


ISSTA ’24, September 16–20, 2024, Vienna, Austria Yicheng Ouyang, Jun Yang, and Lingming Zhang

when evaluating an APR technique, tend not to re-execute base-

line techniques on the adopted benchmarks. Instead, they often

reference results directly from the original publications of these

baselines. Consequently, there are many issues in the evaluation

of the state-of-the-art APR techniques: (1) The prevailing practice

of referencing results from antecedent publications imposes sig-

ni�cant constraints on the choice of benchmarks for comparative

analyses, which can potentially compromise the scale and trust-

worthiness of evaluations. For example, the technique TBar [24] is

exclusively assessed on Defects4J V1.2.0 in its original work. As a

result, any attempt to compare a new technique with TBar, with-

out re-executing TBar, is compelled to solely rely on evaluations

conducted on Defects4J V1.2.0. However, prior research [12, 14, 59]

has shown that many APR techniques are susceptible to over�tting

on Defects4J V1.2.0. (2) They are usually evaluated and compared

under di�erent settings. For example, CoCoNut [29] uses a candi-

date size of 1000 to generate patches, while SequenceR [8] only

uses 50 as the candidate size. (3) They are mainly evaluated with

the metrics of plausibility and genuineness and lack comparisons

and analyses in terms of other dimensions. For example, many

APR techniques (e.g., [66], [11], [49]) do not perform compilability

analyses on their generated patches, which may fail to fully study

the potentials and limitations of corresponding techniques. In this

work, we not only evaluate the compilability of the studied APR

techniques, but also analyze the categories of compilation errors,

and the prevalence of duplicate/no-op patches (i.e., patches that are

syntactically equivalent to the original buggy code). (4) They rarely

compare APR techniques on the same machine/environment.

This work presents a comprehensive evaluation of nine learning-

based and three traditional APR techniques across multiple bench-

marks and metrics under consistent environment and settings, aim-

ing to address potential shortcomings in their original assessments

and pinpoint avenues for enhancement. In our study, we assess

these APR techniques across two distinct benchmarks: the Defects4J

V2.0.0 benchmark and a mutation-based benchmark, MuBench,

which comprises 1,700 synthetic bugs derived from programs in

the Defects4J benchmark. We measure performance across multiple

dimensions, including the total number of generated, compilable,

plausible, and genuine patches, and the number of bugs with compi-

lable, plausible, and genuine patches. To evaluate the performance

of the studied APR techniques on the large MuBench benchmark,

where it is too costly to inspect all plausible patches manually, we

also employ the metrics of SYntactically Equivalent (SYE) patches

(i.e., patches that are syntactically equivalent to the developer’s

patch) and Trivial Compiler Equivalent (TCE) patches (i.e., patches

that are equivalent to the developer’s patch after compilation) to

approximate the genuineness metrics.

To glean insights across various facets, we conductmulti-dimensional

analyses during the evaluation. For instance, we divide the Defects4J

bugs into Defects4J V1.2.0 bugs dataset and Defects4J V2.0.0 ad-

ditional bugs dataset to investigate the over�tting issue. We also

analyze the correlation between compilability/plausibility/SYE/TCE

metrics and genuineness metrics. Additionally, the performance

of the studied APR techniques on the mutation-based MuBench

benchmark across di�erent mutators is assessed. Moreover, we an-

alyze the compilation error categories of uncompilable patches and

statistics of duplicate/no-op patches for each APR technique.

Our evaluations yield several key �ndings: First, traditional and

Neural Machine Translation (NMT) based APR techniques tend

to over�t on the widely studied Defects4J V1.2.0 dataset, while

the Large Language Model (LLM) based one su�ers less from the

over�tting issue and can �x the most number of bugs. Second,

learning-based and traditional APR techniques are better at �xing

di�erent types of bugs, demonstrating a promising future for com-

bining learning-based and traditional APR techniques. Third, when

comparing di�erent APR techniques, the number of bugs with SYE,

TCE, or plausible patches highly correlates with the number of bugs

with genuine patches, establishing TCE as a cost-e�cient metric

for APR evaluations since it performs better than SYE and is less

costly to compute than plausibility metric. Next, although some

of the learning-based APR techniques adopt special strategies to

improve patch compilability, their highest compilability rates still

fall short of the template-based technique by approximately 20 per-

centage points, indicating that learning-based techniques still have

room for improvement in enhancing patch compilability. Moreover,

our study also reveals various guidelines for improving APR tech-

niques, e.g., many APR techniques may generate large numbers of

duplicate/no-op patches, suggesting future implementations should

develop strategies to reduce such patches and improve APR e�-

ciency and reliability. Lastly, our study leads to the detection of

seven implementation issues in the studied techniques (�ve have

been con�rmed and �xed by the authors).

To sum up, our work makes the following contributions:

• Multiple benchmarks for evaluation. Apart from the De-

fects4J benchmark widely used in prior works, we also adopt

a newly constructed large-scale mutation-based benchmark

named MuBench, containing 1,700 bugs for evaluation.

• Extensive evaluation. We comprehensively evaluate nine

learning-based and three traditional state-of-the-art APR

techniques under uniform experimental settings on the same

machine. We analyze a total of 1,814,652 generated patches

to mitigate threats of biased evaluation results.

• Multi-dimensionalmetrics for evaluation. Extending be-

yond prior works, we incorporate various metrics of di�erent

aspects, i.e., compilability/plausibility/genuineness/SYE/TCE

metrics, where SYE/TCE metrics have been understudied by

existing APR research to the best of our knowledge.

• Valuable guidelines for future APR research. Our study

analyzes the performance of these state-of-the-art APR tech-

niques in multiple dimensions, uncovering many �ndings

that are discussed at length. By identifying potential direc-

tions for improving these techniques, our research provides

valuable guidelines for future APR research.

• Reproducible artifact. We have open-sourced the data,

code, and details of all uncovered bugs from our study at [3].

