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billionsofparameters andusingbillionsof training samples.AsLLMs

are trained to be general and can capture knowledge from various

di�erent domains, LLMs are either �ne-tuned [57] or prompted [42]

for a downstream task. Fine-tuning involves updating the model

parameters with a speci�c training dataset to target a particular

downstream task. However, �ne-tuning is not only expensive as it

requires additionalmodel training, butmayalso be infeasible in cases

where su�cient training datasets are unavailable. Prompting on the

other hand directly uses LLMs without any training by providing

natural language descriptions of the downstream task and optionally

a few demonstrations of the task being solved as input to the LLM.

LLMs are built on the transformer architecture [65] and can be

classi�ed based on the component(s) used. Decoder-only models

(e.g., Codex [12] andCodeGen [53]) are the popularGPT-basedmod-

els trained using Causal LanguageModeling objective by training to

predict the probability of the next token given all previous left only

context. Encoder-only (e.g., CodeBERT [20]) and Encoder-Decoder

(e.g., CodeT5 [81])models are trainedusingMaskedLanguageModel-

ing (MLM) or Masked Span Prediction (MSP) objective, respectively,

where a small portion (e.g., 15%) of the tokens are replaced with ei-

thermasked tokens ormasked span tokens and the LLMs are trained

to recover the masked out tokens based on bi-directional context.

More recently, researchers have proposed LLMs trained using re-

inforcement learningwhich aligns betterwith humanpreference [54,

61, 85]. Examples include InstructGPT [54] andChatGPT [61],which

are �rst initialized fromapre-trainedmodel on autoregressive gener-

ation and then �ne-tuned using reinforcement learning from human

feedback (RLHF) [85]. RLHF �rst �ne-tunes the base model using a

small dataset of prompts (input) and desired output (human-written).

Then, a separate reward model is trained on a larger set of prompts

by sampling multiple outputs from the �ne-tuned LLM and using

a human labeler to rank each individual output. Finally, reinforce-

ment learning (e.g., Proximal Policy Optimization [60]) is applied to

calculate the reward of the output generated based on the reward

model and correspondingly update the LLMweights. The resulting

LLM has shown better understanding of complex input prompts and

follow instructions to perform various tasks [1, 54, 61]. Speci�cally,

ChatGPT has received lots of attention due to its dialogue/conver-

sation focus by training speci�cally on conversations and its ability

to keep track of and reference prior conversations.

In this work, we continue to build on our in-progress work [73]

by introducing a more comprehensive approach that includes more

robust feedback and aims to learn from both failing and plausible

patches. We not only demonstrate for the �rst time that LLMs �ne-

tuned on human preference can be directly applied for APR, but also

leverage the instruction and dialogue focus/aspect of these LLMs to

build the �rst fully automated conversation-driven APR approach.

2.2 Automated ProgramRepair

Automated ProgramRepair (APR) can help developers by generating

patches for a given bug based on its potential fault location(s). Classic

APR techniques can be mainly classi�ed as heuristic-based [35, 37,

67], constraint-based [16, 34, 43, 50] and template-based [23, 26, 40,

41, 49] ones. Due to the high number of bugs �xed, template-based

APR tools have been recognized as the state-of-the-art. Meanwhile,

such APR tools leverage human-de�ned or automatically-mined

templates to �rst match potential buggy code patterns and then ap-

ply the corresponding �xes. However, template-based tools can only

�x the bugs that fall into their limited set of patterns and therefore

cannot generalize to other bug types or �xes. To address this issue, re-

searchers have proposed learning-based APR techniques by leverag-

ing recent advances Deep Learning. Techniques based on NMT have

beenextensively studied in recentyears, e.g., TENURE[51],Tare [84],

SelfAPR [77], RewardRepair [78], Recoder [83], CURE [29] and Co-

CoNuT [46]. They share the same insight that APR can be viewed

as a NMT problemwhich aims to translate buggy code into correct

code. In this way, they can learn to generate patches by training on

datasets of pairs of buggy and �xed code snippets. Such NMT-based

techniques rely heavily on historical bug-�xing training datasets

which are usually obtained from scraping open-source repositories

for bug-�xing commits. As such, the training data may include var-

ious noises such as irrelevant changes/commits; moreover, in order

to reduce such false positives, these datasets focus mainly on small

commitswhich further limit the types of bugs/�xes used for training.

