

Automated Program Repair via Conversation ISSTA ’24, September 16–20, 2024, Vienna, Austria

billionsofparameters andusingbillionsof training samples.AsLLMs

are trained to be general and can capture knowledge from various

di�erent domains, LLMs are either �ne-tuned [57] or prompted [42]

for a downstream task. Fine-tuning involves updating the model

parameters with a speci�c training dataset to target a particular

downstream task. However, �ne-tuning is not only expensive as it

requires additionalmodel training, butmayalso be infeasible in cases

where su�cient training datasets are unavailable. Prompting on the

other hand directly uses LLMs without any training by providing

natural language descriptions of the downstream task and optionally

a few demonstrations of the task being solved as input to the LLM.

LLMs are built on the transformer architecture [65] and can be

classi�ed based on the component(s) used. Decoder-only models

(e.g., Codex [12] andCodeGen [53]) are the popularGPT-basedmod-

els trained using Causal LanguageModeling objective by training to

predict the probability of the next token given all previous left only

context. Encoder-only (e.g., CodeBERT [20]) and Encoder-Decoder

(e.g., CodeT5 [81])models are trainedusingMaskedLanguageModel-

ing (MLM) or Masked Span Prediction (MSP) objective, respectively,

where a small portion (e.g., 15%) of the tokens are replaced with ei-

thermasked tokens ormasked span tokens and the LLMs are trained

to recover the masked out tokens based on bi-directional context.

More recently, researchers have proposed LLMs trained using re-

inforcement learningwhich aligns betterwith humanpreference [54,

61, 85]. Examples include InstructGPT [54] andChatGPT [61],which

are �rst initialized fromapre-trainedmodel on autoregressive gener-

ation and then �ne-tuned using reinforcement learning from human

feedback (RLHF) [85]. RLHF �rst �ne-tunes the base model using a

small dataset of prompts (input) and desired output (human-written).

Then, a separate reward model is trained on a larger set of prompts

by sampling multiple outputs from the �ne-tuned LLM and using

a human labeler to rank each individual output. Finally, reinforce-

ment learning (e.g., Proximal Policy Optimization [60]) is applied to

calculate the reward of the output generated based on the reward

model and correspondingly update the LLMweights. The resulting

LLM has shown better understanding of complex input prompts and

follow instructions to perform various tasks [1, 54, 61]. Speci�cally,

ChatGPT has received lots of attention due to its dialogue/conver-

sation focus by training speci�cally on conversations and its ability

to keep track of and reference prior conversations.

In this work, we continue to build on our in-progress work [73]

by introducing a more comprehensive approach that includes more

robust feedback and aims to learn from both failing and plausible

patches. We not only demonstrate for the �rst time that LLMs �ne-

tuned on human preference can be directly applied for APR, but also

leverage the instruction and dialogue focus/aspect of these LLMs to

build the �rst fully automated conversation-driven APR approach.

2.2 Automated ProgramRepair

Automated ProgramRepair (APR) can help developers by generating

patches for a given bug based on its potential fault location(s). Classic

APR techniques can be mainly classi�ed as heuristic-based [35, 37,

67], constraint-based [16, 34, 43, 50] and template-based [23, 26, 40,

41, 49] ones. Due to the high number of bugs �xed, template-based

APR tools have been recognized as the state-of-the-art. Meanwhile,

such APR tools leverage human-de�ned or automatically-mined

templates to �rst match potential buggy code patterns and then ap-

ply the corresponding �xes. However, template-based tools can only

�x the bugs that fall into their limited set of patterns and therefore

cannot generalize to other bug types or �xes. To address this issue, re-

searchers have proposed learning-based APR techniques by leverag-

ing recent advances Deep Learning. Techniques based on NMT have

beenextensively studied in recentyears, e.g., TENURE[51],Tare [84],

SelfAPR [77], RewardRepair [78], Recoder [83], CURE [29] and Co-

CoNuT [46]. They share the same insight that APR can be viewed

as a NMT problemwhich aims to translate buggy code into correct

code. In this way, they can learn to generate patches by training on

datasets of pairs of buggy and �xed code snippets. Such NMT-based

techniques rely heavily on historical bug-�xing training datasets

which are usually obtained from scraping open-source repositories

for bug-�xing commits. As such, the training data may include var-

ious noises such as irrelevant changes/commits; moreover, in order

to reduce such false positives, these datasets focus mainly on small

commitswhich further limit the types of bugs/�xes used for training.

