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the SUT (e.g., code coverage), grey-box fuzzers attempt to e�ciently produce tests that are more
likely to exercise new program behaviors. While in theory, we can apply all such approaches for
compiler fuzzing, each approach grapples with its challenges and limitations owing to the immense
complexity and scale of modern compiler systems. For instance, the widely-used LLVM [38] compiler
is implemented with 14M lines of code, and the popular DL compiler, TensorFlow [75], has 3.5M
lines.
Challenges. Black-box fuzzing, without knowledge of the internal workings, struggles due to the
intricate conditions required to trigger optimizations. Simply generating random inputs, without
any guidance, often proves impractical for reaching the deep corners of optimization logic. For
example, a recent study [11] shows that the black-box fuzzer for C compilers, Csmith [88], which
produces test-cases through grammar-based generation, is signi�cantly less e�ective than coverage-
guided fuzzing. Grey-box fuzzing, though better informed by source code instrumentation to achieve
higher code coverage than its black-box counterpart, frequently falls short of fully understanding
the nuanced criteria required to trigger particular optimizations. This shortcoming stems from the
fact that compiler optimizations typically hinge on meeting precise and strict conditions. Vanilla
coverage-driven strategies might not navigate these speci�c states e�ectively. Moreover, grey-box
compiler fuzzing [11, 21] even fail to generate semantically correct inputs, leading to the discovery
of mostly front-end crash bugs. On the other hand, traditional white-box fuzzing, which relies
on strict analysis of the SUT source code, becomes daunting with modern compilers. The sheer
complexity of modern optimization techniques, combined with the vast landscape of programming
paradigms and hardware targets, makes modeling all behaviors an uphill task. For instance, symbolic
execution [36] executes a program by using symbolic variables in place of concrete values, enabling
the systematic exploration of every potential execution path. However, when applied to compiler
systems, it becomes infeasible to designate every variable as symbolic. Even if such a feat were
achievable, the million-line scale of compiler codebase inevitably leads to path explosion, rendering
the approach highly challenging.
Furthermore, traditional compiler fuzzing techniques are typically tailored to speci�c lan-

guages/compilers. Yet, designing and implementing a fuzzing framework for a new compiler
is both time-intensive and laborious. For instance, Csmith [88] is comprised of tens of thousands
of lines of code through years of development. Given the unique characteristics of each target
language/compiler, reusing the e�orts of one fuzzing implementation for a di�erent input lan-
guage/compiler often presents signi�cant challenges.
Motivation. Figure 1 presents a motivating example of the optimization permute_linear_fusion in
PyTorch Inductor [63]. This optimization fuses the permute and linear operators when the permute
method is invoked on an input tensor with more than two dimensions, speci�cally swapping the
last two dimensions. On the left side of the �gure, we see its source code implementation. Here, the
constraints required to trigger this optimization are explicitly detailed with nested if condition
statements and a helper function check_permute. However, when applying fuzzing techniques to
test this optimization, black/grey-box fuzzing struggles to generate models that align the permute

and linear operators with these constraints. For instance, consider a scenario where a grey-box
compiler fuzzer produces a model with the linear operator and covers the �rst if-check (Line 3-6,
Figure 1) in this optimization. Even if a black/grey-box fuzzer repeatedly selects this test as a seed
for mutation, it is challenging to successfully mutate the model to invoke the permute method on a
tensor—speci�cally, to swap its last two dimensions—where the output should then serve as the
input for linear. This is because both black-box and grey-box fuzzing are unaware that the models
should include the permute and linear operators in this speci�c way, due to the absence of guidance
from the source code implementation. As there are thousands of operators in PyTorch, such fuzzers
will likely choose a di�erent operator than permute or apply permute in many other ways. As a
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result, the generated models often fail validation checks and cannot activate this optimization,
let alone discover deep bugs in it (Line 16, Figure 1). On the other hand, though the white-box
techniques have the potential to trigger this optimization theoretically, it is impractical to apply
traditional program analysis to extract constraints from the detailed source code due to the data
structure complexity in compilers, e.g.,torch.fx.GraphModule and torch.fx.Node. These structures
are further composed of several other intricate classes with diverse attributes (e.g., args, shape, and
rank). Additionally, the intricate constraints are often expressed in hierarchical conditions (e.g.,
nested if statements) and even complex check functions. Therefore, it is extremely challenging,
if not impossible, to accurately extract and express these constraints symbolically for constraint
solvers, let alone apply any formal method to solve them.
Insight. Can we scale white-box fuzzing to fully test optimizations for any compilers? We address
this question based on the insight that Large Language Models (LLMs) [8, 22, 42, 58, 59, 90] are pre-
trained on a vast array of code spanning various programming languages. This broad foundation
enables them to excel in comprehending and generating code across diverse languages [6].Therefore,
for the permute_linear_fusion optimization, di�erent from typical white-box fuzzing, we can
leverage LLMs to summarize the requirements for the models that could trigger it based on the
source code information, as highlighted in the yellow text box of Figure 1. Subsequently, we can
leverage the generated requirement description to further prompt LLMs to create the corresponding
inputs, which are PyTorch models in this case. In our experiments, the generated tests indeed
triggered the permute_linear_fusion optimization and even detected a previously unknown bug in
it! Notably, this bug was con�rmed by developers and labeled as high-priority.
Proposal.We presentWhiteFox, the �rstwhite-box compiler fuzzing approach via Large Language
Models (LLMs) to fully test the core optimization modules in DL compilers, which represent the
fastest-evolving segment in the �eld of compilers. As discussed, existing approaches to white-box
testing cannot scale to model the behavioral information of complex compiler systems. Therefore,
the key idea of WhiteFox is to leverage LLMs to automatically infer the requirements of test
programs that can trigger the compiler optimizations based on their source code implementation.
LLMs, having been pre-trained on an extensive corpus comprising natural languages and a variety of
programming languages, possess the ability to comprehend and succinctly summarize optimization
source code. The input toWhiteFox is the source code that implements compiler optimizations.
First, an LLM-based analysis agent automatically analyzes and summarizes the testing requirements
for triggering optimizations. Subsequently, an LLM-based generation agent produces numerous
meaningful test programs guided by the generated requirements. To generate test programs that
can directly exercise corresponding optimizations, WhiteFox further employs a feedback-loop
mechanism that uses optimization-triggering tests as few-shot examples to guide future test
generation.
Summary. This work makes the following contributions:

• Novelty.We introduce a new dimension of white-box compiler fuzzing by using LLMs as both
optimization source code analyzers and test input generators. To our best knowledge, this work
is the �rst to demonstrate that LLMs can transform the low-level implementation information
into the corresponding high-level test programs, making it practical to employ the white-box
fuzzing techniques to test complex DL compilers. Furthermore, beyond DL compiler testing,
WhiteFox can also be adapted for white-box fuzzing of other compilers, and even complex,
real-world software systems in general, inspiring future work in this promising direction.

