Automated Program Repair via Conversation:
Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT

Chungiu Steven Xia
University of lllinois at Urbana-Champaign
Urbana, USA
chunqiu2@illinois.edu

Abstract

Automated Program Repair (APR) aims to automatically generate
patches for buggy programs. Traditional APR techniques suffer from
alack of patch variety as they rely heavily on handcrafted or mined
bug fixing patterns and cannot easily generalize to other bug/fix
types. To address this limitation, recent APR work has been focused
on leveraging modern Large Language Models (LLMs) to directly
generate patches for APR. Such LLM-based APR tools work by first
constructing an input prompt built using the original buggy code and
then querying the LLM to either fill-in (cloze-style APR) the correct
code at the bug location or to produce a completely new code snippet
as the patch. While the LLM-based APR tools are able to achieve
state-of-the-art results, they still follow the classic Generate and
Validate (G&V) repair paradigm of first generating lots of patches
by sampling from the same initial prompt and then validating each
one afterwards. This not only leads to many repeated patches that
are incorrect, but also misses the crucial and yet previously ignored
information in test failures as well as in plausible patches.

To address these aforementioned limitations, we propose CHA-
TREPATIR, the first fully automated conversation-driven APR approach
that interleaves patch generation with instant feedback to perform
APR in a conversational style. CHATREPAIR first feeds the LLM with
relevant test failure information to start with, and then learns from
both failures and successes of earlier patching attempts of the same bug
for more powerful APR. For earlier patches that failed to pass all tests,
we combine the incorrect patches with their corresponding relevant
test failure information to construct a new prompt for the LLM to
generate the next patch. In this way, we can avoid making the same
mistakes. For earlier patches that passed all the tests (i.e., plausible
patches), we further ask the LLM to generate alternative variations
of the original plausible patches. In this way, we can further build on
and learn from earlier successes to generate more plausible patches
to increase the chance of having correct patches. While our ap-
proach is general, we implement CHATREPAIR using state-of-the-art
dialogue-based LLM - ChatGPT. Our evaluation on the widely stud-
ied Defects4j dataset shows that CHATREPAIR is able to achieve the
new state-of-the-art in repair performance, achieving 114 and 48 cor-
rect fixes on Defects4j 1.2 and 2.0 respectively. By calculating the cost
of accessing ChatGPT, we can fix 162 out of 337 bugs for $0.42 each!

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680323

819

Lingming Zhang
University of llinois at Urbana-Champaign
Urbana, USA
lingming@illinois.edu

CCS Concepts
« Software and its engineering — Software testing and debug-
ging.

Keywords
Automated Program Repair, Large Language Model

ACM Reference Format:

Chungiu Steven Xia and Lingming Zhang. 2024. Automated Program Repair
via Conversation: Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA °24), September 16-20, 2024, Vienna, Austria. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680323

1 Introduction

Automated Program Repair (APR) [22, 24] is a promising approach
to automatically generate patches for bugs in software. Traditional
APR tools often use the Generate and Validate (G&V) [44] paradigm
to first generate a large set of candidate patches and then validate
each one against the original test suite to discover a set of plausible
patches (which pass all the tests). These plausible patches are then
given to the developers to find a correct patch that correctly fixes
the underlying bug. Traditional APR techniques can be categorized
into template-based [23, 26, 40, 41, 49], heuristic-based [35, 37, 67]
and constraint-based [16, 34, 43, 50] ones. Among these traditional
techniques, template-based APR tools, using handcrafted or mined
repair templates to match and fix buggy code patterns, have been
regarded as the state-of-the-art [3, 23, 40]. However, template-based
tools suffer from lack of patch variety as they cannot easily generalize
to bugs and patterns outside of the list of pre-defined templates.

To address the limitations of traditional APR tools, researchers
have proposed learning-based APR approaches that leverage ad-
vances in Deep Learning. Learning-based approaches are mainly
based on either Neural Machine Translation (NMT) [64] or Large
Language Model (LLM) [65]. NMT-based APR tools [14, 29, 38, 46,
51, 83, 84] view repair as a translation task to turn buggy code into
correct code by training a NMT model [64] using a dataset of his-
torical bug fixes. However, such NMT-based APR tools rely heavily
on its training data, obtained by scraping open-source repositories
for bug fixing commits. This means that not only can the training
dataset be noisy [30] (i.e. containing irrelevant commits/changes)
but also that these NMT-based approaches may not generalize to
bug fix types not seen in their limited training data.

More recently, researchers have started to directly leverage ad-
vanced LLMs for APR [28, 32, 56, 70, 71]. Modern LLMs are trained
on billions of open-source code snippets, demonstrating impressive
performance on many code-related tasks [6, 12, 21, 74], and can learn
to directly generate code given the surrounding context (due to code

ISSTA 24, September 16-20, 2024, Vienna, Austria

Testname: testZero()
Failure Line: assertPrint("var x ='\\0';", "var x=\"\\000\"");
Error Message: expected:<var x="\0[00]"> but was:<var x="\@[]">
switch (c) {
case '\0': sb.append("\\@"); break;
case '\0': sb.append("\\000"); break;
case '\n': sb.append("\\n"); break;

Figure 1: Example bug fix with original testcase information

naturalness [25, 58]). AlphaRepair [72] proposes the first cloze-style
(or infilling-style) APR approach, where the buggy code is removed
and an LLM directly predicts correct code given the prefix and suffix
context. Recent work has also applied LLM-based APR to autocom-
plete a single correct line [32] or to directly generate a complete fixed
function [56]. A more extensive study [71] has investigated applying
larger and different LLM architectures (i.e. generative and infilling)
for APR, and demonstrates that LLM-based APR tools can achieve the
new state-of-the-art repair performance. Meanwhile, the pipeline
for existing LLM-based APR still has the following limitations:

1) Missing test failure information. Current LLM-based tools do not
consider the rich information within the original bug-exposing tests.
Such information can not only help LLMs understand the meaning
of the source code under tests but can help and hint with concrete
code snippets. Figure 1 shows an example bug fix along with the
original test failure information. We see that the fix is to swap the
appending string to "\\000". This can be an extremely difficult fix
for LLM-based approaches since this unique string is not a com-
monly used string seen during pre-training and also there are no
other examples of triple strings ("\\XXX") within the current func-
tion context. However, from the failure line within the test and the
corresponding error message, we see that the test expects the output
to contain the triple zeros and even contains a code snippet ("\\000")
which is directly used in the patch! LLMs have shown powerful in
processing/exploiting such unstructured/complex information like
test failure logs. By failing to consider them, LLM-based tools may
waste a lot of time generating irrelevant patches.

2) Repeated sampling. Current LLM-based approaches first con-
struct an input prompt using the original buggy code and either ask
the LLM to fill-in the correct code (i.e. cloze-style APR [72]) or gener-
ate a completely new fixed function [56, 71]. Using the initial prompt,
LLM-based techniques will sample the LLM multiple times to gener-
ate many patches, akin to the traditional G&V paradigm of program
repair. However, since each sample is identically independent, the
LLM does not know any previously generated patches. As such, LLM-
based tools may generate many repeated or similar patches that were
already determined to be incorrect, wasting dollar cost in APTaccess
or time in GPU execution. Furthermore, this repeated sampling pro-
cedure is also drastically different from how human developers fix
bugs, where we iterative build on top of the knowledge and tries from
previous failed attempts to come up with the next possible patch.

3) Ignorance of valuable plausible patches. In addition to failing to
use past incorrect patches, current LLM-based APR tools also cannot
effectively exploit the plausible patches generated earlier. Plausi-
ble patches have been shown to be valuable since they often share
similar locations with the actual correct patches [23, 45]. Moreover,
we further hypothesize that plausible patches may also include key
code ingredients to pass all tests, and may also help LLMs better
learn how to pass all tests to generate more plausible patches (thus
increasing the chance of generating correct patches). By ignoring

820

Chungqiu Steven Xia and Lingming Zhang

such valuable plausible patch information and starting from scratch

after generating plausible patches, existing LLM-based APR may

miss opportunities to correctly fix more bugs.

Our Work. We present CHATREPAIR - a fully automated conversation-

driven APR approach that interleaves patch generation with in-

stant feedback to perform patch generation in a conversational
style. While our idea is general, to build CHATREPAIR, we use the
recently developed, current state-of-the-art dialogue-based LLM —

ChatGPT [61]", which is not only trained on billions of code snippets,

butalsois designed tobe used in a conversational manner to better un-

derstand instructions. CHATREPAIR first extracts relevant test failure
information to serve as the initial prompt to provide ChatGPT more
contextual information for APR. Moreover, CHATREPAIR further
learns from both failures and successes of earlier patching attempts
of the same bug for more powerful APR. For earlier patches that
failed to pass all tests, we combine the incorrect patches with their
corresponding test failure information to construct a new prompt for
the LLM to generate the next patch. In this way, we can avoid mak-
ing the same mistakes. For earlier patches that passed all the tests

(i.e., plausible patches), we further ask the LLM to generate alterna-

tive variations of the original plausible patches. In this way, we can

further build on and learn from earlier successes to generate more

plausible patches to increase the chance of having correct patches. As

our approach uses the ChatGPT model, we also compute the dollar

cost of ChatGPT API queries used to fix a bug. Surprisingly, we found

that by using CHATREPAIR, we can fix 162 out 0f 337 bugs for $0.42 each.?
This paper makes the following contributions:

e Dimension. We open a new dimension of conversation-driven
paradigm for fully automated program repair and beyond. Our
work demonstrates for the first time that we can effectively lever-
age previously ignored test failure information, as well as earlier
patch attempts in a conversational manner to prompt LLMs to
generate more correct patches. Moreover, we show the promising
future of leveraging dialogue-based LLMs for APR in general.

o Technique. We develop CHATREPAIR, a conversation-driven APR
tool using the ChatGPT model. More specifically, we automati-
cally extract concise and relevant information about the initial
test failures as well as earlier patch attempts to prompt ChatGPT
for effective APR.

e Evaluation. We evaluate CHATREPAIR against current state-of-
the-art learning-based and traditional APR tools on the widely
studied Defects4j 1.2, 2.0 [31], QuixBugs [39], and ConDefect [69]
datasets. CHATREPAIR obtains the new state-of-the-art repair re-
sult of 114 and 48 correct bug fixes (15 and 4 more than prior best
baseline) on Defects4j 1.2 and 2.0 respectively. Additionally, we
conduct an extensive ablation study to demonstrate the improve-
ment gained from both utilizing rich semantic test failure informa-
tion and the conversational paradigm of CHATREPAIR for repair.