To further combat the limitations ofNMT-based tools, researchers

have also explored the possibility of directly leveraging LLMs to syn-

thesize correct patches. LLMs, by pre-training on large amounts

of open-source code snippets, can directly synthesize the correct

code given the surrounding contextwithout having to translate from

the buggy code. AlphaRepair [72] is the �rst tool for cloze-style (or

in�lling-style) APR where the buggy line(s) is �rst replaced with

masked tokens and then LLMs are used to directly �ll-in the correct

code based on its context. AlphaRepair shows for the �rst time that

LLM-basedAPR can outperform thewidely studiedNMT-basedAPR

techniques on real-world systems. Prenner et al. [56] and Kolak et

al. [32] also directly used Codex [12] to generate a �xed function

given the original buggy function or to autocomplete a single line

given the pre�x code on a small dataset (QuixBugs [39]). More re-

cently,Xia et al. [71] conductedanextensive studyofLLM-basedAPR

techniques based on various LLMs (e.g., Codex [12], GPT-NeoX [4],

CodeT5 [81], and InCoder [21]), and further demonstrated the su-

periority of LLM-based APR. In addition, researchers have built

FitRepair [70], an improved cloze-style APR tool, that leverages

the widely known plastic surgery hypothesis [2] by training and

prompting using buggy project-speci�c information to further boost

repair performance. Despite the promising results of LLM-based

APR, such existing techniques only focus on the source code under

repair without considering the rich semantics in test failure informa-

tion. Furthermore, prior LLM-based techniques continuously sample

from the same initial prompt, failing to utilize knowledge from pre-

vious failed or plausible patches. In ChatRepair, we address both

limitations of prior LLM-based tools by introducing a conversation-

based repair paradigm to incorporate both patch generation history

with immediate validation feedback to perform repair.

Prior APR tools have also leveraged simple patch execution or

test information forAPR. GenProg [37] is a classic APR tool that uses

an evolutionary algorithm to combine candidate patches that pass

more tests together. Constraint-based APR tools [16, 18, 43, 52] have

used the underlying testing code to extract and build constraints

for patch synthesis. Recently, RewardRepair [78] proposes to train

a NMTmodel with a reward function based on whether a patch in

the training set passes compilation or test execution. SelfAPR [77]

is another NMT-based APR tool which encodes the bug-exposing

821

Automated Program Repair via Conversation ISSTA ’24, September 16–20, 2024, Vienna, Austria

• RQ2: How does ChatRepair perform when used in di�erent

repair scenarios?

• RQ3:What are the contributions of di�erent components of Cha-

tRepair in improving repair e�ectiveness?

• RQ4:How does ChatRepair perform on additional recent bugs

after ChatGPT training data cut-o� date?

We �rst demonstrate the performance of ChatRepair by com-

paring against the state-of-the-art APR tools on the popular De-

fects4j [31] and QuixBugs [39] repair datasets. Following, we closely

examine each of our repair scenarios (single-line, single-hunk and

single-function)with similarly evaluated baseline tools and also eval-

uate how our plausible patch generation step helps to improve the

number of correct �xes. Furthermore, we conduct a comprehensive

ablation study on the di�erent con�gurations of ChatRepair. In

particular,we look at not only the conversational aspect but also how

to provide feedback along with the e�ect on repair performance as

we change the maximum length of conversation. Lastly, we further

evaluate ChatRepair on additional recently collected bugs to study

the performance without potential data leakage a�ecting the result.

4.1 Implementation

Repair scenarios. In ChatRepair, we study 3 di�erent repair

scenarios used in prior work [71]: single-line–�xed by replac-

ing/adding a single line, single-hunk–�xed by replacing/adding

a continuous code hunk and single-function–�xed by generating

a new function to replace the original buggy version. Our initial

prompts di�er slightly based on the repair scenario and we provide

examples of all three in Figure 2. Note that single-hunk repair setting

is studied extensively by prior learning-based APR tools [72, 77, 78].

Implementation.We implementChatRepair in Python by access-

ing the ChatGPT API endpoint [7]. We use the gpt-3.5-turbo-0301

model of the ChatGPT family. For each chosen prompt, the authors

follow the best-practice guide [62] and manually examined a few

alternative approaches with selected bugs via the Web-version of

ChatGPT [9]. We use a sampling temperature of 1 in order to get a

diverse set of potential patches. Our default setting for themaximum

number of repair attempts allowed (including both initial repair and

plausible patch generation steps) is 200 for single-line and single-

hunk APR, and 100 for the single-function scenario. We use 1 few-

shot example and a maximum conversation length of 3. We evaluate

all generated patches on an 8-core workstationwith Intel i7 10700KF

CometLakeCPU@3.80GHzand64GBRAM, runningUbuntu20.04.3

LTS and OpenJDK Java 64-Bit Server version 1.8.0_312. Following

APR work [38, 72, 78, 83, 83], we use a default end-to-end timeout

of 5-hours to �x one bug. In reality, our cost is far less than 5-hours

due to the low number of patches sampled (<500) per bug.

4.2 Subject Systems

For evaluation, we use the widely studied repair benchmark of De-

fects4j [31] and QuixBugs [39]. Defects4j is a Java benchmark col-

lected from bug and corresponding �xes of open-source projects.