• Approach. While our approach is general and applicable to various compiler systems, we imple-
ment WhiteFox as a practical fuzzer for the three most popular DL compilers, PyTorch Inductor,
TensorFlow-XLA, and TensorFlow Lite. We utilize GPT4 as an analysis agent to summarize the
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requirements based on the source code, and StarCoder as a generation agent to create diverse
test inputs. Our artifact is available at https://github.com/ise-uiuc/WhiteFox.

• Study. We extensively compared WhiteFox with state-of-the-art fuzzers on the target DL
compilers. Our result shows that WhiteFox can practice 2.5x more optimizations than the
baselines. By now,WhiteFox detects 101 bugs, with 92 already con�rmed as previously unknown
and 70 already �xed. Of these, 10 bugs are labeled as high-priority by the developers.

• Impact. WhiteFox has been acknowledged by the o�cial PyTorch team and is currently being
integrated into their development pipeline, demonstrating the real-world applicability of our
approach. Furthermore, our generality study adapts WhiteFox for testing LLVM and reveals
multiple bugs in this popular C/C++ compiler, showing the broader impact of our work beyond
DL compilers.

2 Background and Related Work

Fuzzing has been extensively studied for testing both traditional compilers and the emerging deep
learning (DL) compilers. In this section, we �rst review related work for compiler fuzzing without
LLMs. We then discuss the recent advances of LLM-based testing.

2.1 Compiler Fuzzing

The main challenge to compiler fuzzing is to synthesize and diversify syntactically and semantically
valid programs as the input to the compiler. In the literature of traditional compiler fuzzing,
grammar-based techniques aim to synthesize syntactically valid random programs via generation
rules that comply with the language grammar. Such techniques have been widely used for fuzzing
compilers of programming languages including C/C++ (e.g., Csmith [88] and YARPGen [50]),
JavaScript (e.g., LangFuzz [30] and jsfunfuzz [65]), and Python (e.g., PyRTFuzz [43]). However,
grammar-based approaches often require massive engineering e�orts to implement rules that
ensure the validity of the generated programs [88] and may still fail to synthesize realistic yet
complicated test programs. Therefore, mutation-based techniques [19, 39, 40, 94] propose to mutate
valid seed programs for generating new input programs that can exercise deeper code paths in the
compiler. Besides traditional compiler fuzzing, various fuzzing techniques have also been proposed
for the emerging DL compilers. DL compilers compile DL models, whose generation requires
valid compositions of tensor operations. In early work, DL models are either directly curated from
existing open-source models [61] or created using simple shape-preserving operators [28, 82]. To
diversify operators in model generation, recent work explicitly de�ne constraints for operator
constructions either manually [27, 45] or automatically [46].

Though comprehensive, most of the work discussed above is still black-box fuzzers. Consequently,
their generated test programs often fail to practice the internal nuances of intricate compiler
behaviors, especially in the important optimization passes. Therefore, recent grey-box compiler
fuzzers [11, 21, 47] have been proposed to integrate code coverage guidance to discover interesting
input programs that can explore deeper compiler behaviors. PolyGlot [11] proposes to integrate
coverage feedback into its fuzzing loop to test compilers at the intermediate representation (IR)
level.Tzer [47] proposes a coverage-directed fuzzing approach that jointly mutates both IR �les and
optimization passes, speci�cally targeting the TVM DL compiler [9]. More recently, GrayC [21]
combines coverage feedback with mutation operators to test C compilers.

To achieve more explicit test generation, white-box testers by theory can tailor test programs to
speci�cally exercise certain optimization by inspecting the compiler logic from the source code.
Yet, to our best knowledge, there is hardly any competitive white-box compiler fuzzer in existence,
largely due to the unmanageable scale of compiler systems which makes detailed program analysis
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almost impossible. While recent hybrid fuzzing techniques [12, 13, 34, 35, 49, 91] integrate general-
purpose fuzzing [26, 30, 52] with concolic execution [25, 67], showing promise in di�erent testing
domains, their e�ectiveness in compiler fuzzing remains limited compared to compiler-speci�c
fuzzers [7, 11, 39, 47]. Besides the path explosion issue due to the compiler-scale complexity, another
key limitation is that hybrid fuzzing typically operates on binary inputs, overlooking the nuanced
semantics present in source code, which is crucial for compiler testing.

2.2 LLM-Based Testing

With the recent advancements in Large Language Models (LLMs), there has been a surge in e�orts
to leverage LLMs for unit test generation [93]. For example, TeCo [56], built upon a �ne-tuned
CodeT5 [90] model, has been introduced to aid developers in completing unit tests for the given code
and context. TestPilot [64] explores adaptive zero-shot test generation with Codex [8] for testing
JavaScript. MuTAP [16] leverages zero-shot and few-shot learning to generate test cases using
Codex and llama-2-chat, and further evaluates the generated test cases through mutation testing.
ChatUniTest [10] performs conversation-driven test generation with ChatGPT [58].CodaMosa [41]
employs the capability of LLMs to help with the search-based software testing (SBST) [23] by
generating unit tests for uncovered methods. ChatGPT-SBST [74] performs a comprehensive study
on using ChatGPT [58] for SBST.

While LLM-based unit test generation techniques incorporate source code, they are speci�cally
designed for particular modules (e.g., functions/classes) of the projects under test. In contrast, our
approach targets the important problem of compiler testing at the entire system level (a totally
di�erent problem from unit testing), and relies solely on the source code implementation of opti-
mizations as guidance for fuzzing. Also, unit test generation demands detailed and comprehensive
information about the module being tested, including all associated data structures, while our
guidance can be imprecise, partial, or even incomplete. In addition, we are the �rst to leverage
LLMs to bridge the gap between the low-level optimization implementation and the high-level
input programs for compilers. Lastly, LLM-based unit test generation can only assist developers and
requires further manual re�nement, because generating reliable unit-test oracles remains notably
di�cult or infeasible for even the current best LLMs [14, 59]. In contrast, WhiteFox directly
leverages various automated oracles for traditional compiler fuzzing, e.g., di�erential testing [54].
Beyond unit test generation, applying LLMs to fuzz software systems is another emerging

trend [17, 18, 72, 84]. For example, TitanFuzz [17] demonstrates for the �rst time that modern
LLMs can be directly leveraged to perform both grammar- and mutation-based fuzzing of real-world
systems. Very recently, Fuzz4All [84] has also demonstrated that LLMs can serve as the universal
fuzzers for various types of software systems. However, these approaches often neglect white-box
information, speci�cally the source code implementation of the software under test. Consequently,
they tend to concentrate on the compiler’s front-end rather than the intricate logic within the
middle and back-end components. In contrast,WhiteFox is the �rst white-box compiler fuzzing
approach, which leverages low-level optimization implementations for guided fuzzing, and has
been demonstrated to outperform the recent TitanFuzz (§ 6.1).

