2024 IEEE International Conference on Communications Workshops (ICC Workshops) | 979-8-3503-0405-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICCWORKSHOPS59551.2024.10615411

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-1oT)

Enhancing IoT Security with Asynchronous
Federated Learning for Seismic Inversion

Daniel Manu*, Youzuo Linf?, Jingjing Yao$, Zhirun Li*, and Xiang Sun*

*Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
tSchool of Data Science and Society, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
§Depalrtment of Computer Science, Texas Tech University, Lubbock, TX 79409, USA.

Abstract—Seismic data/images are critical to understand the
structure of subsurfaces. However, for accurate structural anal-
ysis, seismic images need to be converted into velocity images
that can recognize the depth and thickness of subsurface layers,
and this conversion is usually achieved by using seismic full-
waveform inversion (FWI). Various Deep neural networks (DNNs)
have recently been proposed to replace FWI, and well-trained
DNNs typically have lower computational costs but generate
similar velocity images as compared to FWI. Yet, training a DNN
model is non-trivial, which requires transmitting seismic data
that are sensed by seismic receivers in the field to a centralized
data center, leading to data privacy and security issues. Seismic
field tests are normally conducted in rural areas, where data
centers and Internet infrastructures are not available. Hence, it
is impossible to train a DNN and achieve seismic inversion in
real-time. In this paper, we propose the Asynchronous Federated
Learning for Seismic Inversion (AsyncFedInv) framework, which
applies multiple IoT devices in terms of edge computing boards
to collaboratively train a compact UNet model in real-time based
on a novel asynchronous federated learning, where 1) a staleness
function is applied to mitigate model staleness, and 2) clients
that generate similar local models would suspend its training,
thus reducing the communication costs and energy consumption.
Simulation results demonstrate that AsyncFedInv achieves a
similar convergence rate but lower training loss and better testing
performance as compared to a baseline algorithm FedAvg.

Index Terms—Seismic inversion, federated learning, asyn-
chronous

I. INTRODUCTION

Seismic data/images refer to data collected from an explo-
ration method of sending acoustic waves into the earth and
recording the wave reflection and refraction to indicate the
type, size, shape, and depth of subsurface layers [I, 2]. As
shown in Fig. 1, to collect seismic data, a vibroseis truck
is equipped with a seismic source in terms of a hydraulic
vibrator to generate controlled and low-frequency vibrations
in terms of acoustic waves, which are transmitted into and
reflected by the subsurface layers, and finally received by a
set of seismic receivers deployed at the ground. However,
for accurate structural analysis, an effort should be made to

This work was supported by the National Science Foundation under Award
under grant no. CNS-2323050 and CNS-2148178, where CNS-2148178 is
supported in part by funds from federal agency and industry partners as
specified in the Resilient & Intelligent NextG Systems (RINGS) program.

979-8-3503-0405-3/24/$31.00 ©2024 IEEE

convert seismic waves collected by different receivers over
different time slots into depth and thickness of subsurface
layers, and this type of conversion is referred to as seismic
inversion. Seismic full-waveform inversion (FWI) is one of
the most widely used models to extract the Earth’s physical
characteristics from the seismic data.

Global
model

Seismic Local Velocity

image model image
i__ N

Vlbrosels truck

*C)

Computing board 0 j
(Client) FL server

Selsmlc
source

Subsurface layers
Fig. 1: Federated learning for seismic inversion.

Basically, FWI is to derive the optimal parameters of a
forward operator f such that the mean square error (MSE)
between recorded seismic data, denoted as d, and seismic
data generated by the forward operator f is minimized, i.e.,
min ||d — f(m)||?, where f(m) is the simulated seismic
data from forward operator f by feeding it with the seismic
velocity, denoted as m [3]. The two major drawbacks of
FWTI include 1) high computational cost, where FWI requires
numerous seismic wavefield simulations and reconstructions in
each iteration to minimize the MSE, and 2) high sensitivity to
noise and errors in the data [4], where small errors in seismic
data measurement or initial model can result in large errors in
the velocity images generated by FWI.

