
Enhancing IoT Security with Asynchronous

Federated Learning for Seismic Inversion

Daniel Manu∗, Youzuo Lin†‡, Jingjing Yao§, Zhirun Li∗, and Xiang Sun∗

∗Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
†School of Data Science and Society, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

‡Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
§Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA.

Abstract—Seismic data/images are critical to understand the
structure of subsurfaces. However, for accurate structural anal-
ysis, seismic images need to be converted into velocity images
that can recognize the depth and thickness of subsurface layers,
and this conversion is usually achieved by using seismic full-
waveform inversion (FWI). Various Deep neural networks (DNNs)
have recently been proposed to replace FWI, and well-trained
DNNs typically have lower computational costs but generate
similar velocity images as compared to FWI. Yet, training a DNN
model is non-trivial, which requires transmitting seismic data
that are sensed by seismic receivers in the field to a centralized
data center, leading to data privacy and security issues. Seismic
field tests are normally conducted in rural areas, where data
centers and Internet infrastructures are not available. Hence, it
is impossible to train a DNN and achieve seismic inversion in
real-time. In this paper, we propose the Asynchronous Federated
Learning for Seismic Inversion (AsyncFedInv) framework, which
applies multiple IoT devices in terms of edge computing boards
to collaboratively train a compact UNet model in real-time based
on a novel asynchronous federated learning, where 1) a staleness
function is applied to mitigate model staleness, and 2) clients
that generate similar local models would suspend its training,
thus reducing the communication costs and energy consumption.
Simulation results demonstrate that AsyncFedInv achieves a
similar convergence rate but lower training loss and better testing
performance as compared to a baseline algorithm FedAvg.

Index Terms—Seismic inversion, federated learning, asyn-
chronous

I. INTRODUCTION

Seismic data/images refer to data collected from an explo-

ration method of sending acoustic waves into the earth and

recording the wave reflection and refraction to indicate the

type, size, shape, and depth of subsurface layers [1, 2]. As

shown in Fig. 1, to collect seismic data, a vibroseis truck

is equipped with a seismic source in terms of a hydraulic

vibrator to generate controlled and low-frequency vibrations

in terms of acoustic waves, which are transmitted into and

reflected by the subsurface layers, and finally received by a

set of seismic receivers deployed at the ground. However,

for accurate structural analysis, an effort should be made to

This work was supported by the National Science Foundation under Award
under grant no. CNS-2323050 and CNS-2148178, where CNS-2148178 is
supported in part by funds from federal agency and industry partners as
specified in the Resilient & Intelligent NextG Systems (RINGS) program.

convert seismic waves collected by different receivers over

different time slots into depth and thickness of subsurface

layers, and this type of conversion is referred to as seismic

inversion. Seismic full-waveform inversion (FWI) is one of

the most widely used models to extract the Earth’s physical

characteristics from the seismic data.

Fig. 1: Federated learning for seismic inversion.

Basically, FWI is to derive the optimal parameters of a

forward operator f such that the mean square error (MSE)

between recorded seismic data, denoted as d, and seismic

data generated by the forward operator f is minimized, i.e.,

min ||d − f(m)||2, where f(m) is the simulated seismic

data from forward operator f by feeding it with the seismic

velocity, denoted as m [3]. The two major drawbacks of

FWI include 1) high computational cost, where FWI requires

numerous seismic wavefield simulations and reconstructions in

each iteration to minimize the MSE, and 2) high sensitivity to

noise and errors in the data [4], where small errors in seismic

data measurement or initial model can result in large errors in

the velocity images generated by FWI.

To resolve the above two drawbacks of FWI, deep neural

networks (DNNs) have been proposed and demonstrated their

performance in terms of lower computational cost and higher

noise resistance [5–7]. Wang and Ma [8] employed a DNN to

implement seismic inversion. The DNN comprises a number

of fully connected layers followed by a fully convolutional

network (FCN). Zhang and Lin [2] utilized a Generative

Adversarial Network (GAN) to learn a mapping function that

transforms raw seismic waveform into velocity images. Araya-

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-IoT)

979-8-3503-0405-3/24/$31.00 ©2024 IEEE 1493

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ica

tio
ns

 W
or

ks
ho

ps
 (I

CC
 W

or
ks

ho
ps

) |
 9

79
-8

-3
50

3-
04

05
-3

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

CW
OR

KS
HO

PS
59

55
1.