Similar to prior APR tools [23, 71, 72, 77], we separate Defects4j

into 1.2 and 2.0. Defects4j 1.2 consists of 391 bugs (after removing 4

depreciated bugs) in 6 di�erent Java projects. In this work, we follow

prior study [71] and categorize Defects4j 1.2 into single-function

(255 bugs), single-hunk (154 bugs) and single-line (80 bugs).Note that

single-hunk is a subset of single-function and single-line is a subset

of single-hunk bugs. We then apply our 3 proposed repair scenarios

corresponding to the each of the 3 datasets. Note in RQ1, similar

to prior work [71] we report the total number of bugs �xed when

combining all three repair scenarios together and study each repair

scenario separately in later RQs. Defects4j 2.0 consists of 438 new

bugs across 9 additional projects. We select only the 82 single-line

bugs within Defects4j 2.0 which is the main setting used in prior

APR tools for ease of comparison [72]. Additionally, we evaluate on

the QuixBugs [39] dataset which is made up of 40 buggy and �xed

versions of classic programming problems in both Python and Java.

All 40 bugs inQuixBugs-Pythonare single-function, single-hunkand

single-linebugswhile 40, 37, and36bugs inQuixBugs-Javaare single-

function, single-hunk and single-line bugs respectively. Lastly, we

also evaluate on the recently introduced ConDefect [69], a collection

of single-line programming contest bugs from 645 tasks in Java and

Python published after October 2021 – the training data cut-o� date

of ChatGPT to avoid the data leakage issue. We perform further �l-

tering to remove any duplicated buggy programs or tasks and obtain

321 and 330 Java and Python bugs respectively.We use ConDefect as

a benchmark to evaluate ChatRepair and baseline techniques with-

out having to worry about data leakage as it only contains problems

and bugs created after the knowledge cut-o� date of ChatGPT.

4.3 Compared Techniques

Baseline techniques.We compare ChatRepair against current

state-of-the-art traditional, NMT learning-based and LLM-based

APR baselines. We select 9 recent learning-based and LLM-based

APR baselines: FitRepair [70], SelfAPR [77], AlphaRepair [72], Re-

wardRepair [78],Recoder [83],CURE[29],CoCoNuT[46],DLFix [38]

and SequenceR [14]. In particular, AlphaRepair and FitRepair are

LLM-based repair tools by applying pre-trained CodeBERT [20]

and CodeT5 [81] model respectively using cloze-style APR. Fur-

thermore, we also include an LLM-based APR tool built using the

Codex model [20] (we refer to as CodexRepair) in a recent study

where researchers directly applied LLMs for APR without any �ne-

tuning [71]. CodexRepair is also studied on three repair settings used

in ourworkwhich allows formore direct comparison. For traditional

APR tools,we compare against 12 selected representative techniques:

TBar [40], PraPR [23], AVATAR [41], SimFix [27], FixMiner [33],

CapGen [67], JAID [11], SketchFix [26], NOPOL [16], jGenProg [48],

jMutRepair [49], and jKali [49]. Altogether, we compare against 22

prior APR tools. Moreover, we also evaluate against a baseline of di-

rectly sampling using the ChatGPTmodel to perform repair without

any conversation or feedback information. We refer to this baseline

as BaseChatGPT. Since our 3 repair scenarios rely on knowing the

location of the bug, we use the perfect fault localization (where the

groundtruth location of the bug is given) results from prior tools.

This is the preferred evaluation setting as it eliminates any di�er-

ences in performance caused by running fault localization tools [68,

71, 72, 77, 78, 83]. Following convention in APR work [72, 83], we

directly report the �x results obtained in prior studies [23, 71, 77].

As ConDefect is recently collected and produced, there are no re-

ported experimental results for any APR tools. Therefore, we apply

state-of-the-art AlphaRepair to ConDefect for baseline comparison.

825

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chunqiu Steven Xia and Lingming Zhang

themodel to provide a�x,TestName+ErrMsg includes both the fail-

ing test name (e.g., testGetCategoryIndex) and test failure errormes-

sage (e.g., NullPointerException), TestName+ErrMsg+FailLine

additionally includes the exact linewhere the failure occurredwithin

the test (e.g., assertEquals(-1, empty.getCategoryIndex("ABC"));)

and TestName+ErrMsg+TestBody additionally uses the entire

failing test function body instead of just the failure code line.

First, we observe that the base initial prompt of only providing

with the buggy code and asking it to generate a patch performs the

worst in terms of the number of bugs �xed. We see that by adding

auxiliary information such as failing test name and error message,

we can further improve the repair performance. Tests that are well

named can provide semantic meaning of the test. Error messages

also o�er unique insights regarding the nature of the test failure (e.g.,

null point exception, array out of bound checks, etc) and can directly

motivate a potential correct patch. Furthermore, we remark that pro-

viding the exact line within the test where the failure occurred can

also improve repair performance. Such lines may include assertions

showing desired results (e.g., numerical comparison) or statements

that triggered the exceptions or crashes (e.g., �eld dereferences).