To resolve the above two drawbacks of FWI, deep neural
networks (DNNs) have been proposed and demonstrated their
performance in terms of lower computational cost and higher
noise resistance [5-7]. Wang and Ma [8] employed a DNN to
implement seismic inversion. The DNN comprises a number
of fully connected layers followed by a fully convolutional
network (FCN). Zhang and Lin [2] utilized a Generative
Adversarial Network (GAN) to learn a mapping function that
transforms raw seismic waveform into velocity images. Araya-

1493

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore. Restrictions apply.

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-1oT)

Polo et al. [9] introduced a velocity prediction technique using
a DNN that takes calculated velocity feature semblance as
input, followed by post-processing with a k-means method.
Li et al. [10] conducted an in-depth analysis on mapping
seismic data to velocity images, and developed a novel DNN
framework, entitled SeisInvNet, to perform end-to-end velocity
inversion mapping, employing enhanced single-trace seismic
data as inputs.

All the mentioned DNN models for seismic inversion are
trained based on a centralized manner, meaning that seismic
data sensed by different seismic receivers have to be transmit-
ted to a data center, which leads to data privacy and security
concerns. Also, seismic field tests are normally conducted in
rural areas, where facilities, such as data centers and Internet
infrastructures, are not available. Hence, these high volumes
of seismic data need to be manually transported to a data
center for further processing, thus unable to train the DNN
model and achieve seismic inversion in real-time. To achieve
real-time training and testing of a DNN model for seismic
inversion, we incorporate federated learning (FL) [11] and
edge computing [12] into seismic inversion. Specifically, as
shown in Fig. 1, each seismic receiver is associated with
an IoT device in terms of a computing board to upload its
seismic data, and the IoT device acts as a client in FL to
store and process its received seismic data. Here, FL allows
different clients to collaboratively train a machine learning
model without sharing their seismic data, thus ensuring IoT
data privacy and security. The whole training process is divided
into a sequence of global rounds, each composed of four steps.
1) The FL server, which could be one of the IoT devices in
the test field, selects suitable clients and broadcasts the current
global model to these selected clients. 2) Each selected client
independently trains the received global model using its local
seismic data to obtain the local model. 3) The selected clients
then upload their local models to the FL server via the wireless
local network. 4) Once all local models from selected clients
have been received, the FL server aggregates them, using,
for example, FedAvg [13], to update the global model. The
global rounds continue until the global model converges or
the number of global rounds exceeds a predefined threshold.

The above FL process is referred to as synchronous FL,
where the FL server has to wait until all the selected clients
have uploaded their local models, which may lead to the
straggler problem if one of the selected clients requires a
much longer time to compute and upload its local model,
thus increasing the latency of a global round. Although many
solutions have been proposed to mitigate the straggler problem,
they all raise other issues. For example, one of the most
popular solutions is to set up a deadline, and the FL server
only selects the clients, who can upload their local models
before the deadline, or simply ignores the local models that are
uploaded after the deadline [14, 15]. This solution may degrade
the global model accuracy caused by biased client selection,
i.e., the FL server does not select slow clients, and so the
derived global model may not accommodate the training date

from these slow clients [16]. Instead of applying synchronous
FL, we propose to use asynchronous FL, where the FL server
does not wait for all the selected clients to upload their local
models; instead, it updates the global model when it receives
a local model from any client, and then sends the updated
global model to that client. Hence, asynchronous FL does not
have the straggler problem and enables all the clients to partic-
ipate in the training process, thus potentially leading to more
efficient training and enhancing data diversity. Many works
have demonstrated asynchronous FL outperforms synchronous
FL [17], but also highlight two drawbacks of asynchronous FL.
1) Model staleness, where slow clients train their local models
based on outdated global models; hence, the global model may
reduce its accuracy when the FL server aggregates the local
models from those slow clients [17]. 2) High communication
cost, where fast clients need to communicate with the FL
server much more frequently, thus leading to high energy
consumption.