2 Background & Related Work

2.1 Large Language Model

Large Language Models (LLMs) [6] have seen meteoric rise in both
performance and corresponding adoptions due to recent advances in
Natural Language Processing (NLP) that enable scaling LLM size to

!While repair uses ChatGPT, no part of this paper is written by ChatGPT.
This is a reference to a prior classic study done for APR [36] not using ChatGPT.

Automated Program Repair via Conversation

billions of parameters and using billions of training samples. AsLLMs
are trained to be general and can capture knowledge from various
different domains, LLMs are either fine-tuned [57] or prompted [42]
for a downstream task. Fine-tuning involves updating the model
parameters with a specific training dataset to target a particular
downstream task. However, fine-tuning is not only expensive as it
requires additional model training, but may also be infeasible in cases
where sufficient training datasets are unavailable. Prompting on the
other hand directly uses LLMs without any training by providing
natural language descriptions of the downstream task and optionally
a few demonstrations of the task being solved as input to the LLM.

LLMs are built on the transformer architecture [65] and can be
classified based on the component(s) used. Decoder-only models
(e.g., Codex [12] and CoDEGEN [53]) are the popular GPT-based mod-
els trained using Causal Language Modeling objective by training to
predict the probability of the next token given all previous left only
context. Encoder-only (e.g., CodeBERT [20]) and Encoder-Decoder
(e.g.,CodeT5 [81]) models are trained using Masked Language Model-
ing (MLM) or Masked Span Prediction (MSP) objective, respectively,
where a small portion (e.g., 15%) of the tokens are replaced with ei-
ther masked tokens or masked span tokens and the LLMs are trained
to recover the masked out tokens based on bi-directional context.

More recently, researchers have proposed LLMs trained using re-
inforcement learning which aligns better with human preference [54,
61, 85]. Examples include InstructGPT [54] and ChatGPT [61], which
are first initialized from a pre-trained model on autoregressive gener-
ation and then fine-tuned using reinforcement learning from human
feedback (RLHF) [85]. RLHF first fine-tunes the base model using a
small dataset of prompts (input) and desired output (human-written).
Then, a separate reward model is trained on a larger set of prompts
by sampling multiple outputs from the fine-tuned LLM and using
a human labeler to rank each individual output. Finally, reinforce-
ment learning (e.g., Proximal Policy Optimization [60]) is applied to
calculate the reward of the output generated based on the reward
model and correspondingly update the LLM weights. The resulting
LLM has shown better understanding of complex input prompts and
follow instructions to perform various tasks [1, 54, 61]. Specifically,
ChatGPT has received lots of attention due to its dialogue/conver-
sation focus by training specifically on conversations and its ability
to keep track of and reference prior conversations.

In this work, we continue to build on our in-progress work [73]
by introducing a more comprehensive approach that includes more
robust feedback and aims to learn from both failing and plausible
patches. We not only demonstrate for the first time that LLMs fine-
tuned on human preference can be directly applied for APR, but also
leverage the instruction and dialogue focus/aspect of these LLMs to
build the first fully automated conversation-driven APR approach.

2.2 Automated Program Repair

Automated Program Repair (APR) can help developers by generating
patches for a given bug based on its potential fault location(s). Classic
APR techniques can be mainly classified as heuristic-based [35, 37,
67], constraint-based [16, 34, 43, 50] and template-based [23, 26, 40,
41, 49] ones. Due to the high number of bugs fixed, template-based
APR tools have been recognized as the state-of-the-art. Meanwhile,
such APR tools leverage human-defined or automatically-mined

821

ISSTA 24, September 16-20, 2024, Vienna, Austria

templates to first match potential buggy code patterns and then ap-
ply the corresponding fixes. However, template-based tools can only
fix the bugs that fall into their limited set of patterns and therefore
cannot generalize to other bug types or fixes. To address this issue, re-
searchers have proposed learning-based APR techniques by leverag-
ing recent advances Deep Learning. Techniques based on NMT have
been extensively studied inrecent years, e.g., TENURE [51], Tare [84],
SelfAPR [77], RewardRepair [78], Recoder [83], CURE [29] and Co-
CoNuT [46]. They share the same insight that APR can be viewed
as a NMT problem which aims to translate buggy code into correct
code. In this way, they can learn to generate patches by training on
datasets of pairs of buggy and fixed code snippets. Such NMT-based
techniques rely heavily on historical bug-fixing training datasets
which are usually obtained from scraping open-source repositories
for bug-fixing commits. As such, the training data may include var-
ious noises such as irrelevant changes/commits; moreover, in order
to reduce such false positives, these datasets focus mainly on small
commits which further limit the types of bugs/fixes used for training.

To further combat the limitations of NMT-based tools, researchers
have also explored the possibility of directly leveraging LLMs to syn-
thesize correct patches. LLMs, by pre-training on large amounts
of open-source code snippets, can directly synthesize the correct
code given the surrounding context without having to translate from
the buggy code. AlphaRepair [72] is the first tool for cloze-style (or
infilling-style) APR where the buggy line(s) is first replaced with
masked tokens and then LLMs are used to directly fill-in the correct
code based on its context. AlphaRepair shows for the first time that
LLM-based APR can outperform the widely studied NMT-based APR
techniques on real-world systems. Prenner et al. [56] and Kolak et
al. [32] also directly used Codex [12] to generate a fixed function
given the original buggy function or to autocomplete a single line
given the prefix code on a small dataset (QuixBugs [39]). More re-
cently, Xiaetal. [71] conducted an extensive study of LLM-based APR
techniques based on various LLMs (e.g., Codex [12], GPT-NeoX [4],
CodeT5 [81], and INCoODER [21]), and further demonstrated the su-
periority of LLM-based APR. In addition, researchers have built
FitRepair [70], an improved cloze-style APR tool, that leverages
the widely known plastic surgery hypothesis [2] by training and
prompting using buggy project-specific information to further boost
repair performance. Despite the promising results of LLM-based
APR, such existing techniques only focus on the source code under
repair without considering the rich semantics in test failure informa-
tion. Furthermore, prior LLM-based techniques continuously sample
from the same initial prompt, failing to utilize knowledge from pre-
vious failed or plausible patches. In CHATREPAIR, we address both
limitations of prior LLM-based tools by introducing a conversation-
based repair paradigm to incorporate both patch generation history
with immediate validation feedback to perform repair.

Prior APR tools have also leveraged simple patch execution or
test information for APR. GenProg [37] is a classic APR tool that uses
an evolutionary algorithm to combine candidate patches that pass
more tests together. Constraint-based APR tools [16, 18, 43, 52] have
used the underlying testing code to extract and build constraints
for patch synthesis. Recently, RewardRepair [78] proposes to train
a NMT model with a reward function based on whether a patch in
the training set passes compilation or test execution. SelfAPR [77]
is another NMT-based APR tool which encodes the bug-exposing

ISSTA 24, September 16-20, 2024, Vienna, Austria

test errors together with the original buggy code as input for APR.
Meanwhile, to our knowledge, CHATREPAIR is the first work that
leverages detailed feedback (e.g., including relevant test code and er-
ror messages) for each and every patch validated for conversational
APR. Also, CHATREPAIR directly leverages LLMs for digesting test
feedback extraction, which is fully automated/generalizable and can
understand deep semantic information.

Since the initial version of CHATREPAIR [73], researchers have
proposed to use conversations for APR and other software engineer-
ing tasks. Self-Debugging [13] leverages multi-turn LLM feedback
to improve program synthesis. Agent-based tools [5, 10, 47, 66, 82],
such as SWE-agent [76] and RepairAgent [5], propose to tackle
more complex software development tasks by not only using test
feedback but also feedback from additional tools (e.g., linters). Fur-
thermore, conversations and the usage of LLMs have been expanded
to additional software tasks such as fuzz testing [17, 75], unit test
generation [59, 80], and code translation [19, 55].