20
24

.1
06

15
41

1

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore.  Restrictions apply. 



Polo et al. [9] introduced a velocity prediction technique using

a DNN that takes calculated velocity feature semblance as

input, followed by post-processing with a k-means method.

Li et al. [10] conducted an in-depth analysis on mapping

seismic data to velocity images, and developed a novel DNN

framework, entitled SeisInvNet, to perform end-to-end velocity

inversion mapping, employing enhanced single-trace seismic

data as inputs.

All the mentioned DNN models for seismic inversion are

trained based on a centralized manner, meaning that seismic

data sensed by different seismic receivers have to be transmit-

ted to a data center, which leads to data privacy and security

concerns. Also, seismic field tests are normally conducted in

rural areas, where facilities, such as data centers and Internet

infrastructures, are not available. Hence, these high volumes

of seismic data need to be manually transported to a data

center for further processing, thus unable to train the DNN

model and achieve seismic inversion in real-time. To achieve

real-time training and testing of a DNN model for seismic

inversion, we incorporate federated learning (FL) [11] and

edge computing [12] into seismic inversion. Specifically, as

shown in Fig. 1, each seismic receiver is associated with

an IoT device in terms of a computing board to upload its

seismic data, and the IoT device acts as a client in FL to

store and process its received seismic data. Here, FL allows

different clients to collaboratively train a machine learning

model without sharing their seismic data, thus ensuring IoT

data privacy and security. The whole training process is divided

into a sequence of global rounds, each composed of four steps.

1) The FL server, which could be one of the IoT devices in

the test field, selects suitable clients and broadcasts the current

global model to these selected clients. 2) Each selected client

independently trains the received global model using its local

seismic data to obtain the local model. 3) The selected clients

then upload their local models to the FL server via the wireless

local network. 4) Once all local models from selected clients

have been received, the FL server aggregates them, using,

for example, FedAvg [13], to update the global model. The

global rounds continue until the global model converges or

the number of global rounds exceeds a predefined threshold.

The above FL process is referred to as synchronous FL,

where the FL server has to wait until all the selected clients

have uploaded their local models, which may lead to the

straggler problem if one of the selected clients requires a

much longer time to compute and upload its local model,

thus increasing the latency of a global round. Although many

solutions have been proposed to mitigate the straggler problem,

they all raise other issues. For example, one of the most

popular solutions is to set up a deadline, and the FL server

only selects the clients, who can upload their local models

before the deadline, or simply ignores the local models that are

uploaded after the deadline [14, 15]. This solution may degrade

the global model accuracy caused by biased client selection,

i.e., the FL server does not select slow clients, and so the

derived global model may not accommodate the training date

from these slow clients [16]. Instead of applying synchronous

FL, we propose to use asynchronous FL, where the FL server

does not wait for all the selected clients to upload their local

models; instead, it updates the global model when it receives

a local model from any client, and then sends the updated

global model to that client. Hence, asynchronous FL does not

have the straggler problem and enables all the clients to partic-

ipate in the training process, thus potentially leading to more

efficient training and enhancing data diversity. Many works

have demonstrated asynchronous FL outperforms synchronous

FL [17], but also highlight two drawbacks of asynchronous FL.

1) Model staleness, where slow clients train their local models

based on outdated global models; hence, the global model may

reduce its accuracy when the FL server aggregates the local

models from those slow clients [17]. 2) High communication

cost, where fast clients need to communicate with the FL

server much more frequently, thus leading to high energy

consumption.

In this paper, we propose the Asynchronous Federated

Learning for Seismic Inversion (AsyncFedInv) framework,

which integrates asynchronous FL and edge computing into

seismic data analysis to achieve real-time seismic inversion.

The main contributions are summarized as follows.

• We propose AsyncFedInv that enables edge devices to

apply asynchronous FL to train a DNN, i.e., UNet, to

achieve real-time seismic inversion. To the best of our

knowledge, we are the first that explore the integration

of FL and edge computing into seismic inversion.

• In AsyncFedInv, to efficiently train UNet based on

asynchronous FL, we apply 1) staleness functions to

dynamically adjust the weights of local models during

model aggregation, thus potentially mitigating the model

staleness issue, and 2) dynamic client participation, i.e.,

the clients, whose local models do not have a significant

difference from the current global model, will suspend its

training, thus reducing the communication costs and en-

ergy consumption, while preserving the model accuracy.