To further combat the limitations ofNMT-based tools, researchers

have also explored the possibility of directly leveraging LLMs to syn-

thesize correct patches. LLMs, by pre-training on large amounts

of open-source code snippets, can directly synthesize the correct

code given the surrounding contextwithout having to translate from

the buggy code. AlphaRepair [72] is the �rst tool for cloze-style (or

in�lling-style) APR where the buggy line(s) is �rst replaced with

masked tokens and then LLMs are used to directly �ll-in the correct

code based on its context. AlphaRepair shows for the �rst time that

LLM-basedAPR can outperform thewidely studiedNMT-basedAPR

techniques on real-world systems. Prenner et al. [56] and Kolak et

al. [32] also directly used Codex [12] to generate a �xed function

given the original buggy function or to autocomplete a single line

given the pre�x code on a small dataset (QuixBugs [39]). More re-

cently,Xia et al. [71] conductedanextensive studyofLLM-basedAPR

techniques based on various LLMs (e.g., Codex [12], GPT-NeoX [4],

CodeT5 [81], and InCoder [21]), and further demonstrated the su-

periority of LLM-based APR. In addition, researchers have built

FitRepair [70], an improved cloze-style APR tool, that leverages

the widely known plastic surgery hypothesis [2] by training and

prompting using buggy project-speci�c information to further boost

repair performance. Despite the promising results of LLM-based

APR, such existing techniques only focus on the source code under

repair without considering the rich semantics in test failure informa-

tion. Furthermore, prior LLM-based techniques continuously sample

from the same initial prompt, failing to utilize knowledge from pre-

vious failed or plausible patches. In ChatRepair, we address both

limitations of prior LLM-based tools by introducing a conversation-

based repair paradigm to incorporate both patch generation history

with immediate validation feedback to perform repair.

Prior APR tools have also leveraged simple patch execution or

test information forAPR. GenProg [37] is a classic APR tool that uses

an evolutionary algorithm to combine candidate patches that pass

more tests together. Constraint-based APR tools [16, 18, 43, 52] have

used the underlying testing code to extract and build constraints

for patch synthesis. Recently, RewardRepair [78] proposes to train

a NMTmodel with a reward function based on whether a patch in

the training set passes compilation or test execution. SelfAPR [77]

is another NMT-based APR tool which encodes the bug-exposing
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• RQ2: How does ChatRepair perform when used in di�erent

repair scenarios?

• RQ3:What are the contributions of di�erent components of Cha-

tRepair in improving repair e�ectiveness?

• RQ4:How does ChatRepair perform on additional recent bugs

after ChatGPT training data cut-o� date?

We �rst demonstrate the performance of ChatRepair by com-

paring against the state-of-the-art APR tools on the popular De-

fects4j [31] and QuixBugs [39] repair datasets. Following, we closely

examine each of our repair scenarios (single-line, single-hunk and

single-function)with similarly evaluated baseline tools and also eval-

uate how our plausible patch generation step helps to improve the

number of correct �xes. Furthermore, we conduct a comprehensive

ablation study on the di�erent con�gurations of ChatRepair. In

particular,we look at not only the conversational aspect but also how

to provide feedback along with the e�ect on repair performance as

we change the maximum length of conversation. Lastly, we further

evaluate ChatRepair on additional recently collected bugs to study

the performance without potential data leakage a�ecting the result.

4.1 Implementation

Repair scenarios. In ChatRepair, we study 3 di�erent repair

scenarios used in prior work [71]: single-line–�xed by replac-

ing/adding a single line, single-hunk–�xed by replacing/adding

a continuous code hunk and single-function–�xed by generating

a new function to replace the original buggy version. Our initial

prompts di�er slightly based on the repair scenario and we provide

examples of all three in Figure 2. Note that single-hunk repair setting

is studied extensively by prior learning-based APR tools [72, 77, 78].