3 Approach

We propose CHATREPAIR, a fully automated conversation-driven
APR technique that incorporates multiple dimensions of feedback
information to iterative query the model to generate patches. Instead
of directly generating patches based on the buggy code as existing
LLM-based APR techniques do, CHATREPAIR additionally provides
valuable test failure information to further assist LLMs in patch gen-
eration. Moreover, instead of continuously sampling from the same
prompt as prior LLM-based APR techniques do, CHATREPAIR keeps
track of conversation history and further learns from earlier failed
and succeeded patching attempts of the same bug via prompting. In
this way, CHATREPAIR can both avoid prior failures and build on ear-
lier successes (e.g., plausible patches) for more effective APR. As such,
CHATREPAIR maximizes the ability to obtain a genuine correct patch
that correctly fixes the underlying bug. While our approach is gen-
eral and can use different LLMs and be applied to a variety of different
repair scenarios, in this work, we use the state-of-the-art ChatGPT
model [61] that is designed specifically for dialogue interaction.
Figure 2 shows an overview of CHATREPAIR using an illustrative
repair example. 4J- refers to the system message to initialize the
model to do a specific task, o indicates the prompt and feedback
CHATREPAIR provides to the LLM and gy represents the output re-
sponse given by ChatGPT. First, CHATREPAIR initializes ChatGPT
with the system message of "You are an Automated Program Repair
tool" to prepare ChatGPT for the repair task. Then, we construct
the initial prompt for ChatGPT which contains the buggy function
to be fixed and the relevant test failure information to fix the bug
(Section 3.1). After querying ChatGPT to generate a potential patch
using the initial prompt, we then move onto the conversation stage
to first learn from past failures (Section 3.2). More specifically, we
evaluate the generated patch against the original test suite to see if
the patch can pass the previously failed tests. If not, CHATREPAIR
offers immediate feedback by creating a response that includes the
relevant failure information (e.g., test failure/compilation error mes-
sage) and to re-query ChatGPT to generate a new patch while trying
to avoid repeating similar failures. This process is repeated until
either a plausible patch is produced or the maximum conversation
length is reached. After obtaining a plausible patch, CHATREPAIR

822

Chungqiu Steven Xia and Lingming Zhang

attempts to learn from such successes to generate more plausible
patches that pass the test suite (Section 3.3). CHATREPAIR prompts
ChatGPT with earlier plausible patches to generate more alterna-
tive plausible patches. From this process, CHATREPAIR can obtain
multiple plausible patches which can increase the chance of getting
the correct patch. We next describe each of the steps in more detail.

3.1 Initial Input

To begin with, we use the original buggy project and bug to construct
our initial prompt %) to ChatGPT to start off the repair process. We
follow prior learning-based APR tools [29, 72, 78] and focus mainly
on line-level repair (specifically infilling or cloze-style APR as it
has been demonstrated to be the state-of-the-art [72]). Meanwhile,
CHATREPAIR is general can also be used in a variety of different repair
scenarios (see additional prompts in the top-right of Figure 2), which
we will evaluate in more detail during later sections.

Figure 2 shows an example of an initial prompt. Before we add the
target bug to be fixed to the prompt, we first include a few examples
of historical bug fixes within the same buggy project. By doing so,
we gear the model towards the repair task and allow it to learn the
desired output format (i.e. a patch) of the task. After the few-shot ex-
amples, we take the original target buggy function to be fixed as the
input along with the location of the bug. We replace the buggy code
within the function with an infill location indicator (>> [INFILL]
<) and refer to this later in the prompt to instruct the model to fill-in
the correct code. We then provide the original buggy line which we
replace with the infill location indicator to the model since the buggy
line can also give useful information as to what a candidate patch
should look like. Next, we provide additionally relevant information
to help CHATREPAIR to fix the bug. Our approach uses information
derived from the failing test(s) which exposes the original bug. Such
bug-exposing tests contain rich semantic information/hints which
can help with generating the correct patch to fix the bug [45].

CHATREPAIR uses various information from a failing test, includ-
ing 1) its name, 2) the relevant test code line(s) triggering the test
failure, and 3) the error message produced. The name of the failing
test can serve as a short summary of the function under test. In the
Figure 2 example, the failing test is testGreatestSubtypeUnionTypes5
which tells us that we are testing for a functionality related to the de-
termining greatest subtype from union types. The relevant test code
and error message give concrete information as to why the test failed.
Inthe example, the relevant test code and error message tell the model
that we are comparing a No_OBJECT_TYPE, but the source code func-
tion incorrectly returned None. Such failing test information not only
offers the model more explanation in terms of the functionality of the
source code but also gives concrete information in terms of expected
output and function usage to help the model to generate the correct
fix. Note, if there are multiple failing tests, CHATREPAIR only provides
the information from one of them to keep a concise initial prompt.
Finally, we end our initial prompt by giving the instruction to model
to generate a correct line to replace the buggy code at the infill loca-
tion. Let C be ChatGPT which outputs the probability of generated a
sequence, pre and suf as the prefix and suffix of the buggy code with
the buggy line removed, <infill>as the special infill token replacing
the buggy line, f; as the constructed failure test information and Iy

Automated Program Repair via Conversation

’
You are an Automated Program Repair Tool |
J 1
Few-Shot Examples
The following code contains a buggy line that has

JSType result = builder.build();
>>> [INFILL] <<<
return result;
} else if (this.isObject() && that.isObject()) {

This was the original buggy line which was removed by the infill
location

if (result != null) {
The code fails on this test:
testGreatestSubtypeUnionTypes5()
on this testTine:
assertEquals(NO_OBJECT_TYPE,
errUnion. getGreatestSubtype(STRING_OBJECT_TYPE));
‘with the following test error:
expected: <NoObject> but was:<None>

ase provide the correct line at the infill Iocation.

compile & test

The fixed version is still not correct. |

code has the following compilation error:

&)

1 .
been removed. —

1
1
1
1 Previous Bug Fixes
1
\
| JSType result = builder.build();
1 _.if (result != null) {
return result;

} else if (this.isObject() &&
that. isObject()) {

1

1

1 3

1 Buggy Function
1

1 Error: assertion failed on line:
1

Error: assertion failed on line:

Failing test info

created prompt
or feedback info

The correct line at the infill location would be

if (!(result instanceof NoObjectType))

error: cannot find symbol (NoObjectType)

location should be

Il does not fix the original test failure

location should be

if (!result.isNoType()) {

compile & test
The patch passes all tests!

compile & test < if (!(result instanceof UnionType)
|; The fixed version is still not correct. .

Sorry for the mistake, the correct line at the infill

Apologies for the mistake, the correct line at the infill

Conversation Feedback Initial Prompt Construction

) &

ISSTA 24, September 16-20, 2024, Vienna, Austria

The following code contains a buggy hunk that has been removed.

\
1 a
H JSType result = builder.build(); 2
1 >>> [INFILL] <<< =
: return result; '7
1 } else if (this.isObject() 8& that.isObject()) { 2
: ~)
1 v‘ o
: This was the original buggy hunk which was removed by the infill 3
I location %
1 -+
! B
1 L,
: The following code contains a bug .5
' =)
1 JSType result = builder.build(); by
' if (result != null) { EN
1 return result; s
K } else if (this.isObject() 8& that.isObject()) { | §
- [
E (: :, S
[54) ChatGPT output The code fails on this test: -4
- o g
-/
-
The following code contains a buggy line that has been removed. =
JSType result = builder.build(); ;
O‘Ol >>> [INFILL] <<<
LUllu return result; o
} else if (this.isObject() & that.isObject()) { Iy
c
(]
[N
10 OI X o
iy It can be fixed by theseBossible lines Here is another possible fixed line: =
1. if (!result.isNoType()) { o|
2. = v A
o o
{0.0 3. | compile & ‘E,"
il l Please generate an alternative fix line. n P e}
— = test >

Figure 2: Overview of CHATREPAIR

as the infill instruction prompt. The patch p generated can be formal-
ized as the conditional probability: C(plpre,<infill>suf,fo.l¢;;)
To our knowledge, CHATREPAIR is the first work to apply these test
failures and error messages in a purely prompting method by combin-
ing natural language descriptions of the failure information as input
to the powerful ChatGPT model. Different from prior usage of test ex-
ecution information for repair [77] which relies on custom encodings
or handcrafted heuristics, CHATREPAIR through the use of ChatGPT
via prompting is general not only across different programming
languages but is also not restricted by the types of test information.

3.2 Conversational Repair

We first use the initial prompt O created in Section 3.1 to query
ChatGPT to obtain a model output g and extract a candidate patch.
Then, we move on to the conversational part where we interleave
patch generation with test validation feedback to prompt future
generation in a conversational manner. Each generated patch by the
model is followed immediately by a patch validation step to compile
and run the patch on the test suite. If the patch failed to pass the test,
we construct adetailed feedback information using both the incorrect
patch and the failing test as part of the prompt for the next patch
generation. Similar to the initial prompt, test failure information can
help the model understand the failure reason and provide guidance
towards generating the correct fix. In conversation step, we further
combine test failure information with previously incorrect patches to
not only avoid generating more similarly incorrect patches but also
learn from the mistakes of prior generations. We repeat the procedure
until a plausible patch which passes the entire test suite is generated.

More precisely, we define a conversation exchange as a pair of
patch generation and validation feedback of that candidate patch (i.e.,

823

Algorithm 1: Conversational Repair

1 Function ConversationalRepair:

Input :initialPrompt (initial prompt), oFailure (original failing
test info), testSuite (test suite), ChatGPT,
maxConvLength (max conversation length), maxTries
(max tries), AltInstruct (plausible patch prompt)

Output:pPatches (plausible patches), cost (total cost)

2 pPatches, currentTries, cost «<— NONE, 0, $0
3 while currentTries < maxTries and pPatches is NONE do
4 currentLength <0
5 input « initialPrompt
6 while currentLength < maxConvLength do
7 patch, cost «— ChatGPT (input)
8 testResult < Validate (patch, testSuite)
9 if testResult is PASS then
10 pPatches « [patch]
11 break
12 else if testResult is oFailure then
13 | feedback « "still doesn’t fix original failure"
14 else
15 | feedback < ConstructPrompt (testResult)
16 input « {input, patch, feedback }
17 currentTries «— currentTries +1
18 | currentLength < currentLength +1
19 if pPatches is not NONE then
20 while currentTries < maxTries do
21 input «— {initialPrompt, pPatches, AltInstruct }
22 patch, cost «— ChatGPT (input)
23 testResult < Validate (patch, testSuite)
24 if testResult is PASS and patch not in pPatches then
25 | pPatches « pPatches | [patch]
26 | currentTries «— currentTries +1
27 | return pPatches, cost

{ @, O }). Within one repair conversation, the next patch generated
by ChatGPT is prompted with the concatenation of the initial prompt
with all previous conversation exchanges. For example, the 3rd patch

ISSTA 24, September 16-20, 2024, Vienna, Austria

@3 is generated with the input being { @o, @1, @1, @2, @2} Let
C be ChatGPT model which outputs the probability of generating a
sequence, I be the initial prompt, Q<pn={(p1,f1)--»(Pn-1,/n-1)} be
the previously generated patch p and feedback information f within
the same conversation. The next patch generated can be formalized
as the conditional probability: C(p;|,Q<;)

Since ChatGPT (and other LLMs) has a limited size context win-
dow [8], meaning it cannot take in arbitrary lengthed inputs, we use
conversation length (i.e., the number of exchanges within a single
continuous conversation) as another stopping criteria to restart the
repair process from the initial prompt once a maximum conversation
length is reached. A maximum conversation length of 1 represents
the base case of sampling from the initial prompt over and over again
and as we increase maximum conversation length, the amount of his-
tory (previous patches/feedback) we provide to the model increases.