2 BACKGROUND AND RELATED WORK

2.1 Automated Program Repair

Automated Program Repair (APR) [7, 10, 13, 15, 16, 26, 27, 33, 35,

36, 51, 58] aims to automatically generate patches to �x bugs,

thereby reducing developers’ debugging burden. Traditional APR
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techniques can be mainly categorized into three types: (1) heuristic-

based techniques, where heuristic strategies such as genetic pro-

gramming [21] and random search [43, 53] are leveraged to guide

the search of potentially correct patches, (2) template-based tech-

niques, where �x patterns summarized by experts or mined from

large projects are applied to buggy programs to generate candidate

patches [14, 24] and (3) constraint-based techniques, where sym-

bolic execution and constraint solving techniques are leveraged to

extract semantic information for better patch generation [57]. Out

of the traditional APR techniques, template-based ones have been

shown to be the most e�ective [14], but they cannot �x bugs that are

beyond the scope of their templates. To tackle this issue, NMT-based

techniques [18, 29, 49, 62] are proposed, treating APR as a trans-

lation task to translate faulty code to correct code. Nevertheless,

their e�ectiveness is heavily dependent on the quality of the bug-

�x training datasets. More recently, LLM-based techniques have

emerged [17, 52, 54–56, 64], showing superior performance over

traditional and NMT-based techniques by leveraging pre-trained

large language models.

In recent years, numerous empirical studies have been conducted

to evaluate APR techniques. Liu et al. [25] systematically evaluated

16 Java APR techniques with a focus on their e�ciency. Zhong et

al. [65] performed an empirical study on six state-of-the-art NPR

(Neural Program Repair) systems. They built a new benchmark for

NPR systems and ran experiments to investigate their repairability,

inclination, and generalizability. However, the prior studies [25, 65]

were performed under the early-exit mechanism, i.e., terminating

patch validation/generation upon discovering the �rst plausible

patch, thereby missing a lot of potentially plausible/correct patches

in the patch space. Noller et al. [37] performed a small-scale eval-

uation to showcase that di�erent experimental setups can lead to

di�erent repair performances, underscoring the importance of fair

comparisons under uniform experimental settings. Shari�deen et

al. [46] designed a fully agnostic repair platform integrating 20

APR tools and nine APR benchmarks across multiple target lan-

guages and application domains. However, they only included two

learning-based tools, missing the majority of the recent state-of-the-

art learning-based tools. Ye et al. [60] performed an empirical study

of ten traditional APR techniques on the QuixBugs benchmark [22]

and found 53.3% of the generated plausible patches were over�tting.

Di�erent from previous works, our study evaluates both learning-

based and traditional APR techniques, not only on the commonly

used Defects4J V2.0.0 benchmark but also on the mutation-based

MuBench benchmark, with multi-dimensional metrics (SYE and

TCE metrics have never been used for APR evaluation) to perform

thorough and multi-dimensional analyses, with the aim of inspiring

better APR research.

2.2 Mutation Testing and Bug Injection

Mutation testing aims to deliberately inject bugs into programs by

mutating source code to measure the adequacy of the test suite.

In the mutation testing context, a mutant, de�ned as a mutated

program variant with an introduced bug, is considered “killed” if

it yields di�erent outputs from the original program during test

executions. The mutation score is the metric of the e�ectiveness of

the test suite, referring to the ratio of the killed mutants out of all

Table 1: Defects4J projects utilized by MuBench
Project ID Project Name LoC # Tests # Seeds # Mutants

Chart-1 JFreeChart 96382 2193 70 81006

Cli-1 Apcache commons-cli 1937 94 12 1118

Closure-1 Google Closure compiler 90697 7911 67 52384

Codec-1 Apache commons-codec 2584 206 11 4408

Collections-25 Apache commons-collections 26415 15393 45 11899

Compress-1 Apache commons-compress 6741 73 25 11054

Csv-1 Apache commons-csv 806 54 7 695

Gson-1 Google GSON 5418 720 29 2295

JacksonCore-1 Google Guava 15882 206 19 16982

JacksonDatabind-1 Jackson data bindings 42965 1098 56 14810

JacksonXml-1 Jackson XML extensions 4683 138 18 2209

Jsoup-1 Jsoup HTML parser 2546 139 13 1511

JxPath-1 Apache commons-jxpath 19373 308 34 19278

Lang-1 Apache commons-lang 21787 2291 31 22793

Math-1 Apache commons-math 84323 4378 61 121346

Mockito-13 Mockito framework 7289 946 48 2231

Time-1 Joda-Time 27801 4041 46 20257

Table 2: Mutators used by MuBench

Mutator Description Example

AOR Arithmetic Operator Replacement 0 + 1 → 0 − 1

COR Conditional Expression Replacement 0 | | 1 → 0

LOR Bitwise Operator Replacement 0 ^ 1 → 0 | 1

LVR Literal Value Replacement 1→ −1

ORU Operator Replacement Unary −0 → ∼ 0

ROR Relational Operator Replacement 0 == 1 → 0 >= 1

SOR Shift Operator Replacement 0 >> 1 → 0 << 1

generated mutants. Mutation testing techniques have been used in

both academia and industry, e.g., Pitest [9] and Major [19]. Ma et

al. [30] proposed to reduce the execution cost of mutation testing

for object-oriented programs by using Mutant Schemata Genera-

tion (MSG) and bytecode translation. Schuler et al. [45] proposed

Javalanche that ranks mutations by their impact on the behavior of

program functions to enable e�cient mutation testing. Brown et

al. [4] proposed the wild-caught mutants technique to enhance

mutation testing by generating potential faults more closely related

to changes made by programmers. Zhang et al. [63] proposed pre-

dictive mutation testing, using a classi�cation model based on a

series of features related to mutants and tests to predict whether a

mutant would be killed or remain alive without executing it. More

recently, DeepMutation [48] was proposed to automatically learn

mutants from software repositories for better mutant generation

using NMT. Patra et al. [40] proposed SemSeed, a technique that can

automatically seed bugs in a semantics-aware way. Zhao et al. [47]

introduced LEAM, a syntax-guided mutation process leveraging

neural program generation, demonstrating superior performance

in mutation testing and related tasks such as test case prioritization

and fault localization.

In addition to mutation testing, mutation bug injection tech-

niques have been used in various areas including fault localiza-

tion [39], fuzzing [50], and program repair [14]. Ye et al. [61] pro-

posed to use bug injection to build a training dataset for learning-

based APR. Meanwhile, there is limited prior work on leveraging

mutation bug injection for extensive APR evaluation to the best of

our knowledge.