3 Design

Figure 2 depicts the overview of WhiteFox, consisting of three main components: Requirement
Summarization, Test Generation, and Feedback Loop. Overall,WhiteFox takes the source code of
optimization passes from the tested compiler as inputs and generates high-quality test programs
via LLMs. To that end, during the Requirement Summarization phase, an analysis LLM is used to
summarize the requirements of the test programs to trigger the optimization by examining its
source-code implementation (§ 3.1). Next, the analyzed requirements are used to prompt a generation
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redundant or unrelated information. Furthermore, it is much more comprehensible to LLMs, since
LLMs have been trained on enormous natural language data. On the other hand, pseudo-code can
concisely describe certain patterns (especially when there are long sequences of function calls)
and is closer to the structure of tests that we want to generate ultimately. Additionally, we map
the low-level implementation to a high-level summarization using natural language or pseudo
code resembling user code. For instance, TFL::ConcatenationOp is a low-level TensorFlow Lite IR
used in the implementation source code of TensorFlow Lite optimizations (in Figure 2), which
corresponds to the high-level TensorFlow public API tf.concat, and semantically means joining
data from multiple input tensors. In our natural language description/pseudo code, instead of
using the low-level TFL::ConcatenationOp, we directly use “concatenation operator”/tf.concat to
summarize.
While both natural language and pseudo-code can help shorten the context and remove low-

level information to avoid confusing the LLM, each has its own unique strengths. For example,
the permute_linear_fusion optimization from PyTorch Inductor requires that “the tensor method
permute is invoked �rst, and then the torch.nn.functional.linear function is invoked on the permuted
tensor”. Such a NL description is not as straightforward as the pseudo-code format for this case.
Speci�cally, “the tensor method permute” could be simply represented as input_tensor.permute(...)
in pseudo-code. However, for the description “it swaps the last two dimensions of this tensor”, it
is pretty challenging to leverage pseudo-code to describe it clearly and brie�y. To combine and
maximize their strengths, we adopt a hybrid format that blends NL and pseudo-code to describe
the requirements for triggering optimization, rather than relying solely on either format. This
mixed format provides the analysis LLM with greater �exibility to utilize NL and/or pseudo-code
as needed for each component of requirements, resulting in a more expressive and higher-quality
summarization. Our experimental �ndings (§ 6.2.1) also support that the mix of NL and pseudo-code
achieves the best performance in this task.
Despite all these aforementioned bene�ts of a high-quality optimization summary, it is worth

noting that the requirement summarization is a very comprehensive and challenging task, even for
domain experts. First, it requires understanding the logic of the implementation code and rephrasing
it with semantic-preserving natural language or pseudo-code. Second, the mapping from low-level
implementation code to high-level information necessitates a broad background knowledge of
the corresponding programming language and compiler. This ranges from understanding general
technical terminology (e.g., “variable arguments” and “tail calls”), to in-depth domain-speci�c
knowledge (e.g., from low-level LLVM IRs to high-level C++ grammar). As demonstrated in our
evaluation (§ 6.2.1), the most powerful LLM to date (namely GPT4) is capable of performing this
challenging analysis process (while the current open-source models, such as StarCoder, still lag
far behind). This capability stems from its extensive training on vast datasets, enabling it to gain
a broad knowledge and implicit understanding of various programming languages and systems.
Additionally, its pro�ciency in performing these domain-speci�c analyses in our work likely results
from its training on the source code of these open-source compiler systems.
Therefore, WhiteFox �rst leverages the analysis LLM to infer the requirement of high-level

inputs that could trigger the optimization, utilizing its implementation written in the low-level
source code. More speci�cally, for each optimization, we use few-shot in-context learning [5] to
prompt the analysis LLM to generate its trigger requirements for the inputs in the mixed format of
NL and pseudo-code. Figure 3(a) presents the general few-shot prompt template used to summarize
requirements for optimizations in target compilers. This prompt template starts with the instruction
“Please describe the [TARGET INPUT] that can trigger the [OPTIMIZATION NAME] optimization...”, where
[TARGET INPUT] is the input format speci�c to the target compiler. Then it is followed by the source
code of the optimization implementation and concludes with the description of requirements that
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WhiteFox continues to use the initial prompt (Figure 4) in subsequent iterations until it �nds an
input capable of triggering that optimization.
To further investigate this, we observe that not all triggering examples are equally e�ective in

guiding the LLM to generate new valuable triggering tests. One useful signal for assessing their
e�ectiveness is the triggering rate of the newly generated tests when we employ them as few-
shot examples. To e�ectively select triggering examples with an evolving knowledge of example
e�ectiveness, it is crucial to �nd a balance between exploration and exploitation. Exploration is
critical because it not only allows us to evaluate under-explored options but also helps to produce
a diverse set of tests for fuzzing. On the other hand, some level of exploitation is desirable, as it
enables us to fully harness the potential of e�ective examples. To address this,WhiteFox adopts
an (adapted) Multi-Armed Bandit (MAB) algorithm, Thompson Sampling [78], as the selection
strategy for triggering examples to balance the exploiting and exploration trade-o�. Each triggering
example is conceptualized as an arm in the MAB framework. The main assumption here is that each
triggering example is associated with a probability representing the triggering rate, which quanti�es
the proportion of generated tests capable of triggering the optimization when utilizing the given
example. During the fuzzing loop, our objective is to estimate the probability associated with each
triggering example, with the aim of using the most e�ective example to achieve more valuable
triggering tests. More speci�cally, following the classical Thompson Sampling algorithm [78], when
we do not have any prior information about an arm, we choose standard beta distribution [53] �(1, 1)
(or equivalently Uniform(0, 1)) for its prior distribution. The beta distribution is parameterized
by two shape parameters U > 0, V > 0, which represents the number of successes and failures in
historical trials. The probability density function of beta distribution can be formally written as
follows:

5U,V (G) =
1

�(U, V)
GU−1 (1 − G)V−1

where �(U, V) is a constant for normalization. After drawing a new sample and observing the
reward (in our case, 1 if a generated test successfully triggers the targeted optimization and 0

otherwise), the posterior probability can be conveniently updated by increasing U or V by one,
depending on whether the sample was a success or failure. More formally, if our prior belief about
- is represented by 5U,V , the posterior distribution of - will be updated to 5U+1,V or 5U,V+1 after we
observe - = 1 or - = 0.