Implementation.We implementChatRepair in Python by access-

ing the ChatGPT API endpoint [7]. We use the gpt-3.5-turbo-0301

model of the ChatGPT family. For each chosen prompt, the authors

follow the best-practice guide [62] and manually examined a few

alternative approaches with selected bugs via the Web-version of

ChatGPT [9]. We use a sampling temperature of 1 in order to get a

diverse set of potential patches. Our default setting for themaximum

number of repair attempts allowed (including both initial repair and

plausible patch generation steps) is 200 for single-line and single-

hunk APR, and 100 for the single-function scenario. We use 1 few-

shot example and a maximum conversation length of 3. We evaluate

all generated patches on an 8-core workstationwith Intel i7 10700KF

CometLakeCPU@3.80GHzand64GBRAM, runningUbuntu20.04.3

LTS and OpenJDK Java 64-Bit Server version 1.8.0_312. Following

APR work [38, 72, 78, 83, 83], we use a default end-to-end timeout

of 5-hours to �x one bug. In reality, our cost is far less than 5-hours

due to the low number of patches sampled (<500) per bug.

4.2 Subject Systems

For evaluation, we use the widely studied repair benchmark of De-

fects4j [31] and QuixBugs [39]. Defects4j is a Java benchmark col-

lected from bug and corresponding �xes of open-source projects.

Similar to prior APR tools [23, 71, 72, 77], we separate Defects4j

into 1.2 and 2.0. Defects4j 1.2 consists of 391 bugs (after removing 4

depreciated bugs) in 6 di�erent Java projects. In this work, we follow

prior study [71] and categorize Defects4j 1.2 into single-function

(255 bugs), single-hunk (154 bugs) and single-line (80 bugs).Note that

single-hunk is a subset of single-function and single-line is a subset

of single-hunk bugs. We then apply our 3 proposed repair scenarios

corresponding to the each of the 3 datasets. Note in RQ1, similar

to prior work [71] we report the total number of bugs �xed when

combining all three repair scenarios together and study each repair

scenario separately in later RQs. Defects4j 2.0 consists of 438 new

bugs across 9 additional projects. We select only the 82 single-line

bugs within Defects4j 2.0 which is the main setting used in prior

APR tools for ease of comparison [72]. Additionally, we evaluate on

the QuixBugs [39] dataset which is made up of 40 buggy and �xed

versions of classic programming problems in both Python and Java.

All 40 bugs inQuixBugs-Pythonare single-function, single-hunkand

single-linebugswhile 40, 37, and36bugs inQuixBugs-Javaare single-

function, single-hunk and single-line bugs respectively. Lastly, we

also evaluate on the recently introduced ConDefect [69], a collection

of single-line programming contest bugs from 645 tasks in Java and

Python published after October 2021 – the training data cut-o� date

of ChatGPT to avoid the data leakage issue. We perform further �l-

tering to remove any duplicated buggy programs or tasks and obtain

321 and 330 Java and Python bugs respectively.We use ConDefect as

a benchmark to evaluate ChatRepair and baseline techniques with-

out having to worry about data leakage as it only contains problems

and bugs created after the knowledge cut-o� date of ChatGPT.

4.3 Compared Techniques

Baseline techniques.We compare ChatRepair against current

state-of-the-art traditional, NMT learning-based and LLM-based

APR baselines. We select 9 recent learning-based and LLM-based

APR baselines: FitRepair [70], SelfAPR [77], AlphaRepair [72], Re-

wardRepair [78],Recoder [83],CURE[29],CoCoNuT[46],DLFix [38]

and SequenceR [14]. In particular, AlphaRepair and FitRepair are

LLM-based repair tools by applying pre-trained CodeBERT [20]

and CodeT5 [81] model respectively using cloze-style APR. Fur-

thermore, we also include an LLM-based APR tool built using the

Codex model [20] (we refer to as CodexRepair) in a recent study

where researchers directly applied LLMs for APR without any �ne-

tuning [71]. CodexRepair is also studied on three repair settings used

in ourworkwhich allows formore direct comparison. For traditional

APR tools,we compare against 12 selected representative techniques:

TBar [40], PraPR [23], AVATAR [41], SimFix [27], FixMiner [33],

CapGen [67], JAID [11], SketchFix [26], NOPOL [16], jGenProg [48],

jMutRepair [49], and jKali [49]. Altogether, we compare against 22

prior APR tools. Moreover, we also evaluate against a baseline of di-

rectly sampling using the ChatGPTmodel to perform repair without

any conversation or feedback information. We refer to this baseline

as BaseChatGPT. Since our 3 repair scenarios rely on knowing the

location of the bug, we use the perfect fault localization (where the

groundtruth location of the bug is given) results from prior tools.