3 STUDY DESIGN

3.1 Benchmark Construction

3.1.1 Defects4J Benchmark. To ensure a fair comparison among

the state-of-the-art APR techniques, following prior studies [8, 54,
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Table 3: State-of-the-art APR techniques evaluated in this work.

APR technique Training source # Training Instance Features

Recoder [66] Java projects between 2011 and 2018 on GitHub 82,868 syntax-guided edit decoder, placeholder generation

SelfAPR [61] the perturbation bugs of subject projects 1,039,873 self-supervised training with error diagnostics

RewardRepair [62] CoCoNut, Megadi�, CodRep and Bears 3,507,394 combination of syntactic training and semantic training

Tufano2 [49] BFP: commits between 2010 and 2017 on GitHub 46,680 + 52,364 NMT-based, code-abstraction

Sequencer [8] original source of BFP 35,578 sequence to sequence learning

CoCoNut [29] commits before 2010 on GitHub, projects from GitLab and Bitbucket 3,241,966 ensemble learning, CNN, context aware NMT

CURE [18] commits before 2010 on GitHub, projects from GitLab and Bitbucket 4,040,000 NMT-based, code-aware search, BPE tokenization

Edits [11] 10,235 most-starred Java repositories on GitHub 55,000 transplanted NMT model

AlphaRepair [55] - - cloze-style APR based on zero-shot large language models

TBar [24] - - template-based technique with widely-used templates

SimFix [16] - - using existing patches and similar code as donor code

PraPR [14] - - template-based, bytecode transformation

*TBar, SimFix and PraPR are traditional APR techniques while the others are learning-based APR techniques. AlphaRepair is based on pre-trained LLMs and thus has no extra bug training dataset.

55], we use all of the 140 single-line bugs (bugs that can be �xed

with a single-line modi�cation) in the Defects4J V2.0.0 benchmark,

as many techniques can only accept a single line of buggy code

(e.g., SequenceR and AlphaRepair). Moreover, single-line bugs can

provide clearer insights into the limitations of APR techniques since

they are easier and often expected to be �xed.

3.1.2 MuBench Benchmark. Although previous works have shown

that the existing APR techniques can �x a lot of bugs on real-world

bug datasets (e.g., AlphaRepair [55] can �x 74 out of 395 bugs in

Defects4J V1.2.0), it remains unclear whether these APR techniques

can handle very simple bugs, which they ought to be able to �x

for practical utility. In order to investigate this problem, we build

a mutation-based benchmark named MuBench consisting of 1,700

simple arti�cial bugs generated by a variety of mutators.

Mutation seeds. We leverage the correct versions of programs

in Defects4J V2.0.0 as the seeds and perform mutation to inject

arti�cial bugs. As Defects4J V2.0.0 bugs are collected from 17 open-

source projects, we randomly select Java source �les from the �xed

versions of the �rst non-deprecated bug IDs across all projects as

the mutation seeds. After excluding �les unsuitable for any mutator

application, 592 Java source �les were left to be mutation seeds.

Note that the same Java source �le can result in di�erent mutated

bugs. Table 1 shows the Defects4J �xed version of projects where

we sample the seeds, as well as their project names, lines of code

(LoC), the number of tests in the test suite, the number of seed Java

�les, and the number of mutants generated as arti�cial bugs.

Mutants generation. We employ the Major [19] mutation test-

ing framework to mutate the seed programs. For each project, we

run Major with all 7 mutators1 in Table 2 enabled and execute

the test suite for each mutant to check whether the mutants are

killed (i.e., failing any test). In this study, we have limited our scope

to include only these 7 mutators to focus on assessing the ability

of studied techniques to �x relatively simple bugs. We leave the

evaluation of more complex mutation bugs for future research.

Mutants �ltering. Among the generated mutants, we use sev-

eral �ltering rules to �lter out unsuitable mutants. Speci�cally, we

exclude (1) mutants with multi-line code modi�cations (aligning

with APR tools that can only handle one line of buggy code); (2)

uncompilable mutants; (3) mutants that pass all tests.

1The STD (Statement Deletion) mutator is excluded because it is typically hard for
APR tools to restore a deleted statement, and the majority of studied tools only support
replacement �xes.

Ultimately, we uniformly sample 100 mutants for each project

from the remaining mutants, resulting in a total of 1,700 simple

arti�cial bugs for the MuBench benchmark.

3.2 Subject APR Techniques

As learning-based APR techniques have been shown to have great

potential, we follow a recent empirical study [65] on learning-based

APR techniques to include Recoder [66], Edits [11], CoCoNut [29],

Tufano [49], SequenceR [8] and CURE [18] as study subjects, but

we do not include CODIT [5] due to the absence of preprocessing

scripts. Additionally, we include some latest learning-based APR

techniques published in top conferences, namely RewardRepair [62],

SelfAPR [61], and AlphaRepair [55] (we use the CodeT5 version

as recommended by the authors). For traditional APR techniques,

we select SimFix [16], PraPR [14], and TBar [24] as they have

demonstrated state-of-the-art performance. In total, we include

nine learning-based and three traditional APR techniques, detailed

information of which can be found in Table 3.

To ensure a fair comparison, we set the candidate number of

learning-based techniques to 100. But for traditional APR tech-

niques, we let them exhaustively generate patches in a 5-hour time

limit because of the following reasons: (1) Compared to the patch

generation speed of learning-based techniques, some of them can

be slow (e.g., SimFix), thus it may take a very long time to generate

100 patches for each bug. (2) Some of the traditional APR techniques

can not generate 100 patches due to their limited search space. (3)

5 hours is the time limit used by SimFix to generate patches. In

addition, we conduct all experiments in the perfect fault localization

setting (i.e., all faulty locations are assumed to be known to the

APR techniques) following prior works [18, 54, 65]. Such a setting

is adopted to eliminate the noises brought by inaccurate fault local-

ization results [23, 25], thereby directly revealing the limitations

in the repair capabilities of the studied APR techniques. For all

other settings (e.g., context size, model temperature), we maintain

consistency with the corresponding original works.