In this paper, we propose the Asynchronous Federated
Learning for Seismic Inversion (AsyncFedInv) framework,
which integrates asynchronous FL and edge computing into
seismic data analysis to achieve real-time seismic inversion.
The main contributions are summarized as follows.

e We propose AsyncFedInv that enables edge devices to
apply asynchronous FL to train a DNN, i.e., UNet, to
achieve real-time seismic inversion. To the best of our
knowledge, we are the first that explore the integration
of FL and edge computing into seismic inversion.

e In AsyncFedlnv, to efficiently train UNet based on
asynchronous FL, we apply 1) staleness functions to
dynamically adjust the weights of local models during
model aggregation, thus potentially mitigating the model
staleness issue, and 2) dynamic client participation, i.e.,
the clients, whose local models do not have a significant
difference from the current global model, will suspend its
training, thus reducing the communication costs and en-
ergy consumption, while preserving the model accuracy.

o Extensive simulations have been conducted to demon-
strate the convergence and model accuracy of AsyncFed-
Inv. Also, the performance of AsyncFedInv by applying
different staleness functions is evaluated via simulations.

II. DATA-DRIVEN FWI (DD-FWI) DESIGN

DD-FWI is to derive a pseudoinverse operator Fg :RP —
RM parameterized by 0, where

Fg(PObS) A mtrue +e, (1)

where P° € RP is the seismic data observed by different
seismic receivers, mt¢ € RM s the ground truth of
the velocity data, and ¢ is the measurement noise. In 2-D
scenarios, the dimensions of P° and m!™° are defined as
D =SxRxTand M = H x W, respectively. Here, S
R, and T represent the number of seismic sources generated
in a period, the number of seismic receivers, and timesteps in
a period for inversion, respectively. Also, H x W is the size

1494
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore. Restrictions apply.

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-1oT)

of a velocity image, which typically equals R x 7. In DD-
FWI, Fg is normally implemented as a DNN, such as UNet
[18, 19], which learns a mapping from the seismic data to
the velocity data. Basically, the parameter 6 in Fg is trained
based on, for example, stochastic gradient descent, given a
set of seismic data {Pf’bs, cee Pﬁ,bs} and their corresponding
velocity images {m!™¢ ... ml“¢} where velocity images
can be obtained based on, for example, the physics-based
FWI model, which has high computational cost but provides

accurate velocity images. The loss function of UNet is

N
true

argmin £ = argmin E lm;
o 6 =1

- Fo(PP)|?.

UNet is based on an encoder-decoder structure, where the
encoder reduces the dimensions of the inputs by extracting
relevant high-level features, and the decoder transforms the
extracted features into a different domain. We modify our
previous UNet model [20] to achieve seismic inversion, and
the new UNet model has a more compact architecture to be
executed in resource-constrained clients. As shown in Fig. 2,
the encoder has four convolutional layers with 3 x 3 fixed
kernel size and both stride and padding equal to 1. Each
convolutional layer is then followed by a 2 x 2 max-pooling
with the stride of 2 to downsample the feature maps. At each
downsampling step, the number of feature channels is doubled.
The channel dimensions in the encoding are 32, 64, 128,
and 256. The decoder comprises four transposed convolutional
layers for upsampling, each with 5 x 5 kernel size, stride of
2, and zero padding. At each upsampling step, the number
of feature channels is halved. The channel dimensions in the
decoding path are 512, 256, 128, 64, and 32. Finally, a 3 x 3
convolutional layer maps the last 32 features into the predicted
velocity value. The soft-max function is then used to obtain
the predicted velocity label. Basically, our modified UNet
architecture has a total of 9 convolutional layers.

401 x 301 x 29

201 %3011

Fig. 2: The designed UNet model for seismic inversion.