Algorithm 1 details our conversation repair process. Our input
includes the initial prompt, original test failure information, test
suite, ChatGPT model, plausible patch generation prompt (used in
Section 3.3), two hyperparameters of maximum conversation length
and maximum tries. The final outputs are alist of plausible patches as
well as the total cost in ChatGPT API access. Maximum tries is a stop-
ping criteria that stops the repair process once the maximum number
of tries (i.e. queries to ChatGPT) has been used to repair a bug (Line 3).
Maximum conversation length further limits the prior history used
to generate a future patch (Line 6). Following the example in Figure 2,
we first set the initial input to ChatGPT as the initial prompt (Line 5).
ChatGPT first produces the patch which checks if result is an in-
stance of NoObjectType. This patch may be motivated by the original
test failure information within the initial prompt where a similar
global constant (No_Object_Type) is used in the test assertion line.
However, this patch contains a compilation error. CHATREPAIR iden-
tifies this by directly attempting to compile and run the test suite and
constructing a feedback prompt which indicates that the generated
patch has a compilation error (cannot find symbol (NoObjectType)).
To generate the second candidate patch, CHATREPAIR concatenates
the initial prompt, first generated patch, and validation feedback
(indicating the compilation error) together as input to ChatGPT.

The second patch indeed fixes the compilation error and checks if
resultisaninstance of UnionType. CHATREPAIR employs a dynamic
feedback approach as described in Algorithm 1. CHATREPAIR will
first compile and run the test suite (Line 8) to observe if the patch can
successfully pass the testcases (Line 9). In this example, we see that
the patch still fails the original bug-exposing test (Line 12). Instead
of repeating the test error message of the original test, we simply
refer back to the initial prompt by saying It still does not fix the
original test failure (Line 13). Since we always include the initial
prompt in the input, we can provide a concise message to the model
to indicate the test failure reason. On the other hand, if the patch can
pass the bug-exposing test used in the initial prompt but fails on a
different test (either another original failing test or a regression test),
we construct the feedback similar to the initial prompt where we in-
clude test name, relevant test code, and error message (Line 15). Note
that if there are multiple failing tests, similar to the initial prompt, we
only provide feedback for one of them to keep the response succinct.

The third patch is generated similar to before where we concate-
nate the initial prompt with all previous conversation exchanges.
We see that in this case the patch directly calls isNoType() is able to

824

Chungqiu Steven Xia and Lingming Zhang

successfully pass the test suite. Using the test feedback information
such as the error message and the relevant test code, ChatGPT rec-
ognizes that this bug deals with a corner case related to none objects
or types to generate a plausible patch which fixes the bug.

3.3 Plausible Patch Generation

After the previous step, CHATREPAIR should obtain a plausible patch
that can pass the entire test suite. However, a plausible patch may not
always be able to correctly fix the underlying bug since the test suite
can be incomplete and therefore not cover all possible intended usage
of the underlying code [63]. As such, developers have to manually
inspect plausible patches to determine correct ones. Both plausible
patches and the final correct patches share the similar characteristic:
they all can pass the entire test suite. Therefore, instead of starting
from scratch (using the buggy code again), CHATREPAIR directly
leverages the existing plausible patch(es) to create more plausible
patches. In short, in order to increase the probability that we can
generate a correct patch, CHATREPAIR takes the plausible patches
generated previously, and asks the model to generate alternative
variations to produce additional candidate patches.

Figure 2 shows how our plausible patch generation process works.
To begin with, we take the initial prompt used (Section 3.1) which
contains the original buggy code function along with useful test fail-
ure information. We then append the prompt with a list of plausible
patches generated (Line 21 in Algorithm 1). In the beginning, this list
will only contain the single plausible patch from the previous step,
however it grows as we continue to generate additional plausible
patches. Next, we indicate in the prompt (AltInstruct in Algorithm 1)
of the task we want to solve — Please generate an alternative fix
line. We then use this prompt as input to ChatGPT and obtain a
candidate patch which we will again compile and run the test suite
to check if it is indeed another plausible patch (Line 24). We con-
tinuously query ChatGPT and update our prompt to include new
plausible patches generated in order to avoid repeatedly generating
the same plausible patch again and also further build on earlier plau-
sible patches (Line 25). Again let C be ChatGPT model which outputs
the probability of generating a sequence, I be the initial prompt, I,,;
as the task instruction, PL<, ={ply,...,pln—1} be the previous gen-
erated plausible patch. The next plausible patch generated can be
formalized as the conditional probability: C(pli|I,PL<;,I,;)

In the end, we obtain a list of plausible patches which can be given
to developers for manual inspection. Different from prior APR tools
which only operate on the original buggy code to produce patches,
CHATREPAIR leverages additional useful information within each
plausible patch to obtain more plausible patches. A plausible patch
often contains useful ingredients/patterns that allowed it to pass
the original test suite; therefore, instead of starting from scratch (i.e.
fixing the bug again), by building on top of existing plausible patches,
ChatGPT through its powerful ability to understand instructions can
obtain additional plausible patches to increase the likelihood that
our final list of patches contains a correct patch that fixes the bug.

4 Experimental Design

We evaluate CHATREPAIR on the following research questions:
e RQ1: How does CHATREPAIR compare against the state-of-the-art
techniques for APR?

Automated Program Repair via Conversation

e RQ2: How does CHATREPAIR perform when used in different
repair scenarios?
e RQ3: What are the contributions of different components of CHa-

TREPAIR in improving repair effectiveness?

o RQ4: How does CHATREPAIR perform on additional recent bugs
after ChatGPT training data cut-off date?

We first demonstrate the performance of CHATREPAIR by com-
paring against the state-of-the-art APR tools on the popular De-
fects4j [31] and QuixBugs [39] repair datasets. Following, we closely
examine each of our repair scenarios (single-line, single-hunk and
single-function) with similarly evaluated baseline tools and also eval-
uate how our plausible patch generation step helps to improve the
number of correct fixes. Furthermore, we conduct a comprehensive
ablation study on the different configurations of CHATREPAIR. In
particular, we look at not only the conversational aspect but also how
to provide feedback along with the effect on repair performance as
we change the maximum length of conversation. Lastly, we further
evaluate CHATREPAIR on additional recently collected bugs to study
the performance without potential data leakage affecting the result.

4.1 Implementation

Repair scenarios. In CHATREPAIR, we study 3 different repair
scenarios used in prior work [71]: single-line-fixed by replac-
ing/adding a single line, single-hunk-fixed by replacing/adding
a continuous code hunk and single-function-fixed by generating
a new function to replace the original buggy version. Our initial
prompts differ slightly based on the repair scenario and we provide
examples of all three in Figure 2. Note that single-hunk repair setting
is studied extensively by prior learning-based APR tools [72, 77, 78].
Implementation. We implement CHATREPAIR in Python by access-
ing the ChatGPT API endpoint [7]. We use the gpt-3.5-turbo-0301

model of the ChatGPT family. For each chosen prompt, the authors
follow the best-practice guide [62] and manually examined a few
alternative approaches with selected bugs via the Web-version of
ChatGPT [9]. We use a sampling temperature of 1 in order to get a
diverse set of potential patches. Our default setting for the maximum
number of repair attempts allowed (including both initial repair and
plausible patch generation steps) is 200 for single-line and single-
hunk APR, and 100 for the single-function scenario. We use 1 few-
shot example and a maximum conversation length of 3. We evaluate
all generated patches on an 8-core workstation with Intel i7 10700KF
Comet Lake CPU @3.80GHz and 64GB RAM, running Ubuntu 20.04.3
LTS and OpenJDK Java 64-Bit Server version 1.8.0_312. Following
APR work [38, 72, 78, 83, 83], we use a default end-to-end timeout
of 5-hours to fix one bug. In reality, our cost is far less than 5-hours
due to the low number of patches sampled (<500) per bug.

