baseline methods in both
performance and scalability, challenges remain for real-world
deployment. First, UAV 4’s observations may be inaccurate or
delayed due to sensor hardware limitations, potentially causing
HTransRL to generate suboptimal actions that lead to collisions
or air corridor boundary crossings. To address this, we will
explore applying federated learning [35] to enable multiple
UAVs to collaboratively fine-tune HTransRL parameters in real
time, leveraging data with inaccuracies or delays encountered
during flight. Incorporating perturbations during fine-tuning
can further enhance the model’s generalization, enabling it
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Fig. 3: Average arrival rate of the UAVs, where (a) shows the layout of the initial positions of the UAVs at the starting plane,
and (b) and (c) show the average arrival rate of the UAVs when they go through the “cttcttc” and “cttcttcttc” paths, respectively.
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Fig. 4: Test results for different methods in 300 episodes, where (a) shows the numbers of three incident types, and (b) and (c)
show the average travel speed and time of the UAVs, respectively, when they go through the “cttcttcttc” path.

to better handle delayed or noisy feedback. Second, while
HTransRL achieves a successful arrival rate exceeding 90%,

this performance remains insufficient for real-world deployment.

A key limitation is that DRL algorithms, including HTransRL,
are not inherently designed to guarantee safe actions that ensure
compliance with constraints. A common DRL approach to
mitigate unsafe actions is to penalize them during training,
discouraging constraint violations. However, this method cannot
guarantee the model will always produce safe actions, as its
primary objective is to maximize cumulative rewards. If the
reward for an unsafe action exceeds the penalty, the agent
may still select it. While increasing penalties reduces unsafe
actions, it can also restrict exploration, limiting the discovery of
optimal policies. Achieving a balance between ensuring safety
and encouraging exploration remains a critical and challenging
task in DRL. To address this challenge, we propose integrating
control barrier functions into HTransRL. This approach

will evaluate UAV i’s states across multiple future time slots
and generate actions that ensure its states remain within the
safe set.
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