Algorithm 1 shows the example test selection process. Firstly, we sample \C from each of the pos-
terior distributions (Line 2-3). Subsequently, we opt for top-# arms with the highest sampled value,
which are the chosen example tests (ExampleTests) in this iteration (Line 4). Unlike conventional
scenarios where a single arm is chosen, we simultaneously select multiple test examples at a time
to construct a single few-shot prompt for generating a batch of new tests. Consequently, when we
observe the number of triggering tests among all newly generated tests, we use this information to
update the posterior of each of ExampleTests (Line 7-9). We next initialize the new trigger tests
(NewTriggerTests) using the mean values of U and V of the distribution of the ExampleTests (Line 10-
14), to reduce the overhead of re-exploring the distribution of NewTriggerTests from scratch. This
comes from our assumption that the e�ectiveness of the new test is highly correlated with those
few-shot examples, as the new test is generated by the LLM based on those speci�c examples,
potentially inheriting valuable code patterns from such “parent” examples [5]. In the end, we update
the pool of existing trigger tests with newly found tests (Line 15).

3.4 Test Oracle

Bugs are manifested in the following symptoms under WhiteFox.
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Result inconsistency. During compilation, programs are iteratively transformed to semantically
equivalent yetmore e�cient code through an array of optimization passes. However, miscompilation
can silently happen due to logical defects in the pass implementation, leading to undesired semantic
inconsistency in the produced machine code. Such semantic inconsistency can be manifested
through di�erential testing, as is commonly used in prior compiler testing work [39, 40, 45, 47, 50].
Speci�cally, for each test program that is both compilable and executable, given the same set of
inputs to the program (if required), we cross-check the produced outputs over the optimized and
non-optimized (or minimally optimized) versions of the program.
Crash. Following prior work [11, 17, 21, 40, 45, 47, 81, 88], it is undesirable to let the compiler and
the compiled executable crash unexpectedly. Consequently,WhiteFox actively captures crashing
signals at both the compile- and execution-time for the test program, including process aborts,
segmentation faults, and unexpected internal exceptions (e.g., INTERNAL_ASSERT_FAILED in PyTorch).
To summarize, we compile each test input in two modes: with and without optimization. We

consider the following conditions as bug candidates:

• Crashes during either optimization compilation or optimized program execution.
• Discrepancies in compilation status (pass/fail) between the two modes.
• Di�erent program outputs between the two modes.

4 Implementation

Optimization collection. We start to gather optimization-speci�c compiler source code by spec-
ifying the relevant directories. For example, the source code of optimization passes for PyTorch
Inductor is managed under the torch/_inductor directory, and that for TensorFlow-XLA is mainly
placed under tensorflow/compiler/xla/service. We next identify code fragments (e.g., functions)
that perform optimizations through simple keyword pattern matching. For instance, operator fusion
is an important optimization in DL compilers and we collect the relevant functions by searching
“fusion” or “fuse”. In addition, auxiliary functions invoked by the main optimizations are also
collected since they may unveil essential conditions for activating the optimizations. Curating and
identifying optimization-relevant code fragments is required to drive WhiteFox; however, it shall
be easy for compiler developers who have a deep understanding of the code being maintained.
Instrumentation. To gather the triggering information for the feedback loop (§ 3.3), we instrument
each collected optimization function by inserting a logging statement at the function entry. As
such, when compiling a test program, from the logs a sequence of activated optimization passes
can be obtained.
Analysis and generation LLMs.While our approach is general and thus agnostic to the LLMs
being employed, our tool WhiteFox is built on the state-of-the-art GPT4 [59] and StarCoder [42].
Speci�cally, we utilize GPT4 [59] as the analysis LLM for its recognized excellence in code compre-
hension and pro�ciency in natural language processing tasks [6]. For each optimization, we let
the analysis LLM generate one requirement description with the temperature set to zero via the
OpenAI APIs. Meanwhile, we choose StarCoder [42] (StarCoder-15B) to be the generative LLM,
which is an open-source model with 15.5B parameters and a context length of 8K. In each iteration,
we let StarCoder generate a batch of ten test inputs with the temperature set to one through the
HuggingFace APIs [32]. The model choices allow us to balance the trade-o� between the costs and
bene�ts that di�erent LLMs provide: (i) GPT4 is a powerful uni�ed LLM (i.e., with broad knowledge
and reasoning ability over both natural language and code) but costly, making it suitable as the
analysis LLM where its use is a one-time e�ort; (ii) StarCoder is an a�ordable LLM specialized for
code and is thus suitable for e�cient continuous test generation.
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Few-shot prompting. For the requirement summarization and initial test generation few-shot
prompt speci�c to each target compiler, we opt for one-shot prompting, for minimal manual e�orts
involved in prompt construction and a�ordable LLM context size. To accomplish this, we select
an optimization from each target compiler. Subsequently, we manually write the requirement
description and a demonstrative input test capable of triggering the optimization. This serves as
the one-shot example in the prompts for both requirement summarization and test generation. One
exception is that PyTorch Inductor has two distinct types of optimizations (7 utilizes a conventional
optimization check function, and 54 involves a pattern matcher).Therefore, we separately design
two prompts for each type and choose the corresponding prompt for each optimization based on its
type. For the feedback prompt, the requirement is produced by the analysis LLM, and the sample
tests are created by the generation LLM. We use three-shot as our default setting in the feedback
prompt. Overall, constructing prompts for each target compiler is relatively straightforward. We
only included a single example per compiler to illustrate the task format, requiring minimal e�ort.
It is even easier for compiler developers who are familiar with optimization logic. Notably, such
examples might already exist in test suites for many compilers. For comparison, many traditional
compiler fuzzing techniques even require numerous example tests as seeds [39, 40, 94].

5 Evaluation

5.1 Research �estions

We investigate the following research questions in our experiments:
• RQ1: How does WhiteFox compare to state-of-the-art DL compiler fuzzers?
• RQ2: Are all the key components in WhiteFox e�ective?
• RQ3: Is WhiteFox able to detect real-world bugs?