III. SYSTEM MODELS

The clients apply FL to collaboratively train the UNet model
such that the global loss function £ can be minimized, i.e.,

N
argmin £ = arg min Z RLyN (0), 3)
o o =N

where 0 is the set of global model parameters, K is the set of
clients, Ny is the number of seismic data and velocity image

pairs, i.e., {Pf’bs,m?“e} in client k, N = > Nj is the

kel
total number of seismic data and velocity image pairs for all
the clients, and L, (w) is the local loss function of client k,
i.e.,
L
obs true
EZL(O’P" ,mire). 4)

n=1

Ly (0) =

Since Problem (3) is nontrivial to solve, FLL decomposes the
problem to enable each client to derive its local model 6y
based on its local data set to minimize the loss function, i.e.,

Ny,
1 b t
arg min — E L (0, P2 m/T°)
0. Nk ()
1
_ . true_F Pobs 2
argoinln 7N E Hmn Ok(n)H ’

n=1

and then local models are aggregated at the FL server to derive
a global model.

A. Latency Models

In this section, we present the latency of a client, which
will be used to evaluate the training/convergence time of FL
algorithms. In general, the latency of client k comprises 1)
the latency of client £ in downloading the global model from
the FL server, defined as t{°vnload 2) the latency of client k
to compute its local model, defined as ¢;"""”, 3) the latency
of client k£ when uploading its local model to the FL server,
defined as t;” foad "and 4) latency of the FL server to update
the global model. Typically, the latency related to the global
model update in Step 4) is negligible. Thus, we define the
latency of client k in each global iteration as follows:

tk — tgownload + tzOWL;D + tzpload' (6)

1) Computing Latency: Assume that there are Nj seismic
images used by client k to train its local UNet model. The
batch size is 7, and so the number of batches for client k
is % Also, assume that the number of local iterations of

training a local model is ¢. Hence, there are Nj X ¢ and %
number of forward and backward propagations, respectively,
in client k’s global round. If the complexity in terms of the
number of CPU cycles required to conduct a forward and
backward prolg)agation for the proposed UNet model in client
k are ¢/°"%" and cbackward regpectivel h i

% A , respectively, then the computing

latency of client k to train the local model is
orward N ackwar
Ny x ¢ x ¢l +%xczk d
fr ’
where f}, is the CPU frequency of client k.
2) Downloading and Uploading Latency: Assume that a
time division duplex system is applied for the FL server to
download the global model to a client as well as for a client

to upload a local model to the FL server. Denote g; as the
channel gain between the FL server to client k, and the channel

comp __
ty, =

)

1495
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore. Restrictions apply.

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-1oT)

is reciprocal. Hence, the downloading and uploading data rate
achievable by client k are

{Tgownload — BlOg2(1 + P;Vgok)’

,,kaload _ Blog2(1 + P];\;[J)k)’

®)

Here, B is the total amount of bandwidth, p® and pf are
the transmission power density of the FL server and client
k, respectively, and Ny is the average noise power density.
Assuming that the size of the global model is s, then we have

tzownload — s

J— S
Tgnwnload Blog2(1+pég’“)

o €))

tupload _ s _
k T;:,ploa,d,

S
P Ik
Blog, (1+ k")

IV. THE ASYNCFEDINV FRAMEWORK

AsyncFedInv modifies the existing asynchronous FL to
achieve more efficient training of the proposed UNet model.
As mentioned before, asynchronous FL is different from
synchronous FL since the FL server immediately updates the
global model 89'°*%! upon receiving a local model, i.e.,

Bglobal — (1 _ak)eglobal +Olk6i,ocal7 (10)

where oy, is the weight assigned to client k. As mentioned
before, the staleness problem is one of the major drawbacks
of asynchronous FL, where some slow clients train their local
models 02"6‘” based on the outdated global model. As a result,
these local models may not improve the performance of the
global model, or even diverge the global model, when they
are used to update the global model based on Eq. (10). One
common approach to address staleness is to adjust ay. That
is, a slow client, which has a higher latency ¢; to compute and
upload its local model, will be assigned with a smaller weight
ag, and vice versa. Specifically, ay, is calculated based on

an

where a (0 < o < 1) is a hyperparameter and h(¢x) is client
k's staleness function to evaluate the freshness of the local
model. Here, we design three typical staleness functions, i.e.,
o Constant: hconst =1,
o Exponential: 7h%7(t),) = e~ o(tx=7),
1, if t, — 7 <0,