• Extensive simulations have been conducted to demon-

strate the convergence and model accuracy of AsyncFed-

Inv. Also, the performance of AsyncFedInv by applying

different staleness functions is evaluated via simulations.

II. DATA-DRIVEN FWI (DD-FWI) DESIGN

DD-FWI is to derive a pseudoinverse operator F
†
θ
: RD →

R
M parameterized by θ, where

F
†
θ
(P obs) ≈ m

true + ε, (1)

where P
obs ∈ R

D is the seismic data observed by different

seismic receivers, m
true ∈ R

M is the ground truth of

the velocity data, and ε is the measurement noise. In 2-D

scenarios, the dimensions of P
obs and m

true are defined as

D = S × R × T and M = H × W , respectively. Here, S

R, and T represent the number of seismic sources generated

in a period, the number of seismic receivers, and timesteps in

a period for inversion, respectively. Also, H ×W is the size

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-IoT)

1494
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore.  Restrictions apply. 



of a velocity image, which typically equals R × T . In DD-

FWI, F
†
θ

is normally implemented as a DNN, such as UNet

[18, 19], which learns a mapping from the seismic data to

the velocity data. Basically, the parameter θ in F
†
θ

is trained

based on, for example, stochastic gradient descent, given a

set of seismic data
{

P
obs
1 , · · · ,P obs

N

}

and their corresponding

velocity images {mtrue
1 , · · · ,mtrue

N }, where velocity images

can be obtained based on, for example, the physics-based

FWI model, which has high computational cost but provides

accurate velocity images. The loss function of UNet is

argmin
θ

L = argmin
θ

N
∑

i=1

‖mtrue
i − Fθ(P

obs
i )‖2. (2)

UNet is based on an encoder-decoder structure, where the

encoder reduces the dimensions of the inputs by extracting

relevant high-level features, and the decoder transforms the

extracted features into a different domain. We modify our

previous UNet model [20] to achieve seismic inversion, and

the new UNet model has a more compact architecture to be

executed in resource-constrained clients. As shown in Fig. 2,

the encoder has four convolutional layers with 3 × 3 fixed

kernel size and both stride and padding equal to 1. Each

convolutional layer is then followed by a 2 × 2 max-pooling

with the stride of 2 to downsample the feature maps. At each

downsampling step, the number of feature channels is doubled.

The channel dimensions in the encoding are 32, 64, 128,

and 256. The decoder comprises four transposed convolutional

layers for upsampling, each with 5 × 5 kernel size, stride of

2, and zero padding. At each upsampling step, the number

of feature channels is halved. The channel dimensions in the

decoding path are 512, 256, 128, 64, and 32. Finally, a 3× 3
convolutional layer maps the last 32 features into the predicted

velocity value. The soft-max function is then used to obtain

the predicted velocity label. Basically, our modified UNet

architecture has a total of 9 convolutional layers.

Fig. 2: The designed UNet model for seismic inversion.

III. SYSTEM MODELS

The clients apply FL to collaboratively train the UNet model

such that the global loss function L can be minimized, i.e.,

argmin
θ

L = argmin
θ

∑

k∈K

Nk

N
Lk (θ), (3)

where θ is the set of global model parameters, K is the set of

clients, Nk is the number of seismic data and velocity image

pairs, i.e.,
{

P
obs
i ,mtrue

i

}

in client k, N =
∑

k∈K

Nk is the

total number of seismic data and velocity image pairs for all

the clients, and Lk (ω) is the local loss function of client k,

i.e.,

Lk (θ) =
1

Nk

Nk
∑

n=1

L
(

θ,P obs
n ,mtrue

n

)

. (4)

Since Problem (3) is nontrivial to solve, FL decomposes the

problem to enable each client to derive its local model θk

based on its local data set to minimize the loss function, i.e.,

argmin
θk

1

Nk

Nk
∑

n=1

L
(

θk,P
obs
n ,mtrue

n

)

(5)

= argmin
θk

1

Nk

Nk
∑

n=1

‖mtrue
n − Fθk

(P obs
n )‖2,

and then local models are aggregated at the FL server to derive

a global model.