This is the preferred evaluation setting as it eliminates any di�er-

ences in performance caused by running fault localization tools [68,

71, 72, 77, 78, 83]. Following convention in APR work [72, 83], we

directly report the �x results obtained in prior studies [23, 71, 77].

As ConDefect is recently collected and produced, there are no re-

ported experimental results for any APR tools. Therefore, we apply

state-of-the-art AlphaRepair to ConDefect for baseline comparison.
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themodel to provide a�x,TestName+ErrMsg includes both the fail-

ing test name (e.g., testGetCategoryIndex) and test failure errormes-

sage (e.g., NullPointerException), TestName+ErrMsg+FailLine

additionally includes the exact linewhere the failure occurredwithin

the test (e.g., assertEquals(-1, empty.getCategoryIndex("ABC"));)

and TestName+ErrMsg+TestBody additionally uses the entire

failing test function body instead of just the failure code line.

First, we observe that the base initial prompt of only providing

with the buggy code and asking it to generate a patch performs the

worst in terms of the number of bugs �xed. We see that by adding

auxiliary information such as failing test name and error message,

we can further improve the repair performance. Tests that are well

named can provide semantic meaning of the test. Error messages

also o�er unique insights regarding the nature of the test failure (e.g.,

null point exception, array out of bound checks, etc) and can directly

motivate a potential correct patch. Furthermore, we remark that pro-

viding the exact line within the test where the failure occurred can

also improve repair performance. Such lines may include assertions

showing desired results (e.g., numerical comparison) or statements

that triggered the exceptions or crashes (e.g., �eld dereferences).

This additionally gives concrete hints to ChatGPT on how to �x the

speci�c bug. Moreover, we observe that the prompt which includes

the entire test function code also performs well in terms of the num-

ber of bugs �xed. However, on average it costs the most compared

to the other initial prompts used. This is because the model incurs

additional cost to process the entire test function code for each repair

attempt, which can be largely depending on the size of the test func-

tion andmay contain test code irrelevant to the bug. As such, a more

concise prompt which includes just the failing test code line can

already achieve e�ective repair performance while being economic.

Table 4 also shows several other parameters of the initial input

apart from the included test failure information. Row You are a

helpful assistant uses the default system message (Section 3) by

ChatGPT and You are an APR tool (we use the full name of APR) is

our modi�ed systemmessage. While the number of �xes is similar

between the two systemmessages, we observe that by aligning the

systemmessagewith the taskwewant to solve – program repair, the

model can arrive at the plausible patch faster (less tries) since it can

faster understand the task it is trying to solve. As suchwe can reduce

the cost of ChatRepair by designing speci�c systemmessages. Fur-

thermore, we evaluate the e�ect of having few-shot examples of bug

�xesbefore the target buggycode input inTable 4.Weobserve that by

providingChatGPTwith some examples of prior bug�xes,we obtain

aslight increase innumberofplausiblepatcheswhileat thesametime

drastically reducing the number of tries used to �x the bug. Few-shot

examples, similar to the systemmessage, can get the model familiar

for bug �xing by understanding the task and input/output formats.