ap = a X h(tk),

3 . hhinge _

» Hinge: / (t) = m, otherwise,
where a and b are hyperparameters, and 7 = min(¢; |Vk € K').
Here, ' C K is the set of clients, who are currently
training their local models. Basically, h°"! treats all the
clients equally in terms of staleness/weights, and h¢*P(t;) and
hMinge(t,.) assigns lower weights to the clients with higher t.
Another drawback of asynchronous FL is the fast clients’
high communication and computing costs. That is, the fast
clients have to frequently upload and keep training their local
models, thus leading to high energy consumption. Note that
energy consumption could be critical to the clients, who are
deployed in the rural field and powered by portable batteries.
To reduce the cost, we apply a simple but effective solution,

which is to suspend a client in training its local model by not
sending the updated global model if the client’s uploaded local
model is similar to the updated global model, i.e.,

Heglobal _ aiocalH <e, (12)

where ¢ is the predefined threshold. Once the FL server
updates the global model, it will evaluate all the clients in /C”
to see if Eq. (12) is still met, where /C” is the set of clients who
are suspending their training, and /" U K’ = IC. If a client
in /"' does not satisfy Eq. (12), the FL server will resume
its training by sending the current global model. Algorithm 1
summarizes AsyncFedInv.

Algorithm 1: The AsyncFedInv framework

1 Initialize 69'°**! and hyperparameters.

2 Broadcast 89'°% (o all the clients.

3 At the FL server:

4 while receive a local model 0'°° from client k do

5 Calculate o based on Eq. (11);

6 | Update 89'°°% based on Eq. (10);

7 if HBQW"” - 0§€°C‘llH > ¢ then

8 | Download 69'°" to client k;

9 else

10 K':=K'\kand K" := K" Uk;

1 Store client k’s local model i°c?! ;
12 end

13 for each k' € K" do

14 if ||@9'°bal — gjoce!|| > & then

15 K':=K' UK and K" := K"\K';
16 Download @99 to client k';
17 end

18 end

19 end

20 At client k:
21 while receive a global model 69'°*% do

local _ gglobal.
2 ekoca — @9loba :
23 Train 0;6"“” based on batch gradient descent;
24 | Upload 6°°® to the FL server;
25 end

V. SIMULATIONS
A. Simulation parameters

Assume that there are 3 clients to receive data from seismic
receivers, and each client trains the UNet model described in
Fig. 2 by using the Adam optimizer with a learning rate of
0.001. The 2D SEG Salt data set [18] is used, where each
seismic image represents the pressure of the acoustic waves
received by 301 receivers during the 2-second monitoring
period. These 301 receivers are evenly distributed in a 3 km
distance area and each receiver samples the acoustic waves
201 times during the 2-second monitoring period once the
transmitter generates an acoustic wave. Hence, the size of
each seismic image is 301 x 201 pixels, and Fig. 3 (left)
provides an example of a seismic image. In the data set, there

1496
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore. Restrictions apply.

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-1oT)

are 29 sources placed at different locations in a field. The
total number of seismic images in the data set is 120. Note
that the data set does not contain the ground truth in terms
of the velocity images of the corresponding seismic images.
Since FWI has been demonstrated to generate high accurate
velocity images based on the low-noisy seismic images, such
as 2D SEG Salt data set, we consider the velocity images
derived by the FWI model in [21] as the ground truth values.
Note that each velocity image is assumed to consist of 5 to
12 layers, representing the background velocity. The velocity
value associated with each pixel in a velocity image varies
between 2,000 and 4,000 m/s and the pixel that represents the
salt has the velocity value of 4,500 m/s. The size of each
velocity image should be matched up with the size of its
seismic image, which is 301 x 201 pixels. Fig. 3 (right) shows
a velocity image that is generated by FWI based on the seismic
image on the left.