This additionally gives concrete hints to ChatGPT on how to �x the

speci�c bug. Moreover, we observe that the prompt which includes

the entire test function code also performs well in terms of the num-

ber of bugs �xed. However, on average it costs the most compared

to the other initial prompts used. This is because the model incurs

additional cost to process the entire test function code for each repair

attempt, which can be largely depending on the size of the test func-

tion andmay contain test code irrelevant to the bug. As such, a more

concise prompt which includes just the failing test code line can

already achieve e�ective repair performance while being economic.

Table 4 also shows several other parameters of the initial input

apart from the included test failure information. Row You are a

helpful assistant uses the default system message (Section 3) by

ChatGPT and You are an APR tool (we use the full name of APR) is

our modi�ed systemmessage. While the number of �xes is similar

between the two systemmessages, we observe that by aligning the

systemmessagewith the taskwewant to solve – program repair, the

model can arrive at the plausible patch faster (less tries) since it can

faster understand the task it is trying to solve. As suchwe can reduce

the cost of ChatRepair by designing speci�c systemmessages. Fur-

thermore, we evaluate the e�ect of having few-shot examples of bug

�xesbefore the target buggycode input inTable 4.Weobserve that by

providingChatGPTwith some examples of prior bug�xes,we obtain

aslight increase innumberofplausiblepatcheswhileat thesametime

drastically reducing the number of tries used to �x the bug. Few-shot

examples, similar to the systemmessage, can get the model familiar

for bug �xing by understanding the task and input/output formats.

Table 5: Feedback response variations

Feedback Response #P Avg. # tries Avg. $

BaseFeedback 58 23.12 $0.071

TestName+ErrMsg 61 22.48 $0.073

TestName+ErrMsg+FailLine 62 24.71 $0.074

Dynamic 64 21.86 $0.061

Figure 7: E�ect ofmaximum conversation length

5.3.2 Feedback Response. Another important aspect of ChatRe-

pair’s design is the feedback response we provide to the model. Sim-

ilar to the initial prompt design, we also consider multiple di�erent

ways we can provide feedback to the model. Table 5 shows the re-

sultsof thedi�erent feedbackresponsevariants.RowBaseFeedback

means we only tell the model that the generated patch is not correct

without any additional feedback. Similar to the initial prompt con-

struction, TestName+ErrMsg includes both the failing test name

and test failure error message, TestName+ErrMsg+FailLine ad-

ditionally includes the exact line where the failure occurred within

the test. Di�erent from initial prompt construction,Dynamic is our

default approach where we only provide the test name/error/line

if the new generated patch has a di�erent failure than the original

(Section 3.2). This allows us to more concretely inform ChatGPT if it

hasmade some progress in �xing a bug (e.g., patch no longer crashes

with null-pointer exception but fails on some other test).

Initially,we see that the base responsemessage achieves theworst

result in number of bugs �xed. Similar to the behavior of the initial

prompts, we can improve performance by adding the name of the

failing test, error message along with the exact failure line from the

failing test. Additionally, we can further improve performance by us-

ing the dynamic feedback response. Since in the initial prompt we al-

readyprovideChatGPTwith the failing testname, errormessage, and

failing line, in dynamic feedback response, we only provide newdata

if the generated patch contains a di�erent failing information. This

allow us to make more use of the conversational aspect by referring

to a previousmessage. Furthermore, it can reduce the cost by using a

short concisemessage if the patch does notmake additional progress.

5.3.3 Conversation Length. Figure 7 shows performance in both

the number of plausible �xes and the average dollar cost to �x a

bug across di�erent maximum conversation length. Recall from Sec-

tion3.2 that themaximumconversation lengthdictates theamountof

history/feedback within each individual repair conversation, where

length = 1 is equivalent to sampling using the initial prompt without

any feedback. We observe that directly sampling from the ChatGPT

without any conversation achieves the lowest number of plausible

�xes. As we add the conversation element of ChatRepair, the num-

ber of plausible patches improves. Comparedwith sampling from the

same prompt over and over again, by usingChatRepair in a conver-

sationalmanner, themodel can learn fromitspreviousmistakesalong

with the concise test failure feedback information to generate more

plausible patches.We also notice that themodel can retain its perfor-

mances aswe increase the conversation length tobehigher (i.e., 5 and

6). However, we see that compared with a lower conversation length

(3), the higher conversation lengths incurs a much higher cost in �x-

ing a bug. The reason is that as we increase the length, the amount of

history/context (tokens) processed by the model will be higher, lead-

ing to higher cost per bug �xed. Our default conversation length of 3

serves as a good balance between cost and the number of bugs �xed.