5.2 Experimental Setup

Compilers under test. Our main targets are the three most popular DL compilers: PyTorch
Inductor [63], TensorFlow Lite [76] and TensorFlow-XLA [77], within PyTorch [62] and Tensor-
Flow [75], two of the most widely used DL frameworks. With our best e�ort, we collect all possible
optimizations from these compilers. For TensorFlow-XLA, whose optimization implementations
tend to be lengthy, we only choose the optimizations that consist of less than 400 lines due to the
limit of LLM context window size. Table 1 lists the overview of the tested DL compilers.

Table 1. Details of target DL compilers.

# Optim. Source lang. Test lang. Nightly ver.

PyTorch Inductor 61 Python Python 20230509

TensorFlow Lite 13 C++ Python 20230507

TensorFlow-XLA 49 C++ Python 20230507

Baselines. We compare WhiteFox with state-of-the-art DL system fuzzers, including LLM-based
TitanFuzz [17] and symbolic rule-based NNSmith [45]. Since most optimizations are triggered by a
sequence of operators, we do not include the comparison with API-level DL library fuzzers [83, 85],
which are not intended for testing optimizations. We evaluate each baseline tool using its default
con�guration, e.g., a 4-hour input generation time for NNSmith. We retain the default settings for
all compared baselines because they were selected by the original authors as the optimal parameters
for achieving high performance while minimizing saturation.
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Notably, there are no practical white-box fuzzers speci�cally targeting DL compilers to the
best of our knowledge. For general-purpose directed or hybrid fuzzing approaches (e.g., qsym [91]
and Pangolin [31]), since they are far less e�ective for large-scale/complicated compiler systems
compared to compiler-speci�c techniques [7, 11, 21], we exclude them from our baselines. More
importantly, to the best of our knowledge, there is no directed or hybrid fuzzing approach for
DL compilers. One possible reason could be the inherent complexity of DL compilers, making it
prohibitively di�cult to craft such tools. Speci�cally, DL compilers are often developed in diverse
programming languages (e.g.,C++, Python, and CUDA) and rely heavily on various backend libraries
(e.g., Triton [79], oneDNN [57], and MKL-DNN [55]). Additionally, generating arbitrary inputs for
DL compilers is extremely di�cult for general-purpose fuzzers due to dual requirements: satisfying
language syntax/semantics (e.g., Python’s dynamic typing and syntax checks) and tensor/operator
constraints for valid computational graphs [17, 45]. As a result, we opt to compare with the current
best techniques for fuzzing DL compilers, i.e., TitanFuzz [17] and NNSmith [45].
Ablation variants. Multiple WhiteFox variants are evaluated in our ablation study. Considering
that PyTorch Inductor boasts the most optimizations, we conduct our ablation study exclusively to
PyTorch Inductor. For requirement generation, we consider four variants:WF-Mix (the default
setting of WhiteFox), WF-NL, WF-Code, and WF-Impl. For each optimization, we let the
generation LLM generate 100 test inputs, guided by di�erent requirement formats. Our default
setting, WF-Mix, describes the requirements in the mixed format of natural language and pseudo-
code generated by the analysis LLM. By contrast, the requirements used inWF-NL (resp.WF-Code)
are the natural language (resp. pseudo-code) description extracted from the mixed format, for a fair
comparison. Besides, we also evaluate the performance of directly feeding the generation LLM with
the implementation source code, i.e., theWF-Impl variant. Regarding the feedback loop, in addition
to our default con�guration, which uses feedback with Thompson Sampling, we contemplate two
alternative variants: one without any feedback (WF-No-Feedback) and another that incorporates
feedback but employs a simple uniform random selection (WF-Naive). Furthermore, we revisit the
decision of using GPT4 as the analysis LLM by introducing an additional variant, WF-SC, which
employs StarCoder as the analysis LLM.
Environment.Our test-bed runs Ubuntu 20.04.5 LTS with 64-core CPUs, 256 GB RAM, and NVIDIA
RTX A6000 GPUs.
Fuzzing budget. Our default setting is to generate a total of 1000 tests for each optimization
in 100 iterations. In each iteration, WhiteFox by default generates a batch of 10 tests based on
optimization triggering feedback from previous iterations. If the optimization was triggered in
previous iterations, WhiteFox picks three triggering inputs used as few-shot examples in the
feedback-guided prompt (Section 3.3, Figure 5) for the following iterations. Otherwise, WhiteFox

uses the default few-shot prompt (Section 3.2, Figure 4) to generate tests.

5.3 Metrics

Following prior work [11, 17, 20, 21, 45, 47, 50], we use the number of detected bugs as our metric,
which essentially re�ects the goal of fuzzing – �nding more bugs. Meanwhile, the primary goal of
our approach is to e�ectively test the optimizations within compilers. As such, we also let the number
of triggered optimizations and the number of (optimization-)triggering tests be our principal metrics.
Speci�cally, an optimization is deemed “triggered” if its corresponding optimization function (§ 4)
logs its presence during fuzzing. Meanwhile, a test quali�es as a “triggering test” only if during its
execution, any of the optimizations are triggered. Given that optimization bugs can only manifest
when the optimization is activated, similar to the concept of coverage, a higher number of triggering
tests correlates with an increased likelihood of bug discovery.
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Table 2. Comparison with baselines under the default se�ing.

# Optim. # Triggered optim. # Triggering tests # Tests Time/hour

WhiteFox

61

41 21,469 61,000 41.1

PyTorch WhiteFox-Mini 39 1,737 6,100 4.2

Inductor TitanFuzz 4 5,519 521,251 76.6

NNSmith 5 47 12,084 4.9

TF Lite

WhiteFox

13

12 2,801 13,000 18.1

WhiteFox-Mini 10 305 1,300 1.1

TitanFuzz 8 571 243,288 59.0

NNSmith 7 4,666 117,381 6.8

TF-XLA

WhiteFox

49

20 12,990 49,000 59.7

WhiteFox-Mini 19 1,307 4,900 5.3

TitanFuzz 22 45,762 243,288 63.2

NNSmith 16 117,006 117,381 6.0

Table 3. Comparison with baselines over a 24-hour period.