0.00 M 15 0.00 4500
0.25 ' 025 g
0.50 1.0 050 =
@0'75 :‘Y:, 0.75
v ’ Sl 1.00
£ L0 \ % i
F1.25 ‘ g 125 °
150 150 >
175 -0.5 175
2.00
2'08,0 20 25 30
)

=)
o
Amplitude

=)
o

00 05 10 15
Position (km)

20 25 30

05 10 15
Position (km

Fig. 3: An example of a pair of seismic (left) and velocity
(right) images in the 2D SEG Salt dataset, where the velocity
image is generated by FWI.

TABLE I: Simulation parameters

Parameter Value
Size of the local model s 100 kbit
Number of local iterations ¢ 50
Number of global iterations 100
Batch size 1 5
Hyperparameters in staleness functions a/b 10/4
Hyperparameter « in Eq. (10) 0.5

All 120 pairs of seismic/velocity images are first grouped
into different classes based on the similarity in terms of
structural similarity index metric (SSIM) of two velocity
images from two pairs of seismic/velocity images. That is,
if the SSIM value between a velocity image and any velocity
image in a class is no larger than the defined threshold &,
the pair of seismic/velocity images will be grouped into that
class. Based on that, the 120 seismic/velocity image pairs are
then distributed to the 3 clients in two different settings, i.e.,
independent and identically distribution (IID) and non-IID. In
IID, the clients have the same/similar number of image pairs in
a class. In non-IID, the probability of having z; pairs of images
in class [at client k is assumed to follow a Dirichlet distribu-
tion [22], i.e.,f(z1, 22, ..., xL;B) = % Hlel wlﬁ_l, where
L is the total number of classes, I'() is the gamma function,
L(z) = fooo y?*~le ¥Ydy and S is the concentration parameter
that determines the level of label imbalance. A larger 3 results
in a more balanced data partition among different labels within

—— AsyncFedinv (constant function)
—— AsyncFedinv (exponential function)
—— AsyncFedInv (hinge function)

—— FedAvg

o5

0.4

03

0.2

01

0.0 e

—— AsyncFedInv (constant function) 3.0
AsyncFedInv (exponential function)

—— AsyncFedIinv (hinge function)

—— FedAvg

&
s
o

N W
o000
Y

o » o

0.0 B~ —

5 10 15 20

Training Loss (x 10%)
o
o
Training Loss (x 10%)
o B B 0N
5

v

)
ol
o

0 10 20 30 40 50 60 70 80 90 100

Global rounds

0 10 20 30 40 50 60 70 80 90 100
Global rounds

Fig. 4: Loss curves for AsyncFedInv and FedAvg in IID (left)
and non-I1ID 3 = 0.1 (right) settings.

a client (i.e., closer to IID). Other simulation parameters are
listed in Table 1.

B. Simulation results

We compare the performance of AsyncFedInv with a base-
line solution, i.e., FedAvg, which a well-known synchronous
FL method to invite all the clients to participate in the model
training in each global iteration.

1) Training loss and convergence analysis: Fig. 4 shows the
loss curves learning curves of FedAvg and AsyncFedInv with
different staleness functions under IID and non-IID cases. Note
that there is no definition of a global round in asynchronous
FL. To facilitate the comparisons, we define the duration of a
global round in both AsyncFedInv and FedAvg as the duration
of the slowest client in computing and uploading its local
model. From Fig. 4, we can observe that all the methods finally
converge with a very similar rate in both IID and non-1ID
cases. Yet, AsyncFedInv with exponential staleness function
achieves the lowest training loss when the curve is converged.
Specifically, the loss of the FedAvg, AsyncFedInv with ex-
ponential, AsyncFedInv with hinge, and AsyncFedInv with
constant are 3.1449, 2.2356, 2.6344, and 3.2033, respectively,
in 1ID, and 4.4193, 1.7669, 3.1383, 6.4552, respectively, in
non-IID. Hence, we will use the exponential staleness function
as the default setting for AsyncFedInv later on.