3.3 Patch Assessment

After obtaining the candidate patches, we leverage the on-the-�y

patch validation tool UniAPR [6] to execute the test suites for

each patch to reduce the cost of patch validation. Note that we

2We follow the previous work [65] to name this technique.
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follow the recent work [59] to validate all patches without the early-

exit mechanism. Once UniAPR identi�es all the plausible patches,

we further perform patch correctness checking. For the patches

generated on the Defects4J benchmark, we involve two authors

with over three years of Java development experience to manually

check the patch correctness: initially, they independently label each

plausible patch; then they convene to resolve any disagreements

until consensus is achieved. However, for the MuBench benchmark,

given the large number of plausible patches, we use the TCE/SYE

metrics to approximate the genuineness metrics, as detailed in

Section 3.4.

3.4 Metrics

Our evaluation of APR techniques extends beyond the conventional

plausibility and genuineness metrics to include the metrics of total

patches and compilable patches, enabling more comprehensive

analyses. Notably, we have also employed the SYE and TCE metrics

to approximate the genuineness metrics, mitigating the high costs

of patch validation and manual patch correctness checking in our

large-scale APR evaluation.

In evaluating APR techniques, many APR works [55, 61, 62] tend

to directly reuse the results presented in the original works of com-

parison baselines, rather than re-executing the baselines themselves.

Consequently, comparisons are often made under di�erent settings,

e.g., numbers of candidate patches, posing a threat to the fairness

of evaluation. Although often neglected, the number of generated

patches and the compilable patches are two very important metrics

in APR evaluation, as the former ensures evaluation fairness and

the latter re�ects the robustness and e�cacy of the techniques.

Furthermore, the SYE patches refer to the patches that are syntac-

tically equivalent to the developer’s patch, i.e., the patched program

has the same token list as the �xed program after tokenization. On

the other hand, the TCE patches refer to the patches that are trivial

compiler equivalent [38] to the developer’s patch, i.e., making the

patched program have the identical bytecode instructions as the

�xed program after compilation. Based on the de�nitions, it is clear

that TCE and SYE patches are all semantically equivalent to the

developer’s patches, i.e., they are all genuine patches, but not all

genuine patches are TCE or SYE patches. Additionally, because

syntactically di�erent source �les can be compiled into equivalent

bytecode �les, and syntactically equivalent source �les must be

compiled into the equivalent bytecode �les, the set of SYE patches

is a proper subset of the set of TCE patches. In summary, the rela-

tionships between adopted metrics can be depicted in Figure 1.

Figure 1: Metrics rela-

tionship illustration

To identify SYE patches, we

use a Java tokenizer generated by

ANTLR [1] to compare the tok-

enization results of the compiled

patched programs and the com-

piled human-�xed programs. To

identify TCE patches, we use the

bytecode analysis tool ASM [2]

to compare the meta-information

(e.g., class members, method sig-

natures) and instructions of the

bytecode �les of the patched and

the human-�xed programs after compilation. We deliberately ex-

clude the debugging information from the bytecode �les to perform

a more accurate comparison. Additionally, for the 648 TCE and 500

SYE patches identi�ed by the aforementioned approach among the

patches generated for the Defects4J bugs, we manually checked

them against the developer’s patches and found no false positives.

In summary, our study primarily adopts the following metrics:

• Compilability Metric: A patch is compilable if the patched

program can be compiled successfully.

• Plausibility Metric: A patch is plausible if it can success-

fully pass the test suite.

• Genuineness Metric: A patch is genuine if it is both plau-

sible and semantically equivalent to the developer’s patch.

• SYE Metric: A patch is SYE (SYntactically Equivalent) if,

after tokenization, it shares the same list of tokens as the

developer’s patch.

• TCE Metric: A patch is TCE (Trivial Compiler Equivalent)

if it has equivalent compiled bytecode compared with the

developer’s patch.

3.5 Research Questions

(1) RQ1. How do the studied APR techniques perform on the

Defects4J V2.0.0 single-line bugs? This RQ seeks to evaluate

the e�cacy of the studied techniques on single-line bugs in the

Defects4J V2.0.0 benchmark under uni�ed settings, employing

multi-dimensional metrics to uncover potential shortcomings

and strengths inherent to the studied APR techniques. Addi-

tionally, we compare the results on di�erent Defects4J versions

and examine the correlation between various metrics and the

genuineness metrics to enrich our insights.

(2) RQ2. How do the studied APR techniques perform on

the mutation-based MuBench benchmark? Similar to RQ1,

RQ2 aims to evaluate the performance of the studied techniques

on the MuBench benchmark consisting of 1,700 simple muta-

tion bugs. We also investigate the performance of the studied

APR techniques in terms of di�erent mutators to uncover their

potential shortcomings and strengths.

(3) RQ3. What insights can lead to better program repair?

This RQ aims to discuss additional insights into the performance

of the studied APR techniques emerging from our multifaceted

analyses of the evaluation, which enable us to identify poten-

tial areas for improvement and provide insightful guidance to

enhance APR techniques.

4 RESULT AND ANALYSIS

4.1 RQ1: Performance on Defects4J V2.0.0 bugs

4.1.1 Overall Results. The overall results of the performance of

each APR technique are shown in Table 4. Note that PraPR does not

have data for compilability and SYE metrics because it generates

patches at the bytecode level. Besides, not all tools can generate

100 patches for each bug. For traditional tools they cannot generate

100 patches per bug due to limited search space or low e�ciency.