A. Latency Models

In this section, we present the latency of a client, which

will be used to evaluate the training/convergence time of FL

algorithms. In general, the latency of client k comprises 1)

the latency of client k in downloading the global model from

the FL server, defined as tdownload
k , 2) the latency of client k

to compute its local model, defined as t
comp
k , 3) the latency

of client k when uploading its local model to the FL server,

defined as t
upload
k , and 4) latency of the FL server to update

the global model. Typically, the latency related to the global

model update in Step 4) is negligible. Thus, we define the

latency of client k in each global iteration as follows:

tk = tdownload
k + t

comp
k + t

upload
k . (6)

1) Computing Latency: Assume that there are Nk seismic

images used by client k to train its local UNet model. The

batch size is η, and so the number of batches for client k

is Nk

η
. Also, assume that the number of local iterations of

training a local model is φ. Hence, there are Nk ×φ and φNk

η

number of forward and backward propagations, respectively,

in client k’s global round. If the complexity in terms of the

number of CPU cycles required to conduct a forward and

backward propagation for the proposed UNet model in client

k are c
forward
k and cbackward

k , respectively, then the computing

latency of client k to train the local model is

t
comp
k =

Nk × φ× c
forward
k + φNk

η
× cbackward

k

fk
, (7)

where fk is the CPU frequency of client k.

2) Downloading and Uploading Latency: Assume that a

time division duplex system is applied for the FL server to

download the global model to a client as well as for a client

to upload a local model to the FL server. Denote gk as the

channel gain between the FL server to client k, and the channel

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-IoT)

1495
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore.  Restrictions apply. 



is reciprocal. Hence, the downloading and uploading data rate

achievable by client k are
{

rdownload
k = B log2(1 +

psgk
N0

),

r
upload
k = B log2(1 +

pc
kgk
N0

),
(8)

Here, B is the total amount of bandwidth, ps and pck are

the transmission power density of the FL server and client

k, respectively, and N0 is the average noise power density.

Assuming that the size of the global model is s, then we have










tdownload
k = s

rdownload
k

= s

B log
2
(1+

psgk
N0

)
.

t
upload
k = s

r
upload

k

= s

B log
2
(1+

pc
k
gk

N0
)
.

(9)

IV. THE ASYNCFEDINV FRAMEWORK

AsyncFedInv modifies the existing asynchronous FL to

achieve more efficient training of the proposed UNet model.

As mentioned before, asynchronous FL is different from

synchronous FL since the FL server immediately updates the

global model θglobal upon receiving a local model, i.e.,

θ
global :=(1−αk)θ

global+αkθ
local
k , (10)

where αk is the weight assigned to client k. As mentioned

before, the staleness problem is one of the major drawbacks

of asynchronous FL, where some slow clients train their local

models θlocal
k based on the outdated global model. As a result,

these local models may not improve the performance of the

global model, or even diverge the global model, when they

are used to update the global model based on Eq. (10). One

common approach to address staleness is to adjust αk. That

is, a slow client, which has a higher latency tk to compute and

upload its local model, will be assigned with a smaller weight

αk, and vice versa. Specifically, αk is calculated based on

αk = α× h(tk), (11)

where α (0 ≤ α ≤ 1) is a hyperparameter and h(tk) is client

k′s staleness function to evaluate the freshness of the local

model. Here, we design three typical staleness functions, i.e.,

• Constant: hconst = 1.

• Exponential: hexp(tk) = e−a(tk−τ).

• Hinge: hhinge(tk) =

{

1, if tk − τ ≤ b,
1

a(tk−τ−b)+1 , otherwise,

where a and b are hyperparameters, and τ = min(tk|∀k ∈ K
′).

Here, K
′ ⊂ K is the set of clients, who are currently

training their local models. Basically, hconst treats all the

clients equally in terms of staleness/weights, and hexp(tk) and

hhinge(tk) assigns lower weights to the clients with higher tk.

Another drawback of asynchronous FL is the fast clients’

high communication and computing costs. That is, the fast

clients have to frequently upload and keep training their local

models, thus leading to high energy consumption. Note that

energy consumption could be critical to the clients, who are

deployed in the rural field and powered by portable batteries.