2) Testing result analysis: By feeding the testing data sets
into the UNet models that are generated by AsyncFedInv
and FedAvg after 100 global rounds, the testing results are
obtained. Fig. 5 show four typical samples in IID and non-
IID cases, respectively, where each sample comprises three
different velocity images inverted from the same seismic
image, i.e., a ground truth velocity image generated by FWI,
a velocity image generated by AsyncFedlnv, and a velocity
image generated by FedAvg. From the figures, we can clearly
identify that the velocity images generated by AsyncFedInv
are more similar to the ground truth than FedAvg in IID.
For instance, the velocity image generated by AsyncFedInv
in the first sample is much better than that generated by
FedAvg. Also, the testing result of FedAvg becomes much
worse than AsyncFedInv in the non-IID case. For instance,
the velocity image generated by FedAvg in the first sample
is totally different from the ground truth, while the velocity
image generated by AsyncFedInv still keeps high similarity.

In order to quantify the testing results, two metrics, i.e.,
structural similarity index metric (SSIM) and peak signal-to-

1497
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore. Restrictions apply.

WS22 IEEE ICC 2024 Workshop on Aerial Internet of Things (A-1oT)

Ground truth

E
2.
£
B
-

Position (km)

AsyneFediny

FedAvg

E
<
£
g
L

Ground truth

r

‘Position (km)

FedAvg

Sample 1
Ground truth

Depth (km)

" “position (km)

AsyncFediny

Sample2

FedAvg
B
. NN <

Ground truth

r

ition (km)

AsyncFedlny

FedAvg

Z

Ground truth

Depth (km)

Position (km)

AsyncFedlny

=

FedAvg

Depth (km)

Ground truth

r‘

osition (km)

AsyncFediny

FedAvg

Sample3
Ground truth

g
S
S
Bus
iy

Position (km)

AsyneFediny

Sampled
FedAvg

Depth (km)

P

*Position (km)

Ground truth

AsyneFediny

FedAvg

(a)IID

(b) Non- 11D

TABLE II: SSIM and PSNR for AsyncFedInv and FedAvg

Fig. 5: Testing result for AsyncFedInv and FedAvg in IID (left) and non-IID (right).

[5]

11D Non-IID
SSIM PSNR SSIM PSNR (6]
Sample | Ours |[FedAvg| Ours |FedAvg| Ours |FedAvg| Ours |FedAvg
0 0.541] 0.508 [15.371| 15.900 |0.532| 0.502 |15.044| 12.168
1 0.591] 0.612 [17.801| 17.969 |0.664| 0.601 |18.438| 18.508 (7]
2 0.537| 0.528 [12.441| 14.517 |0.516| 0.527 [12.227| 14.780
3 0.568| 0.557 [25.278 24.682 |0.596| 0.553 [25.919| 24.312
4 0.448| 0.424 [17.713| 15.016 |0.433| 0.410 |18.200| 15.873 [8]
5 0.609| 0.543 |14.924| 15.250 [0.607| 0.503 |14.770| 15.038
6 0.476| 0.429 [19.640| 12.159 (0.471| 0.470 |20.125| 15.229
7 0.682] 0.659 [16.218]| 13.843 |0.635| 0.648 |[14.115| 17.273 [9]
Average [0.557| 0.533 |17.424| 16.167 |0.557| 0.527 |17.355| 16.648