For learning-based tools, they may fail to generate 100 patches for

some bugs for intrinsic limitations, e.g., Recoder could crash on

some bugs (see Section 4.3.3), and some of them would �lter out

invalid patches in the post-processing phase (e.g., SequenceR).
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Table 4: The performance of APR techniques on Defects4J single-line bugs

Metrics
Learning-based Techniques Traditional Techniques

Recoder SelfAPR AlphaRepair RewardRepair SequenceR CoCoNut CURE Edits Tufano Tbar SimFix PraPR

# Total Patches 8768 14000 13439 14000 10181 12900 13900 13300 13300 10529 11499 1577

# Compilable Patches 2795 (31.88%) 5669 (40.49%) 3730 (27.76%) 4939 (35.28%) 2561 (25.15%) 2882 (22.34%) 3652 (26.27%) 291 (2.19%) 1427 (10.73%) 6439 (61.15%) 2699 (23.47%) N/A

# Plausible Patches 172 (1.96%) 658 (4.70%) 584 (4.35%) 600 (4.29%) 270 (2.65%) 245 (1.90%) 311 (2.24%) 22 (0.17%) 46 (0.35%) 364 (3.46%) 318 (2.77%) 123 (7.80%)

# Bugs w/ Compilable Patches 125 (89.29%) 135 (96.43%) 128 (91.43%) 136 (97.14%) 106 (75.71%) 117 (83.57%) 126 (90.00%) 47 (33.57%) 76 (54.29%) 128 (91.43%) 89 (63.57%) N/A

# Bugs w/ Plausible Patches 56 (40.00%) 67 (47.86%) 73 (52.14%) 70 (50.00%) 44 (31.43%) 31 (22.14%) 52 (37.14%) 9 (6.43%) 17 (12.14%) 65 (46.43%) 26 (18.57%) 54 (38.57%)

# Genuine Patches 47 (0.54%) 263 (1.88%) 152 (1.13%) 162 (1.16%) 55 (0.54%) 65 (0.50%) 55 (0.40%) 7 (0.05%) 6 (0.05%) 52 (0.49%) 18 (0.16%) 37 (2.35%)

# TCE Patches 39 (0.44%) 245 (1.75%) 72 (0.54%) 116 (0.83%) 33 (0.32%) 22 (0.17%) 35 (0.25%) 7 (0.05%) 5 (0.04%) 37 (0.35%) 17 (0.15%) 20 (1.27%)

# SYE Patches 19 (0.22%) 231 (1.65%) 45 (0.33%) 85 (0.61%) 17 (0.17%) 19 (0.15%) 26 (0.19%) 5 (0.04%) 3 (0.02%) 34 (0.32%) 16 (0.14%) N/A

# Bugs w/ Genuine Patches 40 (28.57%) 40 (28.57%) 50 (35.71%) 45 (32.14%) 27 (19.29%) 17 (12.14%) 31 (22.14%) 6 (4.29%) 6 (4.29%) 40 (28.57%) 17 (12.14%) 37 (26.43%)

# Bugs w/ TCE Patches 38 (27.14%) 35 (25.00%) 48 (34.29%) 44 (31.43%) 26 (18.57%) 15 (10.71%) 27 (19.29%) 6 (4.29%) 5 (3.57%) 36 (25.71%) 17 (12.14%) 20 (14.29%)

# Bugs w/ SYE Patches 19 (13.57%) 33 (23.57%) 45 (32.14%) 41 (29.29%) 17 (12.14%) 15 (10.71%) 26 (18.57%) 5 (3.57%) 3 (2.14%) 34 (24.29%) 16 (11.43%) N/A

*The percentages in the parentheses denote the ratio of the number of corresponding patches to the total number of generated patches for the # Compilable/Plausible/Genuine/TCE/SYE Patches metrics and
the ratio of the number of bugs with corresponding patches to the total number of bugs, for # Bugs w/ * Patches. The largest/highest number/ratio in each row is highlighted in bold font.

Table 5: The performance of APR techniques on di�erent versions of Defects4J bugs

Metrics
Learning-based Techniques Traditional Techniques

Recoder SelfAPR AlphaRepair RewardRepair SequenceR CoCoNut CURE Edits Tufano Tbar SimFix PraPR

# Genuine Patches

V1.2.0 36 (0.75%) 210 (2.76%) 61 (0.84%) 125 (1.64%) 33 (0.59%) 45 (0.63%) 32 (0.43%) 2 (0.03%) 2 (0.03%) 41 (0.87%) 14 (0.19%) 28 (3.14%)

V2.0.0 11 (0.28%) 53 (0.83%) 91 (1.48%) 37 (0.58%) 22 (0.48%) 20 (0.35%) 23 (0.36%) 5 (0.08%) 4 (0.07%) 11 (0.19%) 4 (0.14%) 9 (1.31%)

Ratio Change -63.36% -70.03% +77.18% -64.85% -17.59% -43.86% -15.77% +213.56% +150.85% -77.94% -27.64% -58.25%

# Bugs w/ Genuine Patches

V1.2.0 32 (42.11%) 31 (40.79%) 29 (38.16%) 30 (39.47%) 18 (23.68%) 10 (13.16%) 21 (27.63%) 2 (2.63%) 2 (2.63%) 32 (42.11%) 14 (18.42%) 28 (36.84%)

V2.0.0 8 (12.50%) 9 (14.06%) 21 (32.81%) 15 (23.44%) 9 (14.06%) 7 (10.94%) 10 (15.63%) 4 (6.25%) 4 (6.25%) 8 (12.50%) 2 (3.13%) 9 (14.06%)

Ratio Change -70.31% -65.52% -14.01% -40.63% -40.63% -16.88% -43.45% +137.50% +137.50% -70.31% -83.04% -61.83%

*The percentages in parentheses for # Genuine Patches represent the ratio of the number of patches to the total number of generated patches. The percentages in parentheses for # Bugs w/ Genuine Patches
represent the ratio of the number of bugs to the total number of bugs. Rows of Ratio Change indicate the percentages of the ratio decrease, with negative percentages highlighted in bold font.

Table 4 demonstrates that TBar achieves the highest number/ra-

tio (6439/61.15%) of compilable patches, which is 20.66 percentage

points (pp) higher than the second-best (SelfAPR, 5669/40.49%).

However, despite the high compilability rate, TBar �xes fewer bugs

than AlphaRepair and RewardRepair, suggesting that their e�ective-

ness can compensate for the shortcomings in compilability. The re-

sults indicate that while some learning-based APR techniques have

demonstrated better e�ectiveness, they still fall short of template-

based APR techniques in producing compilable patches.

Moreover, SelfAPR performs the best in terms of the total number

of plausible/genuine/TCE/SYE patches (658/263/245/231). However,

such high numbers of patches do not necessarily lead to the highest

number of bugs being correctly �xed, which is the key metric for

practical applications of APR techniques. Although AlphaRepair

has fewer plausible/genuine/TCE/SYE patches than SelfAPR, it

attains the highest number of bugswith plausible/genuine/TCE/SYE

patches, thus being the most e�ective APR tool among all studied

APR techniques. After further looking into the patches generated

by SelfAPR, we �nd that its good performance in the number of

plausible/genuine/TCE/SYE patches is mainly caused by the high

duplication rate of its generated patches (discussed in Section 4.3.2).