To reduce the cost, we apply a simple but effective solution,

which is to suspend a client in training its local model by not

sending the updated global model if the client’s uploaded local

model is similar to the updated global model, i.e.,
∥

∥θ
global − θ

local
k

∥

∥ 6 ε, (12)

where ε is the predefined threshold. Once the FL server

updates the global model, it will evaluate all the clients in K
′′

to see if Eq. (12) is still met, where K′′ is the set of clients who

are suspending their training, and K
′′ ∪ K

′ = K. If a client

in K
′′ does not satisfy Eq. (12), the FL server will resume

its training by sending the current global model. Algorithm 1

summarizes AsyncFedInv.

Algorithm 1: The AsyncFedInv framework

1 Initialize θ
global and hyperparameters.

2 Broadcast θglobal to all the clients.

3 At the FL server:

4 while receive a local model θlocal
k from client k do

5 Calculate αk based on Eq. (11);

6 Update θ
global based on Eq. (10);

7 if
∥

∥θ
global − θ

local
k

∥

∥ > ε then

8 Download θ
global to client k;

9 else

10 K
′ := K

′\k and K
′′ := K

′′ ∪ k;

11 Store client k’s local model θlocal
k ;

12 end

13 for each k′ ∈ K
′′ do

14 if
∥

∥θ
global − θ

local
k′

∥

∥ > ε then

15 K
′ := K

′ ∪ k′ and K
′′ := K

′′\k′;
16 Download θ

global to client k′;

17 end

18 end

19 end

20 At client k:

21 while receive a global model θglobal do

22 θ
local
k = θ

global;

23 Train θ
local
k based on batch gradient descent;

24 Upload θ
local
k to the FL server;

25 end

V. SIMULATIONS

A. Simulation parameters

Assume that there are 3 clients to receive data from seismic

receivers, and each client trains the UNet model described in

Fig. 2 by using the Adam optimizer with a learning rate of

0.001. The 2D SEG Salt data set [18] is used, where each

seismic image represents the pressure of the acoustic waves

received by 301 receivers during the 2-second monitoring

period. These 301 receivers are evenly distributed in a 3 km

distance area and each receiver samples the acoustic waves

201 times during the 2-second monitoring period once the

transmitter generates an acoustic wave. Hence, the size of

each seismic image is 301 × 201 pixels, and Fig. 3 (left)

provides an example of a seismic image. In the data set, there

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-IoT)

1496
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore.  Restrictions apply. 



are 29 sources placed at different locations in a field. The

total number of seismic images in the data set is 120. Note

that the data set does not contain the ground truth in terms

of the velocity images of the corresponding seismic images.

Since FWI has been demonstrated to generate high accurate

velocity images based on the low-noisy seismic images, such

as 2D SEG Salt data set, we consider the velocity images

derived by the FWI model in [21] as the ground truth values.

Note that each velocity image is assumed to consist of 5 to

12 layers, representing the background velocity. The velocity

value associated with each pixel in a velocity image varies

between 2,000 and 4,000 m/s and the pixel that represents the

salt has the velocity value of 4,500 m/s. The size of each

velocity image should be matched up with the size of its

seismic image, which is 301 × 201 pixels. Fig. 3 (right) shows

a velocity image that is generated by FWI based on the seismic

image on the left.

Fig. 3: An example of a pair of seismic (left) and velocity

(right) images in the 2D SEG Salt dataset, where the velocity

image is generated by FWI.

TABLE I: Simulation parameters

Parameter Value

Size of the local model s 100 kbit
Number of local iterations φ 50
Number of global iterations 100
Batch size η 5
Hyperparameters in staleness functions a/b 10/4
Hyperparameter α in Eq. (10) 0.5

All 120 pairs of seismic/velocity images are first grouped

into different classes based on the similarity in terms of

structural similarity index metric (SSIM) of two velocity

images from two pairs of seismic/velocity images. That is,

if the SSIM value between a velocity image and any velocity

image in a class is no larger than the defined threshold ξ,

the pair of seismic/velocity images will be grouped into that

class. Based on that, the 120 seismic/velocity image pairs are

then distributed to the 3 clients in two different settings, i.e.,

independent and identically distribution (IID) and non-IID. In

IID, the clients have the same/similar number of image pairs in

a class. In non-IID, the probability of having xl pairs of images

in class l at client k is assumed to follow a Dirichlet distribu-

tion [22], i.e.,f(x1, x2, . . . , xL;β) =
Γ(βL)
Γ(β)L

∏L
l=1 x

β−1
l , where

L is the total number of classes, Γ() is the gamma function,

Γ(z) =
∫∞

0
yz−1e−ydy and β is the concentration parameter

that determines the level of label imbalance. A larger β results

in a more balanced data partition among different labels within

Fig. 4: Loss curves for AsyncFedInv and FedAvg in IID (left)

and non-IID β = 0.1 (right) settings.

a client (i.e., closer to IID). Other simulation parameters are

listed in Table I.