4.2 Subject Systems

For evaluation, we use the widely studied repair benchmark of De-
fects4j [31] and QuixBugs [39]. Defects4j is a Java benchmark col-
lected from bug and corresponding fixes of open-source projects.
Similar to prior APR tools [23, 71, 72, 77], we separate Defects4j
into 1.2 and 2.0. Defects4j 1.2 consists of 391 bugs (after removing 4
depreciated bugs) in 6 different Java projects. In this work, we follow
prior study [71] and categorize Defects4j 1.2 into single-function
(255 bugs), single-hunk (154 bugs) and single-line (80 bugs). Note that

825

ISSTA 24, September 16-20, 2024, Vienna, Austria

single-hunk is a subset of single-function and single-line is a subset
of single-hunk bugs. We then apply our 3 proposed repair scenarios
corresponding to the each of the 3 datasets. Note in RQ1, similar
to prior work [71] we report the total number of bugs fixed when
combining all three repair scenarios together and study each repair
scenario separately in later RQs. Defects4j 2.0 consists of 438 new
bugs across 9 additional projects. We select only the 82 single-line
bugs within Defects4;j 2.0 which is the main setting used in prior
APR tools for ease of comparison [72]. Additionally, we evaluate on
the QuixBugs [39] dataset which is made up of 40 buggy and fixed
versions of classic programming problems in both Python and Java.
All 40 bugs in QuixBugs-Python are single-function, single-hunk and
single-line bugs while 40,37, and 36 bugs in QuixBugs-Java are single-
function, single-hunk and single-line bugs respectively. Lastly, we
also evaluate on the recently introduced ConDefect [69], a collection
of single-line programming contest bugs from 645 tasks in Java and
Python published after October 2021 - the training data cut-off date
of ChatGPT to avoid the data leakage issue. We perform further fil-
tering to remove any duplicated buggy programs or tasks and obtain
321 and 330 Java and Python bugs respectively. We use ConDefect as
a benchmark to evaluate CHATREPAIR and baseline techniques with-
out having to worry about data leakage as it only contains problems
and bugs created after the knowledge cut-off date of ChatGPT.

4.3 Compared Techniques

Baseline techniques. We compare CHATREPAIR against current
state-of-the-art traditional, NMT learning-based and LLM-based
APR baselines. We select 9 recent learning-based and LLM-based
APR baselines: FitRepair [70], SelfAPR [77], AlphaRepair [72], Re-
wardRepair [78], Recoder [83], CURE [29], CoCoNuT [46], DLFix [38]
and SequenceR [14]. In particular, AlphaRepair and FitRepair are
LLM-based repair tools by applying pre-trained CodeBERT [20]
and CodeT5 [81] model respectively using cloze-style APR. Fur-
thermore, we also include an LLM-based APR tool built using the
Codex model [20] (we refer to as CodexRepair) in a recent study
where researchers directly applied LLMs for APR without any fine-
tuning [71]. CodexRepair is also studied on three repair settings used
in our work which allows for more direct comparison. For traditional
APR tools, we compare against 12 selected representative techniques:
TBar [40], PraPR [23], AVATAR [41], SimFix [27], FixMiner [33],
CapGen [67], JAID [11], SketchFix [26], NOPOL [16], jGenProg [48],
jMutRepair [49], and jKali [49]. Altogether, we compare against 22
prior APR tools. Moreover, we also evaluate against a baseline of di-
rectly sampling using the ChatGPT model to perform repair without
any conversation or feedback information. We refer to this baseline
as BaseChatGPT. Since our 3 repair scenarios rely on knowing the
location of the bug, we use the perfect fault localization (where the
groundtruth location of the bug is given) results from prior tools.
This is the preferred evaluation setting as it eliminates any differ-
ences in performance caused by running fault localization tools [68,
71, 72,717, 78, 83]. Following convention in APR work [72, 83], we
directly report the fix results obtained in prior studies [23, 71, 77].
As ConDefect is recently collected and produced, there are no re-
ported experimental results for any APR tools. Therefore, we apply
state-of-the-art AlphaRepair to ConDefect for baseline comparison.

ISSTA 24, September 16-20, 2024, Vienna, Austria

. Alpha . Alpha

5

\ Repair) 1)\ Repair
/ TR e i i Yy . N . .
Recoder = —3—2\ FitRepair Others 5 —T‘} FitRepair
10 3
6 s
2 2
8 6
7 4
3 a0
W 5 A2 6 s Al
1
o . 2 A N = ay
o SO s
Chat i 17 10 Codex Chat i 13 10 Codex
Repair Repair Repair Repair
(a) Learning-based APR tools (b) All APR tools

Figure 3: Bug fix Venn diagram on Defects4j 1.2

Metrics. We use the standard metrics of plausible patches — passing
the entire test suite and correct patches — semantically or syntacti-
cally equivalent to the reference developer patch. We follow common
practice in APR and manually determine the semantic equivalency to
compute correct patches. Additionally, we use metric of tries which
indicates the number of samples used to obtain either a plausible or
correct patch when querying ChatGPT. A lower number of tries is
desirable as it reduces the time it takes to fix a bug. Finally, we also
compute the dollar cost of fixing a bug. At the time of writing, Chat-
GPT costs $0.002 per every 1000 tokens [7] processed or generated.

5 Evaluation
5.1 RQ1: State-of-the-Art Comparison

We first compare CHATREPAIR against the state-of-the-art APR tools.
Table 1 shows the number of bugs fixed on Defects4j 1.2 and 2.0 by
the top baseline tools as well as BaseChatGPT- only using Chat-
GPT without any test failure information and conversation. We
first observe that CHATREPAIR can improve over the baseline of
just using the ChatGPT model with 34 and 23 more bug fixes on
Defects4j 1.2 and 2.0 respectively. This improvement is obtained by
successfully leveraging the conversational aspect of ChatGPT model
to provide immediate feedback using both previous incorrect or
plausible patches and test failure information. Interestingly, we also
observe that prior tools such as AlphaRepair and FitRepair, which
uses much smaller LLMs (CodeBERT and CodeT5), can perform bet-
ter than CodexRepair in cases like single-line repair on Defects4;j 2.0
due to the use of repair-specific templates compared with pure code
infilling. In fact, CHATREPAIR demonstrates for the first time that
LLM-based APR without any repair templates can achieve top per-
formance on Defects4j. In total, CHATREPAIR is able to achieve 114 and
48 correct bug fixes on Defectsdj 1.2 and 2.0 respectively, with 15 and 4
more than the current state-of-the-art APR tools. Calculating the total
cost of query ChatGPT, we can fix 162 out of 337 bugs for $0.42 each!
While the 114 and 48 fixes are achieved by combining three repair
settings together, CHATREPATIR still generates far less patches (<500
in total per bug) compared to prior learning-based tools which can
generate up to 10,000 patches per bug [29, 46]. Similarly in Table 2,
CHATREPAIR is able to correctly fix all bugs within the QuixBugs-Java
and -Python datasets, beating out all top-performing techniques.
Figure 3a and 3b shows the Venn diagrams of the bug fixed by top-
performing learning-based APR tools and all studied baselines on
Defects4j 1.2. We first compare CHATREPAIR against top-performing
learning-based APR tools in Figure 3a and then we select the 3 top
baselines in terms of the number of bugs fixed and group all other
studied APR tools (not just the top-performing ones in Table 1) as

826

Chungqiu Steven Xia and Lingming Zhang

Testname: testCreateNumber()
Failure Line: @xFADE == NumberUtils.createNumber("@Xfade").intValue()
Error Message: 0Xfade is not a valid number.

3

if (str.startsWith("ox") || str.startsWith("-0x")) {

if (str.startsWith("ex") || str.startsWith("ex") ||
str.startsWith("-0x") || str.startsWith("-eXx")) {
case '\n': sb.append("\\n"); break;

Figure 4: Unique bug fixed in Defects4j 1.2

Testname: testNonFiniteDoublesWhenLenient()
Failure Line: jsonWriter.value(Double.NaN);
Error Message: Numeric values must be finite, but was NaN

writeDeferredName();
if (Double.isNaN(value) || Double.isInfinite(value)){
if (lisLenient() && (Double.isNaN(value) ||
Double.isInfinite(value))) {
throw new IllegalArgumentException("Numeric

Figure 5: Unique bug fixed in Defects4j 2.0

“Other” in Figure 3b. We see that not only can CHATREPAIR achieve
more unique bugs fixed compared to learning-based baselines but
CHATREPAIR can provide the correct patch for 13 unique bugs that no
prior approach is able to fix so far on Defects4j 1.2. To illustrate the
power of CHATREPAIR, we show an example bug (Lang-16) in De-
fects4j 1.2 that is only fixed by CHATREPAIR in Figure 4. The fix is to
append two additional conditions of starting with either "-0X" or "oXx"
referring to hexadecimal representation of a number. This bug is diffi-
cult to fix, since the strings are not commonly found in either bug-fix
training data (NMT-based) or in pre-training data (LLM-based). In or-
der to generate these condition, the APR tool needs to understand the
expected behavior and what other usage inputs may look like. In fact,
one of the condition ("0X") is directly used in the failing test where
the test tries to create a number of "0Xfade". CHATREPAIR is able to
leverage this relevant test code information and generate the string
used in the test as a condition. Furthermore, the new negative variant
"-0X" canalso be easily generated by CHATREPAIR as ChatGPT is able
tolearn from the original buggy line which also contains pairs of neg-
ative and positive conditions. Combining both conditions together,
CHATREPAIR is able to obtain the correct patch that fixes this bug.

Another bug (Gson-15) that can only be fixed by CHATREPAIR is
presented in Figure 5 from Defects4j 2.0. The fix requires another
unique condition of !isLenient(). To make things worse, this usage
of the function is not found within the original buggy function con-
text. As such, it can be extremely difficult for prior learning-based
APR tools to fix since there are no example usages of the condi-
tion within the context. However, we observe that the failing test
is named testNonFiniteDoublesWhenLenient where the word lenient
directly appears. ChatGPT, through looking at the failing test name,
can understand the semantic meaning of the test which in this case
is to test a particular setting with lenient = true and generate the
correct fix line to check for this unique setting.

5.2 RQ2:Repair Scenarios

Next, we take a look at each of our three repair settings (single-line,
single-hunk and single-function) in more detail. For this section, we
focus our analysis against BaseChatGPT using ChatGPT without
any test failure information or conversation, and CodexRepair which
is the best performing LLM-based APR and has also been evaluated
on the three repair settings that we use.