# Optim. # Triggered optim. # Triggering tests # Tests Coverage

PyTorch WhiteFox

61

41 12,127 35,380 54,819

Inductor TitanFuzz 4 1,697 167,521 53,592

NNSmith 5 233 57,664 49,910

TF Lite

WhiteFox

13

12 3,369 16,900 52,483

TitanFuzz 7 248 126,364 55,606

NNSmith 8 19,747 450,197 28,108

TF-XLA

WhiteFox

49

19 5,183 19,600 66,224

TitanFuzz 19 21,323 115,351 55,223

NNSmith 16 460,453 460,970 28,108

To further show the e�ectiveness of every component, we also use code coverage [17, 21, 37, 45]
as a metric. Speci�cally, we report line coverage in the source languages where the optimizations
are implemented: Python for PyTorch Inductor, and C++ for both TensorFlow Lite and TensorFlow-
XLA. Following previous work [27, 83, 87], we measure line coverage using Coverage.py [2] for
Python and GCOV [3] for C++.

6 Result Analysis

6.1 Comparison with Prior Work

Table 2 comparesWhiteFox against the baselines on the three target compilers under their default
settings. BecauseNNSmith has a shorter execution time than our default setting, for fair comparison,
we also present results from WhiteFox-Mini, which produces 100 tests for each optimization, as
opposed to the default 1000 tests. Notably, Column Time in Table 2 encompasses both the generation
time of requirements/tests (including LLM invocations) and the test-execution time.

In terms of optimization triggering, we observe that WhiteFox outperforms the baselines signif-
icantly in PyTorch Inductor and TensorFlow Lite. Overall, among the tested compilers, WhiteFox

outperforms existing testers by up to 8.2x in terms of the number of triggered optimizations. For
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Table 4. Impact of requirement description formats on PyTorch Inductor.

# Triggered optim. (% Total) # Triggering tests (% Total)

WF-Mix 39 (60.9%) 1,113 (17.4%)

WF-NL 37 (57.8%) 940 (14.7%)

WF-Code 32 (50.0%) 1,055 (16.5%)

WF-Impl 32 (50.0%) 638 (10.0%)

WF-SC 32 (50.0%) 745 (11.6%)

example, out of the 61 optimizations in PyTorch Inductor, WhiteFox is able to trigger 41 opti-
mizations, while the baseline approaches can trigger at most 5 optimizations, which is a subset of
optimizations covered by WhiteFox. Regarding the time cost, WhiteFox consumes less time than
all other techniques except NNSmith. Meanwhile, given the inferior performance of NNSmith,
WhiteFox-Mini can still trigger more optimizations than NNSmith using less time.

WhiteFox outperforms all baselines on compilers except for TensorFlow-XLA, with two fewer
optimizations being triggered compared to TitanFuzz. One possible reason is that the targeted
optimizations in TensorFlow-XLA are relatively simple per our optimization �ltering for fair
comparison with baselines (§ 5.2). Upon inspection, many of these optimizations represent common
model patterns that are widely used in practice. Therefore, they can be e�ectively triggered by
TitanFuzz since TitanFuzz leverages LLMs to generate human-like programs by resembling the
distribution of training data. Nevertheless, despite generating slightly fewer total tests compared
to TitanFuzz, WhiteFox demonstrates its own edge by triggering four unique optimizations
which TitanFuzz cannot. In addition, we note that NNSmith has much more triggering tests than
WhiteFox and TitanFuzz over TensorFlow-XLA. This is largely due to the implementation choice
of NNSmith, which always outputs the model with redundant reshapes. Thus, the vast majority of
test inputs from NNSmith can trigger the IdentityReshapeRemoving optimization (117,006/117,381).

Regarding unique optimizations triggered by each approach, the baselines trigger 7 optimizations
for PyTorch Inductor, whileWhiteFox covers these 7 and an additional 34 unique optimizations.
For TensorFlow Lite, the baselines trigger 9 optimizations, which are all covered by WhiteFox,
plus 3 more unique optimizations. For TensorFlow-XLA, the baselines trigger 26 optimizations,
including the 20 covered by WhiteFox.
Additionally, Table 3 comparesWhiteFox with the baselines over a 24-hour testing period, a

common setting for fuzzing approaches [37].WhiteFox performs the best on all three subjects,
substantially outperforming others on PyTorch Inductor and TensorFlow Lite. In terms of code
coverage,WhiteFox covers more lines than the baselines in PyTorch Inductor and TensorFlow-XLA
by up to 19.9%. For TensorFlow Lite,WhiteFox performs slightly worse than TitanFuzz (5.9%).
This may be attributed to the limited number of optimizations (13) in TensorFlow Lite, which
inherently restricts WhiteFox’s code coverage exploration, as WhiteFox does not have much
white-box information (i.e., optimization implementation) to guide the generation. Meanwhile,
please kindly note that code coverage is just a proxy indicator and does not always correlate strongly
with bug �nding abilities for complicated systems [33, 70]. Despite slightly lower code coverage
on TensorFlow Lite,WhiteFox still performs better on the ultimate goal, bug �nding (detailed in
Section 6.3). Overall, these results demonstrate the e�ectiveness of WhiteFox in generating test
cases to cover not only optimizations but also various compiler behaviors.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 296. Publication date: October 2024.



296:18 Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and Lingming Zhang

Table 5. Statistics of the feedback loop on PyTorch Inductor.

# Triggering tests Coverage

WhiteFox 21,469 55,857

WF-Naive 17,004 54,602

WF-No-Feedback 8,152 52,838

6.2 Ablation Study

Given that PyTorch Inductor has the highest number of optimizations, our ablation study is solely
focused on PyTorch Inductor.

6.2.1 Requirement Generation & Test Generation. We �rst study the e�ectiveness of the require-
ment description and the multiple choices for the format (shown in Table 4). The goal of the
requirement generation is to assist the generation LLM in producing more tests that can trigger
additional optimizations within the compiler. Thus, our main points of comparison are the number
of triggered optimizations (Column “# Triggered optim.”) and the number of tests that can trigger
the optimization (Column “# Triggered tests”).
E�ectiveness of requirement description. Compared with WF-Impl, which feeds the imple-
mentation source code directly with the generation LLM, all three variants that use requirements
(WF-Mix, WF-NL, and WF-Code) demonstrate superior performance in generating triggering tests.
Notably, our default setting WF-Mix is able to generate 1.74x more triggering tests than directly
using implementation code. Besides, WF-Mix can also trigger 7 more optimizations than WF-Impl,
emphasizing the importance of using requirement description. This aligns with our statement in the
Approach section that optimization source code is not the most e�ective guide for the generation
LLM due to its redundant, unrelated information, and low-level format.
E�ectiveness of mixed format. As shown in Table 4, WF-Mix achieves the best number of
triggered optimizations and triggering tests, underlining the e�ectiveness of combining NL and
pseudo-code for requirement description. Concurrently, while WF-NL triggers more optimizations
than WF-Code, it results in fewer triggering tests. This is because NL usually contains additional
information than pseudo-code, ensuring vital triggering requirements are not missed during
conversion from the implementation source code. Conversely, it is more straightforward for the
generation LLM to correlate requirements formatted in pseudo-code with the respective test
programs, leading to a higher number of triggering tests.
Analysis LLM.When employing requirement descriptions generated by StarCoder, WF-SC not
only results in fewer triggered optimizations but also a reduced number of triggering tests compared
to our default setting, which utilizes GPT4 to summarize the implementation source code. This
discrepancy is anticipated, given that GPT4 is recognized as the cutting-edge LLM in tasks related
to code comprehension and natural language generation [6]. Essentially, GPT4 exhibits a superior
ability in translating intricate source code details into high-level input requirements compared to
StarCoder. This observation underscores our rationale for choosing GPT4 as the analytical LLM.
Interestingly, even WF-SC generates a higher number of triggering tests than WF-Impl, which
creates the input straight from the implementation source code. Such a discovery con�rms that a
dual-model infrastructure might be better aligned for white-box compiler fuzzing than directly
utilizing the implementation source code, emphasizing the value of having a distinct phase dedicated
to requirement generation.