828

Automated Program Repair via Conversation ISSTA ’24, September 16–20, 2024, Vienna, Austria

5.4 RQ4: Evaluation on Recent Bugs

Table 6: Correct and Plausible �xes on ConDefect

Tools ConDefects-Java ConDefects-Python

ChatRepair 243 / 250 241 / 249

BaseChatGPT 170 / 189 165 / 171

AlphaRepair 154 / 158 142 / 160

To address potential data leakage of the groundtruth patches in

prior evaluation datasets, we further evaluate on ConDefect [69], a

collection of programming contest bugs obtained after the knowl-

edge cut-o� date of ChatGPT. Table 6 shows the repair performance

(# of correct / # plausible patches) of ChatRepair, BaseChatGPT

and AlphaRepair on ConDefect dataset in both Java and Python. We

�rst observe that on both ConDefect datasets, ChatRepair is able

to signi�cantly outperform the repair baseline with 57.8% and 69.7%

more correct patches on Java and Python respectively. Additionally,

we see that ChatRepair also improves over the baseline technique

of naively using ChatGPT (BaseChatGPT) by 42.9% and 46.6% more

correct patches. ChatRepair successfully utilizes the previously

ignored semantic information in test failures as well as prior failing

and plausible �x attempts to achieve the state-of-the-art results on

ConDefect.

6 Limitations & FutureWork

First, while ChatRepair is able to achieve state-of-the-art repair

performance of the studied benchmarks, there are still bugs that it

struggles to �x. One particular category are multi-hunk bugs that

require patches across multiple functions or �les. This limitation is

due to the limitedcontextwindowofChatGPTandotherLLMswhere

they can only take in a restricted number of tokens as inputs. As

such, LLM-based approaches likeChatRepair in its current iteration

cannot deal with bugs that require edits to multiple di�erent �les.

Also due to the context window size, ChatRepair does not have

access to project and repository speci�c information. Priorwork [70]

has demonstrated the importance of learning and using project

speci�c information (e.g., common variable, class, function names)

in helping to boost LLM repair performance. ChatRepair currently

can only obtain the context from the limited input and thus may

miss the crucial intra-project information that is useful for repair.

To address these limitations, we aim to further improve ChatRe-

pairwith LLM-based agents. We plan to �rst reduce the reliance on

traditional fault localization tools byusingLLMs to identify potential

buggy locations. LLMs, through its powerful code understanding

ability, can identify further relationships betweenmultiple buggy lo-

cations in order to aid in multi-hunk repair. Further, we can improve

ChatRepairwith a retrieval agent that retrieves and obtains useful

repair-speci�c information. For example, by providing a summary

of the related class �elds or methods as part of the input to �x the

current buggy class. We hope our agent-based debugging approach

can address the prior limitations and inspire future work in using

LLM for more holistic APR and debugging.

7 Threats to Validity

Internal.The �rst internal threat comes from themanual validation

used to determine the correctness of the plausible patches compared

with the reference developer patch. To address this, following prior

work [29, 71, 77, 83], we carefully examined each patch and have

released the correct patches along with the code [15].

Another threat to validity comes from the data leakage of refer-

ence developer patches being part of the original training data of

ChatGPT. Since ChatGPT is a proprietary model and can only be ac-

cessed through API, we do not have access to the exact training data

used. To address this, we follow prior work [72] and �rst compute

the number of correct patches generated by ChatRepairwhich was

the same as the reference developer patch onDefects4j 1.2.We found

that out of 212 (adding all correct patches from three repair scenarios)

correct patches, 77 of them is the same as reference developer �x

(36%). In addition, even if we remove all correct patches (77) which

are the same as the reference developer patch, ChatRepair is still

able to generate the correct patch for 8 unique bugs that none of

the prior approaches can �x. Also, compared to the base ChatGPT

repair baseline which uses the same underlying model,ChatRepair

is able to drastically improve its performance (34 more correct �xes)

showing that the result gained by ChatRepair is not simply due

to memorizing the training data. Furthermore, we evaluate Cha-

tRepair on the ConDefect dataset collected after the knowledge

cut-o� date of ChatGPT and demonstrate that ChatRepair is able

to improve over the best baseline with 42.9% and 46.6% more correct

patches on the Java and Python version respectively. To completely

address this threat, we would need to retrain ChatGPT from scratch

which would be infeasible for an academic project.

Additional threat to validity is our evaluation setting of using

perfect fault localization (PFL). We �rst note that PFL is the pre-

ferred evaluation setting for prior LLM-based and traditional APR

tools [68, 70, 71] to reduce e�ect di�erent fault localization tools have

on repair. To address this threat, we conducted an initial study by us-

ing widely adopted fault localization (Ochiai [86]) and assumed that

ChatRepairmay only �x a bug if the groundtruth location is part of

the top-40 suspicious locations. We reduce the number of patches to

20 per line, incurring a total time cost of <5 hour bug (typical setting

for non-perfect fault localization). In this experiment, ChatRepair

is still able to achieve 68 bugs �xed compared to state-of-the-art

baseline [72] of 50 bugs �xed without groundtruth buggy location.