Table 5: Feedback response variations

Feedback Response #P Avg. # tries Avg. $

BaseFeedback 58 23.12 $0.071

TestName+ErrMsg 61 22.48 $0.073

TestName+ErrMsg+FailLine 62 24.71 $0.074

Dynamic 64 21.86 $0.061

Figure 7: E�ect ofmaximum conversation length

5.3.2 Feedback Response. Another important aspect of ChatRe-

pair’s design is the feedback response we provide to the model. Sim-

ilar to the initial prompt design, we also consider multiple di�erent

ways we can provide feedback to the model. Table 5 shows the re-

sultsof thedi�erent feedbackresponsevariants.RowBaseFeedback

means we only tell the model that the generated patch is not correct

without any additional feedback. Similar to the initial prompt con-

struction, TestName+ErrMsg includes both the failing test name

and test failure error message, TestName+ErrMsg+FailLine ad-

ditionally includes the exact line where the failure occurred within

the test. Di�erent from initial prompt construction,Dynamic is our

default approach where we only provide the test name/error/line

if the new generated patch has a di�erent failure than the original

(Section 3.2). This allows us to more concretely inform ChatGPT if it

hasmade some progress in �xing a bug (e.g., patch no longer crashes

with null-pointer exception but fails on some other test).

Initially,we see that the base responsemessage achieves theworst

result in number of bugs �xed. Similar to the behavior of the initial

prompts, we can improve performance by adding the name of the

failing test, error message along with the exact failure line from the

failing test. Additionally, we can further improve performance by us-

ing the dynamic feedback response. Since in the initial prompt we al-

readyprovideChatGPTwith the failing testname, errormessage, and

failing line, in dynamic feedback response, we only provide newdata

if the generated patch contains a di�erent failing information. This

allow us to make more use of the conversational aspect by referring

to a previousmessage. Furthermore, it can reduce the cost by using a

short concisemessage if the patch does notmake additional progress.

5.3.3 Conversation Length. Figure 7 shows performance in both

the number of plausible �xes and the average dollar cost to �x a

bug across di�erent maximum conversation length. Recall from Sec-

tion3.2 that themaximumconversation lengthdictates theamountof

history/feedback within each individual repair conversation, where

length = 1 is equivalent to sampling using the initial prompt without

any feedback. We observe that directly sampling from the ChatGPT

without any conversation achieves the lowest number of plausible

�xes. As we add the conversation element of ChatRepair, the num-

ber of plausible patches improves. Comparedwith sampling from the

same prompt over and over again, by usingChatRepair in a conver-

sationalmanner, themodel can learn fromitspreviousmistakesalong

with the concise test failure feedback information to generate more

plausible patches.We also notice that themodel can retain its perfor-

mances aswe increase the conversation length tobehigher (i.e., 5 and

6). However, we see that compared with a lower conversation length

(3), the higher conversation lengths incurs a much higher cost in �x-

ing a bug. The reason is that as we increase the length, the amount of

history/context (tokens) processed by the model will be higher, lead-

ing to higher cost per bug �xed. Our default conversation length of 3

serves as a good balance between cost and the number of bugs �xed.
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5.4 RQ4: Evaluation on Recent Bugs

Table 6: Correct and Plausible �xes on ConDefect

Tools ConDefects-Java ConDefects-Python

ChatRepair 243 / 250 241 / 249

BaseChatGPT 170 / 189 165 / 171

AlphaRepair 154 / 158 142 / 160

To address potential data leakage of the groundtruth patches in

prior evaluation datasets, we further evaluate on ConDefect [69], a

collection of programming contest bugs obtained after the knowl-

edge cut-o� date of ChatGPT. Table 6 shows the repair performance

(# of correct / # plausible patches) of ChatRepair, BaseChatGPT

and AlphaRepair on ConDefect dataset in both Java and Python. We

�rst observe that on both ConDefect datasets, ChatRepair is able

to signi�cantly outperform the repair baseline with 57.8% and 69.7%

more correct patches on Java and Python respectively. Additionally,

we see that ChatRepair also improves over the baseline technique

of naively using ChatGPT (BaseChatGPT) by 42.9% and 46.6% more

correct patches. ChatRepair successfully utilizes the previously

ignored semantic information in test failures as well as prior failing

and plausible �x attempts to achieve the state-of-the-art results on

ConDefect.

6 Limitations & FutureWork

First, while ChatRepair is able to achieve state-of-the-art repair

performance of the studied benchmarks, there are still bugs that it

struggles to �x. One particular category are multi-hunk bugs that

require patches across multiple functions or �les. This limitation is

due to the limitedcontextwindowofChatGPTandotherLLMswhere

they can only take in a restricted number of tokens as inputs. As

such, LLM-based approaches likeChatRepair in its current iteration

cannot deal with bugs that require edits to multiple di�erent �les.