It is important to note that, while many of the learning-based

APR techniques claim superiority over traditional APR techniques,

our uniform experimental settings reveal a di�erent narrative. Among

the learning-based APR techniques, only AlphaRepair and Reward-

Repair can surpass TBar in terms of the number of bugs with gen-

uine patches, contradicting the �ndings reported in many of their

respective works (e.g., [66], [61] and [18]). Some learning-based

APR techniques, including RewardRepair, SelfAPR, and CURE, di-

rectly compare their results with TBar’s results in the work of TBar,

neglecting the fact that TBar’s assessment utilized the early-exit

mechanism [24] distinct from their own. Such a mechanism, which

terminates patch generation and validation once a plausible patch is

identi�ed for a bug, can lead to a potential undercount of plausible

and genuine patches. We have deactivated this mechanism in our

study to ensure a fair evaluation.

The contrasting results underline the importance of uniform

experimental settings (e.g., patch candidate numbers and patch gen-

eration mechanisms) in evaluating APR techniques. We recommend

researchers either execute APR techniques with the same experi-

mental settings as prior works or rerun baseline APR techniques

under uniform settings to ensure equitable evaluations.

Finding 1: On the Defects4J benchmark, the LLM-based

APR can correctly �x the most bugs while none of the

learning-based tools can outperform traditional template-

based TBar regarding compilability rate. In uniform settings,

some NMT-based tools can not outperform TBar in bug

�xing, highlighting the importance of equitable APR evalu-

ations.

4.1.2 Performance in Di�erent Defects4J Versions. As some APR

techniques have only been evaluated on Defects4J V1.2.0, there are

concerns about over�tting (i.e., the results may fail to generalize

e�ectively to other datasets). It would be interesting to see how the

results change on di�erent benchmark versions[12, 14]. Speci�cally,

we have divided the bugs in Defects4J into two datasets. The �rst

with 76 bugs from Defects4J V1.2.0 projects, and the second with

64 additional bugs from Defects4J V2.0.0 projects, referred to as the

Defects4J V2.0.0 dataset for brevity. The performance of studied

APR techniques on these two datasets in terms of the genuineness

metrics are shown in Table 5.

According to the results of the ratio change for both metrics in

Table 5, most of the studied APR techniques exhibit a signi�cant

decrease in performance. Notably, 9 out of 12 APR techniques ex-

hibit a drop in the ratio of both metrics. Among them, Recoder,

SelfAPR, TBar, and PraPR experience a decrease of more than 50%

in both ratios, indicating potential over�tting issues. Although

Edits and Tufano exhibit increases in both ratios, the observed

changes are not statistically signi�cant due to their relatively small

absolute numbers. It is worth noting that, AlphaRepair shows a

77.18% increase in the ratio of genuine patches and only a 14.01%
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Table 7: The performance of APR techniques in terms of di�erent mutators.

Mutator
Learning-based Techniques Traditional Techniques

#Bugs
Recoder SelfAPR AlphaRepair RewardRepair SequenceR CoCoNut CURE Edits Tufano Tbar SimFix PraPR

AOR 59 70 70 59 50 37 37 4 3 21 2 16 100

COR 10 50 57 19 8 2 11 0 1 3 4 0 100

LOR 39 55 5 27 16 20 21 1 5 44 15 76 100

LVR 74 84 74 79 72 62 57 19 17 19 16 12 100

ORU 34 60 5 53 15 33 25 1 7 0 2 0 100

ROR 30 68 74 46 37 16 37 0 6 38 14 6 100

SOR 39 54 2 9 1 10 8 0 0 0 3 67 100

*Each cell represents the number of bugs with TCE patches for each APR technique. The largest number in each row is highlighted in bold, and the largest number in each column is underlined.

Table 8: The categories of compilation errors of studied APR techniques on the MuBench benchmark.

Compilation Error
Learning-based Techniques Traditional Techniques

Total
Recoder SelfAPR AlphaRepair RewardRepair Sequencer CoCoNut CURE Edits Tufano Tbar SimFix

cannot �nd symbol 11809 27719 63359 33749 22783 26014 16048 31235 13727 8341 48305 303089

... expected 20041 21294 4695 11272 13192 11038 19183 34533 58534 134 3552 197468

illegal start of expression 6668 12136 4181 9998 7945 6963 19737 77050 28968 32 3904 177582

unclosed character literal 0 903 381 331 263 42373 16018 235 0 0 592 61096

incompatible types 9391 2157 2102 3027 7144 1552 3587 2403 6531 904 679 39477

bad operand ... for

(binary|unary) operator
10587 2858 1682 2714 7376 2096 3958 305 2529 3202 255 37562

not a statement 1422 3285 1598 7234 5417 639 2683 3735 4373 28 179 30593

incomparable types 6677 1610 1969 2115 5373 1818 3490 0 2858 1888 258 28056

(method|constructor) ... cannot

be applied to given types
4587 1707 2065 1860 3879 2076 3726 261 4703 1903 402 27169

illegal start of type 2613 2320 786 2485 301 58 5318 5888 5779 1 5 25554

Total (Semantic Error) 43051 (58.34%) 36051 (47.44%) 71177 (85.94%) 43465 (58.12%) 46555 (63.19%) 33556 (35.46%) 30809 (32.86%) 34204 (21.98%) 30348 (23.71%) 16238 (98.81%) 49899 (85.84%) 435353

Total (Syntactic Error) 30744 (41.66%) 39938 (52.56%) 11641 (14.06%) 31320 (41.88%) 27118 (36.81%) 61071 (64.54%) 62939 (67.14%) 121441 (78.02%) 97654 (76.29%) 195 (1.19%) 8232 (14.16%) 492293

Total 73795 75989 82818 74785 73673 94627 93748 155645 128002 16433 58131 927646

Finding 6: The patch compilability rate is highly correlated

to the number of bugs being correctly �xed, suggesting that

enhancing the patch compilability may lead to more valid

�x attempts and potentially more �xed bugs.