External. Themain external threat to validity comes for our evalua-

tion datasets used. The improvement obtained by ChatRepairmay

not generalize to other repair datasets. To address this, we evaluate

on Defects4j 2.0, two QuixBugs datasets and the recently introduced

ConDefect dataset to demonstrate the generalizability.

8 Conclusion

We propose ChatRepair – the �rst fully automated conversation-

driven APR tool which leverages ChatGPT to perform repair. Cha-

tRepair learns from both previously incorrect and plausible patches

and utilizes test failure information to provide immediate and dy-

namic feedback forpatchgeneration.Usingourconversational repair

paradigm, ChatRepair is able to achieve the new state-of-the-art

performance of 114 and 48 bugs on Defects4j 1.2 and 2.0 respectively.

Acknowledgements

We thank reviewers across multiple conferences for their insight-

ful feedback and comments to improve this paper. This work was

partially supported by NSF grant CCF-2131943 and Kwai Inc.

829

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chunqiu Steven Xia and Lingming Zhang

References
[1] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan

Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and
interactivity. arXiv preprint arXiv:2302.04023 (2023).

[2] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The Plastic Surgery Hypothesis. In FSE 2014. 306–317.

[3] Samuel Benton,Xia Li, Yiling Lou, andLingmingZhang. 2020. On theE�ectiveness
of Uni�ed Debugging: An Extensive Study on 16 Program Repair Systems. In ASE.
907–918.

[4] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan
Tow, BenWang, and SamuelWeinbach. 2022. GPT-NeoX-20B: An Open-Source
Autoregressive LanguageModel. In Proceedings of the ACLWorkshop onChallenges
& Perspectives in Creating Large Language Models. arXiv:2204.06745.

[5] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. 2024. Repairagent: An
autonomous, llm-based agent for program repair. arXiv preprint arXiv:2403.17134
(2024).

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[7] chatgptendpoint 2023. Introducing ChatGPT and Whisper APIs.
https://openai.com/blog/introducing-chatgpt-and-whisper-apis.

[8] chatgptguide 2023. ChatGPT Guide. https://platform.openai.com/docs/guides/
chat.

[9] chatgptweb 2023. ChatGPTWeb. https://chat.openai.com/chat.
[10] Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-GangWang, Anton

Cheshkov, Jun Sun, Hao Yu, Guoliang Dong, ArtemAliev, et al. 2024. CodeR: Issue
Resolving with Multi-Agent and Task Graphs. arXiv preprint arXiv:2406.01304
(2024).

[11] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair
without the contracts. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 637–647.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[13] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[14] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Transaction on Software
Engineering (2019).

[15] Dataset 2023. Dataset. https://�gshare.com/s/9796028cef4d7dbc08�.
[16] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.

Automatic Repair of Buggy If Conditions and Missing Preconditions with SMT.
In Proceedings of the 6th International Workshop on Constraints in Software Testing,
Veri�cation, and Analysis (Hyderabad, India) (CSTVA 2014). 30–39.

[17] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing
Yang, and Lingming Zhang. 2024. Large Language Models are Edge-Case Fuzzers:
Testing Deep Learning Libraries via FuzzGPT. In 46th International Conference
on Software Engineering (ICSE).

[18] Thomas Durieux and Martin Monperrus. 2016. Dynamoth: dynamic code
synthesis for automatic program repair. In Proceedings of the 11th International
Workshop on Automation of Software Test. 85–91.

[19] HasanFerit Eniser,HanliangZhang,CristinaDavid,MengWang,BrandonPaulsen,
Joey Dodds, and Daniel Kroening. 2024. Towards Translating Real-World Code
with LLMs: A Study of Translating to Rust. arXiv preprint arXiv:2405.11514 (2024).

[20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, andMing Zhou. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155.

[21] Daniel Fried, Armen Aghajanyan, Jessy Lin, SidaWang, EricWallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder:
A Generative Model for Code In�lling and Synthesis. arXiv:2204.05999.

[22] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.

[23] AliGhanbari, SamuelBenton, andLingmingZhang. 2019. Practical ProgramRepair
via BytecodeMutation. In Proceedings of the 28th ACM SIGSOFT International Sym-
posiumon Software Testing andAnalysis (Beijing, China) (ISSTA2019). ACM, 19–30.

[24] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[25] AbramHindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). 837–847.

[26] Jinru Hua, Mengshi Zhang, KaiyuanWang, and Sarfraz Khurshid. 2018. SketchFix:
A Tool for Automated Program Repair Approach Using Lazy Candidate Gener-
ation. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, 888–891.

[27] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, Frank
Tip and Eric Bodden (Eds.). ACM, 298–309.

[28] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of
Code Language Models on Automated Program Repair. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). 1430–1442.
https://doi.org/10.1109/ICSE48619.2023.00125

[29] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE) (May 2021).

[30] Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting concise
bug-�xing patches from human-written patches in version control systems. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
686–698.