10
noise ratio (PSNR), are used. SSIM and PSNR evaluate the 1ol
similarity and quality of a predicted velocity image, respec- 1]
tively, in comparison to its ground truth. A higher SSIM/PSNR
value indicates a higher similarity/quality of the predicted
velocity image. Table II shows testing results on 8 seismic 2]
images for AsyncFedInv and FedAvg in IID and non-IID cases,
where we can observe that AsyncFedInv always incurs lower [13]
average SSIM and PSNR values than FedAvg in both IID and
non-IID cases. All in all, we conclude that AsyncFedInv has 14
a similar convergence rate, but lower training loss and better
testing performance as compared to FedAvg.
[15]
VI. CONCLUSIONS
In this paper, we have proposed AsyncFedInv that uses
multiple edge devices to collaboratively train a compact UNet [16]
model in real-time based on a novel asynchronous federated
learning, where 1) a staleness function is used to mitigate (17]
model staleness, and 2) dynamic client participation is de-
signed to reduce the communication costs and energy con-
sumption of clients. Simulation results show that AsyncFedInv (18]
achieves a similar convergence rate but lower training loss and
better testing performance as compared to FedAvg. [19]
REFERENCES
[1] J. Virieux and S. Operto, “An overview of full-waveform inversion in
exploration geophysics,” Geophysics, vol. 74, no. 6, pp. WCC1-WCC26, [20]
2] é(.)ozgﬁang and Y. Lin, “Data-driven seismic waveform inversion: A study
on the robustness and generalization,” IEEE Transactions on Geoscience [21]]
and Remote sensing, vol. 58, no. 10, pp. 6900-6913, 2020.
[3] Y. Ma, D. Hale, B. Gong, and Z. Meng, “Image-guided sparse-model
full waveform inversion,” Geophysics, vol. 77, no. 4, pp. R189-R198, [22]
2012.
[4] Aq Fichtner, Full seismic waveform modelling and inversion. Springer
Science & Business Media, 2010.
1498

J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” in IEEE conference on computer
vision and pattern recognition, 2016, pp. 1646—-1654.

F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth
estimation from a single image,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 5162-5170.

Y. Wu and Y. Lin, “Inversionnet: An efficient and accurate data-driven
full waveform inversion,” IEEE Transactions on Computational Imaging,
vol. 6, pp. 419-433, 2019.

W. Wang and J. Ma, “Velocity model building in a crosswell acquisition
geometry with image-trained artificial neural networks,” Geophysics,
vol. 85, no. 2, pp. U31-U46, 2020.

M. Araya-Polo, J. Jennings, A. Adler, and T. Dahlke, “Deep-learning
tomography,” The Leading Edge, vol. 37, no. 1, pp. 58-66, 2018.

S. Li, B. Liu, Y. Ren, Y. Chen, S. Yang, Y. Wang, and P. Jiang, “Deep-
learning inversion of seismic data,” arXiv preprint arXiv:1901.07733,
2019.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22-29,
2016.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, 2017, pp. 1273-1282.

L. Yu, R. Albelaihi, X. Sun, N. Ansari, and M. Devetsikiotis, “Jointly
optimizing client selection and resource management in wireless feder-
ated learning for internet of things,” IEEE Internet of Things Journal,
vol. 9, no. 6, pp. 4385-4395, 2022.

R. Albelaihi, A. Alasandagutti, L. Yu, J. Yao, and X. Sun,
“Deep-reinforcement-learning-assisted client selection in nonorthogonal-
multiple-access-based federated learning,” IEEE Internet of Things Jour-
nal, vol. 10, no. 17, pp. 15515-15525, 2023.

L. Yu, X. Sun, R. Albelaihi, and C. Yi, “Latency aware semi-synchronous
client selection and model aggregation for wireless federated learning,”
arXiv preprint arXiv:2210.10311, 2022.

C. Xie, S. Koyejo, and I Gupta, “Asynchronous federated
optimization,” CoRR, vol. abs/1903.03934, 2019. [Online]. Available:
http://arxiv.org/abs/1903.03934

F. Yang and J. Ma, “Deep-learning inversion: A next-generation seismic
velocity model building method,” Geophysics, vol. 84, no. 4, pp. R583—
R599, 2019.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention-MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part 111
18. Springer, 2015, pp. 234-241.

D. Manu, P. M. Tshakwanda, Y. Lin, W. Jiang, and L. Yang, “Seismic
waveform inversion capability on resource-constrained edge devices,”
Journal of Imaging, vol. 8, no. 12, p. 312, 2022.

A. Guitton, G. Ayeni, and E. Diaz, “Constrained full-waveform inversion
by model reparameterization,” Geophysics, vol. 77, no. 2, pp. R117-
R127, 2012.

A. A. Gouda and T. Szantai, “On numerical calculation of probabilities
according to dirichlet distribution,” Annals of Operations Research, vol.
177, pp. 185-200, 2010.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 01:08:03 UTC from IEEE Xplore. Restrictions apply.