Strategies used to improve compilability.AmongNMT-based

APR techniques, Recoder, SelfAPR, RewardRepair, and CURE have

the highest compilability rates on both benchmarks, each employ-

ing a speci�c strategy to improve compilability. Speci�cally, Re-

wardRepair uses a compilability discriminator, SelfAPR includes

uncompilable perturbed programs in its training dataset to avoid

generating uncompilable patches, Recoder selects compatible iden-

ti�ers, and CURE utilizes pre-trained language models with a code-

aware beam-search strategy. In contrast, TBar maintains high com-

pilability by employing template designs likely to preserve syntactic

validity. Despite using varied strategies, learning-based techniques

lag behind TBar’s compilability rate in all benchmarks, suggesting

a need for future research to boost patch compilability in learning-

based APR techniques.

Finding 7: The various compilability improvement strate-

gies adopted by studied learning-based APR techniques can-

not surpass the compilability achieved by straightforward

template-based mutation. This suggests improving the patch

compilability of learning-based APR techniques through

more e�ective syntactic-validity-preserving strategies.

Compilation error categorization. To gain insights into the

factors limiting the studied techniques in generating compilable

patches, we analyze the compilation errors of uncompilable patches

generated on the large-scale MuBench benchmark. Table 8 lists

the top 10 errors with a heatmap indicating their frequency. Note

that the data for PraPR is not included as PraPR generates patches

at bytecode-level, eliminating the need for compilation. The Java

compiler (javac) can pinpoint both syntactic and semantic errors,

with the latter marked in green background color in the �rst column

of the table. Note that syntactical validity is a basic requirement for

compilability, and comparing the proportion of the syntactically

valid patches to the semantically valid ones can help gauge the

progress of an APR method in improving patch compilability.

The common error across all techniques is the cannot �nd sym-

bol error, indicating a lack of context understanding for accessible

identi�ers. AlphaRepair and TBar show the lowest syntactic er-

ror rates (14.06% and 1.19%) among learning-based and traditional

techniques, thanks to large language model basis and AST-based

mutation operations. Notably, with a syntactical error rate of 14.16%,

SimFix ranks third, closely trailing AlphaRepair. Recoder and Re-

wardRepair both have more than 40% syntactical errors. Despite

Recoder’s e�ort to pick type-compatible identi�ers, it still faces 9391

(12.73%) incompatible types issues. On the other hand, CoCoNut

and CURE generate a large number of uncompilable patches due

to unclosed character literal errors, re�ecting wasted patch explo-

ration, even though CURE employs a pre-trained language model.

Moreover, Edits and Tufano have major syntactic issues like miss-

ing symbols and incorrect Java syntax usage, possibly due to their

smaller training datasets.

Finding 8: Examining compilation errors of generated

patches can reveal bottlenecks in generating compilable

patches. Traditional APR techniques are generally more ef-

fective at avoiding syntactic errors in patches than learning-

based APR techniques. The most frequent compilation error

cannot �nd symbol indicates that many state-of-the-art APR

techniques struggle to generate valid identi�ers.

4.3.2 Duplicate and No-op Patches. Besides patch compilability,

we examine duplicate and no-op patches generated by the studied

APR techniques. Duplicate patches are syntactically equivalent to
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Table 9: The statistic of duplicate/no-op patches on the MuBench benchmark.

Metrics
Learning-based Techniques Traditional Techniques

Recoder SelfAPR AlphaRepair RewardRepair Sequencer CoCoNut CURE Edits Tufano Tbar SimFix

# Duplicate patches 2902 (1.95%) 67453 (39.68%) 443 (0.26%) 37284 (21.93%) 5 (0.00%) 4654 (2.91%) 57 (0.03%) 136 (0.08%) 25836 (15.20%) 21 (0.02%) 4830 (4.22%)

# No-op patches 996 (0.67%) 5119 (3.01%) 877 (0.52%) 4020 (2.36%) 750 (0.60%) 1746 (1.09%) 1162 (0.69%) 402 (0.24%) 345 (0.20%) 94 (0.10%) 4 (0.00%)

# Bugs with duplicate patches 887 (52.18%) 1700 (100.00%) 47 (2.76%) 1685 (99.12%) 3 (0.18%) 741 (43.59%) 13 (0.76%) 31 (1.82%) 1169 (68.76%) 5 (0.29%) 215 (12.65%)

# Bugs with no-op patches 817 (48.06%) 928 (54.59%) 839 (49.35%) 1479 (87.00%) 750 (44.12%) 1277 (75.12%) 1162 (68.35%) 402 (23.65%) 345 (20.29%) 94 (5.53%) 4 (0.24%)

previously generated patches, while no-op patches are syntactically

equivalent to the original buggy program, wasting computational

resources without improving patch diversity. We employ the SYE

metrics, i.e., comparing tokenization results to determine syntactical

equivalence, to identify such patches generated on the MuBench

benchmark. The analysis results are shown in Table 9.

The results show that SelfAPR has the most signi�cant patch

duplication issue with about 40% duplicate patches, and it gener-

ates at least one duplicate patch for each bug. RewardRepair and

Tufano also have high duplication rates of 21.93% and 15.20% re-

spectively, with 99.12% and 68.71% bugs associated with duplicate

patches. SelfAPR leads with a 3.01% rate of no-op patches, while

RewardRepair has the highest ratio of bugs with no-op patches at

87.00%. Although duplicate and no-op patches may not directly

hinder the e�ectiveness of APR techniques, they can consume com-

putational resources and limit the exploration of diverse patches.

Identifying such patches beforehand can save costs on unnecessary

patch validation and manual correctness checking.

Finding 9: Four out of nine learning-based APR techniques

incur more than 40% of bugs having duplicate/no-op patches,

highlighting the opportunity for corresponding optimiza-

tion techniques to enhance the e�ciency and reliability of

learning-based APR techniques.

4.3.3 Implementation Issues. Our extensive evaluation aids in iden-

tifying implementation issues in the studied APR techniques, es-

pecially on the large-scale MuBench benchmark. There are mainly

two types of issues: 1) some APR techniques underperform, e.g.,

failing to �x certain bugs that should have been �xed, and 2) cer-

tain techniques crash when trying to repair certain bugs, exposing

potential implementation issues.