[31] René Just, Darioush Jalali, andMichael D. Ernst. 2014. Defects4J: A Database of
Existing Faults to Enable Controlled Testing Studies for Java Programs (ISSTA
2014). Association for Computing Machinery, New York, NY, USA, 437–440.

[32] Sophia D Kolak, Ruben Martins, Claire Le Goues, and Vincent Josua Hellendoorn.
2022. Patch Generation with Language Models: Feasibility and Scaling Behavior.
InDeep Learning for CodeWorkshop.

[33] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining relevant �x
patterns for automated program repair. Empir. Softw. Eng. 25, 3 (2020), 1980–2024.

[34] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, andWillem Visser.
2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 593–604.

[35] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. 213–224.

[36] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, andWestleyWeimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 3–13.

[37] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, andWestleyWeimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54–72.

[38] Yi Li, ShaohuaWang, andTienN.Nguyen. 2020. DLFix:Context-BasedCodeTrans-
formationLearning forAutomatedProgramRepair. InProceedings of theACM/IEEE
42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 602–614.

[39] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: AMulti-Lingual Program Repair Benchmark Set Based on the Quixey
Challenge (SPLASH Companion 2017). Association for Computing Machinery,
New York, NY, USA, 55–56.

[40] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2019). ACM, New York, NY, USA, 31–42.

[41] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 456–467.

[42] Pengfei Liu,WeizheYuan, JinlanFu,Zhengbao Jiang,HiroakiHayashi, andGraham
Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. Comput. Surveys 55, 9 (2023), 1–35.

[43] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). New York, NY, USA, 166–178.

[44] Fan Long andMartin Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th International
Conference on Software Engineering. 702–713.

[45] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automatd program repair re�ne fault localization? A
uni�ed debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, Los Angeles, California,
United States, July 18-22 , 2020. 12 pages.

[46] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining Context-Aware Neural Translation Models
Using Ensemble for Program Repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for ComputingMachinery, NewYork, NY, USA, 101–114.

830

Automated Program Repair via Conversation ISSTA ’24, September 16–20, 2024, Vienna, Austria

[47] Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin
Li. 2024. How to Understand Whole Software Repository? arXiv preprint
arXiv:2406.01422 (2024).

[48] Matias Martinez, Thomas Durieux, Jifeng Xuan, Romain Sommerard, and Martin
Monperrus. 2015. Automatic Repair of Real Bugs: An Experience Report on the
Defects4J Dataset. arXiv:1505.07002.

[49] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java (Demo). In Proceedings of the 25th International Symposium on Software
Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016). Association for
Computing Machinery, New York, NY, USA, 441–444.

[50] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
691–701.

[51] Xiangxin Meng, XuWang, Hongyu Zhang, Hailong Sun, Xudong Liu, and Chun-
ming Hu. 2023. Template-based Neural Program Repair. In ICSE 2023. 1456–1468.

[52] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. 2013. Sem�x: Program repair via semantic analysis. In 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 772–781.

[53] ErikNijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, HuanWang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. 2022. Codegen: An open large language model for
code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474 (2022).

[54] Long Ouyang, Je�reyWu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[55] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert PouguemWassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs introduced
by large language models while translating code. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1–13.

[56] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s Codex
Fix Bugs?: An evaluation on QuixBugs. In 2022 IEEE/ACM International Workshop
on Automated Program Repair (APR). 69–75.

[57] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[58] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bac-
chelli, and PremkumarDevanbu. 2016. On the "Naturalness" of BuggyCode. In Pro-
ceedings of the 38th InternationalConference on SoftwareEngineering (Austin, Texas)
(ICSE ’16). Association for Computing Machinery, New York, NY, USA, 428–439.

[59] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical
evaluation of using large language models for automated unit test generation.
IEEE Transactions on Software Engineering (2023).

[60] John Schulman, FilipWolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347.

[61] John Schulman, Barret Zoph, Jacob Hilton Christina Kim, Jacob Menick, Jiayi
Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny,
Rapha Gontijo Lopes, Shengjia Zhao, Arun Vijayvergiya, Eric Sigler, Adam
Perelman, Chelsea Voss, Mike Heaton, Joel Parish, Dave Cummings, Rajeev
Nayak, Valerie Balcom, David Schnurr, Tomer Kaftan, Chris Hallacy, Nicholas
Turley, Noah Deutsch, Vik Goel, JonathanWard, Aris Konstantinidis, Wojciech
Zaremba, Long Ouyang, Leonard Bogdono�, Joshua Gross, David Medina, Sarah
Yoo, Teddy Lee, Ryan Lowe, Dan Mossing, Joost Huizinga, Roger Jiang, Carroll
Wainwright, Diogo Almeida, Steph Lin, Marvin Zhang, Kai Xiao, Katarina Slama,
Steven Bills, Alex Gray, Jan Leike, Jakub Pachocki, Phil Tillet, Shantanu Jain, Greg
Brockman, and Nick Ryder. 2022. ChatGPT: Optimizing Language Models for
Dialogue. (2022). https://openai.com/blog/chatgpt/.