6.2.2 Feedback Loop. Next, we examine the e�ectiveness of our feedback loop and the Thompson
Sampling algorithm. The primary aim of the feedback loop is to enhance the likelihood of generating
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Table 7. Characteristics of WhiteFox-detected bugs

Crash Mis-compilation Failed optim. Incorrectly passed optim. (OOB)

PyTorch Inductor 6 25 41 7 (3)

TensorFlow-XLA 0 4 4 3 (2)

TensorFlow Lite 0 8 3 0 (0)

Total 6 37 48 10 (5)

§ 7.1). Thus, among the 79 identi�ed bugs in the PyTorch Inductor, 14 are found in its most recent
version. Remarkably, 10 (12.7%) of the PyTorch bugs have been labeled with high priority.

Of the 79 uniqueWhiteFox-detected bugs, 68 are undetectable by the baselines. For TensorFlow-
XLA and TensorFlow Lite, the baselines could �nd only 1 of the 22 bugs discovered by WhiteFox.

6.3.1 Bug Analysis. We next comprehensively analyze the PyTorch Inductor bugs as it is the main
source of WhiteFox-detected bugs (79/101, 78.2 %), and most of them have been �xed (68/79, 86.1
%). Out of these 79 bugs, only 11 (13.9%) can be covered by the state-of-the-art, with 10 detectable
by TitanFuzz and 3 by NNSmith.
Regarding the 68 �xed bugs, we further explore the root cause of the bugs by inspecting their

corresponding developer �xes. Impressively, 47 (69.1%) of the �xed bugs are repaired in the
optimization code of PyTorch Inductor. This demonstrates the e�ectiveness of WhiteFox for
�nding optimization bugs, which is the primary goal of our approach. Speci�cally, only 3 of these
47 optimization bugs can be covered by TitanFuzz and NNSmith, highlighting the signi�cant
edge of WhiteFox in testing compiler optimizations. One interesting observation is that certain
optimizations appear to be more erroneous than the others; however, such erroneous optimizations
instead turn out to be harder to discover. For example, WhiteFox detects 5 bugs in the optimization
for the important attention modules [80], which are the fundamental building blocks to LLMs. The
developer-crafted tests may seem surprising in their oversight of multiple critical bugs, but this is
due to the challenge of creating precise model patterns to reveal deeply hidden issues. By exposing
such critical bugs,WhiteFox demonstrates the power of white-box fuzzing with LLMs.

6.3.2 Bug Characteristics. We further study the detailed characteristics of the WhiteFox-detected
bugs, which include crashes, mis-compilations, failed optimizations, incorrectly passed optimizations,
and vulnerabilities, shown in Table 7. Amis-compilation occurs when the optimized program returns
di�erent outputs than the non-optimized one. Failed optimizations refer to cases where compilation
with optimization fails, while it is valid without optimization. Incorrectly passed optimizations
occur when the optimization compiles invalid models successfully. Regarding the vulnerabilities, in
addition to the 6 crash bugs that could be used for DoS attacks, there are another 5 out-of-bound
read vulnerabilities detected within the incorrectly passed optimizations.

6.3.3 Won’t Fix Bugs. For the won’t �x bugs, in PyTorch Inductor, one is due to the compiler
not supporting quantized APIs, another is from unde�ned behavior in operators, and the third is
because developers considered our input invalid, despite the optimization compiling the model
and returning di�erent results. In TensorFlow Lite, two bugs stem from its feature that doesn’t
guarantee input-output order, and another is the optimized output having di�erent shapes, which
is rare and not expected in both PyTorch Inductor and TensorFlow-XLA.

6.3.4 Bug Examples. We demonstrate representative bugs detected by WhiteFox and discuss
their exploitation or security implications. Figure 7(a) illustrates a misoptimization of PyTorch
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After optimization:Ground-truth:

After optimization:
Ground-truth:

Attention Optimization

After optimization:Ground-truth:

(a) A bug of attention optimization in Inductor.
(b) Two bugs of binary_unary_fusion optimization in Inductor.

(c) A bug of FuseUnpackAndConcatToReshape in TensorflowLite.

InvalidArgumentError 64 isn’t in [0, 64)

After optimization:Ground-truth:

(d) An out-of-bound read bug in TensorFlow-XLA.

After optimization:Ground-truth:

(e) A crash bug in LLVM.

After optimization with bfloat16 input:

Fig. 7. Example bugs detected by WhiteFox.

Inductor, manifested when compiling attention modules [80]. The faulty optimization through
pattern matching identi�es self-attentions and fuses their sub-operators into a compact and e�cient
implementation. However, the optimized attention module, by rearranging the tensor layout to
a channel-last format and rendering the last dimension non-contiguous, results in an accuracy
issue. This leads to incorrect outputs when compared to those from the unoptimized module. Given
the prevalence and impact of attention modules and LLMs, this bug is labeled with high-priority
and subsequently �xed. The developers highlighted the importance of the issue, stating, “raising
priority due to being an accuracy problem on an important operator”.
Figure 7(b) presents two bugs detected in PyTorch Inductor for the binary_unary_fusion opti-

mization, which fuses the Linear (i.e., binary) and ReLU (i.e., unary) operators into a compact and
thus e�cient operation. However, after compilation, such exempli�ed module returns impermissible
negative outputs since its �nal layer is ReLU whose output is always non-negative [4]. Because
such Linear-ReLU structures are incorporated in many fundamental architectures such as ResNet
(Residual Network) [29], this bug, uniquely found byWhiteFox, is labeled as high-priority and was
�xed immediately after our report. Furthermore, con�guring the ReLU operation with inplace=True

results in a crash of the optimized model for inputs of bfloat16 data type, which can be leveraged
for DoS attacks by requesting data in bfloat16 format. Given the severity of this potential security
issue, the developers promptly patched the vulnerability within two days.
Figure 7(c) depicts a bug manifested in the FuseUnpackAndConcatToReshape optimization in Ten-

sorFlow Lite. Speci�cally, this optimization aims to streamline unpack-concat operation pairs into
a single reshape operation, provided that the two operations are semantically inverse to each
other. In this optimization, the unpacked dimension should match the concatenated dimension
in the original input of the unpack-concat operation pair. The example listed in Figure 7(c) vi-
olates the assumption and by theory cannot be simpli�ed to a reshaping logic. However, the
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Table 8. Comparison with baselines for LLVM optimizations