Also due to the context window size, ChatRepair does not have

access to project and repository speci�c information. Priorwork [70]

has demonstrated the importance of learning and using project

speci�c information (e.g., common variable, class, function names)

in helping to boost LLM repair performance. ChatRepair currently

can only obtain the context from the limited input and thus may

miss the crucial intra-project information that is useful for repair.

To address these limitations, we aim to further improve ChatRe-

pairwith LLM-based agents. We plan to �rst reduce the reliance on

traditional fault localization tools byusingLLMs to identify potential

buggy locations. LLMs, through its powerful code understanding

ability, can identify further relationships betweenmultiple buggy lo-

cations in order to aid in multi-hunk repair. Further, we can improve

ChatRepairwith a retrieval agent that retrieves and obtains useful

repair-speci�c information. For example, by providing a summary

of the related class �elds or methods as part of the input to �x the

current buggy class. We hope our agent-based debugging approach

can address the prior limitations and inspire future work in using

LLM for more holistic APR and debugging.

7 Threats to Validity

Internal.The �rst internal threat comes from themanual validation

used to determine the correctness of the plausible patches compared

with the reference developer patch. To address this, following prior

work [29, 71, 77, 83], we carefully examined each patch and have

released the correct patches along with the code [15].

Another threat to validity comes from the data leakage of refer-

ence developer patches being part of the original training data of

ChatGPT. Since ChatGPT is a proprietary model and can only be ac-

cessed through API, we do not have access to the exact training data

used. To address this, we follow prior work [72] and �rst compute

the number of correct patches generated by ChatRepairwhich was

the same as the reference developer patch onDefects4j 1.2.We found

that out of 212 (adding all correct patches from three repair scenarios)

correct patches, 77 of them is the same as reference developer �x

(36%). In addition, even if we remove all correct patches (77) which

are the same as the reference developer patch, ChatRepair is still

able to generate the correct patch for 8 unique bugs that none of

the prior approaches can �x. Also, compared to the base ChatGPT

repair baseline which uses the same underlying model,ChatRepair

is able to drastically improve its performance (34 more correct �xes)

showing that the result gained by ChatRepair is not simply due

to memorizing the training data. Furthermore, we evaluate Cha-

tRepair on the ConDefect dataset collected after the knowledge

cut-o� date of ChatGPT and demonstrate that ChatRepair is able

to improve over the best baseline with 42.9% and 46.6% more correct

patches on the Java and Python version respectively. To completely

address this threat, we would need to retrain ChatGPT from scratch

which would be infeasible for an academic project.

Additional threat to validity is our evaluation setting of using

perfect fault localization (PFL). We �rst note that PFL is the pre-

ferred evaluation setting for prior LLM-based and traditional APR

tools [68, 70, 71] to reduce e�ect di�erent fault localization tools have

on repair. To address this threat, we conducted an initial study by us-

ing widely adopted fault localization (Ochiai [86]) and assumed that

ChatRepairmay only �x a bug if the groundtruth location is part of

the top-40 suspicious locations. We reduce the number of patches to

20 per line, incurring a total time cost of <5 hour bug (typical setting

for non-perfect fault localization). In this experiment, ChatRepair

is still able to achieve 68 bugs �xed compared to state-of-the-art

baseline [72] of 50 bugs �xed without groundtruth buggy location.

External. Themain external threat to validity comes for our evalua-

tion datasets used. The improvement obtained by ChatRepairmay

not generalize to other repair datasets. To address this, we evaluate

on Defects4j 2.0, two QuixBugs datasets and the recently introduced

ConDefect dataset to demonstrate the generalizability.

8 Conclusion

We propose ChatRepair – the �rst fully automated conversation-

driven APR tool which leverages ChatGPT to perform repair. Cha-

tRepair learns from both previously incorrect and plausible patches

and utilizes test failure information to provide immediate and dy-

namic feedback forpatchgeneration.Usingourconversational repair

paradigm, ChatRepair is able to achieve the new state-of-the-art

performance of 114 and 48 bugs on Defects4j 1.2 and 2.0 respectively.
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