[62] Jessica Shieh. 2023. Best practices for prompt engineering with OpenAI
API. https://help.openai.com/en/articles/6654000-best-practices-for-prompt-
engineering-with-openai-api.

[63] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? over�tting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 532–543.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. arXiv:1409.3215.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You
Need. (2017). arXiv:1706.03762.

[66] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen
Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. 2024. OpenDevin: An

Open Platform for AI Software Developers as Generalist Agents. arXiv preprint
arXiv:2407.16741 (2024).

[67] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung.
2018. Context-Aware Patch Generation for Better Automated Program Repair.
In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (ICSE ’18). 1–11.

[68] W. EricWong, Ruizhi Gao, Yihao Li, Rui Abreu, and FranzWotawa. 2016. A Survey
on Software Fault Localization. IEEE Transactions on Software Engineering 42,
8 (2016), 707–740.

[69] Yonghao Wu, Zheng Li, Jie M Zhang, and Yong Liu. 2023. Condefects: A new
dataset to address the data leakage concern for llm-based fault localization and
program repair. arXiv preprint arXiv:2310.16253 (2023).

[70] Chunqiu Steven Xia, Yifeng Ding, and Lingming Zhang. 2023. The Plastic
Surgery Hypothesis in the Era of Large Language Models. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE).

[71] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
Program Repair in the Era of Large Pre-trained Language Models. In Proceedings
of the ACM/IEEE 45th International Conference on Software Engineering (ICSE ’23).

[72] Chunqiu Steven Xia and Lingming Zhang. 2022. Less Training, More Repairing
Please: Revisiting Automated Program Repair via Zero-Shot Learning. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).

[73] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational automated
program repair. InDeep Learning for CodeWorkshop.

[74] Frank F. Xu, Uri Alon, GrahamNeubig, and Vincent Josua Hellendoorn. 2022. A
Systematic Evaluation of Large Language Models of Code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming (San Diego,
CA, USA) (MAPS 2022). Association for Computing Machinery, New York, NY,
USA, 1–10.

[75] Chenyuan Yang, Zijie Zhao, and Lingming Zhang. 2023. Kernelgpt: Enhanced
kernel fuzzing via large language models. arXiv preprint arXiv:2401.00563 (2023).

[76] John Yang, Carlos E Jimenez, AlexanderWettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and O�r Press. 2024. Swe-agent: Agent-computer interfaces enable
automated software engineering. arXiv preprint arXiv:2405.15793 (2024).

[77] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022.
SelfAPR: Self-supervised Program Repair with Test Execution Diagnostics. In 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE22).
Association for Computing Machinery, Article 92, 13 pages.

[78] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural Program Repair
with Execution-based Backpropagation. In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). 1506–1518.

[79] Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui,
Zeyang Zhou, Chao Gong, Yang Shen, et al. 2023. A Comprehensive Capability
Analysis of GPT-3 and GPT-3.5 Series Models. arXiv preprint arXiv:2303.10420
(2023).

[80] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, KaixinWang, Yixuan Chen,
and Xin Peng. 2023. No more manual tests? evaluating and improving chatgpt
for unit test generation. arXiv preprint arXiv:2305.04207 (2023).

[81] Sha�q Joty YueWang,WeishiWang and Steven C.H. Hoi. 2021. CodeT5: Identi�er-
aware Uni�ed Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021.

[82] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024.
AutoCodeRover: Autonomous Program Improvement. arXiv:2404.05427 [cs.SE]

[83] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM, New
York, NY, USA, 341–353.

[84] Qihao Zhu, Zeyu Sun, Wenjie Zhang, Yingfei Xiong, and Lu Zhang. 2023. Tare:
Type-Aware Neural Program Repair. In ICSE 2023.

[85] Daniel M. Ziegler, Nisan Stiennon, Je�rey Wu, Tom B. Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geo�rey Irving. 2019. Fine-Tuning Language
Models fromHuman Preferences. arXiv:1909.08593.

[86] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. 2019.
An empirical study of fault localization families and their combinations. IEEE
Transactions on Software Engineering 47, 2 (2019), 332–347.

Received 2024-04-12; accepted 2024-07-03

831

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Large Language Model
	2.2 Automated Program Repair

	3 Approach
	3.1 Initial Input
	3.2 Conversational Repair
	3.3 Plausible Patch Generation

	4 Experimental Design
	4.1 Implementation
	4.2 Subject Systems
	4.3 Compared Techniques

	5 Evaluation
	5.1 RQ1: State-of-the-Art Comparison
	5.2 RQ2: Repair Scenarios
	5.3 RQ3: Configurations of ChatRepair
	5.4 RQ4: Evaluation on Recent Bugs

	6 Limitations & Future Work
	7 Threats to Validity
	8 Conclusion
	References