# Optim. # Triggered optim. # Triggering tests # Tests Time/hour

LLVM

WhiteFox

52

26 25,322 52,000 30.9

YARPGen 4 76,171 199,302 32.2

GrayC 4 8,353 107,234 30.6

FuseUnpackAndConcatToReshape function still erroneously transforms it into a wrong reshaping op-
eration. Notably, this bug is exclusively detected byWhiteFox as it hinges on generating valid tests
to trigger this particular optimization, which other techniques consistently struggle to accomplish.

Figure 7(d) shows a TensorFlow-XLA bug exclusively detected byWhiteFox. The bug-triggering
model contains an embedding layer with a vocabulary size of 64 tokens, followed by one multiplica-
tion operation. When the �rst input to the model is 64, exceeding the embedding layer’s maximum
token index (63), the unoptimized model raises an InvalidArgumentError as expected. However,
the model optimized by XLA omits index validation, leading to an out-of-bounds read vulnerability.
Given the prevalence/impact of the important embedding layers, developers have swiftly addressed
and �xed this issue after seeing our report.

7 Discussion

7.1 Real-World Impact

Notably, we received the acknowledgment from the PyTorch team along with the request for
integratingWhiteFox into the development pipeline of PyTorch Inductor compiler.

“Thanks for your contributions to surfacing TorchInductor issues with Whitefox and sharing

details. It will be great to �gure out the next steps (for integration).” — PyTorch Team

Consequently, we further extend WhiteFox to accommodate the most recent version of Py-
Torch Inductor, incorporating support for an additional 38 newly introduced optimizations. This
underscores the distinct dynamic of DL compilers, which diverge from traditional compilers due to
the brisk pace of DL model architecture evolution and the pressing need to optimize for nascent
architectures. For context, PyTorch Inductor has experienced 1,846 commits in the last year alone.
Therefore, the principal focus of WhiteFox on DL compilers is driven by the necessity for an
approach that can evolve in tandem with the rapid development of new optimizations. As described
in § 6.3, WhiteFox helped detect 14 new bugs for the newly introduced optimizations, all of which
have been con�rmed by the developers. This underscores WhiteFox’s e�ectiveness and ability to
adapt to evolving optimizations, showing the value and signi�cance of incorporatingWhiteFox

into the development work�ow.

7.2 Generality: Case Study on LLVM

Although our main focus is on DL compilers in this work,WhiteFox is general to the compilers
from various domains that contain pattern-based optimization pipelines. To show the generality of
WhiteFox, we implemented a prototype of WhiteFox for testing LLVM [38], which is one of the
most popular C/C++ compilers. We tried our best to collect all middle-end optimizations in LLVM
since they are general to any architecture and are well-documented [51]. In terms of baselines,
we include YARPGen [50], a recent fuzzing tool to generate C/C++ test inputs with strategies to
trigger di�erent optimizations in compilers, and GrayC [21], state-of-the-art grey-box fuzzer using
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coverage feedback to generate test programs in C. Speci�cally, the LLVM version under test is
LLVM-18-20230818-nightly, and the experimental environment matches the setup described in
§ 5.2.
Optimization trigger. Table 8 presents the optimization triggering results for LLVM optimizations
against the baselines. Similar to the results on DL compilers, we observe that WhiteFox can
trigger 6.5x more optimizations than baselines while incurring less time cost. This demonstrates
the e�ectiveness and potential of WhiteFox on di�erent compilers.
Bug detection.WhiteFox detects 6 bugs for LLVM, with 2 con�rmed as previously unknown, 3
pending, and 1 won’t �x. Figure 7(e) presents a con�rmed LLVM bug, which is only revealed when
a test program references a huge array through a large enough index, crashing the LLVM post-
optimization. Attackers can exploit this vulnerability for DoS by crafting speci�c input programs
to crash Just-in-Time-enabled systems that use this optimization.

7.3 Limitations and Future Work

While this paper focuses on compiler optimization, WhiteFox could be potentially adapted for
white-box fuzzing of other compiler code and even other complex, real-world software systems.
For example, for regression bugs, WhiteFox can be deployed by setting the changed branches as
targets and letting LLMs analyze their triggering conditions. However, one limitation or challenge
is that, for optimization, the high-level system inputs usually have a relatively clear mapping to the
low-level optimization implementation. In contrast, for arbitrary functions, this mapping may be
unclear. To mitigate this, one possibility is to further leverage LLMs to infer such mappings (e.g.,
leveraging auxiliary information, including documentation) along with the triggering conditions.
Another possible future direction is to use traditional fuzzing approaches as external tools for

e�cient test generation. Given the higher computational cost of invoking smaller LLMs compared
to traditional techniques, this strategy could improve performance. For instance, we could utilize
WhiteFox to summarize optimization triggering generation or mutation rules, which could then
guide input generation for a traditional fuzzing framework such as NNSmith [45].

8 Conclusion

We present WhiteFox, the �rst practical white-box compiler fuzzer to test compiler optimizations.
WhiteFox adopts a multi-agent design: an analysis LLM reads through the implementation code of
compiler optimizations and summarizes desired patterns of test programs, with which a generation
LLM is then prompted to e�ciently and continuously synthesize meaningful test programs to
exercise corresponding optimizations. Our evaluation shows that WhiteFox is e�ective in testing
the emerging DL compilers and is also adaptable to the conventional C/C++ compilers. To date,
WhiteFox has found in total 101 bugs for DL compilers, with 92 con�rmed as previously unknown
and 70 already �xed.

Data-Availability Statement

The artifact of WhiteFox is available at https://github.com/ise-uiuc/WhiteFox.
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