Automated Program Repair via Conversation

ISSTA 24, September 16-20, 2024, Vienna, Austria

Table 1: Correct fixes on Defects4j

Dataset CHARTREPAIR BaseChatGPT CodexRepair FitRepair AlphaRepair SelfAPR RewardRepair Recoder TBar CURE
Chart 15 9 9 8 9 7 5 10 11 10
Closure 37 23 30 29 23 19 15 21 16 14
Lang 21 15 22 19 13 10 7 11 13 9
Math 32 25 29 24 21 22 19 18 22 19
Mockito 6 6 6 6 5 3 3 2 3 4
Time 3 2 3 3 3 3 1 3 3 1
D4J 1.2 114 80 99 89 74 64 50 65 68 57
D4J 2.0 48 25 31 44 36 31 25 11 8 -
Table 2: Correct fixes on QuixBugs our proposed approach in leveraging the important information in
lausible patches to generate more patches leading to a correct fix.
QuixBugs Crar Base Code.x Alph.a CoCoNuT p . P & P &
Repair — ChatGPT Repair Repair Figure 6 shows an example of a correct fix (Closure-125) by CHA-
Python 40 10 40 27 19 TREPAIR which was initially only plausible and then became correct
Java 40 40 38 28 13 after guiding ChatGPT to learn from the earlier plausible patch. We

Table 3: Correct fixes using three repair settings

Tools | D4J12 Quixbugs-Py Quixbugs-J

|SL SH SF|SL SH SF|SL SH SF
CHATREPAIR | 57 79 76|39 40 40|36 37 39
BaseChatGPT | 41 55 45| 38 37 35| 33 36 39
CodexRepair | 39 62 63|39 39 37|34 34 32

if (fnType != null && fnType.isConstructor()) {

Plausible Patch

if (fnType != null && (fnType.isConstructor() ||
fnType.isInterface())) {

Correct Patch

Figure 6: Plausible generation example

D

Table 3 shows the results of CHATREPAIR against the two base-
lines on Defects4;j 1.2 and two QuixBugs datasets. Interestingly, we
first observe that the base ChatGPT model performs even slightly
worse than CodexRepair on the real-world benchmark of Defects4;j
1.2. We theorize that this is because ChatGPT is not designed or
directly fine-tuned for code generation like Codex. As such, directly
using ChatGPT in a similar fashion to prior LLM-based APR tools
that solely sample from the same initial prompt without additional
information does not yield impressive improvements [79]. On the
other hand, by using CHATREPAIR, which combines the powerful di-
alogue/instruction understanding ability of ChatGPT with dynamic
feedback, CHATREPAIR is able to better leverage the previously ig-
nored test failure information and earlier patch attempts to better
perform APR. Codex on the contrary, is designed mainly for code
completion and lacks the ability to be used in a conversational man-
ner. In summary, for each individual repair setting, CHATREPAIR is
able to achieve the highest number of bugs fixed compared to both
state-of-the-art CodexRepair and running base ChatGPT.

Additionally, the improvement in more correct fixes does not only
come from the conversational and validation feedback aspect but is
also contributed by our plausible patch generation step. Recall that
once a plausible patch is generated, we directly use that patch to
generate more plausible patches by asking ChatGPT to provide other
variations of the patch. In summary, plausible patch generation is
able to add on average an additional 9.4, 16.6, 5.5 plausible patches,
and improve the number of correctly fixed bugs in single-line, single-
hunk, and single-function repair scenarios by 4, 7, 2 respectively
on Defects4j 1.2. This improvement demonstrates the usefulness of

827

see that the initial plausible patch produced by CHATREPAIR is indeed
able to pass the developer tests by checking if fnType is a constructor.
However, the testsuite does not cover all corner cases and the actual
correct fix involves checking an additional condition of an interface.
By using the plausible patch generation, CHATREPAIR does not have
to start from scratch (using only the buggy code) but instead can
build on the knowledge already obtained in the first plausible patch.
In this bug fix, CHATREPAIR adds the additional condition required
to correctly fix by learning from the original plausible patch.

5.3 RQ3: Configurations of CHATREPAIR

We investigate the different configurations of CHATREPAIR. Specif-
ically we examine the important parameters of (1) initial prompt
used, (2) feedback response provided and (3) maximum conversation
length. Due to the substantial cost of invoking the ChatGPT API mul-
tiple times for each dimension of our ablation study, we focus on the
80 single-line bugs within Defects4j 1.2. Also, we analyze the number
of plausible fixes produced instead of correct fixes in this RQ due to
the intensive manual efforts involved in patch inspection. Each of our
ablation experiments uses the default setting described in Section 4.1
except we use zero-shot (not providing any prior bug fix examples) by
default since it can best illustrate the effect of individual components
and make it easier for studying the impact of few-shot examples.

Table 4: Initial prompt variations

Initial Prompt #P Avg.#tries Avg. $
BasePrompt 55 22,53 $0.069
TestName+ErrMsg 59 2247 $0.072
TestName+ErrMsg+FailLine 64 21.86 $0.061
TestName+ErrMsg+TestBody 61 2342 $0.083
You are a helpful assistant 64 24.17 $0.074
You are an APR tool 64 21.86 $0.061
0-shot 64 21.86 $0.061
1-shot 65 9.91 $0.072
2-shot 65 9.87 $0.085

5.3.1 Initial Prompt. In addition to our default initial prompt given
to ChatGPT, we also evaluate several alternative variations. Each vari-
ation attempts to illustrate some key aspects of information which
can be helpful for ChatGPT during the repair process. Table 4 shows
theresults of the different initial prompts. Row BasePrompt refers to
the prompt where we only indicate the code contains a bug and asks

ISSTA 24, September 16-20, 2024, Vienna, Austria

the model to provide a fix, TestName+ErrMsg includes both the fail-
ing test name (e.g., testGetCategoryIndex) and test failure error mes-
sage (e.g., NullPointerException), TestName+ErrMsg+FailLine
additionally includes the exact line where the failure occurred within
the test (e.g., assertEquals(-1, empty.getCategoryIndex("ABC"));)
and TestName+ErrMsg+TestBody additionally uses the entire
failing test function body instead of just the failure code line.

First, we observe that the base initial prompt of only providing
with the buggy code and asking it to generate a patch performs the
worst in terms of the number of bugs fixed. We see that by adding
auxiliary information such as failing test name and error message,
we can further improve the repair performance. Tests that are well
named can provide semantic meaning of the test. Error messages
also offer unique insights regarding the nature of the test failure (e.g.,
null point exception, array out of bound checks, etc) and can directly
motivate a potential correct patch. Furthermore, we remark that pro-
viding the exact line within the test where the failure occurred can
also improve repair performance. Such lines may include assertions
showing desired results (e.g., numerical comparison) or statements
that triggered the exceptions or crashes (e.g., field dereferences).
This additionally gives concrete hints to ChatGPT on how to fix the
specific bug. Moreover, we observe that the prompt which includes
the entire test function code also performs well in terms of the num-
ber of bugs fixed. However, on average it costs the most compared
to the other initial prompts used. This is because the model incurs
additional cost to process the entire test function code for each repair
attempt, which can be largely depending on the size of the test func-
tion and may contain test code irrelevant to the bug. As such, a more
concise prompt which includes just the failing test code line can
already achieve effective repair performance while being economic.

Table 4 also shows several other parameters of the initial input
apart from the included test failure information. Row You are a
helpful assistant uses the default system message (Section 3) by
ChatGPT and You are an APR tool (we use the full name of APR) is
our modified system message. While the number of fixes is similar
between the two system messages, we observe that by aligning the
system message with the task we want to solve — program repair, the
model can arrive at the plausible patch faster (less tries) since it can
faster understand the task it is trying to solve. As such we can reduce
the cost of CHATREPAIR by designing specific system messages. Fur-
thermore, we evaluate the effect of having few-shot examples of bug
fixes before the target buggy code input in Table 4. We observe that by
providing ChatGPT with some examples of prior bug fixes, we obtain
aslightincrease innumber of plausible patches while at the same time
drastically reducing the number of tries used to fix the bug. Few-shot
examples, similar to the system message, can get the model familiar
for bug fixing by understanding the task and input/output formats.

Table 5: Feedback response variations

Feedback Response #P Avg.#tries Avg.$
BaseFeedback 58 23.12 $0.071
TestName+ErrMsg 61 22.48 $0.073
TestName+ErrMsg+FailLine 62 2471 $0.074
Dynamic 64 21.86 $0.061

828

Chungqiu Steven Xia and Lingming Zhang

) 3
2 2

Plausible Patches
o
B

@
&

1 2 3 4 5 6
Conversation Length

Figure 7: Effect of maximum conversation length

5.3.2 Feedback Response. Another important aspect of CHATRE-
PAIR’s design is the feedback response we provide to the model. Sim-
ilar to the initial prompt design, we also consider multiple different
ways we can provide feedback to the model. Table 5 shows the re-
sults of the different feedback response variants. Row BaseFeedback
means we only tell the model that the generated patch is not correct
without any additional feedback. Similar to the initial prompt con-
struction, TestName+ErrMsg includes both the failing test name
and test failure error message, TestName+ErrMsg+FailLine ad-
ditionally includes the exact line where the failure occurred within
the test. Different from initial prompt construction, Dynamic is our
default approach where we only provide the test name/error/line
if the new generated patch has a different failure than the original
(Section 3.2). This allows us to more concretely inform ChatGPT if it
has made some progress in fixing a bug (e.g., patch no longer crashes
with null-pointer exception but fails on some other test).

Initially, we see that the base response message achieves the worst
result in number of bugs fixed. Similar to the behavior of the initial
prompts, we can improve performance by adding the name of the
failing test, error message along with the exact failure line from the
failing test. Additionally, we can further improve performance by us-
ing the dynamic feedback response. Since in the initial prompt we al-
ready provide ChatGPT with the failing test name, error message, and
failing line, in dynamic feedback response, we only provide new data
if the generated patch contains a different failing information. This
allow us to make more use of the conversational aspect by referring
to a previous message. Furthermore, it can reduce the cost by using a
short concise message if the patch does not make additional progress.