B. Simulation results

We compare the performance of AsyncFedInv with a base-

line solution, i.e., FedAvg, which a well-known synchronous

FL method to invite all the clients to participate in the model

training in each global iteration.

1) Training loss and convergence analysis: Fig. 4 shows the

loss curves learning curves of FedAvg and AsyncFedInv with

different staleness functions under IID and non-IID cases. Note

that there is no definition of a global round in asynchronous

FL. To facilitate the comparisons, we define the duration of a

global round in both AsyncFedInv and FedAvg as the duration

of the slowest client in computing and uploading its local

model. From Fig. 4, we can observe that all the methods finally

converge with a very similar rate in both IID and non-IID

cases. Yet, AsyncFedInv with exponential staleness function

achieves the lowest training loss when the curve is converged.

Specifically, the loss of the FedAvg, AsyncFedInv with ex-

ponential, AsyncFedInv with hinge, and AsyncFedInv with

constant are 3.1449, 2.2356, 2.6344, and 3.2033, respectively,

in IID, and 4.4193, 1.7669, 3.1383, 6.4552, respectively, in

non-IID. Hence, we will use the exponential staleness function

as the default setting for AsyncFedInv later on.

2) Testing result analysis: By feeding the testing data sets

into the UNet models that are generated by AsyncFedInv

and FedAvg after 100 global rounds, the testing results are

obtained. Fig. 5 show four typical samples in IID and non-

IID cases, respectively, where each sample comprises three

different velocity images inverted from the same seismic

image, i.e., a ground truth velocity image generated by FWI,

a velocity image generated by AsyncFedInv, and a velocity

image generated by FedAvg. From the figures, we can clearly

identify that the velocity images generated by AsyncFedInv

are more similar to the ground truth than FedAvg in IID.

For instance, the velocity image generated by AsyncFedInv

in the first sample is much better than that generated by

FedAvg. Also, the testing result of FedAvg becomes much

worse than AsyncFedInv in the non-IID case. For instance,

the velocity image generated by FedAvg in the first sample

is totally different from the ground truth, while the velocity

image generated by AsyncFedInv still keeps high similarity.

In order to quantify the testing results, two metrics, i.e.,

structural similarity index metric (SSIM) and peak signal-to-

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-IoT)

1497
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: Testing result for AsyncFedInv and FedAvg in IID (left) and non-IID (right).

TABLE II: SSIM and PSNR for AsyncFedInv and FedAvg

IID Non-IID

SSIM PSNR SSIM PSNR

Sample Ours FedAvg Ours FedAvg Ours FedAvg Ours FedAvg

0 0.541 0.508 15.371 15.900 0.532 0.502 15.044 12.168

1 0.591 0.612 17.801 17.969 0.664 0.601 18.438 18.508

2 0.537 0.528 12.441 14.517 0.516 0.527 12.227 14.780

3 0.568 0.557 25.278 24.682 0.596 0.553 25.919 24.312

4 0.448 0.424 17.713 15.016 0.433 0.410 18.200 15.873

5 0.609 0.543 14.924 15.250 0.607 0.503 14.770 15.038

6 0.476 0.429 19.640 12.159 0.471 0.470 20.125 15.229

7 0.682 0.659 16.218 13.843 0.635 0.648 14.115 17.273

Average 0.557 0.533 17.424 16.167 0.557 0.527 17.355 16.648

noise ratio (PSNR), are used. SSIM and PSNR evaluate the

similarity and quality of a predicted velocity image, respec-

tively, in comparison to its ground truth. A higher SSIM/PSNR

value indicates a higher similarity/quality of the predicted

velocity image. Table II shows testing results on 8 seismic

images for AsyncFedInv and FedAvg in IID and non-IID cases,

where we can observe that AsyncFedInv always incurs lower

average SSIM and PSNR values than FedAvg in both IID and

non-IID cases. All in all, we conclude that AsyncFedInv has

a similar convergence rate, but lower training loss and better

testing performance as compared to FedAvg.