Inferior performance. For instance, Recoder aims to use only

feasible identi�ers—identi�ers accessible in the local context and

meeting type constraints—to substitute original identi�ers. Yet, as

Section 4.3.1 notes, it leads to 11809 and 9391 compilation errors

from cannot �nd symbol and incompatible types, accounting for

28.73 % of all its compilation errors. To probe the cause, we ex-

amine the error-inducing patches generated by Recoder. Listing 1

shows a patch by Recoder, replacing literals ‘0’ and ‘9’ with “null”,

and str.charAt(i)with str.getDurationMillis(i), leading to

compilation errors since > cannot be applied to a String, and get-

DurationMills is not a String method. Upon inspecting Recoder’s

source code, we �nd that it does not always fully guarantee the

feasibility of identi�ers, i.e., well-typedness and accessibility.

In another case, TBar, designed to include the Mutate Literal

Expressionmutator (altering literals to other correspondingly-typed

literals or expressions), merely �xes 19 out of 100 LVR bugs. For

instance, it fails to �x the simple bug illustrated in Listing 2. Upon

reviewing its generated patches, we �nd that instead of substi-

tuting with other integer values, it solely substitutes the integer

literals with double/�oat literals of the same value. Additionally,

we found that TBar does not implement the functionality to replace

String/Character literals, although it is expected to do so. Similarly,

PraPR only �xes 12 LVR bugs, attributed to its restrictive literal

replacement pattern, such as only mutating int literal i to either 0

or i+1 for numeric literals mutation.

Listing 1 Example patch of Recoder

...

- if(str.charAt(i) > '0' && str.charAt(i) <= '9'){

+ if(((str.charAt(i) > "null") && (str.getDurationMillis(i) <=

"null"))){↩→

...

Listing 2 Example LVR bug that TBar failed to �x
...

- if (contains(value, index + 2, 1, "I", "E", "H") &&

+ if (contains(value, index + 2, -1, "I", "E", "H") &&

...

Listing 3 Buggy pre-processing code snippet of Recoder

# Recoder testone.py

if mode == 1:

# aftercode represents the subsequent context

aftercode = oldcode + aftercode

lines = aftercode.splitlines()

if 'throw' in lines[0] and mode == 1: # IndexError

for s, l in enumerate(lines):

...

Crashing in repairing. Some techniques crash while attempt-

ing to �x certain bugs. For example, Listing 3 shows a faulty code

snippet from the pre-processing script of Recoder, aiming to ex-

tract the context following the buggy line within the same method.

However, if the buggy line encompasses the entire method, such

as int sum(int a, int b){return a+b;}, the script will crash

as aftercode and lines turn empty, causing lines[0] to trigger

IndexError. This bug was con�rmed and �xed by its authors. In

total, we have identi�ed seven issues in AlphaRepair, SequenceR,

SimFix, TBar, Recoder, and CoCoNut, with �ve con�rmed and �xed

by their authors. The list of issues can be found in our artifact [3].

Finding 10: Our multi-dimensional evaluation and analyses

have revealed seven implementation issues (with �ve con-

�rmed and �xed by corresponding authors) in six studied

APR techniques.

5 THREATS TO VALIDITY

The threats to external validity mainly lie in the limited number of

benchmarks used for the evaluation and the generalizability of the

evaluation results. Therefore, besides the Defects4J benchmark, we

also build the mutation-based MuBench benchmark that contains

1,700 bugs generated by various mutators, larger than prior indi-

vidual benchmarks for APR evaluation. Another concern is that
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the MuBench benchmark constructed with 7 mutators might not

accurately represent real-world bugs, thus results from it may not

genuinely re�ect the capabilities of the assessed APR techniques.

To address this concern, in this paper, we utilize MuBench bench-

mark results solely to analyze the characteristics of the techniques

evaluated. Another threat lies in the potential data leakage issue

in learning-based APR techniques. To mitigate this threat, we care-

fully review the studied techniques to ensure they handled the

data leakage issue properly. Moreover, the MuBench benchmark

we create further alleviates such an issue by introducing new bugs

through program mutation.

Threats to internal validity mainly lie in the usage of APR tech-

niques and the manual patch inspection process. Thus, we meticu-

lously adhere to the instructions provided in each APR technique’s

README �le and proactively communicate with the authors if any

procedure is unclear. Additionally, we ensure the accuracy of man-

ual patch inspection by engaging two authors experienced in Java

development to independently verify the correctness of the patches.

The threats to the construct validity mainly lie in the metrics

used. Thus, we include the metrics that have been used in previous

works such as compilability, plausibility, and genuineness metrics.

For newly introduced metrics , i.e., SYE and TCE metrics, we per-

form correlation analyses to show that they are highly correlated

to the genuineness metrics.

6 CONCLUSION

In this study, we comprehensively evaluate nine learning-based and

three traditional APR techniques employing the Defects4J bench-

mark, alongside the substantial mutation-based MuBench bench-

mark consisting of 1,700 arti�cial bugs. Our analyses of the 1,814,652

generated patches utilize multi-dimensional metrics including com-

pilability, plausibility, SYE, TCE, and genuineness metrics, which

allow for an in-depth understanding of the capabilities and areas of

improvement for the studied APR techniques. Our comprehensive

evaluation leads to multiple �ndings. For instance, LLM-based APR

is generally less prone to over�tting compared to NMT-based and

traditional techniques. TCE metrics could be used as cost-e�cient

alternatives for genuinenessmetrics for large-scale APR evaluations.

All studied learning-based techniques lag behind template-based

techniques in producing compilable patches. Additionally, many

studied learning-based techniques su�er from the issue of gen-

erating duplicate/no-op patches which could burden their repair

e�ectiveness. We also provide valuable insights for future research,

including: the need for equitable evaluation settings (e.g., uniform

candidate patch numbers and patch generation mechanisms); the

potential bene�ts of integrating traditional and learning-based tech-

niques to capitalize on their respective strengths in �xing di�erent

types of bugs; and the importance of improving patch compilability

to yield more valid �x attempts and correct bug �xes. Moreover,

our study reveals seven implementation issues within the studied

APR techniques, and �ve of them were con�rmed and subsequently

�xed by the respective authors.
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