5.3.3 Conversation Length. Figure 7 shows performance in both
the number of plausible fixes and the average dollar cost to fix a
bug across different maximum conversation length. Recall from Sec-
tion 3.2 that the maximum conversation length dictates the amount of
history/feedback within each individual repair conversation, where
length = 1is equivalent to sampling using the initial prompt without
any feedback. We observe that directly sampling from the ChatGPT
without any conversation achieves the lowest number of plausible
fixes. As we add the conversation element of CHATREPAIR, the num-
ber of plausible patches improves. Compared with sampling from the
same prompt over and over again, by using CHATREPAIR in a conver-
sational manner, the model can learn from its previous mistakes along
with the concise test failure feedback information to generate more
plausible patches. We also notice that the model can retain its perfor-
mances as we increase the conversation length to be higher (i.e., 5and
6). However, we see that compared with alower conversation length
(3), the higher conversation lengths incurs a much higher cost in fix-
ing abug. The reason is that as we increase the length, the amount of
history/context (tokens) processed by the model will be higher, lead-
ing to higher cost per bug fixed. Our default conversation length of 3
serves as a good balance between cost and the number of bugs fixed.

Automated Program Repair via Conversation

5.4 ROQ4:Evaluation on Recent Bugs

Table 6: Correct and Plausible fixes on ConDefect

Tools ConDefects-Java ConDefects-Python
CHATREPAIR 243/ 250 241/249
BaseChatGPT 170/ 189 165/171
AlphaRepair 154 /158 142/ 160

To address potential data leakage of the groundtruth patches in
prior evaluation datasets, we further evaluate on ConDefect [69], a
collection of programming contest bugs obtained after the knowl-
edge cut-off date of ChatGPT. Table 6 shows the repair performance
(# of correct / # plausible patches) of CHATREPAIR, BaseChatGPT
and AlphaRepair on ConDefect dataset in both Java and Python. We
first observe that on both ConDefect datasets, CHATREPAIR is able
to significantly outperform the repair baseline with 57.8% and 69.7%
more correct patches on Java and Python respectively. Additionally,
we see that CHATREPAIR also improves over the baseline technique
of naively using ChatGPT (BaseChatGPT) by 42.9% and 46.6% more
correct patches. CHATREPAIR successfully utilizes the previously
ignored semantic information in test failures as well as prior failing
and plausible fix attempts to achieve the state-of-the-art results on
ConDefect.

6 Limitations & Future Work

First, while CHATREPAIR is able to achieve state-of-the-art repair
performance of the studied benchmarks, there are still bugs that it
struggles to fix. One particular category are multi-hunk bugs that
require patches across multiple functions or files. This limitation is
due to the limited context window of ChatGPT and other LLMs where
they can only take in a restricted number of tokens as inputs. As
such, LLM-based approaches like CHATREPAIR in its current iteration
cannot deal with bugs that require edits to multiple different files.
Also due to the context window size, CHATREPAIR does not have
access to project and repository specific information. Prior work [70]
has demonstrated the importance of learning and using project
specific information (e.g., common variable, class, function names)
in helping to boost LLM repair performance. CHATREPAIR currently
can only obtain the context from the limited input and thus may
miss the crucial intra-project information that is useful for repair.

To address these limitations, we aim to further improve CHATRE-
PAIR with LLM-based agents. We plan to first reduce the reliance on
traditional fault localization tools by using LLMs to identify potential
buggy locations. LLMs, through its powerful code understanding
ability, can identify further relationships between multiple buggy lo-
cations in order to aid in multi-hunk repair. Further, we can improve
CHATREPAIR with a retrieval agent that retrieves and obtains useful
repair-specific information. For example, by providing a summary
of the related class fields or methods as part of the input to fix the
current buggy class. We hope our agent-based debugging approach
can address the prior limitations and inspire future work in using
LLM for more holistic APR and debugging.

7 Threats to Validity

Internal. The first internal threat comes from the manual validation
used to determine the correctness of the plausible patches compared
with the reference developer patch. To address this, following prior

829

ISSTA 24, September 16-20, 2024, Vienna, Austria

work [29, 71, 77, 83], we carefully examined each patch and have
released the correct patches along with the code [15].

Another threat to validity comes from the data leakage of refer-
ence developer patches being part of the original training data of
ChatGPT. Since ChatGPT is a proprietary model and can only be ac-
cessed through API, we do not have access to the exact training data
used. To address this, we follow prior work [72] and first compute
the number of correct patches generated by CHATREPAIR which was
the same as the reference developer patch on Defects4j 1.2. We found
that out of 212 (adding all correct patches from three repair scenarios)
correct patches, 77 of them is the same as reference developer fix
(36%). In addition, even if we remove all correct patches (77) which
are the same as the reference developer patch, CHATREPAIR is still
able to generate the correct patch for 8 unique bugs that none of
the prior approaches can fix. Also, compared to the base ChatGPT
repair baseline which uses the same underlying model, CHATREPAIR
is able to drastically improve its performance (34 more correct fixes)
showing that the result gained by CHATREPAIR is not simply due
to memorizing the training data. Furthermore, we evaluate CHa-
TREPAIR on the ConDefect dataset collected after the knowledge
cut-off date of ChatGPT and demonstrate that CHATREPAIR is able
to improve over the best baseline with 42.9% and 46.6% more correct
patches on the Java and Python version respectively. To completely
address this threat, we would need to retrain ChatGPT from scratch
which would be infeasible for an academic project.

Additional threat to validity is our evaluation setting of using
perfect fault localization (PFL). We first note that PFL is the pre-
ferred evaluation setting for prior LLM-based and traditional APR
tools [68,70,71] to reduce effect different fault localization tools have
on repair. To address this threat, we conducted an initial study by us-
ing widely adopted fault localization (Ochiai [86]) and assumed that
CHATREPAIR may only fix a bug if the groundtruth location is part of
the top-40 suspicious locations. We reduce the number of patches to
20 per line, incurring a total time cost of <5 hour bug (typical setting
for non-perfect fault localization). In this experiment, CHATREPAIR
is still able to achieve 68 bugs fixed compared to state-of-the-art
baseline [72] of 50 bugs fixed without groundtruth buggy location.
External. The main external threat to validity comes for our evalua-
tion datasets used. The improvement obtained by CHATREPAIR may
not generalize to other repair datasets. To address this, we evaluate
on Defects4j 2.0, two QuixBugs datasets and the recently introduced
ConDefect dataset to demonstrate the generalizability.

8 Conclusion

We propose CHATREPAIR - the first fully automated conversation-
driven APR tool which leverages ChatGPT to perform repair. CHA-
TREPAIR learns from both previously incorrect and plausible patches
and utilizes test failure information to provide immediate and dy-
namic feedback for patch generation. Using our conversational repair
paradigm, CHATREPAIR is able to achieve the new state-of-the-art
performance of 114 and 48 bugs on Defects4j 1.2 and 2.0 respectively.

Acknowledgements

We thank reviewers across multiple conferences for their insight-
ful feedback and comments to improve this paper. This work was
partially supported by NSF grant CCF-2131943 and Kwai Inc.

ISSTA 24, September 16-20, 2024, Vienna, Austria

References

(1]

&

(6]

[7

>
-

(9]
[10]

[11]

[12

[13

[14

[15
[16

(17

(18]

[19]

[20]

[21

[22]

[23

[24]

[25

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and
interactivity. arXiv preprint arXiv:2302.04023 (2023).

Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The Plastic Surgery Hypothesis. In FSE 2014. 306-317.

Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effectiveness
of Unified Debugging: An Extensive Study on 16 Program Repair Systems. In ASE.
907-918.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan
Tow, Ben Wang, and Samuel Weinbach. 2022. GPT-NeoX-20B: An Open-Source
Autoregressive Language Model. In Proceedings of the ACL Workshop on Challenges
& Perspectives in Creating Large Language Models. arXiv:2204.06745.

Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. 2024. Repairagent: An
autonomous, llm-based agent for program repair. arXiv preprint arXiv:2403.17134
(2024).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

chatgptendpoint 2023. Introducing ChatGPT and Whisper APIs.
https://openai.com/blog/introducing- chatgpt-and-whisper-apis.

chatgptguide 2023. ChatGPT Guide. https://platform.openai.com/docs/guides/
chat.

chatgptweb 2023. ChatGPT Web. https://chat.openai.com/chat.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton
Cheshkov, Jun Sun, Hao Yu, Guoliang Dong, Artem Aliev, et al. 2024. CodeR: Issue
Resolving with Multi-Agent and Task Graphs. arXiv preprint arXiv:2406.01304
(2024).

Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair
without the contracts. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 637-647.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).
Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noél Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Transaction on Software
Engineering (2019).

Dataset 2023. Dataset. https://figshare.com/s/9796028cef4d7dbc08ff.

Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic Repair of Buggy If Conditions and Missing Preconditions with SMT.
In Proceedings of the 6th International Workshop on Constraints in Software Testing,
Verification, and Analysis (Hyderabad, India) (CSTVA 2014). 30-39.

Yinlin Deng, Chungiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing
Yang, and Lingming Zhang. 2024. Large Language Models are Edge-Case Fuzzers:
Testing Deep Learning Libraries via FuzzGPT. In 46th International Conference
on Software Engineering (ICSE).

Thomas Durieux and Martin Monperrus. 2016. Dynamoth: dynamic code
synthesis for automatic program repair. In Proceedings of the 11th International
Workshop on Automation of Software Test. 85-91.