VI. CONCLUSIONS

In this paper, we have proposed AsyncFedInv that uses

multiple edge devices to collaboratively train a compact UNet

model in real-time based on a novel asynchronous federated

learning, where 1) a staleness function is used to mitigate

model staleness, and 2) dynamic client participation is de-

signed to reduce the communication costs and energy con-

sumption of clients. Simulation results show that AsyncFedInv

achieves a similar convergence rate but lower training loss and

better testing performance as compared to FedAvg.

REFERENCES

[1] J. Virieux and S. Operto, “An overview of full-waveform inversion in
exploration geophysics,” Geophysics, vol. 74, no. 6, pp. WCC1–WCC26,
2009.

[2] Z. Zhang and Y. Lin, “Data-driven seismic waveform inversion: A study
on the robustness and generalization,” IEEE Transactions on Geoscience

and Remote sensing, vol. 58, no. 10, pp. 6900–6913, 2020.
[3] Y. Ma, D. Hale, B. Gong, and Z. Meng, “Image-guided sparse-model

full waveform inversion,” Geophysics, vol. 77, no. 4, pp. R189–R198,
2012.

[4] A. Fichtner, Full seismic waveform modelling and inversion. Springer
Science & Business Media, 2010.

[5] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” in IEEE conference on computer

vision and pattern recognition, 2016, pp. 1646–1654.
[6] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth

estimation from a single image,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2015, pp. 5162–5170.
[7] Y. Wu and Y. Lin, “Inversionnet: An efficient and accurate data-driven

full waveform inversion,” IEEE Transactions on Computational Imaging,
vol. 6, pp. 419–433, 2019.

[8] W. Wang and J. Ma, “Velocity model building in a crosswell acquisition
geometry with image-trained artificial neural networks,” Geophysics,
vol. 85, no. 2, pp. U31–U46, 2020.

[9] M. Araya-Polo, J. Jennings, A. Adler, and T. Dahlke, “Deep-learning
tomography,” The Leading Edge, vol. 37, no. 1, pp. 58–66, 2018.

[10] S. Li, B. Liu, Y. Ren, Y. Chen, S. Yang, Y. Wang, and P. Jiang, “Deep-
learning inversion of seismic data,” arXiv preprint arXiv:1901.07733,
2019.

[11] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[12] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29,
2016.

[13] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, 2017, pp. 1273–1282.

[14] L. Yu, R. Albelaihi, X. Sun, N. Ansari, and M. Devetsikiotis, “Jointly
optimizing client selection and resource management in wireless feder-
ated learning for internet of things,” IEEE Internet of Things Journal,
vol. 9, no. 6, pp. 4385–4395, 2022.

[15] R. Albelaihi, A. Alasandagutti, L. Yu, J. Yao, and X. Sun,
“Deep-reinforcement-learning-assisted client selection in nonorthogonal-
multiple-access-based federated learning,” IEEE Internet of Things Jour-

nal, vol. 10, no. 17, pp. 15 515–15 525, 2023.
[16] L. Yu, X. Sun, R. Albelaihi, and C. Yi, “Latency aware semi-synchronous

client selection and model aggregation for wireless federated learning,”
arXiv preprint arXiv:2210.10311, 2022.

[17] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated
optimization,” CoRR, vol. abs/1903.03934, 2019. [Online]. Available:
http://arxiv.org/abs/1903.03934

[18] F. Yang and J. Ma, “Deep-learning inversion: A next-generation seismic
velocity model building method,” Geophysics, vol. 84, no. 4, pp. R583–
R599, 2019.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing

and Computer-Assisted Intervention–MICCAI 2015: 18th International

Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III

18. Springer, 2015, pp. 234–241.
[20] D. Manu, P. M. Tshakwanda, Y. Lin, W. Jiang, and L. Yang, “Seismic

waveform inversion capability on resource-constrained edge devices,”
Journal of Imaging, vol. 8, no. 12, p. 312, 2022.

[21] A. Guitton, G. Ayeni, and E. Dı́az, “Constrained full-waveform inversion
by model reparameterization,” Geophysics, vol. 77, no. 2, pp. R117–
R127, 2012.

[22] A. A. Gouda and T. Szántai, “On numerical calculation of probabilities
according to dirichlet distribution,” Annals of Operations Research, vol.
177, pp. 185–200, 2010.

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-IoT)

1498
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore.  Restrictions apply. 