Hasan Ferit Eniser, Hanliang Zhang, Cristina David, Meng Wang, Brandon Paulsen,
Joey Dodds, and Daniel Kroening. 2024. Towards Translating Real-World Code
with LLMs: A Study of Translating to Rust. arXiv preprint arXiv:2405.11514 (2024).
Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155.
Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder:
A Generative Model for Code Infilling and Synthesis. arXiv:2204.05999.

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34-67.
Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program Repair
via Bytecode Mutation. In Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Beijing, China) (ISSTA 2019). ACM, 19-30.
Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56—-65.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). 837-847.

830

[26]

[27]

[29

[30

[31

'w
&,

[33

(34]

[35

[36

%
=

[38

[39

[40

(41

[42

[43]

[44

S
&

[46

Chungqiu Steven Xia and Lingming Zhang

Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. SketchFix:
A Tool for Automated Program Repair Approach Using Lazy Candidate Gener-
ation. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, 888-891.

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, Frank
Tip and Eric Bodden (Eds.). ACM, 298-309.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of
Code Language Models on Automated Program Repair. In 2023 I[EEE/ACM
45th International Conference on Software Engineering (ICSE). 1430-1442.
https://doi.org/10.1109/ICSE48619.2023.00125

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE) (May 2021).

Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting concise
bug-fixing patches from human-written patches in version control systems. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
686-698.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A Database of
Existing Faults to Enable Controlled Testing Studies for Java Programs (ISSTA
2014). Association for Computing Machinery, New York, NY, USA, 437-440.
Sophia D Kolak, Ruben Martins, Claire Le Goues, and Vincent Josua Hellendoorn.
2022. Patch Generation with Language Models: Feasibility and Scaling Behavior.
In Deep Learning for Code Workshop.

Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining relevant fix
patterns for automated program repair. Empir. Softw. Eng. 25, 3 (2020), 1980-2024.
Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 593-604.

Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. 213-224.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 3-13.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38,1 (2012), 54-72.

YiLi, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-Based Code Trans-
formation Learning for Automated Program Repair. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 602-614.
Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the Quixey
Challenge (SPLASH Companion 2017). Association for Computing Machinery,
New York, NY, USA, 55-56.

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2019). ACM, New York, NY, USA, 31-42.

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 456-467.

PengfeiLiu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. Comput. Surveys 55, 9 (2023), 1-35.

Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). New York, NY, USA, 166-178.

Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th International
Conference on Software Engineering. 702-713.

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automatd program repair refine fault localization? A
unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, Los Angeles, California,
United States, July 18-22, 2020. 12 pages.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining Context-Aware Neural Translation Models
Using Ensemble for Program Repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for Computing Machinery, New York, NY, USA, 101-114.

Automated Program Repair via Conversation

[47

[48]

[49]

[50]

[51

[52]

[53

[54

[55]

[56

[57]

[58

[59]

[60

[61]

[62

[63

[64]

[65

[66]

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin
Li. 2024. How to Understand Whole Software Repository? arXiv preprint
arXiv:2406.01422 (2024).

Matias Martinez, Thomas Durieux, Jifeng Xuan, Romain Sommerard, and Martin
Monperrus. 2015. Automatic Repair of Real Bugs: An Experience Report on the
Defects4] Dataset. arXiv:1505.07002.

Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java (Demo). In Proceedings of the 25th International Symposium on Software
Testing and Analysis (Saarbriicken, Germany) (ISSTA 2016). Association for
Computing Machinery, New York, NY, USA, 441-444.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (Austin, Texas) (ICSE '16).
691-701.

Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu, and Chun-
ming Hu. 2023. Template-based Neural Program Repair. In ICSE 2023. 1456-1468.
Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 772-781.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. 2022. Codegen: An open large language model for
code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474 (2022).
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730-27744.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs introduced
by large language models while translating code. In Proceedings of the [IEEE/ACM
46th International Conference on Software Engineering. 1-13.

Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s Codex
Fix Bugs?: An evaluation on QuixBugs. In 2022 IEEE/ACM International Workshop
on Automated Program Repair (APR). 69-75.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).
Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bac-
chelli, and Premkumar Devanbu. 2016. On the "Naturalness" of Buggy Code. In Pro-
ceedings of the 38th International Conference on Software Engineering (Austin, Texas)
(ICSE ’16). Association for Computing Machinery, New York, NY, USA, 428-439.
Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical
evaluation of using large language models for automated unit test generation.
IEEE Transactions on Software Engineering (2023).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347.

John Schulman, Barret Zoph, Jacob Hilton Christina Kim, Jacob Menick, Jiayi
Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny,
Rapha Gontijo Lopes, Shengjia Zhao, Arun Vijayvergiya, Eric Sigler, Adam
Perelman, Chelsea Voss, Mike Heaton, Joel Parish, Dave Cummings, Rajeev
Nayak, Valerie Balcom, David Schnurr, Tomer Kaftan, Chris Hallacy, Nicholas
Turley, Noah Deutsch, Vik Goel, Jonathan Ward, Aris Konstantinidis, Wojciech
Zaremba, Long Ouyang, Leonard Bogdonoff, Joshua Gross, David Medina, Sarah
Yoo, Teddy Lee, Ryan Lowe, Dan Mossing, Joost Huizinga, Roger Jiang, Carroll
Wainwright, Diogo Almeida, Steph Lin, Marvin Zhang, Kai Xiao, Katarina Slama,
Steven Bills, Alex Gray, Jan Leike, Jakub Pachocki, Phil Tillet, Shantanu Jain, Greg
Brockman, and Nick Ryder. 2022. ChatGPT: Optimizing Language Models for
Dialogue. (2022). https://openai.com/blog/chatgpt/.

Jessica Shieh. 2023. Best practices for prompt engineering with OpenAl
API. https://help.openai.com/en/articles/6654000-best-practices-for-prompt-
engineering-with-openai-api.

Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 532-543.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. arXiv:1409.3215.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You
Need. (2017). arXiv:1706.03762.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen
Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. 2024. OpenDevin: An

831

[67]

[68

[69

[70

<
[y

[72

[73

[74

(78]

[79

%
=

(81

(82

[83

)
=)

(85

[86

ISSTA 24, September 16-20, 2024, Vienna, Austria

Open Platform for Al Software Developers as Generalist Agents. arXiv preprint
arXiv:2407.16741 (2024).

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung.
2018. Context-Aware Patch Generation for Better Automated Program Repair.
In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (ICSE ’18). 1-11.

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A Survey

on Software Fault Localization. IEEE Transactions on Software Engineering 42,
8(2016), 707-740.

Yonghao Wu, Zheng Li, Jie M Zhang, and Yong Liu. 2023. Condefects: A new
dataset to address the data leakage concern for llm-based fault localization and
program repair. arXiv preprint arXiv:2310.16253 (2023).

Chungqiu Steven Xia, Yifeng Ding, and Lingming Zhang. 2023. The Plastic
Surgery Hypothesis in the Era of Large Language Models. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE).

Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
Program Repair in the Era of Large Pre-trained Language Models. In Proceedings
of the ACM/IEEE 45th International Conference on Software Engineering (ICSE "23).
Chungiu Steven Xia and Lingming Zhang. 2022. Less Training, More Repairing
Please: Revisiting Automated Program Repair via Zero-Shot Learning. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).
Chungqiu Steven Xia and Lingming Zhang. 2023. Conversational automated
program repair. In Deep Learning for Code Workshop.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
Systematic Evaluation of Large Language Models of Code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming (San Diego,
CA, USA) (MAPS 2022). Association for Computing Machinery, New York, NY,
USA, 1-10.

Chenyuan Yang, Zijie Zhao, and Lingming Zhang. 2023. Kernelgpt: Enhanced
kernel fuzzing via large language models. arXiv preprint arXiv:2401.00563 (2023).
John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. 2024. Swe-agent: Agent-computer interfaces enable
automated software engineering. arXiv preprint arXiv:2405.15793 (2024).

He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022.
SelfAPR: Self-supervised Program Repair with Test Execution Diagnostics. In 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE22).
Association for Computing Machinery, Article 92, 13 pages.

He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural Program Repair
with Execution-based Backpropagation. In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). 1506-1518.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui,
Zeyang Zhou, Chao Gong, Yang Shen, et al. 2023. A Comprehensive Capability
Analysis of GPT-3 and GPT-3.5 Series Models. arXiv preprint arXiv:2303.10420
(2023).

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No more manual tests? evaluating and improving chatgpt
for unit test generation. arXiv preprint arXiv:2305.04207 (2023).

Shafiq Joty Yue Wang, Weishi Wang and Steven C.H. Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024.
AutoCodeRover: Autonomous Program Improvement. arXiv:2404.05427 [cs.SE]
Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM, New
York, NY, USA, 341-353.

Qihao Zhu, Zeyu Sun, Wenjie Zhang, Yingfei Xiong, and Lu Zhang. 2023. Tare:
Type-Aware Neural Program Repair. In ICSE 2023.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-Tuning Language
Models from Human Preferences. arXiv:1909.08593.

Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. 2019.
An empirical study of fault localization families and their combinations. IEEE
Transactions on Software Engineering 47, 2 (2019), 332-347.

Received 2024-04-12; accepted 2024-07-03

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Large Language Model
	2.2 Automated Program Repair

	3 Approach
	3.1 Initial Input
	3.2 Conversational Repair
	3.3 Plausible Patch Generation

	4 Experimental Design
	4.1 Implementation
	4.2 Subject Systems
	4.3 Compared Techniques

	5 Evaluation
	5.1 RQ1: State-of-the-Art Comparison
	5.2 RQ2: Repair Scenarios
	5.3 RQ3: Configurations of ChatRepair
	5.4 RQ4: Evaluation on Recent Bugs

	6 Limitations & Future Work
	7 Threats to Validity
	8 Conclusion
	References

